1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/ethtool.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/device.h> 17 #include <linux/io.h> 18 #include <linux/delay.h> 19 #include <linux/netdevice.h> 20 #include <linux/inetdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/pci.h> 23 #include <linux/skbuff.h> 24 #include <linux/if_vlan.h> 25 #include <linux/in.h> 26 #include <linux/slab.h> 27 #include <linux/rtnetlink.h> 28 #include <linux/netpoll.h> 29 #include <linux/bpf.h> 30 31 #include <net/arp.h> 32 #include <net/route.h> 33 #include <net/sock.h> 34 #include <net/pkt_sched.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 38 #include "hyperv_net.h" 39 40 #define RING_SIZE_MIN 64 41 42 #define LINKCHANGE_INT (2 * HZ) 43 #define VF_TAKEOVER_INT (HZ / 10) 44 45 static unsigned int ring_size __ro_after_init = 128; 46 module_param(ring_size, uint, 0444); 47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)"); 48 unsigned int netvsc_ring_bytes __ro_after_init; 49 50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 51 NETIF_MSG_LINK | NETIF_MSG_IFUP | 52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 53 NETIF_MSG_TX_ERR; 54 55 static int debug = -1; 56 module_param(debug, int, 0444); 57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 58 59 static LIST_HEAD(netvsc_dev_list); 60 61 static void netvsc_change_rx_flags(struct net_device *net, int change) 62 { 63 struct net_device_context *ndev_ctx = netdev_priv(net); 64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 65 int inc; 66 67 if (!vf_netdev) 68 return; 69 70 if (change & IFF_PROMISC) { 71 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 72 dev_set_promiscuity(vf_netdev, inc); 73 } 74 75 if (change & IFF_ALLMULTI) { 76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 77 dev_set_allmulti(vf_netdev, inc); 78 } 79 } 80 81 static void netvsc_set_rx_mode(struct net_device *net) 82 { 83 struct net_device_context *ndev_ctx = netdev_priv(net); 84 struct net_device *vf_netdev; 85 struct netvsc_device *nvdev; 86 87 rcu_read_lock(); 88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 89 if (vf_netdev) { 90 dev_uc_sync(vf_netdev, net); 91 dev_mc_sync(vf_netdev, net); 92 } 93 94 nvdev = rcu_dereference(ndev_ctx->nvdev); 95 if (nvdev) 96 rndis_filter_update(nvdev); 97 rcu_read_unlock(); 98 } 99 100 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 101 struct net_device *ndev) 102 { 103 nvscdev->tx_disable = false; 104 virt_wmb(); /* ensure queue wake up mechanism is on */ 105 106 netif_tx_wake_all_queues(ndev); 107 } 108 109 static int netvsc_open(struct net_device *net) 110 { 111 struct net_device_context *ndev_ctx = netdev_priv(net); 112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 114 struct rndis_device *rdev; 115 int ret = 0; 116 117 netif_carrier_off(net); 118 119 /* Open up the device */ 120 ret = rndis_filter_open(nvdev); 121 if (ret != 0) { 122 netdev_err(net, "unable to open device (ret %d).\n", ret); 123 return ret; 124 } 125 126 rdev = nvdev->extension; 127 if (!rdev->link_state) { 128 netif_carrier_on(net); 129 netvsc_tx_enable(nvdev, net); 130 } 131 132 if (vf_netdev) { 133 /* Setting synthetic device up transparently sets 134 * slave as up. If open fails, then slave will be 135 * still be offline (and not used). 136 */ 137 ret = dev_open(vf_netdev, NULL); 138 if (ret) 139 netdev_warn(net, 140 "unable to open slave: %s: %d\n", 141 vf_netdev->name, ret); 142 } 143 return 0; 144 } 145 146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 147 { 148 unsigned int retry = 0; 149 int i; 150 151 /* Ensure pending bytes in ring are read */ 152 for (;;) { 153 u32 aread = 0; 154 155 for (i = 0; i < nvdev->num_chn; i++) { 156 struct vmbus_channel *chn 157 = nvdev->chan_table[i].channel; 158 159 if (!chn) 160 continue; 161 162 /* make sure receive not running now */ 163 napi_synchronize(&nvdev->chan_table[i].napi); 164 165 aread = hv_get_bytes_to_read(&chn->inbound); 166 if (aread) 167 break; 168 169 aread = hv_get_bytes_to_read(&chn->outbound); 170 if (aread) 171 break; 172 } 173 174 if (aread == 0) 175 return 0; 176 177 if (++retry > RETRY_MAX) 178 return -ETIMEDOUT; 179 180 usleep_range(RETRY_US_LO, RETRY_US_HI); 181 } 182 } 183 184 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 185 struct net_device *ndev) 186 { 187 if (nvscdev) { 188 nvscdev->tx_disable = true; 189 virt_wmb(); /* ensure txq will not wake up after stop */ 190 } 191 192 netif_tx_disable(ndev); 193 } 194 195 static int netvsc_close(struct net_device *net) 196 { 197 struct net_device_context *net_device_ctx = netdev_priv(net); 198 struct net_device *vf_netdev 199 = rtnl_dereference(net_device_ctx->vf_netdev); 200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 201 int ret; 202 203 netvsc_tx_disable(nvdev, net); 204 205 /* No need to close rndis filter if it is removed already */ 206 if (!nvdev) 207 return 0; 208 209 ret = rndis_filter_close(nvdev); 210 if (ret != 0) { 211 netdev_err(net, "unable to close device (ret %d).\n", ret); 212 return ret; 213 } 214 215 ret = netvsc_wait_until_empty(nvdev); 216 if (ret) 217 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 218 219 if (vf_netdev) 220 dev_close(vf_netdev); 221 222 return ret; 223 } 224 225 static inline void *init_ppi_data(struct rndis_message *msg, 226 u32 ppi_size, u32 pkt_type) 227 { 228 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 229 struct rndis_per_packet_info *ppi; 230 231 rndis_pkt->data_offset += ppi_size; 232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 233 + rndis_pkt->per_pkt_info_len; 234 235 ppi->size = ppi_size; 236 ppi->type = pkt_type; 237 ppi->internal = 0; 238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 239 240 rndis_pkt->per_pkt_info_len += ppi_size; 241 242 return ppi + 1; 243 } 244 245 static inline int netvsc_get_tx_queue(struct net_device *ndev, 246 struct sk_buff *skb, int old_idx) 247 { 248 const struct net_device_context *ndc = netdev_priv(ndev); 249 struct sock *sk = skb->sk; 250 int q_idx; 251 252 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 253 (VRSS_SEND_TAB_SIZE - 1)]; 254 255 /* If queue index changed record the new value */ 256 if (q_idx != old_idx && 257 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 258 sk_tx_queue_set(sk, q_idx); 259 260 return q_idx; 261 } 262 263 /* 264 * Select queue for transmit. 265 * 266 * If a valid queue has already been assigned, then use that. 267 * Otherwise compute tx queue based on hash and the send table. 268 * 269 * This is basically similar to default (netdev_pick_tx) with the added step 270 * of using the host send_table when no other queue has been assigned. 271 * 272 * TODO support XPS - but get_xps_queue not exported 273 */ 274 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 275 { 276 int q_idx = sk_tx_queue_get(skb->sk); 277 278 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 279 /* If forwarding a packet, we use the recorded queue when 280 * available for better cache locality. 281 */ 282 if (skb_rx_queue_recorded(skb)) 283 q_idx = skb_get_rx_queue(skb); 284 else 285 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 286 } 287 288 return q_idx; 289 } 290 291 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 292 struct net_device *sb_dev) 293 { 294 struct net_device_context *ndc = netdev_priv(ndev); 295 struct net_device *vf_netdev; 296 u16 txq; 297 298 rcu_read_lock(); 299 vf_netdev = rcu_dereference(ndc->vf_netdev); 300 if (vf_netdev) { 301 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 302 303 if (vf_ops->ndo_select_queue) 304 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 305 else 306 txq = netdev_pick_tx(vf_netdev, skb, NULL); 307 308 /* Record the queue selected by VF so that it can be 309 * used for common case where VF has more queues than 310 * the synthetic device. 311 */ 312 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 313 } else { 314 txq = netvsc_pick_tx(ndev, skb); 315 } 316 rcu_read_unlock(); 317 318 while (txq >= ndev->real_num_tx_queues) 319 txq -= ndev->real_num_tx_queues; 320 321 return txq; 322 } 323 324 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, 325 struct hv_page_buffer *pb) 326 { 327 int j = 0; 328 329 hvpfn += offset >> HV_HYP_PAGE_SHIFT; 330 offset = offset & ~HV_HYP_PAGE_MASK; 331 332 while (len > 0) { 333 unsigned long bytes; 334 335 bytes = HV_HYP_PAGE_SIZE - offset; 336 if (bytes > len) 337 bytes = len; 338 pb[j].pfn = hvpfn; 339 pb[j].offset = offset; 340 pb[j].len = bytes; 341 342 offset += bytes; 343 len -= bytes; 344 345 if (offset == HV_HYP_PAGE_SIZE && len) { 346 hvpfn++; 347 offset = 0; 348 j++; 349 } 350 } 351 352 return j + 1; 353 } 354 355 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 356 struct hv_netvsc_packet *packet, 357 struct hv_page_buffer *pb) 358 { 359 u32 slots_used = 0; 360 char *data = skb->data; 361 int frags = skb_shinfo(skb)->nr_frags; 362 int i; 363 364 /* The packet is laid out thus: 365 * 1. hdr: RNDIS header and PPI 366 * 2. skb linear data 367 * 3. skb fragment data 368 */ 369 slots_used += fill_pg_buf(virt_to_hvpfn(hdr), 370 offset_in_hvpage(hdr), 371 len, 372 &pb[slots_used]); 373 374 packet->rmsg_size = len; 375 packet->rmsg_pgcnt = slots_used; 376 377 slots_used += fill_pg_buf(virt_to_hvpfn(data), 378 offset_in_hvpage(data), 379 skb_headlen(skb), 380 &pb[slots_used]); 381 382 for (i = 0; i < frags; i++) { 383 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 384 385 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), 386 skb_frag_off(frag), 387 skb_frag_size(frag), 388 &pb[slots_used]); 389 } 390 return slots_used; 391 } 392 393 static int count_skb_frag_slots(struct sk_buff *skb) 394 { 395 int i, frags = skb_shinfo(skb)->nr_frags; 396 int pages = 0; 397 398 for (i = 0; i < frags; i++) { 399 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 400 unsigned long size = skb_frag_size(frag); 401 unsigned long offset = skb_frag_off(frag); 402 403 /* Skip unused frames from start of page */ 404 offset &= ~HV_HYP_PAGE_MASK; 405 pages += HVPFN_UP(offset + size); 406 } 407 return pages; 408 } 409 410 static int netvsc_get_slots(struct sk_buff *skb) 411 { 412 char *data = skb->data; 413 unsigned int offset = offset_in_hvpage(data); 414 unsigned int len = skb_headlen(skb); 415 int slots; 416 int frag_slots; 417 418 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); 419 frag_slots = count_skb_frag_slots(skb); 420 return slots + frag_slots; 421 } 422 423 static u32 net_checksum_info(struct sk_buff *skb) 424 { 425 if (skb->protocol == htons(ETH_P_IP)) { 426 struct iphdr *ip = ip_hdr(skb); 427 428 if (ip->protocol == IPPROTO_TCP) 429 return TRANSPORT_INFO_IPV4_TCP; 430 else if (ip->protocol == IPPROTO_UDP) 431 return TRANSPORT_INFO_IPV4_UDP; 432 } else { 433 struct ipv6hdr *ip6 = ipv6_hdr(skb); 434 435 if (ip6->nexthdr == IPPROTO_TCP) 436 return TRANSPORT_INFO_IPV6_TCP; 437 else if (ip6->nexthdr == IPPROTO_UDP) 438 return TRANSPORT_INFO_IPV6_UDP; 439 } 440 441 return TRANSPORT_INFO_NOT_IP; 442 } 443 444 /* Send skb on the slave VF device. */ 445 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 446 struct sk_buff *skb) 447 { 448 struct net_device_context *ndev_ctx = netdev_priv(net); 449 unsigned int len = skb->len; 450 int rc; 451 452 skb->dev = vf_netdev; 453 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 454 455 rc = dev_queue_xmit(skb); 456 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 457 struct netvsc_vf_pcpu_stats *pcpu_stats 458 = this_cpu_ptr(ndev_ctx->vf_stats); 459 460 u64_stats_update_begin(&pcpu_stats->syncp); 461 pcpu_stats->tx_packets++; 462 pcpu_stats->tx_bytes += len; 463 u64_stats_update_end(&pcpu_stats->syncp); 464 } else { 465 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 466 } 467 468 return rc; 469 } 470 471 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 472 { 473 struct net_device_context *net_device_ctx = netdev_priv(net); 474 struct hv_netvsc_packet *packet = NULL; 475 int ret; 476 unsigned int num_data_pgs; 477 struct rndis_message *rndis_msg; 478 struct net_device *vf_netdev; 479 u32 rndis_msg_size; 480 u32 hash; 481 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 482 483 /* If VF is present and up then redirect packets to it. 484 * Skip the VF if it is marked down or has no carrier. 485 * If netpoll is in uses, then VF can not be used either. 486 */ 487 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 488 if (vf_netdev && netif_running(vf_netdev) && 489 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) && 490 net_device_ctx->data_path_is_vf) 491 return netvsc_vf_xmit(net, vf_netdev, skb); 492 493 /* We will atmost need two pages to describe the rndis 494 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 495 * of pages in a single packet. If skb is scattered around 496 * more pages we try linearizing it. 497 */ 498 499 num_data_pgs = netvsc_get_slots(skb) + 2; 500 501 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 502 ++net_device_ctx->eth_stats.tx_scattered; 503 504 if (skb_linearize(skb)) 505 goto no_memory; 506 507 num_data_pgs = netvsc_get_slots(skb) + 2; 508 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 509 ++net_device_ctx->eth_stats.tx_too_big; 510 goto drop; 511 } 512 } 513 514 /* 515 * Place the rndis header in the skb head room and 516 * the skb->cb will be used for hv_netvsc_packet 517 * structure. 518 */ 519 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 520 if (ret) 521 goto no_memory; 522 523 /* Use the skb control buffer for building up the packet */ 524 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 525 sizeof_field(struct sk_buff, cb)); 526 packet = (struct hv_netvsc_packet *)skb->cb; 527 528 packet->q_idx = skb_get_queue_mapping(skb); 529 530 packet->total_data_buflen = skb->len; 531 packet->total_bytes = skb->len; 532 packet->total_packets = 1; 533 534 rndis_msg = (struct rndis_message *)skb->head; 535 536 /* Add the rndis header */ 537 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 538 rndis_msg->msg_len = packet->total_data_buflen; 539 540 rndis_msg->msg.pkt = (struct rndis_packet) { 541 .data_offset = sizeof(struct rndis_packet), 542 .data_len = packet->total_data_buflen, 543 .per_pkt_info_offset = sizeof(struct rndis_packet), 544 }; 545 546 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 547 548 hash = skb_get_hash_raw(skb); 549 if (hash != 0 && net->real_num_tx_queues > 1) { 550 u32 *hash_info; 551 552 rndis_msg_size += NDIS_HASH_PPI_SIZE; 553 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 554 NBL_HASH_VALUE); 555 *hash_info = hash; 556 } 557 558 /* When using AF_PACKET we need to drop VLAN header from 559 * the frame and update the SKB to allow the HOST OS 560 * to transmit the 802.1Q packet 561 */ 562 if (skb->protocol == htons(ETH_P_8021Q)) { 563 u16 vlan_tci; 564 565 skb_reset_mac_header(skb); 566 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 567 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 568 ++net_device_ctx->eth_stats.vlan_error; 569 goto drop; 570 } 571 572 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 573 /* Update the NDIS header pkt lengths */ 574 packet->total_data_buflen -= VLAN_HLEN; 575 packet->total_bytes -= VLAN_HLEN; 576 rndis_msg->msg_len = packet->total_data_buflen; 577 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 578 } 579 } 580 581 if (skb_vlan_tag_present(skb)) { 582 struct ndis_pkt_8021q_info *vlan; 583 584 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 585 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 586 IEEE_8021Q_INFO); 587 588 vlan->value = 0; 589 vlan->vlanid = skb_vlan_tag_get_id(skb); 590 vlan->cfi = skb_vlan_tag_get_cfi(skb); 591 vlan->pri = skb_vlan_tag_get_prio(skb); 592 } 593 594 if (skb_is_gso(skb)) { 595 struct ndis_tcp_lso_info *lso_info; 596 597 rndis_msg_size += NDIS_LSO_PPI_SIZE; 598 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 599 TCP_LARGESEND_PKTINFO); 600 601 lso_info->value = 0; 602 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 603 if (skb->protocol == htons(ETH_P_IP)) { 604 lso_info->lso_v2_transmit.ip_version = 605 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 606 ip_hdr(skb)->tot_len = 0; 607 ip_hdr(skb)->check = 0; 608 tcp_hdr(skb)->check = 609 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 610 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 611 } else { 612 lso_info->lso_v2_transmit.ip_version = 613 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 614 tcp_v6_gso_csum_prep(skb); 615 } 616 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 617 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 618 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 619 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 620 struct ndis_tcp_ip_checksum_info *csum_info; 621 622 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 623 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 624 TCPIP_CHKSUM_PKTINFO); 625 626 csum_info->value = 0; 627 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 628 629 if (skb->protocol == htons(ETH_P_IP)) { 630 csum_info->transmit.is_ipv4 = 1; 631 632 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 633 csum_info->transmit.tcp_checksum = 1; 634 else 635 csum_info->transmit.udp_checksum = 1; 636 } else { 637 csum_info->transmit.is_ipv6 = 1; 638 639 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 640 csum_info->transmit.tcp_checksum = 1; 641 else 642 csum_info->transmit.udp_checksum = 1; 643 } 644 } else { 645 /* Can't do offload of this type of checksum */ 646 if (skb_checksum_help(skb)) 647 goto drop; 648 } 649 } 650 651 /* Start filling in the page buffers with the rndis hdr */ 652 rndis_msg->msg_len += rndis_msg_size; 653 packet->total_data_buflen = rndis_msg->msg_len; 654 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 655 skb, packet, pb); 656 657 /* timestamp packet in software */ 658 skb_tx_timestamp(skb); 659 660 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 661 if (likely(ret == 0)) 662 return NETDEV_TX_OK; 663 664 if (ret == -EAGAIN) { 665 ++net_device_ctx->eth_stats.tx_busy; 666 return NETDEV_TX_BUSY; 667 } 668 669 if (ret == -ENOSPC) 670 ++net_device_ctx->eth_stats.tx_no_space; 671 672 drop: 673 dev_kfree_skb_any(skb); 674 net->stats.tx_dropped++; 675 676 return NETDEV_TX_OK; 677 678 no_memory: 679 ++net_device_ctx->eth_stats.tx_no_memory; 680 goto drop; 681 } 682 683 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 684 struct net_device *ndev) 685 { 686 return netvsc_xmit(skb, ndev, false); 687 } 688 689 /* 690 * netvsc_linkstatus_callback - Link up/down notification 691 */ 692 void netvsc_linkstatus_callback(struct net_device *net, 693 struct rndis_message *resp, 694 void *data, u32 data_buflen) 695 { 696 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 697 struct net_device_context *ndev_ctx = netdev_priv(net); 698 struct netvsc_reconfig *event; 699 unsigned long flags; 700 701 /* Ensure the packet is big enough to access its fields */ 702 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { 703 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", 704 resp->msg_len); 705 return; 706 } 707 708 /* Copy the RNDIS indicate status into nvchan->recv_buf */ 709 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate)); 710 711 /* Update the physical link speed when changing to another vSwitch */ 712 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 713 u32 speed; 714 715 /* Validate status_buf_offset and status_buflen. 716 * 717 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account 718 * for the status buffer field in resp->msg_len; perform the validation 719 * using data_buflen (>= resp->msg_len). 720 */ 721 if (indicate->status_buflen < sizeof(speed) || 722 indicate->status_buf_offset < sizeof(*indicate) || 723 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset || 724 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset 725 < indicate->status_buflen) { 726 netdev_err(net, "invalid rndis_indicate_status packet\n"); 727 return; 728 } 729 730 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000; 731 ndev_ctx->speed = speed; 732 return; 733 } 734 735 /* Handle these link change statuses below */ 736 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 737 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 738 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 739 return; 740 741 if (net->reg_state != NETREG_REGISTERED) 742 return; 743 744 event = kzalloc(sizeof(*event), GFP_ATOMIC); 745 if (!event) 746 return; 747 event->event = indicate->status; 748 749 spin_lock_irqsave(&ndev_ctx->lock, flags); 750 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 751 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 752 753 schedule_delayed_work(&ndev_ctx->dwork, 0); 754 } 755 756 /* This function should only be called after skb_record_rx_queue() */ 757 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 758 { 759 int rc; 760 761 skb->queue_mapping = skb_get_rx_queue(skb); 762 __skb_push(skb, ETH_HLEN); 763 764 rc = netvsc_xmit(skb, ndev, true); 765 766 if (dev_xmit_complete(rc)) 767 return; 768 769 dev_kfree_skb_any(skb); 770 ndev->stats.tx_dropped++; 771 } 772 773 static void netvsc_comp_ipcsum(struct sk_buff *skb) 774 { 775 struct iphdr *iph = (struct iphdr *)skb->data; 776 777 iph->check = 0; 778 iph->check = ip_fast_csum(iph, iph->ihl); 779 } 780 781 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 782 struct netvsc_channel *nvchan, 783 struct xdp_buff *xdp) 784 { 785 struct napi_struct *napi = &nvchan->napi; 786 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan; 787 const struct ndis_tcp_ip_checksum_info *csum_info = 788 &nvchan->rsc.csum_info; 789 const u32 *hash_info = &nvchan->rsc.hash_info; 790 u8 ppi_flags = nvchan->rsc.ppi_flags; 791 struct sk_buff *skb; 792 void *xbuf = xdp->data_hard_start; 793 int i; 794 795 if (xbuf) { 796 unsigned int hdroom = xdp->data - xdp->data_hard_start; 797 unsigned int xlen = xdp->data_end - xdp->data; 798 unsigned int frag_size = xdp->frame_sz; 799 800 skb = build_skb(xbuf, frag_size); 801 802 if (!skb) { 803 __free_page(virt_to_page(xbuf)); 804 return NULL; 805 } 806 807 skb_reserve(skb, hdroom); 808 skb_put(skb, xlen); 809 skb->dev = napi->dev; 810 } else { 811 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 812 813 if (!skb) 814 return NULL; 815 816 /* Copy to skb. This copy is needed here since the memory 817 * pointed by hv_netvsc_packet cannot be deallocated. 818 */ 819 for (i = 0; i < nvchan->rsc.cnt; i++) 820 skb_put_data(skb, nvchan->rsc.data[i], 821 nvchan->rsc.len[i]); 822 } 823 824 skb->protocol = eth_type_trans(skb, net); 825 826 /* skb is already created with CHECKSUM_NONE */ 827 skb_checksum_none_assert(skb); 828 829 /* Incoming packets may have IP header checksum verified by the host. 830 * They may not have IP header checksum computed after coalescing. 831 * We compute it here if the flags are set, because on Linux, the IP 832 * checksum is always checked. 833 */ 834 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid && 835 csum_info->receive.ip_checksum_succeeded && 836 skb->protocol == htons(ETH_P_IP)) { 837 /* Check that there is enough space to hold the IP header. */ 838 if (skb_headlen(skb) < sizeof(struct iphdr)) { 839 kfree_skb(skb); 840 return NULL; 841 } 842 netvsc_comp_ipcsum(skb); 843 } 844 845 /* Do L4 checksum offload if enabled and present. */ 846 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) { 847 if (csum_info->receive.tcp_checksum_succeeded || 848 csum_info->receive.udp_checksum_succeeded) 849 skb->ip_summed = CHECKSUM_UNNECESSARY; 850 } 851 852 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH)) 853 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 854 855 if (ppi_flags & NVSC_RSC_VLAN) { 856 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 857 (vlan->cfi ? VLAN_CFI_MASK : 0); 858 859 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 860 vlan_tci); 861 } 862 863 return skb; 864 } 865 866 /* 867 * netvsc_recv_callback - Callback when we receive a packet from the 868 * "wire" on the specified device. 869 */ 870 int netvsc_recv_callback(struct net_device *net, 871 struct netvsc_device *net_device, 872 struct netvsc_channel *nvchan) 873 { 874 struct net_device_context *net_device_ctx = netdev_priv(net); 875 struct vmbus_channel *channel = nvchan->channel; 876 u16 q_idx = channel->offermsg.offer.sub_channel_index; 877 struct sk_buff *skb; 878 struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats; 879 struct xdp_buff xdp; 880 u32 act; 881 882 if (net->reg_state != NETREG_REGISTERED) 883 return NVSP_STAT_FAIL; 884 885 act = netvsc_run_xdp(net, nvchan, &xdp); 886 887 if (act == XDP_REDIRECT) 888 return NVSP_STAT_SUCCESS; 889 890 if (act != XDP_PASS && act != XDP_TX) { 891 u64_stats_update_begin(&rx_stats->syncp); 892 rx_stats->xdp_drop++; 893 u64_stats_update_end(&rx_stats->syncp); 894 895 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 896 } 897 898 /* Allocate a skb - TODO direct I/O to pages? */ 899 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 900 901 if (unlikely(!skb)) { 902 ++net_device_ctx->eth_stats.rx_no_memory; 903 return NVSP_STAT_FAIL; 904 } 905 906 skb_record_rx_queue(skb, q_idx); 907 908 /* 909 * Even if injecting the packet, record the statistics 910 * on the synthetic device because modifying the VF device 911 * statistics will not work correctly. 912 */ 913 u64_stats_update_begin(&rx_stats->syncp); 914 if (act == XDP_TX) 915 rx_stats->xdp_tx++; 916 917 rx_stats->packets++; 918 rx_stats->bytes += nvchan->rsc.pktlen; 919 920 if (skb->pkt_type == PACKET_BROADCAST) 921 ++rx_stats->broadcast; 922 else if (skb->pkt_type == PACKET_MULTICAST) 923 ++rx_stats->multicast; 924 u64_stats_update_end(&rx_stats->syncp); 925 926 if (act == XDP_TX) { 927 netvsc_xdp_xmit(skb, net); 928 return NVSP_STAT_SUCCESS; 929 } 930 931 napi_gro_receive(&nvchan->napi, skb); 932 return NVSP_STAT_SUCCESS; 933 } 934 935 static void netvsc_get_drvinfo(struct net_device *net, 936 struct ethtool_drvinfo *info) 937 { 938 strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 939 strscpy(info->fw_version, "N/A", sizeof(info->fw_version)); 940 } 941 942 static void netvsc_get_channels(struct net_device *net, 943 struct ethtool_channels *channel) 944 { 945 struct net_device_context *net_device_ctx = netdev_priv(net); 946 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 947 948 if (nvdev) { 949 channel->max_combined = nvdev->max_chn; 950 channel->combined_count = nvdev->num_chn; 951 } 952 } 953 954 /* Alloc struct netvsc_device_info, and initialize it from either existing 955 * struct netvsc_device, or from default values. 956 */ 957 static 958 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 959 { 960 struct netvsc_device_info *dev_info; 961 struct bpf_prog *prog; 962 963 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 964 965 if (!dev_info) 966 return NULL; 967 968 if (nvdev) { 969 ASSERT_RTNL(); 970 971 dev_info->num_chn = nvdev->num_chn; 972 dev_info->send_sections = nvdev->send_section_cnt; 973 dev_info->send_section_size = nvdev->send_section_size; 974 dev_info->recv_sections = nvdev->recv_section_cnt; 975 dev_info->recv_section_size = nvdev->recv_section_size; 976 977 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 978 NETVSC_HASH_KEYLEN); 979 980 prog = netvsc_xdp_get(nvdev); 981 if (prog) { 982 bpf_prog_inc(prog); 983 dev_info->bprog = prog; 984 } 985 } else { 986 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 987 dev_info->send_sections = NETVSC_DEFAULT_TX; 988 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 989 dev_info->recv_sections = NETVSC_DEFAULT_RX; 990 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 991 } 992 993 return dev_info; 994 } 995 996 /* Free struct netvsc_device_info */ 997 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 998 { 999 if (dev_info->bprog) { 1000 ASSERT_RTNL(); 1001 bpf_prog_put(dev_info->bprog); 1002 } 1003 1004 kfree(dev_info); 1005 } 1006 1007 static int netvsc_detach(struct net_device *ndev, 1008 struct netvsc_device *nvdev) 1009 { 1010 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1011 struct hv_device *hdev = ndev_ctx->device_ctx; 1012 int ret; 1013 1014 /* Don't try continuing to try and setup sub channels */ 1015 if (cancel_work_sync(&nvdev->subchan_work)) 1016 nvdev->num_chn = 1; 1017 1018 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1019 1020 /* If device was up (receiving) then shutdown */ 1021 if (netif_running(ndev)) { 1022 netvsc_tx_disable(nvdev, ndev); 1023 1024 ret = rndis_filter_close(nvdev); 1025 if (ret) { 1026 netdev_err(ndev, 1027 "unable to close device (ret %d).\n", ret); 1028 return ret; 1029 } 1030 1031 ret = netvsc_wait_until_empty(nvdev); 1032 if (ret) { 1033 netdev_err(ndev, 1034 "Ring buffer not empty after closing rndis\n"); 1035 return ret; 1036 } 1037 } 1038 1039 netif_device_detach(ndev); 1040 1041 rndis_filter_device_remove(hdev, nvdev); 1042 1043 return 0; 1044 } 1045 1046 static int netvsc_attach(struct net_device *ndev, 1047 struct netvsc_device_info *dev_info) 1048 { 1049 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1050 struct hv_device *hdev = ndev_ctx->device_ctx; 1051 struct netvsc_device *nvdev; 1052 struct rndis_device *rdev; 1053 struct bpf_prog *prog; 1054 int ret = 0; 1055 1056 nvdev = rndis_filter_device_add(hdev, dev_info); 1057 if (IS_ERR(nvdev)) 1058 return PTR_ERR(nvdev); 1059 1060 if (nvdev->num_chn > 1) { 1061 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1062 1063 /* if unavailable, just proceed with one queue */ 1064 if (ret) { 1065 nvdev->max_chn = 1; 1066 nvdev->num_chn = 1; 1067 } 1068 } 1069 1070 prog = dev_info->bprog; 1071 if (prog) { 1072 bpf_prog_inc(prog); 1073 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1074 if (ret) { 1075 bpf_prog_put(prog); 1076 goto err1; 1077 } 1078 } 1079 1080 /* In any case device is now ready */ 1081 nvdev->tx_disable = false; 1082 netif_device_attach(ndev); 1083 1084 /* Note: enable and attach happen when sub-channels setup */ 1085 netif_carrier_off(ndev); 1086 1087 if (netif_running(ndev)) { 1088 ret = rndis_filter_open(nvdev); 1089 if (ret) 1090 goto err2; 1091 1092 rdev = nvdev->extension; 1093 if (!rdev->link_state) 1094 netif_carrier_on(ndev); 1095 } 1096 1097 return 0; 1098 1099 err2: 1100 netif_device_detach(ndev); 1101 1102 err1: 1103 rndis_filter_device_remove(hdev, nvdev); 1104 1105 return ret; 1106 } 1107 1108 static int netvsc_set_channels(struct net_device *net, 1109 struct ethtool_channels *channels) 1110 { 1111 struct net_device_context *net_device_ctx = netdev_priv(net); 1112 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1113 unsigned int orig, count = channels->combined_count; 1114 struct netvsc_device_info *device_info; 1115 int ret; 1116 1117 /* We do not support separate count for rx, tx, or other */ 1118 if (count == 0 || 1119 channels->rx_count || channels->tx_count || channels->other_count) 1120 return -EINVAL; 1121 1122 if (!nvdev || nvdev->destroy) 1123 return -ENODEV; 1124 1125 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1126 return -EINVAL; 1127 1128 if (count > nvdev->max_chn) 1129 return -EINVAL; 1130 1131 orig = nvdev->num_chn; 1132 1133 device_info = netvsc_devinfo_get(nvdev); 1134 1135 if (!device_info) 1136 return -ENOMEM; 1137 1138 device_info->num_chn = count; 1139 1140 ret = netvsc_detach(net, nvdev); 1141 if (ret) 1142 goto out; 1143 1144 ret = netvsc_attach(net, device_info); 1145 if (ret) { 1146 device_info->num_chn = orig; 1147 if (netvsc_attach(net, device_info)) 1148 netdev_err(net, "restoring channel setting failed\n"); 1149 } 1150 1151 out: 1152 netvsc_devinfo_put(device_info); 1153 return ret; 1154 } 1155 1156 static void netvsc_init_settings(struct net_device *dev) 1157 { 1158 struct net_device_context *ndc = netdev_priv(dev); 1159 1160 ndc->l4_hash = HV_DEFAULT_L4HASH; 1161 1162 ndc->speed = SPEED_UNKNOWN; 1163 ndc->duplex = DUPLEX_FULL; 1164 1165 dev->features = NETIF_F_LRO; 1166 } 1167 1168 static int netvsc_get_link_ksettings(struct net_device *dev, 1169 struct ethtool_link_ksettings *cmd) 1170 { 1171 struct net_device_context *ndc = netdev_priv(dev); 1172 struct net_device *vf_netdev; 1173 1174 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1175 1176 if (vf_netdev) 1177 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1178 1179 cmd->base.speed = ndc->speed; 1180 cmd->base.duplex = ndc->duplex; 1181 cmd->base.port = PORT_OTHER; 1182 1183 return 0; 1184 } 1185 1186 static int netvsc_set_link_ksettings(struct net_device *dev, 1187 const struct ethtool_link_ksettings *cmd) 1188 { 1189 struct net_device_context *ndc = netdev_priv(dev); 1190 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1191 1192 if (vf_netdev) { 1193 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1194 return -EOPNOTSUPP; 1195 1196 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1197 cmd); 1198 } 1199 1200 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1201 &ndc->speed, &ndc->duplex); 1202 } 1203 1204 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1205 { 1206 struct net_device_context *ndevctx = netdev_priv(ndev); 1207 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1208 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1209 int orig_mtu = ndev->mtu; 1210 struct netvsc_device_info *device_info; 1211 int ret = 0; 1212 1213 if (!nvdev || nvdev->destroy) 1214 return -ENODEV; 1215 1216 device_info = netvsc_devinfo_get(nvdev); 1217 1218 if (!device_info) 1219 return -ENOMEM; 1220 1221 /* Change MTU of underlying VF netdev first. */ 1222 if (vf_netdev) { 1223 ret = dev_set_mtu(vf_netdev, mtu); 1224 if (ret) 1225 goto out; 1226 } 1227 1228 ret = netvsc_detach(ndev, nvdev); 1229 if (ret) 1230 goto rollback_vf; 1231 1232 ndev->mtu = mtu; 1233 1234 ret = netvsc_attach(ndev, device_info); 1235 if (!ret) 1236 goto out; 1237 1238 /* Attempt rollback to original MTU */ 1239 ndev->mtu = orig_mtu; 1240 1241 if (netvsc_attach(ndev, device_info)) 1242 netdev_err(ndev, "restoring mtu failed\n"); 1243 rollback_vf: 1244 if (vf_netdev) 1245 dev_set_mtu(vf_netdev, orig_mtu); 1246 1247 out: 1248 netvsc_devinfo_put(device_info); 1249 return ret; 1250 } 1251 1252 static void netvsc_get_vf_stats(struct net_device *net, 1253 struct netvsc_vf_pcpu_stats *tot) 1254 { 1255 struct net_device_context *ndev_ctx = netdev_priv(net); 1256 int i; 1257 1258 memset(tot, 0, sizeof(*tot)); 1259 1260 for_each_possible_cpu(i) { 1261 const struct netvsc_vf_pcpu_stats *stats 1262 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1263 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1264 unsigned int start; 1265 1266 do { 1267 start = u64_stats_fetch_begin(&stats->syncp); 1268 rx_packets = stats->rx_packets; 1269 tx_packets = stats->tx_packets; 1270 rx_bytes = stats->rx_bytes; 1271 tx_bytes = stats->tx_bytes; 1272 } while (u64_stats_fetch_retry(&stats->syncp, start)); 1273 1274 tot->rx_packets += rx_packets; 1275 tot->tx_packets += tx_packets; 1276 tot->rx_bytes += rx_bytes; 1277 tot->tx_bytes += tx_bytes; 1278 tot->tx_dropped += stats->tx_dropped; 1279 } 1280 } 1281 1282 static void netvsc_get_pcpu_stats(struct net_device *net, 1283 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1284 { 1285 struct net_device_context *ndev_ctx = netdev_priv(net); 1286 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1287 int i; 1288 1289 /* fetch percpu stats of vf */ 1290 for_each_possible_cpu(i) { 1291 const struct netvsc_vf_pcpu_stats *stats = 1292 per_cpu_ptr(ndev_ctx->vf_stats, i); 1293 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1294 unsigned int start; 1295 1296 do { 1297 start = u64_stats_fetch_begin(&stats->syncp); 1298 this_tot->vf_rx_packets = stats->rx_packets; 1299 this_tot->vf_tx_packets = stats->tx_packets; 1300 this_tot->vf_rx_bytes = stats->rx_bytes; 1301 this_tot->vf_tx_bytes = stats->tx_bytes; 1302 } while (u64_stats_fetch_retry(&stats->syncp, start)); 1303 this_tot->rx_packets = this_tot->vf_rx_packets; 1304 this_tot->tx_packets = this_tot->vf_tx_packets; 1305 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1306 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1307 } 1308 1309 /* fetch percpu stats of netvsc */ 1310 for (i = 0; i < nvdev->num_chn; i++) { 1311 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1312 const struct netvsc_stats_tx *tx_stats; 1313 const struct netvsc_stats_rx *rx_stats; 1314 struct netvsc_ethtool_pcpu_stats *this_tot = 1315 &pcpu_tot[nvchan->channel->target_cpu]; 1316 u64 packets, bytes; 1317 unsigned int start; 1318 1319 tx_stats = &nvchan->tx_stats; 1320 do { 1321 start = u64_stats_fetch_begin(&tx_stats->syncp); 1322 packets = tx_stats->packets; 1323 bytes = tx_stats->bytes; 1324 } while (u64_stats_fetch_retry(&tx_stats->syncp, start)); 1325 1326 this_tot->tx_bytes += bytes; 1327 this_tot->tx_packets += packets; 1328 1329 rx_stats = &nvchan->rx_stats; 1330 do { 1331 start = u64_stats_fetch_begin(&rx_stats->syncp); 1332 packets = rx_stats->packets; 1333 bytes = rx_stats->bytes; 1334 } while (u64_stats_fetch_retry(&rx_stats->syncp, start)); 1335 1336 this_tot->rx_bytes += bytes; 1337 this_tot->rx_packets += packets; 1338 } 1339 } 1340 1341 static void netvsc_get_stats64(struct net_device *net, 1342 struct rtnl_link_stats64 *t) 1343 { 1344 struct net_device_context *ndev_ctx = netdev_priv(net); 1345 struct netvsc_device *nvdev; 1346 struct netvsc_vf_pcpu_stats vf_tot; 1347 int i; 1348 1349 rcu_read_lock(); 1350 1351 nvdev = rcu_dereference(ndev_ctx->nvdev); 1352 if (!nvdev) 1353 goto out; 1354 1355 netdev_stats_to_stats64(t, &net->stats); 1356 1357 netvsc_get_vf_stats(net, &vf_tot); 1358 t->rx_packets += vf_tot.rx_packets; 1359 t->tx_packets += vf_tot.tx_packets; 1360 t->rx_bytes += vf_tot.rx_bytes; 1361 t->tx_bytes += vf_tot.tx_bytes; 1362 t->tx_dropped += vf_tot.tx_dropped; 1363 1364 for (i = 0; i < nvdev->num_chn; i++) { 1365 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1366 const struct netvsc_stats_tx *tx_stats; 1367 const struct netvsc_stats_rx *rx_stats; 1368 u64 packets, bytes, multicast; 1369 unsigned int start; 1370 1371 tx_stats = &nvchan->tx_stats; 1372 do { 1373 start = u64_stats_fetch_begin(&tx_stats->syncp); 1374 packets = tx_stats->packets; 1375 bytes = tx_stats->bytes; 1376 } while (u64_stats_fetch_retry(&tx_stats->syncp, start)); 1377 1378 t->tx_bytes += bytes; 1379 t->tx_packets += packets; 1380 1381 rx_stats = &nvchan->rx_stats; 1382 do { 1383 start = u64_stats_fetch_begin(&rx_stats->syncp); 1384 packets = rx_stats->packets; 1385 bytes = rx_stats->bytes; 1386 multicast = rx_stats->multicast + rx_stats->broadcast; 1387 } while (u64_stats_fetch_retry(&rx_stats->syncp, start)); 1388 1389 t->rx_bytes += bytes; 1390 t->rx_packets += packets; 1391 t->multicast += multicast; 1392 } 1393 out: 1394 rcu_read_unlock(); 1395 } 1396 1397 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1398 { 1399 struct net_device_context *ndc = netdev_priv(ndev); 1400 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1401 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1402 struct sockaddr *addr = p; 1403 int err; 1404 1405 err = eth_prepare_mac_addr_change(ndev, p); 1406 if (err) 1407 return err; 1408 1409 if (!nvdev) 1410 return -ENODEV; 1411 1412 if (vf_netdev) { 1413 err = dev_set_mac_address(vf_netdev, addr, NULL); 1414 if (err) 1415 return err; 1416 } 1417 1418 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1419 if (!err) { 1420 eth_commit_mac_addr_change(ndev, p); 1421 } else if (vf_netdev) { 1422 /* rollback change on VF */ 1423 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1424 dev_set_mac_address(vf_netdev, addr, NULL); 1425 } 1426 1427 return err; 1428 } 1429 1430 static const struct { 1431 char name[ETH_GSTRING_LEN]; 1432 u16 offset; 1433 } netvsc_stats[] = { 1434 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1435 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1436 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1437 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1438 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1439 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1440 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1441 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1442 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1443 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1444 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1445 }, pcpu_stats[] = { 1446 { "cpu%u_rx_packets", 1447 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1448 { "cpu%u_rx_bytes", 1449 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1450 { "cpu%u_tx_packets", 1451 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1452 { "cpu%u_tx_bytes", 1453 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1454 { "cpu%u_vf_rx_packets", 1455 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1456 { "cpu%u_vf_rx_bytes", 1457 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1458 { "cpu%u_vf_tx_packets", 1459 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1460 { "cpu%u_vf_tx_bytes", 1461 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1462 }, vf_stats[] = { 1463 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1464 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1465 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1466 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1467 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1468 }; 1469 1470 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1471 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1472 1473 /* statistics per queue (rx/tx packets/bytes) */ 1474 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1475 1476 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */ 1477 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8) 1478 1479 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1480 { 1481 struct net_device_context *ndc = netdev_priv(dev); 1482 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1483 1484 if (!nvdev) 1485 return -ENODEV; 1486 1487 switch (string_set) { 1488 case ETH_SS_STATS: 1489 return NETVSC_GLOBAL_STATS_LEN 1490 + NETVSC_VF_STATS_LEN 1491 + NETVSC_QUEUE_STATS_LEN(nvdev) 1492 + NETVSC_PCPU_STATS_LEN; 1493 default: 1494 return -EINVAL; 1495 } 1496 } 1497 1498 static void netvsc_get_ethtool_stats(struct net_device *dev, 1499 struct ethtool_stats *stats, u64 *data) 1500 { 1501 struct net_device_context *ndc = netdev_priv(dev); 1502 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1503 const void *nds = &ndc->eth_stats; 1504 const struct netvsc_stats_tx *tx_stats; 1505 const struct netvsc_stats_rx *rx_stats; 1506 struct netvsc_vf_pcpu_stats sum; 1507 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1508 unsigned int start; 1509 u64 packets, bytes; 1510 u64 xdp_drop; 1511 u64 xdp_redirect; 1512 u64 xdp_tx; 1513 u64 xdp_xmit; 1514 int i, j, cpu; 1515 1516 if (!nvdev) 1517 return; 1518 1519 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1520 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1521 1522 netvsc_get_vf_stats(dev, &sum); 1523 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1524 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1525 1526 for (j = 0; j < nvdev->num_chn; j++) { 1527 tx_stats = &nvdev->chan_table[j].tx_stats; 1528 1529 do { 1530 start = u64_stats_fetch_begin(&tx_stats->syncp); 1531 packets = tx_stats->packets; 1532 bytes = tx_stats->bytes; 1533 xdp_xmit = tx_stats->xdp_xmit; 1534 } while (u64_stats_fetch_retry(&tx_stats->syncp, start)); 1535 data[i++] = packets; 1536 data[i++] = bytes; 1537 data[i++] = xdp_xmit; 1538 1539 rx_stats = &nvdev->chan_table[j].rx_stats; 1540 do { 1541 start = u64_stats_fetch_begin(&rx_stats->syncp); 1542 packets = rx_stats->packets; 1543 bytes = rx_stats->bytes; 1544 xdp_drop = rx_stats->xdp_drop; 1545 xdp_redirect = rx_stats->xdp_redirect; 1546 xdp_tx = rx_stats->xdp_tx; 1547 } while (u64_stats_fetch_retry(&rx_stats->syncp, start)); 1548 data[i++] = packets; 1549 data[i++] = bytes; 1550 data[i++] = xdp_drop; 1551 data[i++] = xdp_redirect; 1552 data[i++] = xdp_tx; 1553 } 1554 1555 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1556 sizeof(struct netvsc_ethtool_pcpu_stats), 1557 GFP_KERNEL); 1558 if (!pcpu_sum) 1559 return; 1560 1561 netvsc_get_pcpu_stats(dev, pcpu_sum); 1562 for_each_present_cpu(cpu) { 1563 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1564 1565 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1566 data[i++] = *(u64 *)((void *)this_sum 1567 + pcpu_stats[j].offset); 1568 } 1569 kvfree(pcpu_sum); 1570 } 1571 1572 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1573 { 1574 struct net_device_context *ndc = netdev_priv(dev); 1575 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1576 u8 *p = data; 1577 int i, cpu; 1578 1579 if (!nvdev) 1580 return; 1581 1582 switch (stringset) { 1583 case ETH_SS_STATS: 1584 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1585 ethtool_puts(&p, netvsc_stats[i].name); 1586 1587 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) 1588 ethtool_puts(&p, vf_stats[i].name); 1589 1590 for (i = 0; i < nvdev->num_chn; i++) { 1591 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 1592 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 1593 ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i); 1594 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 1595 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 1596 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i); 1597 ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i); 1598 ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i); 1599 } 1600 1601 for_each_present_cpu(cpu) { 1602 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) 1603 ethtool_sprintf(&p, pcpu_stats[i].name, cpu); 1604 } 1605 1606 break; 1607 } 1608 } 1609 1610 static int 1611 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1612 struct ethtool_rxnfc *info) 1613 { 1614 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1615 1616 info->data = RXH_IP_SRC | RXH_IP_DST; 1617 1618 switch (info->flow_type) { 1619 case TCP_V4_FLOW: 1620 if (ndc->l4_hash & HV_TCP4_L4HASH) 1621 info->data |= l4_flag; 1622 1623 break; 1624 1625 case TCP_V6_FLOW: 1626 if (ndc->l4_hash & HV_TCP6_L4HASH) 1627 info->data |= l4_flag; 1628 1629 break; 1630 1631 case UDP_V4_FLOW: 1632 if (ndc->l4_hash & HV_UDP4_L4HASH) 1633 info->data |= l4_flag; 1634 1635 break; 1636 1637 case UDP_V6_FLOW: 1638 if (ndc->l4_hash & HV_UDP6_L4HASH) 1639 info->data |= l4_flag; 1640 1641 break; 1642 1643 case IPV4_FLOW: 1644 case IPV6_FLOW: 1645 break; 1646 default: 1647 info->data = 0; 1648 break; 1649 } 1650 1651 return 0; 1652 } 1653 1654 static int 1655 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1656 u32 *rules) 1657 { 1658 struct net_device_context *ndc = netdev_priv(dev); 1659 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1660 1661 if (!nvdev) 1662 return -ENODEV; 1663 1664 switch (info->cmd) { 1665 case ETHTOOL_GRXRINGS: 1666 info->data = nvdev->num_chn; 1667 return 0; 1668 1669 case ETHTOOL_GRXFH: 1670 return netvsc_get_rss_hash_opts(ndc, info); 1671 } 1672 return -EOPNOTSUPP; 1673 } 1674 1675 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1676 struct ethtool_rxnfc *info) 1677 { 1678 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1679 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1680 switch (info->flow_type) { 1681 case TCP_V4_FLOW: 1682 ndc->l4_hash |= HV_TCP4_L4HASH; 1683 break; 1684 1685 case TCP_V6_FLOW: 1686 ndc->l4_hash |= HV_TCP6_L4HASH; 1687 break; 1688 1689 case UDP_V4_FLOW: 1690 ndc->l4_hash |= HV_UDP4_L4HASH; 1691 break; 1692 1693 case UDP_V6_FLOW: 1694 ndc->l4_hash |= HV_UDP6_L4HASH; 1695 break; 1696 1697 default: 1698 return -EOPNOTSUPP; 1699 } 1700 1701 return 0; 1702 } 1703 1704 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1705 switch (info->flow_type) { 1706 case TCP_V4_FLOW: 1707 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1708 break; 1709 1710 case TCP_V6_FLOW: 1711 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1712 break; 1713 1714 case UDP_V4_FLOW: 1715 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1716 break; 1717 1718 case UDP_V6_FLOW: 1719 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1720 break; 1721 1722 default: 1723 return -EOPNOTSUPP; 1724 } 1725 1726 return 0; 1727 } 1728 1729 return -EOPNOTSUPP; 1730 } 1731 1732 static int 1733 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1734 { 1735 struct net_device_context *ndc = netdev_priv(ndev); 1736 1737 if (info->cmd == ETHTOOL_SRXFH) 1738 return netvsc_set_rss_hash_opts(ndc, info); 1739 1740 return -EOPNOTSUPP; 1741 } 1742 1743 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1744 { 1745 return NETVSC_HASH_KEYLEN; 1746 } 1747 1748 static u32 netvsc_rss_indir_size(struct net_device *dev) 1749 { 1750 struct net_device_context *ndc = netdev_priv(dev); 1751 1752 return ndc->rx_table_sz; 1753 } 1754 1755 static int netvsc_get_rxfh(struct net_device *dev, 1756 struct ethtool_rxfh_param *rxfh) 1757 { 1758 struct net_device_context *ndc = netdev_priv(dev); 1759 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1760 struct rndis_device *rndis_dev; 1761 int i; 1762 1763 if (!ndev) 1764 return -ENODEV; 1765 1766 rxfh->hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1767 1768 rndis_dev = ndev->extension; 1769 if (rxfh->indir) { 1770 for (i = 0; i < ndc->rx_table_sz; i++) 1771 rxfh->indir[i] = ndc->rx_table[i]; 1772 } 1773 1774 if (rxfh->key) 1775 memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1776 1777 return 0; 1778 } 1779 1780 static int netvsc_set_rxfh(struct net_device *dev, 1781 struct ethtool_rxfh_param *rxfh, 1782 struct netlink_ext_ack *extack) 1783 { 1784 struct net_device_context *ndc = netdev_priv(dev); 1785 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1786 struct rndis_device *rndis_dev; 1787 u8 *key = rxfh->key; 1788 int i; 1789 1790 if (!ndev) 1791 return -ENODEV; 1792 1793 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && 1794 rxfh->hfunc != ETH_RSS_HASH_TOP) 1795 return -EOPNOTSUPP; 1796 1797 rndis_dev = ndev->extension; 1798 if (rxfh->indir) { 1799 for (i = 0; i < ndc->rx_table_sz; i++) 1800 if (rxfh->indir[i] >= ndev->num_chn) 1801 return -EINVAL; 1802 1803 for (i = 0; i < ndc->rx_table_sz; i++) 1804 ndc->rx_table[i] = rxfh->indir[i]; 1805 } 1806 1807 if (!key) { 1808 if (!rxfh->indir) 1809 return 0; 1810 1811 key = rndis_dev->rss_key; 1812 } 1813 1814 return rndis_filter_set_rss_param(rndis_dev, key); 1815 } 1816 1817 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1818 * It does have pre-allocated receive area which is divided into sections. 1819 */ 1820 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1821 struct ethtool_ringparam *ring) 1822 { 1823 u32 max_buf_size; 1824 1825 ring->rx_pending = nvdev->recv_section_cnt; 1826 ring->tx_pending = nvdev->send_section_cnt; 1827 1828 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1829 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1830 else 1831 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1832 1833 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1834 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1835 / nvdev->send_section_size; 1836 } 1837 1838 static void netvsc_get_ringparam(struct net_device *ndev, 1839 struct ethtool_ringparam *ring, 1840 struct kernel_ethtool_ringparam *kernel_ring, 1841 struct netlink_ext_ack *extack) 1842 { 1843 struct net_device_context *ndevctx = netdev_priv(ndev); 1844 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1845 1846 if (!nvdev) 1847 return; 1848 1849 __netvsc_get_ringparam(nvdev, ring); 1850 } 1851 1852 static int netvsc_set_ringparam(struct net_device *ndev, 1853 struct ethtool_ringparam *ring, 1854 struct kernel_ethtool_ringparam *kernel_ring, 1855 struct netlink_ext_ack *extack) 1856 { 1857 struct net_device_context *ndevctx = netdev_priv(ndev); 1858 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1859 struct netvsc_device_info *device_info; 1860 struct ethtool_ringparam orig; 1861 u32 new_tx, new_rx; 1862 int ret = 0; 1863 1864 if (!nvdev || nvdev->destroy) 1865 return -ENODEV; 1866 1867 memset(&orig, 0, sizeof(orig)); 1868 __netvsc_get_ringparam(nvdev, &orig); 1869 1870 new_tx = clamp_t(u32, ring->tx_pending, 1871 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1872 new_rx = clamp_t(u32, ring->rx_pending, 1873 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1874 1875 if (new_tx == orig.tx_pending && 1876 new_rx == orig.rx_pending) 1877 return 0; /* no change */ 1878 1879 device_info = netvsc_devinfo_get(nvdev); 1880 1881 if (!device_info) 1882 return -ENOMEM; 1883 1884 device_info->send_sections = new_tx; 1885 device_info->recv_sections = new_rx; 1886 1887 ret = netvsc_detach(ndev, nvdev); 1888 if (ret) 1889 goto out; 1890 1891 ret = netvsc_attach(ndev, device_info); 1892 if (ret) { 1893 device_info->send_sections = orig.tx_pending; 1894 device_info->recv_sections = orig.rx_pending; 1895 1896 if (netvsc_attach(ndev, device_info)) 1897 netdev_err(ndev, "restoring ringparam failed"); 1898 } 1899 1900 out: 1901 netvsc_devinfo_put(device_info); 1902 return ret; 1903 } 1904 1905 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1906 netdev_features_t features) 1907 { 1908 struct net_device_context *ndevctx = netdev_priv(ndev); 1909 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1910 1911 if (!nvdev || nvdev->destroy) 1912 return features; 1913 1914 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1915 features ^= NETIF_F_LRO; 1916 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1917 } 1918 1919 return features; 1920 } 1921 1922 static int netvsc_set_features(struct net_device *ndev, 1923 netdev_features_t features) 1924 { 1925 netdev_features_t change = features ^ ndev->features; 1926 struct net_device_context *ndevctx = netdev_priv(ndev); 1927 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1928 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1929 struct ndis_offload_params offloads; 1930 int ret = 0; 1931 1932 if (!nvdev || nvdev->destroy) 1933 return -ENODEV; 1934 1935 if (!(change & NETIF_F_LRO)) 1936 goto syncvf; 1937 1938 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1939 1940 if (features & NETIF_F_LRO) { 1941 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1942 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1943 } else { 1944 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1945 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1946 } 1947 1948 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1949 1950 if (ret) { 1951 features ^= NETIF_F_LRO; 1952 ndev->features = features; 1953 } 1954 1955 syncvf: 1956 if (!vf_netdev) 1957 return ret; 1958 1959 vf_netdev->wanted_features = features; 1960 netdev_update_features(vf_netdev); 1961 1962 return ret; 1963 } 1964 1965 static int netvsc_get_regs_len(struct net_device *netdev) 1966 { 1967 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1968 } 1969 1970 static void netvsc_get_regs(struct net_device *netdev, 1971 struct ethtool_regs *regs, void *p) 1972 { 1973 struct net_device_context *ndc = netdev_priv(netdev); 1974 u32 *regs_buff = p; 1975 1976 /* increase the version, if buffer format is changed. */ 1977 regs->version = 1; 1978 1979 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 1980 } 1981 1982 static u32 netvsc_get_msglevel(struct net_device *ndev) 1983 { 1984 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1985 1986 return ndev_ctx->msg_enable; 1987 } 1988 1989 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1990 { 1991 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1992 1993 ndev_ctx->msg_enable = val; 1994 } 1995 1996 static const struct ethtool_ops ethtool_ops = { 1997 .get_drvinfo = netvsc_get_drvinfo, 1998 .get_regs_len = netvsc_get_regs_len, 1999 .get_regs = netvsc_get_regs, 2000 .get_msglevel = netvsc_get_msglevel, 2001 .set_msglevel = netvsc_set_msglevel, 2002 .get_link = ethtool_op_get_link, 2003 .get_ethtool_stats = netvsc_get_ethtool_stats, 2004 .get_sset_count = netvsc_get_sset_count, 2005 .get_strings = netvsc_get_strings, 2006 .get_channels = netvsc_get_channels, 2007 .set_channels = netvsc_set_channels, 2008 .get_ts_info = ethtool_op_get_ts_info, 2009 .get_rxnfc = netvsc_get_rxnfc, 2010 .set_rxnfc = netvsc_set_rxnfc, 2011 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2012 .get_rxfh_indir_size = netvsc_rss_indir_size, 2013 .get_rxfh = netvsc_get_rxfh, 2014 .set_rxfh = netvsc_set_rxfh, 2015 .get_link_ksettings = netvsc_get_link_ksettings, 2016 .set_link_ksettings = netvsc_set_link_ksettings, 2017 .get_ringparam = netvsc_get_ringparam, 2018 .set_ringparam = netvsc_set_ringparam, 2019 }; 2020 2021 static const struct net_device_ops device_ops = { 2022 .ndo_open = netvsc_open, 2023 .ndo_stop = netvsc_close, 2024 .ndo_start_xmit = netvsc_start_xmit, 2025 .ndo_change_rx_flags = netvsc_change_rx_flags, 2026 .ndo_set_rx_mode = netvsc_set_rx_mode, 2027 .ndo_fix_features = netvsc_fix_features, 2028 .ndo_set_features = netvsc_set_features, 2029 .ndo_change_mtu = netvsc_change_mtu, 2030 .ndo_validate_addr = eth_validate_addr, 2031 .ndo_set_mac_address = netvsc_set_mac_addr, 2032 .ndo_select_queue = netvsc_select_queue, 2033 .ndo_get_stats64 = netvsc_get_stats64, 2034 .ndo_bpf = netvsc_bpf, 2035 .ndo_xdp_xmit = netvsc_ndoxdp_xmit, 2036 }; 2037 2038 /* 2039 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2040 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2041 * present send GARP packet to network peers with netif_notify_peers(). 2042 */ 2043 static void netvsc_link_change(struct work_struct *w) 2044 { 2045 struct net_device_context *ndev_ctx = 2046 container_of(w, struct net_device_context, dwork.work); 2047 struct hv_device *device_obj = ndev_ctx->device_ctx; 2048 struct net_device *net = hv_get_drvdata(device_obj); 2049 unsigned long flags, next_reconfig, delay; 2050 struct netvsc_reconfig *event = NULL; 2051 struct netvsc_device *net_device; 2052 struct rndis_device *rdev; 2053 bool reschedule = false; 2054 2055 /* if changes are happening, comeback later */ 2056 if (!rtnl_trylock()) { 2057 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2058 return; 2059 } 2060 2061 net_device = rtnl_dereference(ndev_ctx->nvdev); 2062 if (!net_device) 2063 goto out_unlock; 2064 2065 rdev = net_device->extension; 2066 2067 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2068 if (time_is_after_jiffies(next_reconfig)) { 2069 /* link_watch only sends one notification with current state 2070 * per second, avoid doing reconfig more frequently. Handle 2071 * wrap around. 2072 */ 2073 delay = next_reconfig - jiffies; 2074 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2075 schedule_delayed_work(&ndev_ctx->dwork, delay); 2076 goto out_unlock; 2077 } 2078 ndev_ctx->last_reconfig = jiffies; 2079 2080 spin_lock_irqsave(&ndev_ctx->lock, flags); 2081 if (!list_empty(&ndev_ctx->reconfig_events)) { 2082 event = list_first_entry(&ndev_ctx->reconfig_events, 2083 struct netvsc_reconfig, list); 2084 list_del(&event->list); 2085 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2086 } 2087 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2088 2089 if (!event) 2090 goto out_unlock; 2091 2092 switch (event->event) { 2093 /* Only the following events are possible due to the check in 2094 * netvsc_linkstatus_callback() 2095 */ 2096 case RNDIS_STATUS_MEDIA_CONNECT: 2097 if (rdev->link_state) { 2098 rdev->link_state = false; 2099 netif_carrier_on(net); 2100 netvsc_tx_enable(net_device, net); 2101 } else { 2102 __netdev_notify_peers(net); 2103 } 2104 kfree(event); 2105 break; 2106 case RNDIS_STATUS_MEDIA_DISCONNECT: 2107 if (!rdev->link_state) { 2108 rdev->link_state = true; 2109 netif_carrier_off(net); 2110 netvsc_tx_disable(net_device, net); 2111 } 2112 kfree(event); 2113 break; 2114 case RNDIS_STATUS_NETWORK_CHANGE: 2115 /* Only makes sense if carrier is present */ 2116 if (!rdev->link_state) { 2117 rdev->link_state = true; 2118 netif_carrier_off(net); 2119 netvsc_tx_disable(net_device, net); 2120 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2121 spin_lock_irqsave(&ndev_ctx->lock, flags); 2122 list_add(&event->list, &ndev_ctx->reconfig_events); 2123 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2124 reschedule = true; 2125 } 2126 break; 2127 } 2128 2129 rtnl_unlock(); 2130 2131 /* link_watch only sends one notification with current state per 2132 * second, handle next reconfig event in 2 seconds. 2133 */ 2134 if (reschedule) 2135 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2136 2137 return; 2138 2139 out_unlock: 2140 rtnl_unlock(); 2141 } 2142 2143 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2144 { 2145 struct net_device_context *net_device_ctx; 2146 struct net_device *dev; 2147 2148 dev = netdev_master_upper_dev_get(vf_netdev); 2149 if (!dev || dev->netdev_ops != &device_ops) 2150 return NULL; /* not a netvsc device */ 2151 2152 net_device_ctx = netdev_priv(dev); 2153 if (!rtnl_dereference(net_device_ctx->nvdev)) 2154 return NULL; /* device is removed */ 2155 2156 return dev; 2157 } 2158 2159 /* Called when VF is injecting data into network stack. 2160 * Change the associated network device from VF to netvsc. 2161 * note: already called with rcu_read_lock 2162 */ 2163 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2164 { 2165 struct sk_buff *skb = *pskb; 2166 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2167 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2168 struct netvsc_vf_pcpu_stats *pcpu_stats 2169 = this_cpu_ptr(ndev_ctx->vf_stats); 2170 2171 skb = skb_share_check(skb, GFP_ATOMIC); 2172 if (unlikely(!skb)) 2173 return RX_HANDLER_CONSUMED; 2174 2175 *pskb = skb; 2176 2177 skb->dev = ndev; 2178 2179 u64_stats_update_begin(&pcpu_stats->syncp); 2180 pcpu_stats->rx_packets++; 2181 pcpu_stats->rx_bytes += skb->len; 2182 u64_stats_update_end(&pcpu_stats->syncp); 2183 2184 return RX_HANDLER_ANOTHER; 2185 } 2186 2187 static int netvsc_vf_join(struct net_device *vf_netdev, 2188 struct net_device *ndev) 2189 { 2190 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2191 int ret; 2192 2193 ret = netdev_rx_handler_register(vf_netdev, 2194 netvsc_vf_handle_frame, ndev); 2195 if (ret != 0) { 2196 netdev_err(vf_netdev, 2197 "can not register netvsc VF receive handler (err = %d)\n", 2198 ret); 2199 goto rx_handler_failed; 2200 } 2201 2202 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2203 NULL, NULL, NULL); 2204 if (ret != 0) { 2205 netdev_err(vf_netdev, 2206 "can not set master device %s (err = %d)\n", 2207 ndev->name, ret); 2208 goto upper_link_failed; 2209 } 2210 2211 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2212 2213 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2214 2215 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2216 return 0; 2217 2218 upper_link_failed: 2219 netdev_rx_handler_unregister(vf_netdev); 2220 rx_handler_failed: 2221 return ret; 2222 } 2223 2224 static void __netvsc_vf_setup(struct net_device *ndev, 2225 struct net_device *vf_netdev) 2226 { 2227 int ret; 2228 2229 /* Align MTU of VF with master */ 2230 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2231 if (ret) 2232 netdev_warn(vf_netdev, 2233 "unable to change mtu to %u\n", ndev->mtu); 2234 2235 /* set multicast etc flags on VF */ 2236 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2237 2238 /* sync address list from ndev to VF */ 2239 netif_addr_lock_bh(ndev); 2240 dev_uc_sync(vf_netdev, ndev); 2241 dev_mc_sync(vf_netdev, ndev); 2242 netif_addr_unlock_bh(ndev); 2243 2244 if (netif_running(ndev)) { 2245 ret = dev_open(vf_netdev, NULL); 2246 if (ret) 2247 netdev_warn(vf_netdev, 2248 "unable to open: %d\n", ret); 2249 } 2250 } 2251 2252 /* Setup VF as slave of the synthetic device. 2253 * Runs in workqueue to avoid recursion in netlink callbacks. 2254 */ 2255 static void netvsc_vf_setup(struct work_struct *w) 2256 { 2257 struct net_device_context *ndev_ctx 2258 = container_of(w, struct net_device_context, vf_takeover.work); 2259 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2260 struct net_device *vf_netdev; 2261 2262 if (!rtnl_trylock()) { 2263 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2264 return; 2265 } 2266 2267 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2268 if (vf_netdev) 2269 __netvsc_vf_setup(ndev, vf_netdev); 2270 2271 rtnl_unlock(); 2272 } 2273 2274 /* Find netvsc by VF serial number. 2275 * The PCI hyperv controller records the serial number as the slot kobj name. 2276 */ 2277 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2278 { 2279 struct device *parent = vf_netdev->dev.parent; 2280 struct net_device_context *ndev_ctx; 2281 struct net_device *ndev; 2282 struct pci_dev *pdev; 2283 u32 serial; 2284 2285 if (!parent || !dev_is_pci(parent)) 2286 return NULL; /* not a PCI device */ 2287 2288 pdev = to_pci_dev(parent); 2289 if (!pdev->slot) { 2290 netdev_notice(vf_netdev, "no PCI slot information\n"); 2291 return NULL; 2292 } 2293 2294 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2295 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2296 pci_slot_name(pdev->slot)); 2297 return NULL; 2298 } 2299 2300 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2301 if (!ndev_ctx->vf_alloc) 2302 continue; 2303 2304 if (ndev_ctx->vf_serial != serial) 2305 continue; 2306 2307 ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2308 if (ndev->addr_len != vf_netdev->addr_len || 2309 memcmp(ndev->perm_addr, vf_netdev->perm_addr, 2310 ndev->addr_len) != 0) 2311 continue; 2312 2313 return ndev; 2314 2315 } 2316 2317 /* Fallback path to check synthetic vf with help of mac addr. 2318 * Because this function can be called before vf_netdev is 2319 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied 2320 * from dev_addr, also try to match to its dev_addr. 2321 * Note: On Hyper-V and Azure, it's not possible to set a MAC address 2322 * on a VF that matches to the MAC of a unrelated NETVSC device. 2323 */ 2324 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2325 ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2326 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) || 2327 ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr)) 2328 return ndev; 2329 } 2330 2331 netdev_notice(vf_netdev, 2332 "no netdev found for vf serial:%u\n", serial); 2333 return NULL; 2334 } 2335 2336 static int netvsc_prepare_bonding(struct net_device *vf_netdev) 2337 { 2338 struct net_device *ndev; 2339 2340 ndev = get_netvsc_byslot(vf_netdev); 2341 if (!ndev) 2342 return NOTIFY_DONE; 2343 2344 /* set slave flag before open to prevent IPv6 addrconf */ 2345 vf_netdev->flags |= IFF_SLAVE; 2346 return NOTIFY_DONE; 2347 } 2348 2349 static int netvsc_register_vf(struct net_device *vf_netdev) 2350 { 2351 struct net_device_context *net_device_ctx; 2352 struct netvsc_device *netvsc_dev; 2353 struct bpf_prog *prog; 2354 struct net_device *ndev; 2355 int ret; 2356 2357 if (vf_netdev->addr_len != ETH_ALEN) 2358 return NOTIFY_DONE; 2359 2360 ndev = get_netvsc_byslot(vf_netdev); 2361 if (!ndev) 2362 return NOTIFY_DONE; 2363 2364 net_device_ctx = netdev_priv(ndev); 2365 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2366 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2367 return NOTIFY_DONE; 2368 2369 /* if synthetic interface is a different namespace, 2370 * then move the VF to that namespace; join will be 2371 * done again in that context. 2372 */ 2373 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2374 ret = dev_change_net_namespace(vf_netdev, 2375 dev_net(ndev), "eth%d"); 2376 if (ret) 2377 netdev_err(vf_netdev, 2378 "could not move to same namespace as %s: %d\n", 2379 ndev->name, ret); 2380 else 2381 netdev_info(vf_netdev, 2382 "VF moved to namespace with: %s\n", 2383 ndev->name); 2384 return NOTIFY_DONE; 2385 } 2386 2387 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2388 2389 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2390 return NOTIFY_DONE; 2391 2392 dev_hold(vf_netdev); 2393 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2394 2395 if (ndev->needed_headroom < vf_netdev->needed_headroom) 2396 ndev->needed_headroom = vf_netdev->needed_headroom; 2397 2398 vf_netdev->wanted_features = ndev->features; 2399 netdev_update_features(vf_netdev); 2400 2401 prog = netvsc_xdp_get(netvsc_dev); 2402 netvsc_vf_setxdp(vf_netdev, prog); 2403 2404 return NOTIFY_OK; 2405 } 2406 2407 /* Change the data path when VF UP/DOWN/CHANGE are detected. 2408 * 2409 * Typically a UP or DOWN event is followed by a CHANGE event, so 2410 * net_device_ctx->data_path_is_vf is used to cache the current data path 2411 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate 2412 * message. 2413 * 2414 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network 2415 * interface, there is only the CHANGE event and no UP or DOWN event. 2416 */ 2417 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event) 2418 { 2419 struct net_device_context *net_device_ctx; 2420 struct netvsc_device *netvsc_dev; 2421 struct net_device *ndev; 2422 bool vf_is_up = false; 2423 int ret; 2424 2425 if (event != NETDEV_GOING_DOWN) 2426 vf_is_up = netif_running(vf_netdev); 2427 2428 ndev = get_netvsc_byref(vf_netdev); 2429 if (!ndev) 2430 return NOTIFY_DONE; 2431 2432 net_device_ctx = netdev_priv(ndev); 2433 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2434 if (!netvsc_dev) 2435 return NOTIFY_DONE; 2436 2437 if (net_device_ctx->data_path_is_vf == vf_is_up) 2438 return NOTIFY_OK; 2439 2440 if (vf_is_up && !net_device_ctx->vf_alloc) { 2441 netdev_info(ndev, "Waiting for the VF association from host\n"); 2442 wait_for_completion(&net_device_ctx->vf_add); 2443 } 2444 2445 ret = netvsc_switch_datapath(ndev, vf_is_up); 2446 2447 if (ret) { 2448 netdev_err(ndev, 2449 "Data path failed to switch %s VF: %s, err: %d\n", 2450 vf_is_up ? "to" : "from", vf_netdev->name, ret); 2451 return NOTIFY_DONE; 2452 } else { 2453 netdev_info(ndev, "Data path switched %s VF: %s\n", 2454 vf_is_up ? "to" : "from", vf_netdev->name); 2455 } 2456 2457 return NOTIFY_OK; 2458 } 2459 2460 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2461 { 2462 struct net_device *ndev; 2463 struct net_device_context *net_device_ctx; 2464 2465 ndev = get_netvsc_byref(vf_netdev); 2466 if (!ndev) 2467 return NOTIFY_DONE; 2468 2469 net_device_ctx = netdev_priv(ndev); 2470 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2471 2472 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2473 2474 netvsc_vf_setxdp(vf_netdev, NULL); 2475 2476 reinit_completion(&net_device_ctx->vf_add); 2477 netdev_rx_handler_unregister(vf_netdev); 2478 netdev_upper_dev_unlink(vf_netdev, ndev); 2479 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2480 dev_put(vf_netdev); 2481 2482 ndev->needed_headroom = RNDIS_AND_PPI_SIZE; 2483 2484 return NOTIFY_OK; 2485 } 2486 2487 static int netvsc_probe(struct hv_device *dev, 2488 const struct hv_vmbus_device_id *dev_id) 2489 { 2490 struct net_device *net = NULL; 2491 struct net_device_context *net_device_ctx; 2492 struct netvsc_device_info *device_info = NULL; 2493 struct netvsc_device *nvdev; 2494 int ret = -ENOMEM; 2495 2496 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2497 VRSS_CHANNEL_MAX); 2498 if (!net) 2499 goto no_net; 2500 2501 netif_carrier_off(net); 2502 2503 netvsc_init_settings(net); 2504 2505 net_device_ctx = netdev_priv(net); 2506 net_device_ctx->device_ctx = dev; 2507 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2508 if (netif_msg_probe(net_device_ctx)) 2509 netdev_dbg(net, "netvsc msg_enable: %d\n", 2510 net_device_ctx->msg_enable); 2511 2512 hv_set_drvdata(dev, net); 2513 2514 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2515 2516 init_completion(&net_device_ctx->vf_add); 2517 spin_lock_init(&net_device_ctx->lock); 2518 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2519 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2520 2521 net_device_ctx->vf_stats 2522 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2523 if (!net_device_ctx->vf_stats) 2524 goto no_stats; 2525 2526 net->netdev_ops = &device_ops; 2527 net->ethtool_ops = ðtool_ops; 2528 SET_NETDEV_DEV(net, &dev->device); 2529 dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1); 2530 2531 /* We always need headroom for rndis header */ 2532 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2533 2534 /* Initialize the number of queues to be 1, we may change it if more 2535 * channels are offered later. 2536 */ 2537 netif_set_real_num_tx_queues(net, 1); 2538 netif_set_real_num_rx_queues(net, 1); 2539 2540 /* Notify the netvsc driver of the new device */ 2541 device_info = netvsc_devinfo_get(NULL); 2542 2543 if (!device_info) { 2544 ret = -ENOMEM; 2545 goto devinfo_failed; 2546 } 2547 2548 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2549 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2550 * all subchannels to show up, but that may not happen because 2551 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2552 * -> ... -> device_add() -> ... -> __device_attach() can't get 2553 * the device lock, so all the subchannels can't be processed -- 2554 * finally netvsc_subchan_work() hangs forever. 2555 * 2556 * The rtnl lock also needs to be held before rndis_filter_device_add() 2557 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers 2558 * VF NIC offering and registering. If VF NIC finished register_netdev() 2559 * earlier it may cause name based config failure. 2560 */ 2561 rtnl_lock(); 2562 2563 nvdev = rndis_filter_device_add(dev, device_info); 2564 if (IS_ERR(nvdev)) { 2565 ret = PTR_ERR(nvdev); 2566 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2567 goto rndis_failed; 2568 } 2569 2570 eth_hw_addr_set(net, device_info->mac_adr); 2571 2572 if (nvdev->num_chn > 1) 2573 schedule_work(&nvdev->subchan_work); 2574 2575 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2576 net->features = net->hw_features | 2577 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2578 NETIF_F_HW_VLAN_CTAG_RX; 2579 net->vlan_features = net->features; 2580 2581 netdev_lockdep_set_classes(net); 2582 2583 net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 2584 NETDEV_XDP_ACT_NDO_XMIT; 2585 2586 /* MTU range: 68 - 1500 or 65521 */ 2587 net->min_mtu = NETVSC_MTU_MIN; 2588 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2589 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2590 else 2591 net->max_mtu = ETH_DATA_LEN; 2592 2593 nvdev->tx_disable = false; 2594 2595 ret = register_netdevice(net); 2596 if (ret != 0) { 2597 pr_err("Unable to register netdev.\n"); 2598 goto register_failed; 2599 } 2600 2601 list_add(&net_device_ctx->list, &netvsc_dev_list); 2602 rtnl_unlock(); 2603 2604 netvsc_devinfo_put(device_info); 2605 return 0; 2606 2607 register_failed: 2608 rndis_filter_device_remove(dev, nvdev); 2609 rndis_failed: 2610 rtnl_unlock(); 2611 netvsc_devinfo_put(device_info); 2612 devinfo_failed: 2613 free_percpu(net_device_ctx->vf_stats); 2614 no_stats: 2615 hv_set_drvdata(dev, NULL); 2616 free_netdev(net); 2617 no_net: 2618 return ret; 2619 } 2620 2621 static void netvsc_remove(struct hv_device *dev) 2622 { 2623 struct net_device_context *ndev_ctx; 2624 struct net_device *vf_netdev, *net; 2625 struct netvsc_device *nvdev; 2626 2627 net = hv_get_drvdata(dev); 2628 if (net == NULL) { 2629 dev_err(&dev->device, "No net device to remove\n"); 2630 return; 2631 } 2632 2633 ndev_ctx = netdev_priv(net); 2634 2635 cancel_delayed_work_sync(&ndev_ctx->dwork); 2636 2637 rtnl_lock(); 2638 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2639 if (nvdev) { 2640 cancel_work_sync(&nvdev->subchan_work); 2641 netvsc_xdp_set(net, NULL, NULL, nvdev); 2642 } 2643 2644 /* 2645 * Call to the vsc driver to let it know that the device is being 2646 * removed. Also blocks mtu and channel changes. 2647 */ 2648 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2649 if (vf_netdev) 2650 netvsc_unregister_vf(vf_netdev); 2651 2652 if (nvdev) 2653 rndis_filter_device_remove(dev, nvdev); 2654 2655 unregister_netdevice(net); 2656 list_del(&ndev_ctx->list); 2657 2658 rtnl_unlock(); 2659 2660 hv_set_drvdata(dev, NULL); 2661 2662 free_percpu(ndev_ctx->vf_stats); 2663 free_netdev(net); 2664 } 2665 2666 static int netvsc_suspend(struct hv_device *dev) 2667 { 2668 struct net_device_context *ndev_ctx; 2669 struct netvsc_device *nvdev; 2670 struct net_device *net; 2671 int ret; 2672 2673 net = hv_get_drvdata(dev); 2674 2675 ndev_ctx = netdev_priv(net); 2676 cancel_delayed_work_sync(&ndev_ctx->dwork); 2677 2678 rtnl_lock(); 2679 2680 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2681 if (nvdev == NULL) { 2682 ret = -ENODEV; 2683 goto out; 2684 } 2685 2686 /* Save the current config info */ 2687 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2688 if (!ndev_ctx->saved_netvsc_dev_info) { 2689 ret = -ENOMEM; 2690 goto out; 2691 } 2692 ret = netvsc_detach(net, nvdev); 2693 out: 2694 rtnl_unlock(); 2695 2696 return ret; 2697 } 2698 2699 static int netvsc_resume(struct hv_device *dev) 2700 { 2701 struct net_device *net = hv_get_drvdata(dev); 2702 struct net_device_context *net_device_ctx; 2703 struct netvsc_device_info *device_info; 2704 int ret; 2705 2706 rtnl_lock(); 2707 2708 net_device_ctx = netdev_priv(net); 2709 2710 /* Reset the data path to the netvsc NIC before re-opening the vmbus 2711 * channel. Later netvsc_netdev_event() will switch the data path to 2712 * the VF upon the UP or CHANGE event. 2713 */ 2714 net_device_ctx->data_path_is_vf = false; 2715 device_info = net_device_ctx->saved_netvsc_dev_info; 2716 2717 ret = netvsc_attach(net, device_info); 2718 2719 netvsc_devinfo_put(device_info); 2720 net_device_ctx->saved_netvsc_dev_info = NULL; 2721 2722 rtnl_unlock(); 2723 2724 return ret; 2725 } 2726 static const struct hv_vmbus_device_id id_table[] = { 2727 /* Network guid */ 2728 { HV_NIC_GUID, }, 2729 { }, 2730 }; 2731 2732 MODULE_DEVICE_TABLE(vmbus, id_table); 2733 2734 /* The one and only one */ 2735 static struct hv_driver netvsc_drv = { 2736 .name = KBUILD_MODNAME, 2737 .id_table = id_table, 2738 .probe = netvsc_probe, 2739 .remove = netvsc_remove, 2740 .suspend = netvsc_suspend, 2741 .resume = netvsc_resume, 2742 .driver = { 2743 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2744 }, 2745 }; 2746 2747 /* 2748 * On Hyper-V, every VF interface is matched with a corresponding 2749 * synthetic interface. The synthetic interface is presented first 2750 * to the guest. When the corresponding VF instance is registered, 2751 * we will take care of switching the data path. 2752 */ 2753 static int netvsc_netdev_event(struct notifier_block *this, 2754 unsigned long event, void *ptr) 2755 { 2756 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2757 2758 /* Skip our own events */ 2759 if (event_dev->netdev_ops == &device_ops) 2760 return NOTIFY_DONE; 2761 2762 /* Avoid non-Ethernet type devices */ 2763 if (event_dev->type != ARPHRD_ETHER) 2764 return NOTIFY_DONE; 2765 2766 /* Avoid Vlan dev with same MAC registering as VF */ 2767 if (is_vlan_dev(event_dev)) 2768 return NOTIFY_DONE; 2769 2770 /* Avoid Bonding master dev with same MAC registering as VF */ 2771 if (netif_is_bond_master(event_dev)) 2772 return NOTIFY_DONE; 2773 2774 switch (event) { 2775 case NETDEV_POST_INIT: 2776 return netvsc_prepare_bonding(event_dev); 2777 case NETDEV_REGISTER: 2778 return netvsc_register_vf(event_dev); 2779 case NETDEV_UNREGISTER: 2780 return netvsc_unregister_vf(event_dev); 2781 case NETDEV_UP: 2782 case NETDEV_DOWN: 2783 case NETDEV_CHANGE: 2784 case NETDEV_GOING_DOWN: 2785 return netvsc_vf_changed(event_dev, event); 2786 default: 2787 return NOTIFY_DONE; 2788 } 2789 } 2790 2791 static struct notifier_block netvsc_netdev_notifier = { 2792 .notifier_call = netvsc_netdev_event, 2793 }; 2794 2795 static void __exit netvsc_drv_exit(void) 2796 { 2797 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2798 vmbus_driver_unregister(&netvsc_drv); 2799 } 2800 2801 static int __init netvsc_drv_init(void) 2802 { 2803 int ret; 2804 2805 if (ring_size < RING_SIZE_MIN) { 2806 ring_size = RING_SIZE_MIN; 2807 pr_info("Increased ring_size to %u (min allowed)\n", 2808 ring_size); 2809 } 2810 netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096); 2811 2812 register_netdevice_notifier(&netvsc_netdev_notifier); 2813 2814 ret = vmbus_driver_register(&netvsc_drv); 2815 if (ret) 2816 goto err_vmbus_reg; 2817 2818 return 0; 2819 2820 err_vmbus_reg: 2821 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2822 return ret; 2823 } 2824 2825 MODULE_LICENSE("GPL"); 2826 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2827 2828 module_init(netvsc_drv_init); 2829 module_exit(netvsc_drv_exit); 2830