xref: /linux/drivers/net/ifb.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /* drivers/net/ifb.c:
2 
3 	The purpose of this driver is to provide a device that allows
4 	for sharing of resources:
5 
6 	1) qdiscs/policies that are per device as opposed to system wide.
7 	ifb allows for a device which can be redirected to thus providing
8 	an impression of sharing.
9 
10 	2) Allows for queueing incoming traffic for shaping instead of
11 	dropping.
12 
13 	The original concept is based on what is known as the IMQ
14 	driver initially written by Martin Devera, later rewritten
15 	by Patrick McHardy and then maintained by Andre Correa.
16 
17 	You need the tc action  mirror or redirect to feed this device
18        	packets.
19 
20 	This program is free software; you can redistribute it and/or
21 	modify it under the terms of the GNU General Public License
22 	as published by the Free Software Foundation; either version
23 	2 of the License, or (at your option) any later version.
24 
25   	Authors:	Jamal Hadi Salim (2005)
26 
27 */
28 
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/moduleparam.h>
37 #include <net/pkt_sched.h>
38 #include <net/net_namespace.h>
39 
40 #define TX_Q_LIMIT    32
41 struct ifb_q_private {
42 	struct net_device	*dev;
43 	struct tasklet_struct   ifb_tasklet;
44 	int			tasklet_pending;
45 	int			txqnum;
46 	struct sk_buff_head     rq;
47 	u64			rx_packets;
48 	u64			rx_bytes;
49 	struct u64_stats_sync	rsync;
50 
51 	struct u64_stats_sync	tsync;
52 	u64			tx_packets;
53 	u64			tx_bytes;
54 	struct sk_buff_head     tq;
55 } ____cacheline_aligned_in_smp;
56 
57 struct ifb_dev_private {
58 	struct ifb_q_private *tx_private;
59 };
60 
61 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
62 static int ifb_open(struct net_device *dev);
63 static int ifb_close(struct net_device *dev);
64 
65 static void ifb_ri_tasklet(unsigned long _txp)
66 {
67 	struct ifb_q_private *txp = (struct ifb_q_private *)_txp;
68 	struct netdev_queue *txq;
69 	struct sk_buff *skb;
70 
71 	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
72 	skb = skb_peek(&txp->tq);
73 	if (!skb) {
74 		if (!__netif_tx_trylock(txq))
75 			goto resched;
76 		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
77 		__netif_tx_unlock(txq);
78 	}
79 
80 	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
81 		u32 from = G_TC_FROM(skb->tc_verd);
82 
83 		skb->tc_verd = 0;
84 		skb->tc_verd = SET_TC_NCLS(skb->tc_verd);
85 
86 		u64_stats_update_begin(&txp->tsync);
87 		txp->tx_packets++;
88 		txp->tx_bytes += skb->len;
89 		u64_stats_update_end(&txp->tsync);
90 
91 		rcu_read_lock();
92 		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
93 		if (!skb->dev) {
94 			rcu_read_unlock();
95 			dev_kfree_skb(skb);
96 			txp->dev->stats.tx_dropped++;
97 			if (skb_queue_len(&txp->tq) != 0)
98 				goto resched;
99 			break;
100 		}
101 		rcu_read_unlock();
102 		skb->skb_iif = txp->dev->ifindex;
103 
104 		if (from & AT_EGRESS) {
105 			dev_queue_xmit(skb);
106 		} else if (from & AT_INGRESS) {
107 			skb_pull(skb, skb->mac_len);
108 			netif_receive_skb(skb);
109 		} else
110 			BUG();
111 	}
112 
113 	if (__netif_tx_trylock(txq)) {
114 		skb = skb_peek(&txp->rq);
115 		if (!skb) {
116 			txp->tasklet_pending = 0;
117 			if (netif_tx_queue_stopped(txq))
118 				netif_tx_wake_queue(txq);
119 		} else {
120 			__netif_tx_unlock(txq);
121 			goto resched;
122 		}
123 		__netif_tx_unlock(txq);
124 	} else {
125 resched:
126 		txp->tasklet_pending = 1;
127 		tasklet_schedule(&txp->ifb_tasklet);
128 	}
129 
130 }
131 
132 static struct rtnl_link_stats64 *ifb_stats64(struct net_device *dev,
133 					     struct rtnl_link_stats64 *stats)
134 {
135 	struct ifb_dev_private *dp = netdev_priv(dev);
136 	struct ifb_q_private *txp = dp->tx_private;
137 	unsigned int start;
138 	u64 packets, bytes;
139 	int i;
140 
141 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
142 		do {
143 			start = u64_stats_fetch_begin_irq(&txp->rsync);
144 			packets = txp->rx_packets;
145 			bytes = txp->rx_bytes;
146 		} while (u64_stats_fetch_retry_irq(&txp->rsync, start));
147 		stats->rx_packets += packets;
148 		stats->rx_bytes += bytes;
149 
150 		do {
151 			start = u64_stats_fetch_begin_irq(&txp->tsync);
152 			packets = txp->tx_packets;
153 			bytes = txp->tx_bytes;
154 		} while (u64_stats_fetch_retry_irq(&txp->tsync, start));
155 		stats->tx_packets += packets;
156 		stats->tx_bytes += bytes;
157 	}
158 	stats->rx_dropped = dev->stats.rx_dropped;
159 	stats->tx_dropped = dev->stats.tx_dropped;
160 
161 	return stats;
162 }
163 
164 static int ifb_dev_init(struct net_device *dev)
165 {
166 	struct ifb_dev_private *dp = netdev_priv(dev);
167 	struct ifb_q_private *txp;
168 	int i;
169 
170 	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
171 	if (!txp)
172 		return -ENOMEM;
173 	dp->tx_private = txp;
174 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
175 		txp->txqnum = i;
176 		txp->dev = dev;
177 		__skb_queue_head_init(&txp->rq);
178 		__skb_queue_head_init(&txp->tq);
179 		u64_stats_init(&txp->rsync);
180 		u64_stats_init(&txp->tsync);
181 		tasklet_init(&txp->ifb_tasklet, ifb_ri_tasklet,
182 			     (unsigned long)txp);
183 		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
184 	}
185 	return 0;
186 }
187 
188 static const struct net_device_ops ifb_netdev_ops = {
189 	.ndo_open	= ifb_open,
190 	.ndo_stop	= ifb_close,
191 	.ndo_get_stats64 = ifb_stats64,
192 	.ndo_start_xmit	= ifb_xmit,
193 	.ndo_validate_addr = eth_validate_addr,
194 	.ndo_init	= ifb_dev_init,
195 };
196 
197 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
198 		      NETIF_F_TSO_ECN | NETIF_F_TSO | NETIF_F_TSO6	| \
199 		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
200 		      NETIF_F_HW_VLAN_STAG_TX)
201 
202 static void ifb_dev_free(struct net_device *dev)
203 {
204 	struct ifb_dev_private *dp = netdev_priv(dev);
205 	struct ifb_q_private *txp = dp->tx_private;
206 	int i;
207 
208 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
209 		tasklet_kill(&txp->ifb_tasklet);
210 		__skb_queue_purge(&txp->rq);
211 		__skb_queue_purge(&txp->tq);
212 	}
213 	kfree(dp->tx_private);
214 	free_netdev(dev);
215 }
216 
217 static void ifb_setup(struct net_device *dev)
218 {
219 	/* Initialize the device structure. */
220 	dev->netdev_ops = &ifb_netdev_ops;
221 
222 	/* Fill in device structure with ethernet-generic values. */
223 	ether_setup(dev);
224 	dev->tx_queue_len = TX_Q_LIMIT;
225 
226 	dev->features |= IFB_FEATURES;
227 	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
228 					       NETIF_F_HW_VLAN_STAG_TX);
229 
230 	dev->flags |= IFF_NOARP;
231 	dev->flags &= ~IFF_MULTICAST;
232 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
233 	netif_keep_dst(dev);
234 	eth_hw_addr_random(dev);
235 	dev->destructor = ifb_dev_free;
236 }
237 
238 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
239 {
240 	struct ifb_dev_private *dp = netdev_priv(dev);
241 	u32 from = G_TC_FROM(skb->tc_verd);
242 	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
243 
244 	u64_stats_update_begin(&txp->rsync);
245 	txp->rx_packets++;
246 	txp->rx_bytes += skb->len;
247 	u64_stats_update_end(&txp->rsync);
248 
249 	if (!(from & (AT_INGRESS|AT_EGRESS)) || !skb->skb_iif) {
250 		dev_kfree_skb(skb);
251 		dev->stats.rx_dropped++;
252 		return NETDEV_TX_OK;
253 	}
254 
255 	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
256 		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
257 
258 	__skb_queue_tail(&txp->rq, skb);
259 	if (!txp->tasklet_pending) {
260 		txp->tasklet_pending = 1;
261 		tasklet_schedule(&txp->ifb_tasklet);
262 	}
263 
264 	return NETDEV_TX_OK;
265 }
266 
267 static int ifb_close(struct net_device *dev)
268 {
269 	netif_tx_stop_all_queues(dev);
270 	return 0;
271 }
272 
273 static int ifb_open(struct net_device *dev)
274 {
275 	netif_tx_start_all_queues(dev);
276 	return 0;
277 }
278 
279 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[])
280 {
281 	if (tb[IFLA_ADDRESS]) {
282 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
283 			return -EINVAL;
284 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
285 			return -EADDRNOTAVAIL;
286 	}
287 	return 0;
288 }
289 
290 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
291 	.kind		= "ifb",
292 	.priv_size	= sizeof(struct ifb_dev_private),
293 	.setup		= ifb_setup,
294 	.validate	= ifb_validate,
295 };
296 
297 /* Number of ifb devices to be set up by this module.
298  * Note that these legacy devices have one queue.
299  * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
300  */
301 static int numifbs = 2;
302 module_param(numifbs, int, 0);
303 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
304 
305 static int __init ifb_init_one(int index)
306 {
307 	struct net_device *dev_ifb;
308 	int err;
309 
310 	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
311 			       NET_NAME_UNKNOWN, ifb_setup);
312 
313 	if (!dev_ifb)
314 		return -ENOMEM;
315 
316 	dev_ifb->rtnl_link_ops = &ifb_link_ops;
317 	err = register_netdevice(dev_ifb);
318 	if (err < 0)
319 		goto err;
320 
321 	return 0;
322 
323 err:
324 	free_netdev(dev_ifb);
325 	return err;
326 }
327 
328 static int __init ifb_init_module(void)
329 {
330 	int i, err;
331 
332 	rtnl_lock();
333 	err = __rtnl_link_register(&ifb_link_ops);
334 	if (err < 0)
335 		goto out;
336 
337 	for (i = 0; i < numifbs && !err; i++) {
338 		err = ifb_init_one(i);
339 		cond_resched();
340 	}
341 	if (err)
342 		__rtnl_link_unregister(&ifb_link_ops);
343 
344 out:
345 	rtnl_unlock();
346 
347 	return err;
348 }
349 
350 static void __exit ifb_cleanup_module(void)
351 {
352 	rtnl_link_unregister(&ifb_link_ops);
353 }
354 
355 module_init(ifb_init_module);
356 module_exit(ifb_cleanup_module);
357 MODULE_LICENSE("GPL");
358 MODULE_AUTHOR("Jamal Hadi Salim");
359 MODULE_ALIAS_RTNL_LINK("ifb");
360