xref: /linux/drivers/net/ifb.c (revision 95f28190aa012b18eab14799b905b6db3cf31529)
1 /* drivers/net/ifb.c:
2 
3 	The purpose of this driver is to provide a device that allows
4 	for sharing of resources:
5 
6 	1) qdiscs/policies that are per device as opposed to system wide.
7 	ifb allows for a device which can be redirected to thus providing
8 	an impression of sharing.
9 
10 	2) Allows for queueing incoming traffic for shaping instead of
11 	dropping.
12 
13 	The original concept is based on what is known as the IMQ
14 	driver initially written by Martin Devera, later rewritten
15 	by Patrick McHardy and then maintained by Andre Correa.
16 
17 	You need the tc action  mirror or redirect to feed this device
18        	packets.
19 
20 	This program is free software; you can redistribute it and/or
21 	modify it under the terms of the GNU General Public License
22 	as published by the Free Software Foundation; either version
23 	2 of the License, or (at your option) any later version.
24 
25   	Authors:	Jamal Hadi Salim (2005)
26 
27 */
28 
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/moduleparam.h>
37 #include <net/pkt_sched.h>
38 #include <net/net_namespace.h>
39 
40 #define TX_Q_LIMIT    32
41 struct ifb_q_private {
42 	struct net_device	*dev;
43 	struct tasklet_struct   ifb_tasklet;
44 	int			tasklet_pending;
45 	int			txqnum;
46 	struct sk_buff_head     rq;
47 	u64			rx_packets;
48 	u64			rx_bytes;
49 	struct u64_stats_sync	rsync;
50 
51 	struct u64_stats_sync	tsync;
52 	u64			tx_packets;
53 	u64			tx_bytes;
54 	struct sk_buff_head     tq;
55 } ____cacheline_aligned_in_smp;
56 
57 struct ifb_dev_private {
58 	struct ifb_q_private *tx_private;
59 };
60 
61 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
62 static int ifb_open(struct net_device *dev);
63 static int ifb_close(struct net_device *dev);
64 
65 static void ifb_ri_tasklet(unsigned long _txp)
66 {
67 	struct ifb_q_private *txp = (struct ifb_q_private *)_txp;
68 	struct netdev_queue *txq;
69 	struct sk_buff *skb;
70 
71 	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
72 	skb = skb_peek(&txp->tq);
73 	if (!skb) {
74 		if (!__netif_tx_trylock(txq))
75 			goto resched;
76 		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
77 		__netif_tx_unlock(txq);
78 	}
79 
80 	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
81 		skb->tc_redirected = 0;
82 		skb->tc_skip_classify = 1;
83 
84 		u64_stats_update_begin(&txp->tsync);
85 		txp->tx_packets++;
86 		txp->tx_bytes += skb->len;
87 		u64_stats_update_end(&txp->tsync);
88 
89 		rcu_read_lock();
90 		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
91 		if (!skb->dev) {
92 			rcu_read_unlock();
93 			dev_kfree_skb(skb);
94 			txp->dev->stats.tx_dropped++;
95 			if (skb_queue_len(&txp->tq) != 0)
96 				goto resched;
97 			break;
98 		}
99 		rcu_read_unlock();
100 		skb->skb_iif = txp->dev->ifindex;
101 
102 		if (!skb->tc_from_ingress) {
103 			dev_queue_xmit(skb);
104 		} else {
105 			skb_pull(skb, skb->mac_len);
106 			netif_receive_skb(skb);
107 		}
108 	}
109 
110 	if (__netif_tx_trylock(txq)) {
111 		skb = skb_peek(&txp->rq);
112 		if (!skb) {
113 			txp->tasklet_pending = 0;
114 			if (netif_tx_queue_stopped(txq))
115 				netif_tx_wake_queue(txq);
116 		} else {
117 			__netif_tx_unlock(txq);
118 			goto resched;
119 		}
120 		__netif_tx_unlock(txq);
121 	} else {
122 resched:
123 		txp->tasklet_pending = 1;
124 		tasklet_schedule(&txp->ifb_tasklet);
125 	}
126 
127 }
128 
129 static void ifb_stats64(struct net_device *dev,
130 			struct rtnl_link_stats64 *stats)
131 {
132 	struct ifb_dev_private *dp = netdev_priv(dev);
133 	struct ifb_q_private *txp = dp->tx_private;
134 	unsigned int start;
135 	u64 packets, bytes;
136 	int i;
137 
138 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
139 		do {
140 			start = u64_stats_fetch_begin_irq(&txp->rsync);
141 			packets = txp->rx_packets;
142 			bytes = txp->rx_bytes;
143 		} while (u64_stats_fetch_retry_irq(&txp->rsync, start));
144 		stats->rx_packets += packets;
145 		stats->rx_bytes += bytes;
146 
147 		do {
148 			start = u64_stats_fetch_begin_irq(&txp->tsync);
149 			packets = txp->tx_packets;
150 			bytes = txp->tx_bytes;
151 		} while (u64_stats_fetch_retry_irq(&txp->tsync, start));
152 		stats->tx_packets += packets;
153 		stats->tx_bytes += bytes;
154 	}
155 	stats->rx_dropped = dev->stats.rx_dropped;
156 	stats->tx_dropped = dev->stats.tx_dropped;
157 }
158 
159 static int ifb_dev_init(struct net_device *dev)
160 {
161 	struct ifb_dev_private *dp = netdev_priv(dev);
162 	struct ifb_q_private *txp;
163 	int i;
164 
165 	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
166 	if (!txp)
167 		return -ENOMEM;
168 	dp->tx_private = txp;
169 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
170 		txp->txqnum = i;
171 		txp->dev = dev;
172 		__skb_queue_head_init(&txp->rq);
173 		__skb_queue_head_init(&txp->tq);
174 		u64_stats_init(&txp->rsync);
175 		u64_stats_init(&txp->tsync);
176 		tasklet_init(&txp->ifb_tasklet, ifb_ri_tasklet,
177 			     (unsigned long)txp);
178 		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
179 	}
180 	return 0;
181 }
182 
183 static const struct net_device_ops ifb_netdev_ops = {
184 	.ndo_open	= ifb_open,
185 	.ndo_stop	= ifb_close,
186 	.ndo_get_stats64 = ifb_stats64,
187 	.ndo_start_xmit	= ifb_xmit,
188 	.ndo_validate_addr = eth_validate_addr,
189 	.ndo_init	= ifb_dev_init,
190 };
191 
192 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
193 		      NETIF_F_TSO_ECN | NETIF_F_TSO | NETIF_F_TSO6	| \
194 		      NETIF_F_GSO_ENCAP_ALL 				| \
195 		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
196 		      NETIF_F_HW_VLAN_STAG_TX)
197 
198 static void ifb_dev_free(struct net_device *dev)
199 {
200 	struct ifb_dev_private *dp = netdev_priv(dev);
201 	struct ifb_q_private *txp = dp->tx_private;
202 	int i;
203 
204 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
205 		tasklet_kill(&txp->ifb_tasklet);
206 		__skb_queue_purge(&txp->rq);
207 		__skb_queue_purge(&txp->tq);
208 	}
209 	kfree(dp->tx_private);
210 }
211 
212 static void ifb_setup(struct net_device *dev)
213 {
214 	/* Initialize the device structure. */
215 	dev->netdev_ops = &ifb_netdev_ops;
216 
217 	/* Fill in device structure with ethernet-generic values. */
218 	ether_setup(dev);
219 	dev->tx_queue_len = TX_Q_LIMIT;
220 
221 	dev->features |= IFB_FEATURES;
222 	dev->hw_features |= dev->features;
223 	dev->hw_enc_features |= dev->features;
224 	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
225 					       NETIF_F_HW_VLAN_STAG_TX);
226 
227 	dev->flags |= IFF_NOARP;
228 	dev->flags &= ~IFF_MULTICAST;
229 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
230 	netif_keep_dst(dev);
231 	eth_hw_addr_random(dev);
232 	dev->needs_free_netdev = true;
233 	dev->priv_destructor = ifb_dev_free;
234 
235 	dev->min_mtu = 0;
236 	dev->max_mtu = 0;
237 }
238 
239 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
240 {
241 	struct ifb_dev_private *dp = netdev_priv(dev);
242 	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
243 
244 	u64_stats_update_begin(&txp->rsync);
245 	txp->rx_packets++;
246 	txp->rx_bytes += skb->len;
247 	u64_stats_update_end(&txp->rsync);
248 
249 	if (!skb->tc_redirected || !skb->skb_iif) {
250 		dev_kfree_skb(skb);
251 		dev->stats.rx_dropped++;
252 		return NETDEV_TX_OK;
253 	}
254 
255 	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
256 		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
257 
258 	__skb_queue_tail(&txp->rq, skb);
259 	if (!txp->tasklet_pending) {
260 		txp->tasklet_pending = 1;
261 		tasklet_schedule(&txp->ifb_tasklet);
262 	}
263 
264 	return NETDEV_TX_OK;
265 }
266 
267 static int ifb_close(struct net_device *dev)
268 {
269 	netif_tx_stop_all_queues(dev);
270 	return 0;
271 }
272 
273 static int ifb_open(struct net_device *dev)
274 {
275 	netif_tx_start_all_queues(dev);
276 	return 0;
277 }
278 
279 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[],
280 			struct netlink_ext_ack *extack)
281 {
282 	if (tb[IFLA_ADDRESS]) {
283 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
284 			return -EINVAL;
285 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
286 			return -EADDRNOTAVAIL;
287 	}
288 	return 0;
289 }
290 
291 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
292 	.kind		= "ifb",
293 	.priv_size	= sizeof(struct ifb_dev_private),
294 	.setup		= ifb_setup,
295 	.validate	= ifb_validate,
296 };
297 
298 /* Number of ifb devices to be set up by this module.
299  * Note that these legacy devices have one queue.
300  * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
301  */
302 static int numifbs = 2;
303 module_param(numifbs, int, 0);
304 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
305 
306 static int __init ifb_init_one(int index)
307 {
308 	struct net_device *dev_ifb;
309 	int err;
310 
311 	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
312 			       NET_NAME_UNKNOWN, ifb_setup);
313 
314 	if (!dev_ifb)
315 		return -ENOMEM;
316 
317 	dev_ifb->rtnl_link_ops = &ifb_link_ops;
318 	err = register_netdevice(dev_ifb);
319 	if (err < 0)
320 		goto err;
321 
322 	return 0;
323 
324 err:
325 	free_netdev(dev_ifb);
326 	return err;
327 }
328 
329 static int __init ifb_init_module(void)
330 {
331 	int i, err;
332 
333 	rtnl_lock();
334 	err = __rtnl_link_register(&ifb_link_ops);
335 	if (err < 0)
336 		goto out;
337 
338 	for (i = 0; i < numifbs && !err; i++) {
339 		err = ifb_init_one(i);
340 		cond_resched();
341 	}
342 	if (err)
343 		__rtnl_link_unregister(&ifb_link_ops);
344 
345 out:
346 	rtnl_unlock();
347 
348 	return err;
349 }
350 
351 static void __exit ifb_cleanup_module(void)
352 {
353 	rtnl_link_unregister(&ifb_link_ops);
354 }
355 
356 module_init(ifb_init_module);
357 module_exit(ifb_cleanup_module);
358 MODULE_LICENSE("GPL");
359 MODULE_AUTHOR("Jamal Hadi Salim");
360 MODULE_ALIAS_RTNL_LINK("ifb");
361