xref: /linux/drivers/net/ieee802154/mrf24j40.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
3  *
4  * Copyright (C) 2012 Alan Ott <alan@signal11.us>
5  *                    Signal 11 Software
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/spi/spi.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/regmap.h>
22 #include <linux/ieee802154.h>
23 #include <linux/irq.h>
24 #include <net/cfg802154.h>
25 #include <net/mac802154.h>
26 
27 /* MRF24J40 Short Address Registers */
28 #define REG_RXMCR	0x00  /* Receive MAC control */
29 #define BIT_PROMI	BIT(0)
30 #define BIT_ERRPKT	BIT(1)
31 #define BIT_NOACKRSP	BIT(5)
32 #define BIT_PANCOORD	BIT(3)
33 
34 #define REG_PANIDL	0x01  /* PAN ID (low) */
35 #define REG_PANIDH	0x02  /* PAN ID (high) */
36 #define REG_SADRL	0x03  /* Short address (low) */
37 #define REG_SADRH	0x04  /* Short address (high) */
38 #define REG_EADR0	0x05  /* Long address (low) (high is EADR7) */
39 #define REG_EADR1	0x06
40 #define REG_EADR2	0x07
41 #define REG_EADR3	0x08
42 #define REG_EADR4	0x09
43 #define REG_EADR5	0x0A
44 #define REG_EADR6	0x0B
45 #define REG_EADR7	0x0C
46 #define REG_RXFLUSH	0x0D
47 #define REG_ORDER	0x10
48 #define REG_TXMCR	0x11  /* Transmit MAC control */
49 #define TXMCR_MIN_BE_SHIFT		3
50 #define TXMCR_MIN_BE_MASK		0x18
51 #define TXMCR_CSMA_RETRIES_SHIFT	0
52 #define TXMCR_CSMA_RETRIES_MASK		0x07
53 
54 #define REG_ACKTMOUT	0x12
55 #define REG_ESLOTG1	0x13
56 #define REG_SYMTICKL	0x14
57 #define REG_SYMTICKH	0x15
58 #define REG_PACON0	0x16  /* Power Amplifier Control */
59 #define REG_PACON1	0x17  /* Power Amplifier Control */
60 #define REG_PACON2	0x18  /* Power Amplifier Control */
61 #define REG_TXBCON0	0x1A
62 #define REG_TXNCON	0x1B  /* Transmit Normal FIFO Control */
63 #define BIT_TXNTRIG	BIT(0)
64 #define BIT_TXNSECEN	BIT(1)
65 #define BIT_TXNACKREQ	BIT(2)
66 
67 #define REG_TXG1CON	0x1C
68 #define REG_TXG2CON	0x1D
69 #define REG_ESLOTG23	0x1E
70 #define REG_ESLOTG45	0x1F
71 #define REG_ESLOTG67	0x20
72 #define REG_TXPEND	0x21
73 #define REG_WAKECON	0x22
74 #define REG_FROMOFFSET	0x23
75 #define REG_TXSTAT	0x24  /* TX MAC Status Register */
76 #define REG_TXBCON1	0x25
77 #define REG_GATECLK	0x26
78 #define REG_TXTIME	0x27
79 #define REG_HSYMTMRL	0x28
80 #define REG_HSYMTMRH	0x29
81 #define REG_SOFTRST	0x2A  /* Soft Reset */
82 #define REG_SECCON0	0x2C
83 #define REG_SECCON1	0x2D
84 #define REG_TXSTBL	0x2E  /* TX Stabilization */
85 #define REG_RXSR	0x30
86 #define REG_INTSTAT	0x31  /* Interrupt Status */
87 #define BIT_TXNIF	BIT(0)
88 #define BIT_RXIF	BIT(3)
89 #define BIT_SECIF	BIT(4)
90 #define BIT_SECIGNORE	BIT(7)
91 
92 #define REG_INTCON	0x32  /* Interrupt Control */
93 #define BIT_TXNIE	BIT(0)
94 #define BIT_RXIE	BIT(3)
95 #define BIT_SECIE	BIT(4)
96 
97 #define REG_GPIO	0x33  /* GPIO */
98 #define REG_TRISGPIO	0x34  /* GPIO direction */
99 #define REG_SLPACK	0x35
100 #define REG_RFCTL	0x36  /* RF Control Mode Register */
101 #define BIT_RFRST	BIT(2)
102 
103 #define REG_SECCR2	0x37
104 #define REG_BBREG0	0x38
105 #define REG_BBREG1	0x39  /* Baseband Registers */
106 #define BIT_RXDECINV	BIT(2)
107 
108 #define REG_BBREG2	0x3A  /* */
109 #define BBREG2_CCA_MODE_SHIFT	6
110 #define BBREG2_CCA_MODE_MASK	0xc0
111 
112 #define REG_BBREG3	0x3B
113 #define REG_BBREG4	0x3C
114 #define REG_BBREG6	0x3E  /* */
115 #define REG_CCAEDTH	0x3F  /* Energy Detection Threshold */
116 
117 /* MRF24J40 Long Address Registers */
118 #define REG_RFCON0	0x200  /* RF Control Registers */
119 #define RFCON0_CH_SHIFT	4
120 #define RFCON0_CH_MASK	0xf0
121 #define RFOPT_RECOMMEND	3
122 
123 #define REG_RFCON1	0x201
124 #define REG_RFCON2	0x202
125 #define REG_RFCON3	0x203
126 
127 #define TXPWRL_MASK	0xc0
128 #define TXPWRL_SHIFT	6
129 #define TXPWRL_30	0x3
130 #define TXPWRL_20	0x2
131 #define TXPWRL_10	0x1
132 #define TXPWRL_0	0x0
133 
134 #define TXPWRS_MASK	0x38
135 #define TXPWRS_SHIFT	3
136 #define TXPWRS_6_3	0x7
137 #define TXPWRS_4_9	0x6
138 #define TXPWRS_3_7	0x5
139 #define TXPWRS_2_8	0x4
140 #define TXPWRS_1_9	0x3
141 #define TXPWRS_1_2	0x2
142 #define TXPWRS_0_5	0x1
143 #define TXPWRS_0	0x0
144 
145 #define REG_RFCON5	0x205
146 #define REG_RFCON6	0x206
147 #define REG_RFCON7	0x207
148 #define REG_RFCON8	0x208
149 #define REG_SLPCAL0	0x209
150 #define REG_SLPCAL1	0x20A
151 #define REG_SLPCAL2	0x20B
152 #define REG_RFSTATE	0x20F
153 #define REG_RSSI	0x210
154 #define REG_SLPCON0	0x211  /* Sleep Clock Control Registers */
155 #define BIT_INTEDGE	BIT(1)
156 
157 #define REG_SLPCON1	0x220
158 #define REG_WAKETIMEL	0x222  /* Wake-up Time Match Value Low */
159 #define REG_WAKETIMEH	0x223  /* Wake-up Time Match Value High */
160 #define REG_REMCNTL	0x224
161 #define REG_REMCNTH	0x225
162 #define REG_MAINCNT0	0x226
163 #define REG_MAINCNT1	0x227
164 #define REG_MAINCNT2	0x228
165 #define REG_MAINCNT3	0x229
166 #define REG_TESTMODE	0x22F  /* Test mode */
167 #define REG_ASSOEAR0	0x230
168 #define REG_ASSOEAR1	0x231
169 #define REG_ASSOEAR2	0x232
170 #define REG_ASSOEAR3	0x233
171 #define REG_ASSOEAR4	0x234
172 #define REG_ASSOEAR5	0x235
173 #define REG_ASSOEAR6	0x236
174 #define REG_ASSOEAR7	0x237
175 #define REG_ASSOSAR0	0x238
176 #define REG_ASSOSAR1	0x239
177 #define REG_UNONCE0	0x240
178 #define REG_UNONCE1	0x241
179 #define REG_UNONCE2	0x242
180 #define REG_UNONCE3	0x243
181 #define REG_UNONCE4	0x244
182 #define REG_UNONCE5	0x245
183 #define REG_UNONCE6	0x246
184 #define REG_UNONCE7	0x247
185 #define REG_UNONCE8	0x248
186 #define REG_UNONCE9	0x249
187 #define REG_UNONCE10	0x24A
188 #define REG_UNONCE11	0x24B
189 #define REG_UNONCE12	0x24C
190 #define REG_RX_FIFO	0x300  /* Receive FIFO */
191 
192 /* Device configuration: Only channels 11-26 on page 0 are supported. */
193 #define MRF24J40_CHAN_MIN 11
194 #define MRF24J40_CHAN_MAX 26
195 #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
196 		      - ((u32)1 << MRF24J40_CHAN_MIN))
197 
198 #define TX_FIFO_SIZE 128 /* From datasheet */
199 #define RX_FIFO_SIZE 144 /* From datasheet */
200 #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
201 
202 enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
203 
204 /* Device Private Data */
205 struct mrf24j40 {
206 	struct spi_device *spi;
207 	struct ieee802154_hw *hw;
208 
209 	struct regmap *regmap_short;
210 	struct regmap *regmap_long;
211 
212 	/* for writing txfifo */
213 	struct spi_message tx_msg;
214 	u8 tx_hdr_buf[2];
215 	struct spi_transfer tx_hdr_trx;
216 	u8 tx_len_buf[2];
217 	struct spi_transfer tx_len_trx;
218 	struct spi_transfer tx_buf_trx;
219 	struct sk_buff *tx_skb;
220 
221 	/* post transmit message to send frame out  */
222 	struct spi_message tx_post_msg;
223 	u8 tx_post_buf[2];
224 	struct spi_transfer tx_post_trx;
225 
226 	/* for protect/unprotect/read length rxfifo */
227 	struct spi_message rx_msg;
228 	u8 rx_buf[3];
229 	struct spi_transfer rx_trx;
230 
231 	/* receive handling */
232 	struct spi_message rx_buf_msg;
233 	u8 rx_addr_buf[2];
234 	struct spi_transfer rx_addr_trx;
235 	u8 rx_lqi_buf[2];
236 	struct spi_transfer rx_lqi_trx;
237 	u8 rx_fifo_buf[RX_FIFO_SIZE];
238 	struct spi_transfer rx_fifo_buf_trx;
239 
240 	/* isr handling for reading intstat */
241 	struct spi_message irq_msg;
242 	u8 irq_buf[2];
243 	struct spi_transfer irq_trx;
244 };
245 
246 /* regmap information for short address register access */
247 #define MRF24J40_SHORT_WRITE	0x01
248 #define MRF24J40_SHORT_READ	0x00
249 #define MRF24J40_SHORT_NUMREGS	0x3F
250 
251 /* regmap information for long address register access */
252 #define MRF24J40_LONG_ACCESS	0x80
253 #define MRF24J40_LONG_NUMREGS	0x38F
254 
255 /* Read/Write SPI Commands for Short and Long Address registers. */
256 #define MRF24J40_READSHORT(reg) ((reg) << 1)
257 #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
258 #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
259 #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
260 
261 /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
262 #define MAX_SPI_SPEED_HZ 10000000
263 
264 #define printdev(X) (&X->spi->dev)
265 
266 static bool
267 mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
268 {
269 	switch (reg) {
270 	case REG_RXMCR:
271 	case REG_PANIDL:
272 	case REG_PANIDH:
273 	case REG_SADRL:
274 	case REG_SADRH:
275 	case REG_EADR0:
276 	case REG_EADR1:
277 	case REG_EADR2:
278 	case REG_EADR3:
279 	case REG_EADR4:
280 	case REG_EADR5:
281 	case REG_EADR6:
282 	case REG_EADR7:
283 	case REG_RXFLUSH:
284 	case REG_ORDER:
285 	case REG_TXMCR:
286 	case REG_ACKTMOUT:
287 	case REG_ESLOTG1:
288 	case REG_SYMTICKL:
289 	case REG_SYMTICKH:
290 	case REG_PACON0:
291 	case REG_PACON1:
292 	case REG_PACON2:
293 	case REG_TXBCON0:
294 	case REG_TXNCON:
295 	case REG_TXG1CON:
296 	case REG_TXG2CON:
297 	case REG_ESLOTG23:
298 	case REG_ESLOTG45:
299 	case REG_ESLOTG67:
300 	case REG_TXPEND:
301 	case REG_WAKECON:
302 	case REG_FROMOFFSET:
303 	case REG_TXBCON1:
304 	case REG_GATECLK:
305 	case REG_TXTIME:
306 	case REG_HSYMTMRL:
307 	case REG_HSYMTMRH:
308 	case REG_SOFTRST:
309 	case REG_SECCON0:
310 	case REG_SECCON1:
311 	case REG_TXSTBL:
312 	case REG_RXSR:
313 	case REG_INTCON:
314 	case REG_TRISGPIO:
315 	case REG_GPIO:
316 	case REG_RFCTL:
317 	case REG_SECCR2:
318 	case REG_SLPACK:
319 	case REG_BBREG0:
320 	case REG_BBREG1:
321 	case REG_BBREG2:
322 	case REG_BBREG3:
323 	case REG_BBREG4:
324 	case REG_BBREG6:
325 	case REG_CCAEDTH:
326 		return true;
327 	default:
328 		return false;
329 	}
330 }
331 
332 static bool
333 mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
334 {
335 	bool rc;
336 
337 	/* all writeable are also readable */
338 	rc = mrf24j40_short_reg_writeable(dev, reg);
339 	if (rc)
340 		return rc;
341 
342 	/* readonly regs */
343 	switch (reg) {
344 	case REG_TXSTAT:
345 	case REG_INTSTAT:
346 		return true;
347 	default:
348 		return false;
349 	}
350 }
351 
352 static bool
353 mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
354 {
355 	/* can be changed during runtime */
356 	switch (reg) {
357 	case REG_TXSTAT:
358 	case REG_INTSTAT:
359 	case REG_RXFLUSH:
360 	case REG_TXNCON:
361 	case REG_SOFTRST:
362 	case REG_RFCTL:
363 	case REG_TXBCON0:
364 	case REG_TXG1CON:
365 	case REG_TXG2CON:
366 	case REG_TXBCON1:
367 	case REG_SECCON0:
368 	case REG_RXSR:
369 	case REG_SLPACK:
370 	case REG_SECCR2:
371 	case REG_BBREG6:
372 	/* use them in spi_async and regmap so it's volatile */
373 	case REG_BBREG1:
374 		return true;
375 	default:
376 		return false;
377 	}
378 }
379 
380 static bool
381 mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
382 {
383 	/* don't clear irq line on read */
384 	switch (reg) {
385 	case REG_INTSTAT:
386 		return true;
387 	default:
388 		return false;
389 	}
390 }
391 
392 static const struct regmap_config mrf24j40_short_regmap = {
393 	.name = "mrf24j40_short",
394 	.reg_bits = 7,
395 	.val_bits = 8,
396 	.pad_bits = 1,
397 	.write_flag_mask = MRF24J40_SHORT_WRITE,
398 	.read_flag_mask = MRF24J40_SHORT_READ,
399 	.cache_type = REGCACHE_RBTREE,
400 	.max_register = MRF24J40_SHORT_NUMREGS,
401 	.writeable_reg = mrf24j40_short_reg_writeable,
402 	.readable_reg = mrf24j40_short_reg_readable,
403 	.volatile_reg = mrf24j40_short_reg_volatile,
404 	.precious_reg = mrf24j40_short_reg_precious,
405 };
406 
407 static bool
408 mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
409 {
410 	switch (reg) {
411 	case REG_RFCON0:
412 	case REG_RFCON1:
413 	case REG_RFCON2:
414 	case REG_RFCON3:
415 	case REG_RFCON5:
416 	case REG_RFCON6:
417 	case REG_RFCON7:
418 	case REG_RFCON8:
419 	case REG_SLPCAL2:
420 	case REG_SLPCON0:
421 	case REG_SLPCON1:
422 	case REG_WAKETIMEL:
423 	case REG_WAKETIMEH:
424 	case REG_REMCNTL:
425 	case REG_REMCNTH:
426 	case REG_MAINCNT0:
427 	case REG_MAINCNT1:
428 	case REG_MAINCNT2:
429 	case REG_MAINCNT3:
430 	case REG_TESTMODE:
431 	case REG_ASSOEAR0:
432 	case REG_ASSOEAR1:
433 	case REG_ASSOEAR2:
434 	case REG_ASSOEAR3:
435 	case REG_ASSOEAR4:
436 	case REG_ASSOEAR5:
437 	case REG_ASSOEAR6:
438 	case REG_ASSOEAR7:
439 	case REG_ASSOSAR0:
440 	case REG_ASSOSAR1:
441 	case REG_UNONCE0:
442 	case REG_UNONCE1:
443 	case REG_UNONCE2:
444 	case REG_UNONCE3:
445 	case REG_UNONCE4:
446 	case REG_UNONCE5:
447 	case REG_UNONCE6:
448 	case REG_UNONCE7:
449 	case REG_UNONCE8:
450 	case REG_UNONCE9:
451 	case REG_UNONCE10:
452 	case REG_UNONCE11:
453 	case REG_UNONCE12:
454 		return true;
455 	default:
456 		return false;
457 	}
458 }
459 
460 static bool
461 mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
462 {
463 	bool rc;
464 
465 	/* all writeable are also readable */
466 	rc = mrf24j40_long_reg_writeable(dev, reg);
467 	if (rc)
468 		return rc;
469 
470 	/* readonly regs */
471 	switch (reg) {
472 	case REG_SLPCAL0:
473 	case REG_SLPCAL1:
474 	case REG_RFSTATE:
475 	case REG_RSSI:
476 		return true;
477 	default:
478 		return false;
479 	}
480 }
481 
482 static bool
483 mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
484 {
485 	/* can be changed during runtime */
486 	switch (reg) {
487 	case REG_SLPCAL0:
488 	case REG_SLPCAL1:
489 	case REG_SLPCAL2:
490 	case REG_RFSTATE:
491 	case REG_RSSI:
492 	case REG_MAINCNT3:
493 		return true;
494 	default:
495 		return false;
496 	}
497 }
498 
499 static const struct regmap_config mrf24j40_long_regmap = {
500 	.name = "mrf24j40_long",
501 	.reg_bits = 11,
502 	.val_bits = 8,
503 	.pad_bits = 5,
504 	.write_flag_mask = MRF24J40_LONG_ACCESS,
505 	.read_flag_mask = MRF24J40_LONG_ACCESS,
506 	.cache_type = REGCACHE_RBTREE,
507 	.max_register = MRF24J40_LONG_NUMREGS,
508 	.writeable_reg = mrf24j40_long_reg_writeable,
509 	.readable_reg = mrf24j40_long_reg_readable,
510 	.volatile_reg = mrf24j40_long_reg_volatile,
511 };
512 
513 static int mrf24j40_long_regmap_write(void *context, const void *data,
514 				      size_t count)
515 {
516 	struct spi_device *spi = context;
517 	u8 buf[3];
518 
519 	if (count > 3)
520 		return -EINVAL;
521 
522 	/* regmap supports read/write mask only in frist byte
523 	 * long write access need to set the 12th bit, so we
524 	 * make special handling for write.
525 	 */
526 	memcpy(buf, data, count);
527 	buf[1] |= (1 << 4);
528 
529 	return spi_write(spi, buf, count);
530 }
531 
532 static int
533 mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
534 			  void *val, size_t val_size)
535 {
536 	struct spi_device *spi = context;
537 
538 	return spi_write_then_read(spi, reg, reg_size, val, val_size);
539 }
540 
541 static const struct regmap_bus mrf24j40_long_regmap_bus = {
542 	.write = mrf24j40_long_regmap_write,
543 	.read = mrf24j40_long_regmap_read,
544 	.reg_format_endian_default = REGMAP_ENDIAN_BIG,
545 	.val_format_endian_default = REGMAP_ENDIAN_BIG,
546 };
547 
548 static void write_tx_buf_complete(void *context)
549 {
550 	struct mrf24j40 *devrec = context;
551 	__le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
552 	u8 val = BIT_TXNTRIG;
553 	int ret;
554 
555 	if (ieee802154_is_secen(fc))
556 		val |= BIT_TXNSECEN;
557 
558 	if (ieee802154_is_ackreq(fc))
559 		val |= BIT_TXNACKREQ;
560 
561 	devrec->tx_post_msg.complete = NULL;
562 	devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
563 	devrec->tx_post_buf[1] = val;
564 
565 	ret = spi_async(devrec->spi, &devrec->tx_post_msg);
566 	if (ret)
567 		dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
568 }
569 
570 /* This function relies on an undocumented write method. Once a write command
571    and address is set, as many bytes of data as desired can be clocked into
572    the device. The datasheet only shows setting one byte at a time. */
573 static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
574 			const u8 *data, size_t length)
575 {
576 	u16 cmd;
577 	int ret;
578 
579 	/* Range check the length. 2 bytes are used for the length fields.*/
580 	if (length > TX_FIFO_SIZE-2) {
581 		dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
582 		length = TX_FIFO_SIZE-2;
583 	}
584 
585 	cmd = MRF24J40_WRITELONG(reg);
586 	devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
587 	devrec->tx_hdr_buf[1] = cmd & 0xff;
588 	devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
589 	devrec->tx_len_buf[1] = length; /* Total length */
590 	devrec->tx_buf_trx.tx_buf = data;
591 	devrec->tx_buf_trx.len = length;
592 
593 	ret = spi_async(devrec->spi, &devrec->tx_msg);
594 	if (ret)
595 		dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
596 
597 	return ret;
598 }
599 
600 static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
601 {
602 	struct mrf24j40 *devrec = hw->priv;
603 
604 	dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
605 	devrec->tx_skb = skb;
606 
607 	return write_tx_buf(devrec, 0x000, skb->data, skb->len);
608 }
609 
610 static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
611 {
612 	/* TODO: */
613 	pr_warn("mrf24j40: ed not implemented\n");
614 	*level = 0;
615 	return 0;
616 }
617 
618 static int mrf24j40_start(struct ieee802154_hw *hw)
619 {
620 	struct mrf24j40 *devrec = hw->priv;
621 
622 	dev_dbg(printdev(devrec), "start\n");
623 
624 	/* Clear TXNIE and RXIE. Enable interrupts */
625 	return regmap_update_bits(devrec->regmap_short, REG_INTCON,
626 				  BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
627 }
628 
629 static void mrf24j40_stop(struct ieee802154_hw *hw)
630 {
631 	struct mrf24j40 *devrec = hw->priv;
632 
633 	dev_dbg(printdev(devrec), "stop\n");
634 
635 	/* Set TXNIE and RXIE. Disable Interrupts */
636 	regmap_update_bits(devrec->regmap_short, REG_INTCON,
637 			   BIT_TXNIE | BIT_TXNIE, BIT_TXNIE | BIT_TXNIE);
638 }
639 
640 static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
641 {
642 	struct mrf24j40 *devrec = hw->priv;
643 	u8 val;
644 	int ret;
645 
646 	dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
647 
648 	WARN_ON(page != 0);
649 	WARN_ON(channel < MRF24J40_CHAN_MIN);
650 	WARN_ON(channel > MRF24J40_CHAN_MAX);
651 
652 	/* Set Channel TODO */
653 	val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
654 	ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
655 				 RFCON0_CH_MASK, val);
656 	if (ret)
657 		return ret;
658 
659 	/* RF Reset */
660 	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
661 				 BIT_RFRST);
662 	if (ret)
663 		return ret;
664 
665 	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
666 	if (!ret)
667 		udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
668 
669 	return ret;
670 }
671 
672 static int mrf24j40_filter(struct ieee802154_hw *hw,
673 			   struct ieee802154_hw_addr_filt *filt,
674 			   unsigned long changed)
675 {
676 	struct mrf24j40 *devrec = hw->priv;
677 
678 	dev_dbg(printdev(devrec), "filter\n");
679 
680 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
681 		/* Short Addr */
682 		u8 addrh, addrl;
683 
684 		addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
685 		addrl = le16_to_cpu(filt->short_addr) & 0xff;
686 
687 		regmap_write(devrec->regmap_short, REG_SADRH, addrh);
688 		regmap_write(devrec->regmap_short, REG_SADRL, addrl);
689 		dev_dbg(printdev(devrec),
690 			"Set short addr to %04hx\n", filt->short_addr);
691 	}
692 
693 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
694 		/* Device Address */
695 		u8 i, addr[8];
696 
697 		memcpy(addr, &filt->ieee_addr, 8);
698 		for (i = 0; i < 8; i++)
699 			regmap_write(devrec->regmap_short, REG_EADR0 + i,
700 				     addr[i]);
701 
702 #ifdef DEBUG
703 		pr_debug("Set long addr to: ");
704 		for (i = 0; i < 8; i++)
705 			pr_debug("%02hhx ", addr[7 - i]);
706 		pr_debug("\n");
707 #endif
708 	}
709 
710 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
711 		/* PAN ID */
712 		u8 panidl, panidh;
713 
714 		panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
715 		panidl = le16_to_cpu(filt->pan_id) & 0xff;
716 		regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
717 		regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
718 
719 		dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
720 	}
721 
722 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
723 		/* Pan Coordinator */
724 		u8 val;
725 		int ret;
726 
727 		if (filt->pan_coord)
728 			val = BIT_PANCOORD;
729 		else
730 			val = 0;
731 		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
732 					 BIT_PANCOORD, val);
733 		if (ret)
734 			return ret;
735 
736 		/* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
737 		 * REG_ORDER is maintained as default (no beacon/superframe).
738 		 */
739 
740 		dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
741 			filt->pan_coord ? "on" : "off");
742 	}
743 
744 	return 0;
745 }
746 
747 static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
748 {
749 	int ret;
750 
751 	/* Turn back on reception of packets off the air. */
752 	devrec->rx_msg.complete = NULL;
753 	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
754 	devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
755 	ret = spi_async(devrec->spi, &devrec->rx_msg);
756 	if (ret)
757 		dev_err(printdev(devrec), "failed to unlock rx buffer\n");
758 }
759 
760 static void mrf24j40_handle_rx_read_buf_complete(void *context)
761 {
762 	struct mrf24j40 *devrec = context;
763 	u8 len = devrec->rx_buf[2];
764 	u8 rx_local_buf[RX_FIFO_SIZE];
765 	struct sk_buff *skb;
766 
767 	memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
768 	mrf24j40_handle_rx_read_buf_unlock(devrec);
769 
770 	skb = dev_alloc_skb(IEEE802154_MTU);
771 	if (!skb) {
772 		dev_err(printdev(devrec), "failed to allocate skb\n");
773 		return;
774 	}
775 
776 	memcpy(skb_put(skb, len), rx_local_buf, len);
777 	ieee802154_rx_irqsafe(devrec->hw, skb, 0);
778 
779 #ifdef DEBUG
780 	 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
781 			rx_local_buf, len, 0);
782 	 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
783 		  devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
784 #endif
785 }
786 
787 static void mrf24j40_handle_rx_read_buf(void *context)
788 {
789 	struct mrf24j40 *devrec = context;
790 	u16 cmd;
791 	int ret;
792 
793 	/* if length is invalid read the full MTU */
794 	if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
795 		devrec->rx_buf[2] = IEEE802154_MTU;
796 
797 	cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
798 	devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
799 	devrec->rx_addr_buf[1] = cmd & 0xff;
800 	devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
801 	ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
802 	if (ret) {
803 		dev_err(printdev(devrec), "failed to read rx buffer\n");
804 		mrf24j40_handle_rx_read_buf_unlock(devrec);
805 	}
806 }
807 
808 static void mrf24j40_handle_rx_read_len(void *context)
809 {
810 	struct mrf24j40 *devrec = context;
811 	u16 cmd;
812 	int ret;
813 
814 	/* read the length of received frame */
815 	devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
816 	devrec->rx_trx.len = 3;
817 	cmd = MRF24J40_READLONG(REG_RX_FIFO);
818 	devrec->rx_buf[0] = cmd >> 8 & 0xff;
819 	devrec->rx_buf[1] = cmd & 0xff;
820 
821 	ret = spi_async(devrec->spi, &devrec->rx_msg);
822 	if (ret) {
823 		dev_err(printdev(devrec), "failed to read rx buffer length\n");
824 		mrf24j40_handle_rx_read_buf_unlock(devrec);
825 	}
826 }
827 
828 static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
829 {
830 	/* Turn off reception of packets off the air. This prevents the
831 	 * device from overwriting the buffer while we're reading it.
832 	 */
833 	devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
834 	devrec->rx_trx.len = 2;
835 	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
836 	devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
837 
838 	return spi_async(devrec->spi, &devrec->rx_msg);
839 }
840 
841 static int
842 mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
843 		     u8 retries)
844 {
845 	struct mrf24j40 *devrec = hw->priv;
846 	u8 val;
847 
848 	/* min_be */
849 	val = min_be << TXMCR_MIN_BE_SHIFT;
850 	/* csma backoffs */
851 	val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
852 
853 	return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
854 				  TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
855 				  val);
856 }
857 
858 static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
859 				 const struct wpan_phy_cca *cca)
860 {
861 	struct mrf24j40 *devrec = hw->priv;
862 	u8 val;
863 
864 	/* mapping 802.15.4 to driver spec */
865 	switch (cca->mode) {
866 	case NL802154_CCA_ENERGY:
867 		val = 2;
868 		break;
869 	case NL802154_CCA_CARRIER:
870 		val = 1;
871 		break;
872 	case NL802154_CCA_ENERGY_CARRIER:
873 		switch (cca->opt) {
874 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
875 			val = 3;
876 			break;
877 		default:
878 			return -EINVAL;
879 		}
880 		break;
881 	default:
882 		return -EINVAL;
883 	}
884 
885 	return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
886 				  BBREG2_CCA_MODE_MASK,
887 				  val << BBREG2_CCA_MODE_SHIFT);
888 }
889 
890 /* array for representing ed levels */
891 static const s32 mrf24j40_ed_levels[] = {
892 	-9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
893 	-8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
894 	-7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
895 	-6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
896 	-5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
897 	-4000, -3900, -3800, -3700, -3600, -3500
898 };
899 
900 /* map ed levels to register value */
901 static const s32 mrf24j40_ed_levels_map[][2] = {
902 	{ -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
903 	{ -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
904 	{ -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
905 	{ -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
906 	{ -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
907 	{ -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
908 	{ -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
909 	{ -6100, 133 },	{ -6000, 138 }, { -5900, 143 }, { -5800, 148 },
910 	{ -5700, 153 }, { -5600, 159 },	{ -5500, 165 }, { -5400, 170 },
911 	{ -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
912 	{ -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
913 	{ -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
914 	{ -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
915 	{ -3700, 253 }, { -3600, 254 }, { -3500, 255 },
916 };
917 
918 static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
919 {
920 	struct mrf24j40 *devrec = hw->priv;
921 	int i;
922 
923 	for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
924 		if (mrf24j40_ed_levels_map[i][0] == mbm)
925 			return regmap_write(devrec->regmap_short, REG_CCAEDTH,
926 					    mrf24j40_ed_levels_map[i][1]);
927 	}
928 
929 	return -EINVAL;
930 }
931 
932 static const s32 mrf24j40ma_powers[] = {
933 	0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
934 	-1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
935 	-2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
936 };
937 
938 static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
939 {
940 	struct mrf24j40 *devrec = hw->priv;
941 	s32 small_scale;
942 	u8 val;
943 
944 	if (0 >= mbm && mbm > -1000) {
945 		val = TXPWRL_0 << TXPWRL_SHIFT;
946 		small_scale = mbm;
947 	} else if (-1000 >= mbm && mbm > -2000) {
948 		val = TXPWRL_10 << TXPWRL_SHIFT;
949 		small_scale = mbm + 1000;
950 	} else if (-2000 >= mbm && mbm > -3000) {
951 		val = TXPWRL_20 << TXPWRL_SHIFT;
952 		small_scale = mbm + 2000;
953 	} else if (-3000 >= mbm && mbm > -4000) {
954 		val = TXPWRL_30 << TXPWRL_SHIFT;
955 		small_scale = mbm + 3000;
956 	} else {
957 		return -EINVAL;
958 	}
959 
960 	switch (small_scale) {
961 	case 0:
962 		val |= (TXPWRS_0 << TXPWRS_SHIFT);
963 		break;
964 	case -50:
965 		val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
966 		break;
967 	case -120:
968 		val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
969 		break;
970 	case -190:
971 		val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
972 		break;
973 	case -280:
974 		val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
975 		break;
976 	case -370:
977 		val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
978 		break;
979 	case -490:
980 		val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
981 		break;
982 	case -630:
983 		val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
984 		break;
985 	default:
986 		return -EINVAL;
987 	}
988 
989 	return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
990 				  TXPWRL_MASK | TXPWRS_MASK, val);
991 }
992 
993 static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
994 {
995 	struct mrf24j40 *devrec = hw->priv;
996 	int ret;
997 
998 	if (on) {
999 		/* set PROMI, ERRPKT and NOACKRSP */
1000 		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
1001 					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
1002 					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
1003 	} else {
1004 		/* clear PROMI, ERRPKT and NOACKRSP */
1005 		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
1006 					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
1007 					 0);
1008 	}
1009 
1010 	return ret;
1011 }
1012 
1013 static const struct ieee802154_ops mrf24j40_ops = {
1014 	.owner = THIS_MODULE,
1015 	.xmit_async = mrf24j40_tx,
1016 	.ed = mrf24j40_ed,
1017 	.start = mrf24j40_start,
1018 	.stop = mrf24j40_stop,
1019 	.set_channel = mrf24j40_set_channel,
1020 	.set_hw_addr_filt = mrf24j40_filter,
1021 	.set_csma_params = mrf24j40_csma_params,
1022 	.set_cca_mode = mrf24j40_set_cca_mode,
1023 	.set_cca_ed_level = mrf24j40_set_cca_ed_level,
1024 	.set_txpower = mrf24j40_set_txpower,
1025 	.set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1026 };
1027 
1028 static void mrf24j40_intstat_complete(void *context)
1029 {
1030 	struct mrf24j40 *devrec = context;
1031 	u8 intstat = devrec->irq_buf[1];
1032 
1033 	enable_irq(devrec->spi->irq);
1034 
1035 	/* Ignore Rx security decryption */
1036 	if (intstat & BIT_SECIF)
1037 		regmap_write_async(devrec->regmap_short, REG_SECCON0,
1038 				   BIT_SECIGNORE);
1039 
1040 	/* Check for TX complete */
1041 	if (intstat & BIT_TXNIF)
1042 		ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1043 
1044 	/* Check for Rx */
1045 	if (intstat & BIT_RXIF)
1046 		mrf24j40_handle_rx(devrec);
1047 }
1048 
1049 static irqreturn_t mrf24j40_isr(int irq, void *data)
1050 {
1051 	struct mrf24j40 *devrec = data;
1052 	int ret;
1053 
1054 	disable_irq_nosync(irq);
1055 
1056 	devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1057 	devrec->irq_buf[1] = 0;
1058 
1059 	/* Read the interrupt status */
1060 	ret = spi_async(devrec->spi, &devrec->irq_msg);
1061 	if (ret) {
1062 		enable_irq(irq);
1063 		return IRQ_NONE;
1064 	}
1065 
1066 	return IRQ_HANDLED;
1067 }
1068 
1069 static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1070 {
1071 	u32 irq_type;
1072 	int ret;
1073 
1074 	/* Initialize the device.
1075 		From datasheet section 3.2: Initialization. */
1076 	ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1077 	if (ret)
1078 		goto err_ret;
1079 
1080 	ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1081 	if (ret)
1082 		goto err_ret;
1083 
1084 	ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1085 	if (ret)
1086 		goto err_ret;
1087 
1088 	ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1089 	if (ret)
1090 		goto err_ret;
1091 
1092 	ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1093 	if (ret)
1094 		goto err_ret;
1095 
1096 	ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1097 	if (ret)
1098 		goto err_ret;
1099 
1100 	ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1101 	if (ret)
1102 		goto err_ret;
1103 
1104 	ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1105 	if (ret)
1106 		goto err_ret;
1107 
1108 	ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1109 	if (ret)
1110 		goto err_ret;
1111 
1112 	ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1113 	if (ret)
1114 		goto err_ret;
1115 
1116 	ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1117 	if (ret)
1118 		goto err_ret;
1119 
1120 	ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1121 	if (ret)
1122 		goto err_ret;
1123 
1124 	ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1125 	if (ret)
1126 		goto err_ret;
1127 
1128 	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1129 	if (ret)
1130 		goto err_ret;
1131 
1132 	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1133 	if (ret)
1134 		goto err_ret;
1135 
1136 	udelay(192);
1137 
1138 	/* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1139 	ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1140 	if (ret)
1141 		goto err_ret;
1142 
1143 	if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1144 		/* Enable external amplifier.
1145 		 * From MRF24J40MC datasheet section 1.3: Operation.
1146 		 */
1147 		regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1148 				   0x07);
1149 
1150 		/* Set GPIO3 as output. */
1151 		regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1152 				   0x08);
1153 
1154 		/* Set GPIO3 HIGH to enable U5 voltage regulator */
1155 		regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1156 
1157 		/* Reduce TX pwr to meet FCC requirements.
1158 		 * From MRF24J40MC datasheet section 3.1.1
1159 		 */
1160 		regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1161 	}
1162 
1163 	irq_type = irq_get_trigger_type(devrec->spi->irq);
1164 	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1165 	    irq_type == IRQ_TYPE_EDGE_FALLING)
1166 		dev_warn(&devrec->spi->dev,
1167 			 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1168 	switch (irq_type) {
1169 	case IRQ_TYPE_EDGE_RISING:
1170 	case IRQ_TYPE_LEVEL_HIGH:
1171 		/* set interrupt polarity to rising */
1172 		ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1173 					 BIT_INTEDGE, BIT_INTEDGE);
1174 		if (ret)
1175 			goto err_ret;
1176 		break;
1177 	default:
1178 		/* default is falling edge */
1179 		break;
1180 	}
1181 
1182 	return 0;
1183 
1184 err_ret:
1185 	return ret;
1186 }
1187 
1188 static void
1189 mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1190 {
1191 	spi_message_init(&devrec->tx_msg);
1192 	devrec->tx_msg.context = devrec;
1193 	devrec->tx_msg.complete = write_tx_buf_complete;
1194 	devrec->tx_hdr_trx.len = 2;
1195 	devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1196 	spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1197 	devrec->tx_len_trx.len = 2;
1198 	devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1199 	spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1200 	spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1201 
1202 	spi_message_init(&devrec->tx_post_msg);
1203 	devrec->tx_post_msg.context = devrec;
1204 	devrec->tx_post_trx.len = 2;
1205 	devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1206 	spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1207 }
1208 
1209 static void
1210 mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1211 {
1212 	spi_message_init(&devrec->rx_msg);
1213 	devrec->rx_msg.context = devrec;
1214 	devrec->rx_trx.len = 2;
1215 	devrec->rx_trx.tx_buf = devrec->rx_buf;
1216 	devrec->rx_trx.rx_buf = devrec->rx_buf;
1217 	spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1218 
1219 	spi_message_init(&devrec->rx_buf_msg);
1220 	devrec->rx_buf_msg.context = devrec;
1221 	devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1222 	devrec->rx_addr_trx.len = 2;
1223 	devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1224 	spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1225 	devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1226 	spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1227 	devrec->rx_lqi_trx.len = 2;
1228 	devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1229 	spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1230 }
1231 
1232 static void
1233 mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1234 {
1235 	spi_message_init(&devrec->irq_msg);
1236 	devrec->irq_msg.context = devrec;
1237 	devrec->irq_msg.complete = mrf24j40_intstat_complete;
1238 	devrec->irq_trx.len = 2;
1239 	devrec->irq_trx.tx_buf = devrec->irq_buf;
1240 	devrec->irq_trx.rx_buf = devrec->irq_buf;
1241 	spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1242 }
1243 
1244 static void  mrf24j40_phy_setup(struct mrf24j40 *devrec)
1245 {
1246 	ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1247 	devrec->hw->phy->current_channel = 11;
1248 
1249 	/* mrf24j40 supports max_minbe 0 - 3 */
1250 	devrec->hw->phy->supported.max_minbe = 3;
1251 	/* datasheet doesn't say anything about max_be, but we have min_be
1252 	 * So we assume the max_be default.
1253 	 */
1254 	devrec->hw->phy->supported.min_maxbe = 5;
1255 	devrec->hw->phy->supported.max_maxbe = 5;
1256 
1257 	devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1258 	devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1259 					       BIT(NL802154_CCA_CARRIER) |
1260 					       BIT(NL802154_CCA_ENERGY_CARRIER);
1261 	devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1262 
1263 	devrec->hw->phy->cca_ed_level = -6900;
1264 	devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1265 	devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1266 
1267 	switch (spi_get_device_id(devrec->spi)->driver_data) {
1268 	case MRF24J40:
1269 	case MRF24J40MA:
1270 		devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1271 		devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1272 		devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1273 		break;
1274 	default:
1275 		break;
1276 	}
1277 }
1278 
1279 static int mrf24j40_probe(struct spi_device *spi)
1280 {
1281 	int ret = -ENOMEM, irq_type;
1282 	struct ieee802154_hw *hw;
1283 	struct mrf24j40 *devrec;
1284 
1285 	dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1286 
1287 	/* Register with the 802154 subsystem */
1288 
1289 	hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1290 	if (!hw)
1291 		goto err_ret;
1292 
1293 	devrec = hw->priv;
1294 	devrec->spi = spi;
1295 	spi_set_drvdata(spi, devrec);
1296 	devrec->hw = hw;
1297 	devrec->hw->parent = &spi->dev;
1298 	devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1299 	devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1300 			    IEEE802154_HW_CSMA_PARAMS |
1301 			    IEEE802154_HW_PROMISCUOUS;
1302 
1303 	devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1304 				 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1305 
1306 	mrf24j40_setup_tx_spi_messages(devrec);
1307 	mrf24j40_setup_rx_spi_messages(devrec);
1308 	mrf24j40_setup_irq_spi_messages(devrec);
1309 
1310 	devrec->regmap_short = devm_regmap_init_spi(spi,
1311 						    &mrf24j40_short_regmap);
1312 	if (IS_ERR(devrec->regmap_short)) {
1313 		ret = PTR_ERR(devrec->regmap_short);
1314 		dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1315 			ret);
1316 		goto err_register_device;
1317 	}
1318 
1319 	devrec->regmap_long = devm_regmap_init(&spi->dev,
1320 					       &mrf24j40_long_regmap_bus,
1321 					       spi, &mrf24j40_long_regmap);
1322 	if (IS_ERR(devrec->regmap_long)) {
1323 		ret = PTR_ERR(devrec->regmap_long);
1324 		dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1325 			ret);
1326 		goto err_register_device;
1327 	}
1328 
1329 	if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1330 		dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1331 			 MAX_SPI_SPEED_HZ);
1332 		return -EINVAL;
1333 	}
1334 
1335 	ret = mrf24j40_hw_init(devrec);
1336 	if (ret)
1337 		goto err_register_device;
1338 
1339 	mrf24j40_phy_setup(devrec);
1340 
1341 	/* request IRQF_TRIGGER_LOW as fallback default */
1342 	irq_type = irq_get_trigger_type(spi->irq);
1343 	if (!irq_type)
1344 		irq_type = IRQF_TRIGGER_LOW;
1345 
1346 	ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1347 			       irq_type, dev_name(&spi->dev), devrec);
1348 	if (ret) {
1349 		dev_err(printdev(devrec), "Unable to get IRQ");
1350 		goto err_register_device;
1351 	}
1352 
1353 	dev_dbg(printdev(devrec), "registered mrf24j40\n");
1354 	ret = ieee802154_register_hw(devrec->hw);
1355 	if (ret)
1356 		goto err_register_device;
1357 
1358 	return 0;
1359 
1360 err_register_device:
1361 	ieee802154_free_hw(devrec->hw);
1362 err_ret:
1363 	return ret;
1364 }
1365 
1366 static int mrf24j40_remove(struct spi_device *spi)
1367 {
1368 	struct mrf24j40 *devrec = spi_get_drvdata(spi);
1369 
1370 	dev_dbg(printdev(devrec), "remove\n");
1371 
1372 	ieee802154_unregister_hw(devrec->hw);
1373 	ieee802154_free_hw(devrec->hw);
1374 	/* TODO: Will ieee802154_free_device() wait until ->xmit() is
1375 	 * complete? */
1376 
1377 	return 0;
1378 }
1379 
1380 static const struct of_device_id mrf24j40_of_match[] = {
1381 	{ .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1382 	{ .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1383 	{ .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1384 	{ },
1385 };
1386 MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1387 
1388 static const struct spi_device_id mrf24j40_ids[] = {
1389 	{ "mrf24j40", MRF24J40 },
1390 	{ "mrf24j40ma", MRF24J40MA },
1391 	{ "mrf24j40mc", MRF24J40MC },
1392 	{ },
1393 };
1394 MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1395 
1396 static struct spi_driver mrf24j40_driver = {
1397 	.driver = {
1398 		.of_match_table = of_match_ptr(mrf24j40_of_match),
1399 		.name = "mrf24j40",
1400 	},
1401 	.id_table = mrf24j40_ids,
1402 	.probe = mrf24j40_probe,
1403 	.remove = mrf24j40_remove,
1404 };
1405 
1406 module_spi_driver(mrf24j40_driver);
1407 
1408 MODULE_LICENSE("GPL");
1409 MODULE_AUTHOR("Alan Ott");
1410 MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");
1411