1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/ethtool.h> 14 #include <linux/module.h> 15 #include <linux/highmem.h> 16 #include <linux/device.h> 17 #include <linux/io.h> 18 #include <linux/delay.h> 19 #include <linux/netdevice.h> 20 #include <linux/inetdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/pci.h> 23 #include <linux/skbuff.h> 24 #include <linux/if_vlan.h> 25 #include <linux/in.h> 26 #include <linux/slab.h> 27 #include <linux/rtnetlink.h> 28 #include <linux/netpoll.h> 29 #include <linux/bpf.h> 30 31 #include <net/arp.h> 32 #include <net/route.h> 33 #include <net/sock.h> 34 #include <net/pkt_sched.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 38 #include "hyperv_net.h" 39 40 #define RING_SIZE_MIN 64 41 #define RETRY_US_LO 5000 42 #define RETRY_US_HI 10000 43 #define RETRY_MAX 2000 /* >10 sec */ 44 45 #define LINKCHANGE_INT (2 * HZ) 46 #define VF_TAKEOVER_INT (HZ / 10) 47 48 static unsigned int ring_size __ro_after_init = 128; 49 module_param(ring_size, uint, 0444); 50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 51 unsigned int netvsc_ring_bytes __ro_after_init; 52 53 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 54 NETIF_MSG_LINK | NETIF_MSG_IFUP | 55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 56 NETIF_MSG_TX_ERR; 57 58 static int debug = -1; 59 module_param(debug, int, 0444); 60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 61 62 static LIST_HEAD(netvsc_dev_list); 63 64 static void netvsc_change_rx_flags(struct net_device *net, int change) 65 { 66 struct net_device_context *ndev_ctx = netdev_priv(net); 67 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 68 int inc; 69 70 if (!vf_netdev) 71 return; 72 73 if (change & IFF_PROMISC) { 74 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 75 dev_set_promiscuity(vf_netdev, inc); 76 } 77 78 if (change & IFF_ALLMULTI) { 79 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 80 dev_set_allmulti(vf_netdev, inc); 81 } 82 } 83 84 static void netvsc_set_rx_mode(struct net_device *net) 85 { 86 struct net_device_context *ndev_ctx = netdev_priv(net); 87 struct net_device *vf_netdev; 88 struct netvsc_device *nvdev; 89 90 rcu_read_lock(); 91 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 92 if (vf_netdev) { 93 dev_uc_sync(vf_netdev, net); 94 dev_mc_sync(vf_netdev, net); 95 } 96 97 nvdev = rcu_dereference(ndev_ctx->nvdev); 98 if (nvdev) 99 rndis_filter_update(nvdev); 100 rcu_read_unlock(); 101 } 102 103 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 104 struct net_device *ndev) 105 { 106 nvscdev->tx_disable = false; 107 virt_wmb(); /* ensure queue wake up mechanism is on */ 108 109 netif_tx_wake_all_queues(ndev); 110 } 111 112 static int netvsc_open(struct net_device *net) 113 { 114 struct net_device_context *ndev_ctx = netdev_priv(net); 115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 117 struct rndis_device *rdev; 118 int ret = 0; 119 120 netif_carrier_off(net); 121 122 /* Open up the device */ 123 ret = rndis_filter_open(nvdev); 124 if (ret != 0) { 125 netdev_err(net, "unable to open device (ret %d).\n", ret); 126 return ret; 127 } 128 129 rdev = nvdev->extension; 130 if (!rdev->link_state) { 131 netif_carrier_on(net); 132 netvsc_tx_enable(nvdev, net); 133 } 134 135 if (vf_netdev) { 136 /* Setting synthetic device up transparently sets 137 * slave as up. If open fails, then slave will be 138 * still be offline (and not used). 139 */ 140 ret = dev_open(vf_netdev, NULL); 141 if (ret) 142 netdev_warn(net, 143 "unable to open slave: %s: %d\n", 144 vf_netdev->name, ret); 145 } 146 return 0; 147 } 148 149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 150 { 151 unsigned int retry = 0; 152 int i; 153 154 /* Ensure pending bytes in ring are read */ 155 for (;;) { 156 u32 aread = 0; 157 158 for (i = 0; i < nvdev->num_chn; i++) { 159 struct vmbus_channel *chn 160 = nvdev->chan_table[i].channel; 161 162 if (!chn) 163 continue; 164 165 /* make sure receive not running now */ 166 napi_synchronize(&nvdev->chan_table[i].napi); 167 168 aread = hv_get_bytes_to_read(&chn->inbound); 169 if (aread) 170 break; 171 172 aread = hv_get_bytes_to_read(&chn->outbound); 173 if (aread) 174 break; 175 } 176 177 if (aread == 0) 178 return 0; 179 180 if (++retry > RETRY_MAX) 181 return -ETIMEDOUT; 182 183 usleep_range(RETRY_US_LO, RETRY_US_HI); 184 } 185 } 186 187 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 188 struct net_device *ndev) 189 { 190 if (nvscdev) { 191 nvscdev->tx_disable = true; 192 virt_wmb(); /* ensure txq will not wake up after stop */ 193 } 194 195 netif_tx_disable(ndev); 196 } 197 198 static int netvsc_close(struct net_device *net) 199 { 200 struct net_device_context *net_device_ctx = netdev_priv(net); 201 struct net_device *vf_netdev 202 = rtnl_dereference(net_device_ctx->vf_netdev); 203 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 204 int ret; 205 206 netvsc_tx_disable(nvdev, net); 207 208 /* No need to close rndis filter if it is removed already */ 209 if (!nvdev) 210 return 0; 211 212 ret = rndis_filter_close(nvdev); 213 if (ret != 0) { 214 netdev_err(net, "unable to close device (ret %d).\n", ret); 215 return ret; 216 } 217 218 ret = netvsc_wait_until_empty(nvdev); 219 if (ret) 220 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 221 222 if (vf_netdev) 223 dev_close(vf_netdev); 224 225 return ret; 226 } 227 228 static inline void *init_ppi_data(struct rndis_message *msg, 229 u32 ppi_size, u32 pkt_type) 230 { 231 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 232 struct rndis_per_packet_info *ppi; 233 234 rndis_pkt->data_offset += ppi_size; 235 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 236 + rndis_pkt->per_pkt_info_len; 237 238 ppi->size = ppi_size; 239 ppi->type = pkt_type; 240 ppi->internal = 0; 241 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 242 243 rndis_pkt->per_pkt_info_len += ppi_size; 244 245 return ppi + 1; 246 } 247 248 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 249 * packets. We can use ethtool to change UDP hash level when necessary. 250 */ 251 static inline u32 netvsc_get_hash( 252 struct sk_buff *skb, 253 const struct net_device_context *ndc) 254 { 255 struct flow_keys flow; 256 u32 hash, pkt_proto = 0; 257 static u32 hashrnd __read_mostly; 258 259 net_get_random_once(&hashrnd, sizeof(hashrnd)); 260 261 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 262 return 0; 263 264 switch (flow.basic.ip_proto) { 265 case IPPROTO_TCP: 266 if (flow.basic.n_proto == htons(ETH_P_IP)) 267 pkt_proto = HV_TCP4_L4HASH; 268 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 269 pkt_proto = HV_TCP6_L4HASH; 270 271 break; 272 273 case IPPROTO_UDP: 274 if (flow.basic.n_proto == htons(ETH_P_IP)) 275 pkt_proto = HV_UDP4_L4HASH; 276 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 277 pkt_proto = HV_UDP6_L4HASH; 278 279 break; 280 } 281 282 if (pkt_proto & ndc->l4_hash) { 283 return skb_get_hash(skb); 284 } else { 285 if (flow.basic.n_proto == htons(ETH_P_IP)) 286 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 287 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 288 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 289 else 290 return 0; 291 292 __skb_set_sw_hash(skb, hash, false); 293 } 294 295 return hash; 296 } 297 298 static inline int netvsc_get_tx_queue(struct net_device *ndev, 299 struct sk_buff *skb, int old_idx) 300 { 301 const struct net_device_context *ndc = netdev_priv(ndev); 302 struct sock *sk = skb->sk; 303 int q_idx; 304 305 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 306 (VRSS_SEND_TAB_SIZE - 1)]; 307 308 /* If queue index changed record the new value */ 309 if (q_idx != old_idx && 310 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 311 sk_tx_queue_set(sk, q_idx); 312 313 return q_idx; 314 } 315 316 /* 317 * Select queue for transmit. 318 * 319 * If a valid queue has already been assigned, then use that. 320 * Otherwise compute tx queue based on hash and the send table. 321 * 322 * This is basically similar to default (netdev_pick_tx) with the added step 323 * of using the host send_table when no other queue has been assigned. 324 * 325 * TODO support XPS - but get_xps_queue not exported 326 */ 327 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 328 { 329 int q_idx = sk_tx_queue_get(skb->sk); 330 331 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 332 /* If forwarding a packet, we use the recorded queue when 333 * available for better cache locality. 334 */ 335 if (skb_rx_queue_recorded(skb)) 336 q_idx = skb_get_rx_queue(skb); 337 else 338 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 339 } 340 341 return q_idx; 342 } 343 344 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 345 struct net_device *sb_dev) 346 { 347 struct net_device_context *ndc = netdev_priv(ndev); 348 struct net_device *vf_netdev; 349 u16 txq; 350 351 rcu_read_lock(); 352 vf_netdev = rcu_dereference(ndc->vf_netdev); 353 if (vf_netdev) { 354 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 355 356 if (vf_ops->ndo_select_queue) 357 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 358 else 359 txq = netdev_pick_tx(vf_netdev, skb, NULL); 360 361 /* Record the queue selected by VF so that it can be 362 * used for common case where VF has more queues than 363 * the synthetic device. 364 */ 365 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 366 } else { 367 txq = netvsc_pick_tx(ndev, skb); 368 } 369 rcu_read_unlock(); 370 371 while (txq >= ndev->real_num_tx_queues) 372 txq -= ndev->real_num_tx_queues; 373 374 return txq; 375 } 376 377 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, 378 struct hv_page_buffer *pb) 379 { 380 int j = 0; 381 382 hvpfn += offset >> HV_HYP_PAGE_SHIFT; 383 offset = offset & ~HV_HYP_PAGE_MASK; 384 385 while (len > 0) { 386 unsigned long bytes; 387 388 bytes = HV_HYP_PAGE_SIZE - offset; 389 if (bytes > len) 390 bytes = len; 391 pb[j].pfn = hvpfn; 392 pb[j].offset = offset; 393 pb[j].len = bytes; 394 395 offset += bytes; 396 len -= bytes; 397 398 if (offset == HV_HYP_PAGE_SIZE && len) { 399 hvpfn++; 400 offset = 0; 401 j++; 402 } 403 } 404 405 return j + 1; 406 } 407 408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 409 struct hv_netvsc_packet *packet, 410 struct hv_page_buffer *pb) 411 { 412 u32 slots_used = 0; 413 char *data = skb->data; 414 int frags = skb_shinfo(skb)->nr_frags; 415 int i; 416 417 /* The packet is laid out thus: 418 * 1. hdr: RNDIS header and PPI 419 * 2. skb linear data 420 * 3. skb fragment data 421 */ 422 slots_used += fill_pg_buf(virt_to_hvpfn(hdr), 423 offset_in_hvpage(hdr), 424 len, 425 &pb[slots_used]); 426 427 packet->rmsg_size = len; 428 packet->rmsg_pgcnt = slots_used; 429 430 slots_used += fill_pg_buf(virt_to_hvpfn(data), 431 offset_in_hvpage(data), 432 skb_headlen(skb), 433 &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), 439 skb_frag_off(frag), 440 skb_frag_size(frag), 441 &pb[slots_used]); 442 } 443 return slots_used; 444 } 445 446 static int count_skb_frag_slots(struct sk_buff *skb) 447 { 448 int i, frags = skb_shinfo(skb)->nr_frags; 449 int pages = 0; 450 451 for (i = 0; i < frags; i++) { 452 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 453 unsigned long size = skb_frag_size(frag); 454 unsigned long offset = skb_frag_off(frag); 455 456 /* Skip unused frames from start of page */ 457 offset &= ~HV_HYP_PAGE_MASK; 458 pages += HVPFN_UP(offset + size); 459 } 460 return pages; 461 } 462 463 static int netvsc_get_slots(struct sk_buff *skb) 464 { 465 char *data = skb->data; 466 unsigned int offset = offset_in_hvpage(data); 467 unsigned int len = skb_headlen(skb); 468 int slots; 469 int frag_slots; 470 471 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); 472 frag_slots = count_skb_frag_slots(skb); 473 return slots + frag_slots; 474 } 475 476 static u32 net_checksum_info(struct sk_buff *skb) 477 { 478 if (skb->protocol == htons(ETH_P_IP)) { 479 struct iphdr *ip = ip_hdr(skb); 480 481 if (ip->protocol == IPPROTO_TCP) 482 return TRANSPORT_INFO_IPV4_TCP; 483 else if (ip->protocol == IPPROTO_UDP) 484 return TRANSPORT_INFO_IPV4_UDP; 485 } else { 486 struct ipv6hdr *ip6 = ipv6_hdr(skb); 487 488 if (ip6->nexthdr == IPPROTO_TCP) 489 return TRANSPORT_INFO_IPV6_TCP; 490 else if (ip6->nexthdr == IPPROTO_UDP) 491 return TRANSPORT_INFO_IPV6_UDP; 492 } 493 494 return TRANSPORT_INFO_NOT_IP; 495 } 496 497 /* Send skb on the slave VF device. */ 498 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 499 struct sk_buff *skb) 500 { 501 struct net_device_context *ndev_ctx = netdev_priv(net); 502 unsigned int len = skb->len; 503 int rc; 504 505 skb->dev = vf_netdev; 506 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); 507 508 rc = dev_queue_xmit(skb); 509 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 510 struct netvsc_vf_pcpu_stats *pcpu_stats 511 = this_cpu_ptr(ndev_ctx->vf_stats); 512 513 u64_stats_update_begin(&pcpu_stats->syncp); 514 pcpu_stats->tx_packets++; 515 pcpu_stats->tx_bytes += len; 516 u64_stats_update_end(&pcpu_stats->syncp); 517 } else { 518 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 519 } 520 521 return rc; 522 } 523 524 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 525 { 526 struct net_device_context *net_device_ctx = netdev_priv(net); 527 struct hv_netvsc_packet *packet = NULL; 528 int ret; 529 unsigned int num_data_pgs; 530 struct rndis_message *rndis_msg; 531 struct net_device *vf_netdev; 532 u32 rndis_msg_size; 533 u32 hash; 534 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 535 536 /* If VF is present and up then redirect packets to it. 537 * Skip the VF if it is marked down or has no carrier. 538 * If netpoll is in uses, then VF can not be used either. 539 */ 540 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 541 if (vf_netdev && netif_running(vf_netdev) && 542 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) && 543 net_device_ctx->data_path_is_vf) 544 return netvsc_vf_xmit(net, vf_netdev, skb); 545 546 /* We will atmost need two pages to describe the rndis 547 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 548 * of pages in a single packet. If skb is scattered around 549 * more pages we try linearizing it. 550 */ 551 552 num_data_pgs = netvsc_get_slots(skb) + 2; 553 554 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 555 ++net_device_ctx->eth_stats.tx_scattered; 556 557 if (skb_linearize(skb)) 558 goto no_memory; 559 560 num_data_pgs = netvsc_get_slots(skb) + 2; 561 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 562 ++net_device_ctx->eth_stats.tx_too_big; 563 goto drop; 564 } 565 } 566 567 /* 568 * Place the rndis header in the skb head room and 569 * the skb->cb will be used for hv_netvsc_packet 570 * structure. 571 */ 572 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 573 if (ret) 574 goto no_memory; 575 576 /* Use the skb control buffer for building up the packet */ 577 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 578 sizeof_field(struct sk_buff, cb)); 579 packet = (struct hv_netvsc_packet *)skb->cb; 580 581 packet->q_idx = skb_get_queue_mapping(skb); 582 583 packet->total_data_buflen = skb->len; 584 packet->total_bytes = skb->len; 585 packet->total_packets = 1; 586 587 rndis_msg = (struct rndis_message *)skb->head; 588 589 /* Add the rndis header */ 590 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 591 rndis_msg->msg_len = packet->total_data_buflen; 592 593 rndis_msg->msg.pkt = (struct rndis_packet) { 594 .data_offset = sizeof(struct rndis_packet), 595 .data_len = packet->total_data_buflen, 596 .per_pkt_info_offset = sizeof(struct rndis_packet), 597 }; 598 599 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 600 601 hash = skb_get_hash_raw(skb); 602 if (hash != 0 && net->real_num_tx_queues > 1) { 603 u32 *hash_info; 604 605 rndis_msg_size += NDIS_HASH_PPI_SIZE; 606 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 607 NBL_HASH_VALUE); 608 *hash_info = hash; 609 } 610 611 /* When using AF_PACKET we need to drop VLAN header from 612 * the frame and update the SKB to allow the HOST OS 613 * to transmit the 802.1Q packet 614 */ 615 if (skb->protocol == htons(ETH_P_8021Q)) { 616 u16 vlan_tci; 617 618 skb_reset_mac_header(skb); 619 if (eth_type_vlan(eth_hdr(skb)->h_proto)) { 620 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { 621 ++net_device_ctx->eth_stats.vlan_error; 622 goto drop; 623 } 624 625 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 626 /* Update the NDIS header pkt lengths */ 627 packet->total_data_buflen -= VLAN_HLEN; 628 packet->total_bytes -= VLAN_HLEN; 629 rndis_msg->msg_len = packet->total_data_buflen; 630 rndis_msg->msg.pkt.data_len = packet->total_data_buflen; 631 } 632 } 633 634 if (skb_vlan_tag_present(skb)) { 635 struct ndis_pkt_8021q_info *vlan; 636 637 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 638 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 639 IEEE_8021Q_INFO); 640 641 vlan->value = 0; 642 vlan->vlanid = skb_vlan_tag_get_id(skb); 643 vlan->cfi = skb_vlan_tag_get_cfi(skb); 644 vlan->pri = skb_vlan_tag_get_prio(skb); 645 } 646 647 if (skb_is_gso(skb)) { 648 struct ndis_tcp_lso_info *lso_info; 649 650 rndis_msg_size += NDIS_LSO_PPI_SIZE; 651 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 652 TCP_LARGESEND_PKTINFO); 653 654 lso_info->value = 0; 655 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 656 if (skb->protocol == htons(ETH_P_IP)) { 657 lso_info->lso_v2_transmit.ip_version = 658 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 659 ip_hdr(skb)->tot_len = 0; 660 ip_hdr(skb)->check = 0; 661 tcp_hdr(skb)->check = 662 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 663 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 664 } else { 665 lso_info->lso_v2_transmit.ip_version = 666 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 667 tcp_v6_gso_csum_prep(skb); 668 } 669 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 670 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 671 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 672 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 673 struct ndis_tcp_ip_checksum_info *csum_info; 674 675 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 676 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 677 TCPIP_CHKSUM_PKTINFO); 678 679 csum_info->value = 0; 680 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 681 682 if (skb->protocol == htons(ETH_P_IP)) { 683 csum_info->transmit.is_ipv4 = 1; 684 685 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 686 csum_info->transmit.tcp_checksum = 1; 687 else 688 csum_info->transmit.udp_checksum = 1; 689 } else { 690 csum_info->transmit.is_ipv6 = 1; 691 692 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 693 csum_info->transmit.tcp_checksum = 1; 694 else 695 csum_info->transmit.udp_checksum = 1; 696 } 697 } else { 698 /* Can't do offload of this type of checksum */ 699 if (skb_checksum_help(skb)) 700 goto drop; 701 } 702 } 703 704 /* Start filling in the page buffers with the rndis hdr */ 705 rndis_msg->msg_len += rndis_msg_size; 706 packet->total_data_buflen = rndis_msg->msg_len; 707 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 708 skb, packet, pb); 709 710 /* timestamp packet in software */ 711 skb_tx_timestamp(skb); 712 713 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 714 if (likely(ret == 0)) 715 return NETDEV_TX_OK; 716 717 if (ret == -EAGAIN) { 718 ++net_device_ctx->eth_stats.tx_busy; 719 return NETDEV_TX_BUSY; 720 } 721 722 if (ret == -ENOSPC) 723 ++net_device_ctx->eth_stats.tx_no_space; 724 725 drop: 726 dev_kfree_skb_any(skb); 727 net->stats.tx_dropped++; 728 729 return NETDEV_TX_OK; 730 731 no_memory: 732 ++net_device_ctx->eth_stats.tx_no_memory; 733 goto drop; 734 } 735 736 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, 737 struct net_device *ndev) 738 { 739 return netvsc_xmit(skb, ndev, false); 740 } 741 742 /* 743 * netvsc_linkstatus_callback - Link up/down notification 744 */ 745 void netvsc_linkstatus_callback(struct net_device *net, 746 struct rndis_message *resp) 747 { 748 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 749 struct net_device_context *ndev_ctx = netdev_priv(net); 750 struct netvsc_reconfig *event; 751 unsigned long flags; 752 753 /* Ensure the packet is big enough to access its fields */ 754 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { 755 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", 756 resp->msg_len); 757 return; 758 } 759 760 /* Update the physical link speed when changing to another vSwitch */ 761 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 762 u32 speed; 763 764 /* Validate status_buf_offset */ 765 if (indicate->status_buflen < sizeof(speed) || 766 indicate->status_buf_offset < sizeof(*indicate) || 767 resp->msg_len - RNDIS_HEADER_SIZE < indicate->status_buf_offset || 768 resp->msg_len - RNDIS_HEADER_SIZE - indicate->status_buf_offset 769 < indicate->status_buflen) { 770 netdev_err(net, "invalid rndis_indicate_status packet\n"); 771 return; 772 } 773 774 speed = *(u32 *)((void *)indicate 775 + indicate->status_buf_offset) / 10000; 776 ndev_ctx->speed = speed; 777 return; 778 } 779 780 /* Handle these link change statuses below */ 781 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 782 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 783 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 784 return; 785 786 if (net->reg_state != NETREG_REGISTERED) 787 return; 788 789 event = kzalloc(sizeof(*event), GFP_ATOMIC); 790 if (!event) 791 return; 792 event->event = indicate->status; 793 794 spin_lock_irqsave(&ndev_ctx->lock, flags); 795 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 796 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 797 798 schedule_delayed_work(&ndev_ctx->dwork, 0); 799 } 800 801 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 802 { 803 int rc; 804 805 skb->queue_mapping = skb_get_rx_queue(skb); 806 __skb_push(skb, ETH_HLEN); 807 808 rc = netvsc_xmit(skb, ndev, true); 809 810 if (dev_xmit_complete(rc)) 811 return; 812 813 dev_kfree_skb_any(skb); 814 ndev->stats.tx_dropped++; 815 } 816 817 static void netvsc_comp_ipcsum(struct sk_buff *skb) 818 { 819 struct iphdr *iph = (struct iphdr *)skb->data; 820 821 iph->check = 0; 822 iph->check = ip_fast_csum(iph, iph->ihl); 823 } 824 825 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 826 struct netvsc_channel *nvchan, 827 struct xdp_buff *xdp) 828 { 829 struct napi_struct *napi = &nvchan->napi; 830 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 831 const struct ndis_tcp_ip_checksum_info *csum_info = 832 nvchan->rsc.csum_info; 833 const u32 *hash_info = nvchan->rsc.hash_info; 834 struct sk_buff *skb; 835 void *xbuf = xdp->data_hard_start; 836 int i; 837 838 if (xbuf) { 839 unsigned int hdroom = xdp->data - xdp->data_hard_start; 840 unsigned int xlen = xdp->data_end - xdp->data; 841 unsigned int frag_size = xdp->frame_sz; 842 843 skb = build_skb(xbuf, frag_size); 844 845 if (!skb) { 846 __free_page(virt_to_page(xbuf)); 847 return NULL; 848 } 849 850 skb_reserve(skb, hdroom); 851 skb_put(skb, xlen); 852 skb->dev = napi->dev; 853 } else { 854 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 855 856 if (!skb) 857 return NULL; 858 859 /* Copy to skb. This copy is needed here since the memory 860 * pointed by hv_netvsc_packet cannot be deallocated. 861 */ 862 for (i = 0; i < nvchan->rsc.cnt; i++) 863 skb_put_data(skb, nvchan->rsc.data[i], 864 nvchan->rsc.len[i]); 865 } 866 867 skb->protocol = eth_type_trans(skb, net); 868 869 /* skb is already created with CHECKSUM_NONE */ 870 skb_checksum_none_assert(skb); 871 872 /* Incoming packets may have IP header checksum verified by the host. 873 * They may not have IP header checksum computed after coalescing. 874 * We compute it here if the flags are set, because on Linux, the IP 875 * checksum is always checked. 876 */ 877 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 878 csum_info->receive.ip_checksum_succeeded && 879 skb->protocol == htons(ETH_P_IP)) { 880 /* Check that there is enough space to hold the IP header. */ 881 if (skb_headlen(skb) < sizeof(struct iphdr)) { 882 kfree_skb(skb); 883 return NULL; 884 } 885 netvsc_comp_ipcsum(skb); 886 } 887 888 /* Do L4 checksum offload if enabled and present. */ 889 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 890 if (csum_info->receive.tcp_checksum_succeeded || 891 csum_info->receive.udp_checksum_succeeded) 892 skb->ip_summed = CHECKSUM_UNNECESSARY; 893 } 894 895 if (hash_info && (net->features & NETIF_F_RXHASH)) 896 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 897 898 if (vlan) { 899 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 900 (vlan->cfi ? VLAN_CFI_MASK : 0); 901 902 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 903 vlan_tci); 904 } 905 906 return skb; 907 } 908 909 /* 910 * netvsc_recv_callback - Callback when we receive a packet from the 911 * "wire" on the specified device. 912 */ 913 int netvsc_recv_callback(struct net_device *net, 914 struct netvsc_device *net_device, 915 struct netvsc_channel *nvchan) 916 { 917 struct net_device_context *net_device_ctx = netdev_priv(net); 918 struct vmbus_channel *channel = nvchan->channel; 919 u16 q_idx = channel->offermsg.offer.sub_channel_index; 920 struct sk_buff *skb; 921 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 922 struct xdp_buff xdp; 923 u32 act; 924 925 if (net->reg_state != NETREG_REGISTERED) 926 return NVSP_STAT_FAIL; 927 928 act = netvsc_run_xdp(net, nvchan, &xdp); 929 930 if (act != XDP_PASS && act != XDP_TX) { 931 u64_stats_update_begin(&rx_stats->syncp); 932 rx_stats->xdp_drop++; 933 u64_stats_update_end(&rx_stats->syncp); 934 935 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 936 } 937 938 /* Allocate a skb - TODO direct I/O to pages? */ 939 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 940 941 if (unlikely(!skb)) { 942 ++net_device_ctx->eth_stats.rx_no_memory; 943 return NVSP_STAT_FAIL; 944 } 945 946 skb_record_rx_queue(skb, q_idx); 947 948 /* 949 * Even if injecting the packet, record the statistics 950 * on the synthetic device because modifying the VF device 951 * statistics will not work correctly. 952 */ 953 u64_stats_update_begin(&rx_stats->syncp); 954 rx_stats->packets++; 955 rx_stats->bytes += nvchan->rsc.pktlen; 956 957 if (skb->pkt_type == PACKET_BROADCAST) 958 ++rx_stats->broadcast; 959 else if (skb->pkt_type == PACKET_MULTICAST) 960 ++rx_stats->multicast; 961 u64_stats_update_end(&rx_stats->syncp); 962 963 if (act == XDP_TX) { 964 netvsc_xdp_xmit(skb, net); 965 return NVSP_STAT_SUCCESS; 966 } 967 968 napi_gro_receive(&nvchan->napi, skb); 969 return NVSP_STAT_SUCCESS; 970 } 971 972 static void netvsc_get_drvinfo(struct net_device *net, 973 struct ethtool_drvinfo *info) 974 { 975 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 976 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 977 } 978 979 static void netvsc_get_channels(struct net_device *net, 980 struct ethtool_channels *channel) 981 { 982 struct net_device_context *net_device_ctx = netdev_priv(net); 983 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 984 985 if (nvdev) { 986 channel->max_combined = nvdev->max_chn; 987 channel->combined_count = nvdev->num_chn; 988 } 989 } 990 991 /* Alloc struct netvsc_device_info, and initialize it from either existing 992 * struct netvsc_device, or from default values. 993 */ 994 static 995 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 996 { 997 struct netvsc_device_info *dev_info; 998 struct bpf_prog *prog; 999 1000 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 1001 1002 if (!dev_info) 1003 return NULL; 1004 1005 if (nvdev) { 1006 ASSERT_RTNL(); 1007 1008 dev_info->num_chn = nvdev->num_chn; 1009 dev_info->send_sections = nvdev->send_section_cnt; 1010 dev_info->send_section_size = nvdev->send_section_size; 1011 dev_info->recv_sections = nvdev->recv_section_cnt; 1012 dev_info->recv_section_size = nvdev->recv_section_size; 1013 1014 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 1015 NETVSC_HASH_KEYLEN); 1016 1017 prog = netvsc_xdp_get(nvdev); 1018 if (prog) { 1019 bpf_prog_inc(prog); 1020 dev_info->bprog = prog; 1021 } 1022 } else { 1023 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 1024 dev_info->send_sections = NETVSC_DEFAULT_TX; 1025 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 1026 dev_info->recv_sections = NETVSC_DEFAULT_RX; 1027 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 1028 } 1029 1030 return dev_info; 1031 } 1032 1033 /* Free struct netvsc_device_info */ 1034 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 1035 { 1036 if (dev_info->bprog) { 1037 ASSERT_RTNL(); 1038 bpf_prog_put(dev_info->bprog); 1039 } 1040 1041 kfree(dev_info); 1042 } 1043 1044 static int netvsc_detach(struct net_device *ndev, 1045 struct netvsc_device *nvdev) 1046 { 1047 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1048 struct hv_device *hdev = ndev_ctx->device_ctx; 1049 int ret; 1050 1051 /* Don't try continuing to try and setup sub channels */ 1052 if (cancel_work_sync(&nvdev->subchan_work)) 1053 nvdev->num_chn = 1; 1054 1055 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1056 1057 /* If device was up (receiving) then shutdown */ 1058 if (netif_running(ndev)) { 1059 netvsc_tx_disable(nvdev, ndev); 1060 1061 ret = rndis_filter_close(nvdev); 1062 if (ret) { 1063 netdev_err(ndev, 1064 "unable to close device (ret %d).\n", ret); 1065 return ret; 1066 } 1067 1068 ret = netvsc_wait_until_empty(nvdev); 1069 if (ret) { 1070 netdev_err(ndev, 1071 "Ring buffer not empty after closing rndis\n"); 1072 return ret; 1073 } 1074 } 1075 1076 netif_device_detach(ndev); 1077 1078 rndis_filter_device_remove(hdev, nvdev); 1079 1080 return 0; 1081 } 1082 1083 static int netvsc_attach(struct net_device *ndev, 1084 struct netvsc_device_info *dev_info) 1085 { 1086 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1087 struct hv_device *hdev = ndev_ctx->device_ctx; 1088 struct netvsc_device *nvdev; 1089 struct rndis_device *rdev; 1090 struct bpf_prog *prog; 1091 int ret = 0; 1092 1093 nvdev = rndis_filter_device_add(hdev, dev_info); 1094 if (IS_ERR(nvdev)) 1095 return PTR_ERR(nvdev); 1096 1097 if (nvdev->num_chn > 1) { 1098 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1099 1100 /* if unavailable, just proceed with one queue */ 1101 if (ret) { 1102 nvdev->max_chn = 1; 1103 nvdev->num_chn = 1; 1104 } 1105 } 1106 1107 prog = dev_info->bprog; 1108 if (prog) { 1109 bpf_prog_inc(prog); 1110 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1111 if (ret) { 1112 bpf_prog_put(prog); 1113 goto err1; 1114 } 1115 } 1116 1117 /* In any case device is now ready */ 1118 nvdev->tx_disable = false; 1119 netif_device_attach(ndev); 1120 1121 /* Note: enable and attach happen when sub-channels setup */ 1122 netif_carrier_off(ndev); 1123 1124 if (netif_running(ndev)) { 1125 ret = rndis_filter_open(nvdev); 1126 if (ret) 1127 goto err2; 1128 1129 rdev = nvdev->extension; 1130 if (!rdev->link_state) 1131 netif_carrier_on(ndev); 1132 } 1133 1134 return 0; 1135 1136 err2: 1137 netif_device_detach(ndev); 1138 1139 err1: 1140 rndis_filter_device_remove(hdev, nvdev); 1141 1142 return ret; 1143 } 1144 1145 static int netvsc_set_channels(struct net_device *net, 1146 struct ethtool_channels *channels) 1147 { 1148 struct net_device_context *net_device_ctx = netdev_priv(net); 1149 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1150 unsigned int orig, count = channels->combined_count; 1151 struct netvsc_device_info *device_info; 1152 int ret; 1153 1154 /* We do not support separate count for rx, tx, or other */ 1155 if (count == 0 || 1156 channels->rx_count || channels->tx_count || channels->other_count) 1157 return -EINVAL; 1158 1159 if (!nvdev || nvdev->destroy) 1160 return -ENODEV; 1161 1162 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1163 return -EINVAL; 1164 1165 if (count > nvdev->max_chn) 1166 return -EINVAL; 1167 1168 orig = nvdev->num_chn; 1169 1170 device_info = netvsc_devinfo_get(nvdev); 1171 1172 if (!device_info) 1173 return -ENOMEM; 1174 1175 device_info->num_chn = count; 1176 1177 ret = netvsc_detach(net, nvdev); 1178 if (ret) 1179 goto out; 1180 1181 ret = netvsc_attach(net, device_info); 1182 if (ret) { 1183 device_info->num_chn = orig; 1184 if (netvsc_attach(net, device_info)) 1185 netdev_err(net, "restoring channel setting failed\n"); 1186 } 1187 1188 out: 1189 netvsc_devinfo_put(device_info); 1190 return ret; 1191 } 1192 1193 static void netvsc_init_settings(struct net_device *dev) 1194 { 1195 struct net_device_context *ndc = netdev_priv(dev); 1196 1197 ndc->l4_hash = HV_DEFAULT_L4HASH; 1198 1199 ndc->speed = SPEED_UNKNOWN; 1200 ndc->duplex = DUPLEX_FULL; 1201 1202 dev->features = NETIF_F_LRO; 1203 } 1204 1205 static int netvsc_get_link_ksettings(struct net_device *dev, 1206 struct ethtool_link_ksettings *cmd) 1207 { 1208 struct net_device_context *ndc = netdev_priv(dev); 1209 struct net_device *vf_netdev; 1210 1211 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1212 1213 if (vf_netdev) 1214 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1215 1216 cmd->base.speed = ndc->speed; 1217 cmd->base.duplex = ndc->duplex; 1218 cmd->base.port = PORT_OTHER; 1219 1220 return 0; 1221 } 1222 1223 static int netvsc_set_link_ksettings(struct net_device *dev, 1224 const struct ethtool_link_ksettings *cmd) 1225 { 1226 struct net_device_context *ndc = netdev_priv(dev); 1227 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1228 1229 if (vf_netdev) { 1230 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1231 return -EOPNOTSUPP; 1232 1233 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1234 cmd); 1235 } 1236 1237 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1238 &ndc->speed, &ndc->duplex); 1239 } 1240 1241 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1242 { 1243 struct net_device_context *ndevctx = netdev_priv(ndev); 1244 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1245 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1246 int orig_mtu = ndev->mtu; 1247 struct netvsc_device_info *device_info; 1248 int ret = 0; 1249 1250 if (!nvdev || nvdev->destroy) 1251 return -ENODEV; 1252 1253 device_info = netvsc_devinfo_get(nvdev); 1254 1255 if (!device_info) 1256 return -ENOMEM; 1257 1258 /* Change MTU of underlying VF netdev first. */ 1259 if (vf_netdev) { 1260 ret = dev_set_mtu(vf_netdev, mtu); 1261 if (ret) 1262 goto out; 1263 } 1264 1265 ret = netvsc_detach(ndev, nvdev); 1266 if (ret) 1267 goto rollback_vf; 1268 1269 ndev->mtu = mtu; 1270 1271 ret = netvsc_attach(ndev, device_info); 1272 if (!ret) 1273 goto out; 1274 1275 /* Attempt rollback to original MTU */ 1276 ndev->mtu = orig_mtu; 1277 1278 if (netvsc_attach(ndev, device_info)) 1279 netdev_err(ndev, "restoring mtu failed\n"); 1280 rollback_vf: 1281 if (vf_netdev) 1282 dev_set_mtu(vf_netdev, orig_mtu); 1283 1284 out: 1285 netvsc_devinfo_put(device_info); 1286 return ret; 1287 } 1288 1289 static void netvsc_get_vf_stats(struct net_device *net, 1290 struct netvsc_vf_pcpu_stats *tot) 1291 { 1292 struct net_device_context *ndev_ctx = netdev_priv(net); 1293 int i; 1294 1295 memset(tot, 0, sizeof(*tot)); 1296 1297 for_each_possible_cpu(i) { 1298 const struct netvsc_vf_pcpu_stats *stats 1299 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1300 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1301 unsigned int start; 1302 1303 do { 1304 start = u64_stats_fetch_begin_irq(&stats->syncp); 1305 rx_packets = stats->rx_packets; 1306 tx_packets = stats->tx_packets; 1307 rx_bytes = stats->rx_bytes; 1308 tx_bytes = stats->tx_bytes; 1309 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1310 1311 tot->rx_packets += rx_packets; 1312 tot->tx_packets += tx_packets; 1313 tot->rx_bytes += rx_bytes; 1314 tot->tx_bytes += tx_bytes; 1315 tot->tx_dropped += stats->tx_dropped; 1316 } 1317 } 1318 1319 static void netvsc_get_pcpu_stats(struct net_device *net, 1320 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1321 { 1322 struct net_device_context *ndev_ctx = netdev_priv(net); 1323 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1324 int i; 1325 1326 /* fetch percpu stats of vf */ 1327 for_each_possible_cpu(i) { 1328 const struct netvsc_vf_pcpu_stats *stats = 1329 per_cpu_ptr(ndev_ctx->vf_stats, i); 1330 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1331 unsigned int start; 1332 1333 do { 1334 start = u64_stats_fetch_begin_irq(&stats->syncp); 1335 this_tot->vf_rx_packets = stats->rx_packets; 1336 this_tot->vf_tx_packets = stats->tx_packets; 1337 this_tot->vf_rx_bytes = stats->rx_bytes; 1338 this_tot->vf_tx_bytes = stats->tx_bytes; 1339 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1340 this_tot->rx_packets = this_tot->vf_rx_packets; 1341 this_tot->tx_packets = this_tot->vf_tx_packets; 1342 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1343 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1344 } 1345 1346 /* fetch percpu stats of netvsc */ 1347 for (i = 0; i < nvdev->num_chn; i++) { 1348 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1349 const struct netvsc_stats *stats; 1350 struct netvsc_ethtool_pcpu_stats *this_tot = 1351 &pcpu_tot[nvchan->channel->target_cpu]; 1352 u64 packets, bytes; 1353 unsigned int start; 1354 1355 stats = &nvchan->tx_stats; 1356 do { 1357 start = u64_stats_fetch_begin_irq(&stats->syncp); 1358 packets = stats->packets; 1359 bytes = stats->bytes; 1360 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1361 1362 this_tot->tx_bytes += bytes; 1363 this_tot->tx_packets += packets; 1364 1365 stats = &nvchan->rx_stats; 1366 do { 1367 start = u64_stats_fetch_begin_irq(&stats->syncp); 1368 packets = stats->packets; 1369 bytes = stats->bytes; 1370 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1371 1372 this_tot->rx_bytes += bytes; 1373 this_tot->rx_packets += packets; 1374 } 1375 } 1376 1377 static void netvsc_get_stats64(struct net_device *net, 1378 struct rtnl_link_stats64 *t) 1379 { 1380 struct net_device_context *ndev_ctx = netdev_priv(net); 1381 struct netvsc_device *nvdev; 1382 struct netvsc_vf_pcpu_stats vf_tot; 1383 int i; 1384 1385 rcu_read_lock(); 1386 1387 nvdev = rcu_dereference(ndev_ctx->nvdev); 1388 if (!nvdev) 1389 goto out; 1390 1391 netdev_stats_to_stats64(t, &net->stats); 1392 1393 netvsc_get_vf_stats(net, &vf_tot); 1394 t->rx_packets += vf_tot.rx_packets; 1395 t->tx_packets += vf_tot.tx_packets; 1396 t->rx_bytes += vf_tot.rx_bytes; 1397 t->tx_bytes += vf_tot.tx_bytes; 1398 t->tx_dropped += vf_tot.tx_dropped; 1399 1400 for (i = 0; i < nvdev->num_chn; i++) { 1401 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1402 const struct netvsc_stats *stats; 1403 u64 packets, bytes, multicast; 1404 unsigned int start; 1405 1406 stats = &nvchan->tx_stats; 1407 do { 1408 start = u64_stats_fetch_begin_irq(&stats->syncp); 1409 packets = stats->packets; 1410 bytes = stats->bytes; 1411 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1412 1413 t->tx_bytes += bytes; 1414 t->tx_packets += packets; 1415 1416 stats = &nvchan->rx_stats; 1417 do { 1418 start = u64_stats_fetch_begin_irq(&stats->syncp); 1419 packets = stats->packets; 1420 bytes = stats->bytes; 1421 multicast = stats->multicast + stats->broadcast; 1422 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1423 1424 t->rx_bytes += bytes; 1425 t->rx_packets += packets; 1426 t->multicast += multicast; 1427 } 1428 out: 1429 rcu_read_unlock(); 1430 } 1431 1432 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1433 { 1434 struct net_device_context *ndc = netdev_priv(ndev); 1435 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1436 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1437 struct sockaddr *addr = p; 1438 int err; 1439 1440 err = eth_prepare_mac_addr_change(ndev, p); 1441 if (err) 1442 return err; 1443 1444 if (!nvdev) 1445 return -ENODEV; 1446 1447 if (vf_netdev) { 1448 err = dev_set_mac_address(vf_netdev, addr, NULL); 1449 if (err) 1450 return err; 1451 } 1452 1453 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1454 if (!err) { 1455 eth_commit_mac_addr_change(ndev, p); 1456 } else if (vf_netdev) { 1457 /* rollback change on VF */ 1458 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1459 dev_set_mac_address(vf_netdev, addr, NULL); 1460 } 1461 1462 return err; 1463 } 1464 1465 static const struct { 1466 char name[ETH_GSTRING_LEN]; 1467 u16 offset; 1468 } netvsc_stats[] = { 1469 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1470 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1471 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1472 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1473 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1474 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1475 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1476 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1477 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1478 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1479 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, 1480 }, pcpu_stats[] = { 1481 { "cpu%u_rx_packets", 1482 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1483 { "cpu%u_rx_bytes", 1484 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1485 { "cpu%u_tx_packets", 1486 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1487 { "cpu%u_tx_bytes", 1488 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1489 { "cpu%u_vf_rx_packets", 1490 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1491 { "cpu%u_vf_rx_bytes", 1492 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1493 { "cpu%u_vf_tx_packets", 1494 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1495 { "cpu%u_vf_tx_bytes", 1496 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1497 }, vf_stats[] = { 1498 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1499 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1500 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1501 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1502 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1503 }; 1504 1505 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1506 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1507 1508 /* statistics per queue (rx/tx packets/bytes) */ 1509 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1510 1511 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1512 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1513 1514 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1515 { 1516 struct net_device_context *ndc = netdev_priv(dev); 1517 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1518 1519 if (!nvdev) 1520 return -ENODEV; 1521 1522 switch (string_set) { 1523 case ETH_SS_STATS: 1524 return NETVSC_GLOBAL_STATS_LEN 1525 + NETVSC_VF_STATS_LEN 1526 + NETVSC_QUEUE_STATS_LEN(nvdev) 1527 + NETVSC_PCPU_STATS_LEN; 1528 default: 1529 return -EINVAL; 1530 } 1531 } 1532 1533 static void netvsc_get_ethtool_stats(struct net_device *dev, 1534 struct ethtool_stats *stats, u64 *data) 1535 { 1536 struct net_device_context *ndc = netdev_priv(dev); 1537 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1538 const void *nds = &ndc->eth_stats; 1539 const struct netvsc_stats *qstats; 1540 struct netvsc_vf_pcpu_stats sum; 1541 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1542 unsigned int start; 1543 u64 packets, bytes; 1544 u64 xdp_drop; 1545 int i, j, cpu; 1546 1547 if (!nvdev) 1548 return; 1549 1550 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1551 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1552 1553 netvsc_get_vf_stats(dev, &sum); 1554 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1555 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1556 1557 for (j = 0; j < nvdev->num_chn; j++) { 1558 qstats = &nvdev->chan_table[j].tx_stats; 1559 1560 do { 1561 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1562 packets = qstats->packets; 1563 bytes = qstats->bytes; 1564 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1565 data[i++] = packets; 1566 data[i++] = bytes; 1567 1568 qstats = &nvdev->chan_table[j].rx_stats; 1569 do { 1570 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1571 packets = qstats->packets; 1572 bytes = qstats->bytes; 1573 xdp_drop = qstats->xdp_drop; 1574 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1575 data[i++] = packets; 1576 data[i++] = bytes; 1577 data[i++] = xdp_drop; 1578 } 1579 1580 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1581 sizeof(struct netvsc_ethtool_pcpu_stats), 1582 GFP_KERNEL); 1583 netvsc_get_pcpu_stats(dev, pcpu_sum); 1584 for_each_present_cpu(cpu) { 1585 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1586 1587 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1588 data[i++] = *(u64 *)((void *)this_sum 1589 + pcpu_stats[j].offset); 1590 } 1591 kvfree(pcpu_sum); 1592 } 1593 1594 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1595 { 1596 struct net_device_context *ndc = netdev_priv(dev); 1597 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1598 u8 *p = data; 1599 int i, cpu; 1600 1601 if (!nvdev) 1602 return; 1603 1604 switch (stringset) { 1605 case ETH_SS_STATS: 1606 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1607 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1608 p += ETH_GSTRING_LEN; 1609 } 1610 1611 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1612 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1613 p += ETH_GSTRING_LEN; 1614 } 1615 1616 for (i = 0; i < nvdev->num_chn; i++) { 1617 sprintf(p, "tx_queue_%u_packets", i); 1618 p += ETH_GSTRING_LEN; 1619 sprintf(p, "tx_queue_%u_bytes", i); 1620 p += ETH_GSTRING_LEN; 1621 sprintf(p, "rx_queue_%u_packets", i); 1622 p += ETH_GSTRING_LEN; 1623 sprintf(p, "rx_queue_%u_bytes", i); 1624 p += ETH_GSTRING_LEN; 1625 sprintf(p, "rx_queue_%u_xdp_drop", i); 1626 p += ETH_GSTRING_LEN; 1627 } 1628 1629 for_each_present_cpu(cpu) { 1630 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1631 sprintf(p, pcpu_stats[i].name, cpu); 1632 p += ETH_GSTRING_LEN; 1633 } 1634 } 1635 1636 break; 1637 } 1638 } 1639 1640 static int 1641 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1642 struct ethtool_rxnfc *info) 1643 { 1644 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1645 1646 info->data = RXH_IP_SRC | RXH_IP_DST; 1647 1648 switch (info->flow_type) { 1649 case TCP_V4_FLOW: 1650 if (ndc->l4_hash & HV_TCP4_L4HASH) 1651 info->data |= l4_flag; 1652 1653 break; 1654 1655 case TCP_V6_FLOW: 1656 if (ndc->l4_hash & HV_TCP6_L4HASH) 1657 info->data |= l4_flag; 1658 1659 break; 1660 1661 case UDP_V4_FLOW: 1662 if (ndc->l4_hash & HV_UDP4_L4HASH) 1663 info->data |= l4_flag; 1664 1665 break; 1666 1667 case UDP_V6_FLOW: 1668 if (ndc->l4_hash & HV_UDP6_L4HASH) 1669 info->data |= l4_flag; 1670 1671 break; 1672 1673 case IPV4_FLOW: 1674 case IPV6_FLOW: 1675 break; 1676 default: 1677 info->data = 0; 1678 break; 1679 } 1680 1681 return 0; 1682 } 1683 1684 static int 1685 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1686 u32 *rules) 1687 { 1688 struct net_device_context *ndc = netdev_priv(dev); 1689 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1690 1691 if (!nvdev) 1692 return -ENODEV; 1693 1694 switch (info->cmd) { 1695 case ETHTOOL_GRXRINGS: 1696 info->data = nvdev->num_chn; 1697 return 0; 1698 1699 case ETHTOOL_GRXFH: 1700 return netvsc_get_rss_hash_opts(ndc, info); 1701 } 1702 return -EOPNOTSUPP; 1703 } 1704 1705 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1706 struct ethtool_rxnfc *info) 1707 { 1708 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1709 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1710 switch (info->flow_type) { 1711 case TCP_V4_FLOW: 1712 ndc->l4_hash |= HV_TCP4_L4HASH; 1713 break; 1714 1715 case TCP_V6_FLOW: 1716 ndc->l4_hash |= HV_TCP6_L4HASH; 1717 break; 1718 1719 case UDP_V4_FLOW: 1720 ndc->l4_hash |= HV_UDP4_L4HASH; 1721 break; 1722 1723 case UDP_V6_FLOW: 1724 ndc->l4_hash |= HV_UDP6_L4HASH; 1725 break; 1726 1727 default: 1728 return -EOPNOTSUPP; 1729 } 1730 1731 return 0; 1732 } 1733 1734 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1735 switch (info->flow_type) { 1736 case TCP_V4_FLOW: 1737 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1738 break; 1739 1740 case TCP_V6_FLOW: 1741 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1742 break; 1743 1744 case UDP_V4_FLOW: 1745 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1746 break; 1747 1748 case UDP_V6_FLOW: 1749 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1750 break; 1751 1752 default: 1753 return -EOPNOTSUPP; 1754 } 1755 1756 return 0; 1757 } 1758 1759 return -EOPNOTSUPP; 1760 } 1761 1762 static int 1763 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1764 { 1765 struct net_device_context *ndc = netdev_priv(ndev); 1766 1767 if (info->cmd == ETHTOOL_SRXFH) 1768 return netvsc_set_rss_hash_opts(ndc, info); 1769 1770 return -EOPNOTSUPP; 1771 } 1772 1773 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1774 { 1775 return NETVSC_HASH_KEYLEN; 1776 } 1777 1778 static u32 netvsc_rss_indir_size(struct net_device *dev) 1779 { 1780 return ITAB_NUM; 1781 } 1782 1783 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1784 u8 *hfunc) 1785 { 1786 struct net_device_context *ndc = netdev_priv(dev); 1787 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1788 struct rndis_device *rndis_dev; 1789 int i; 1790 1791 if (!ndev) 1792 return -ENODEV; 1793 1794 if (hfunc) 1795 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1796 1797 rndis_dev = ndev->extension; 1798 if (indir) { 1799 for (i = 0; i < ITAB_NUM; i++) 1800 indir[i] = ndc->rx_table[i]; 1801 } 1802 1803 if (key) 1804 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1805 1806 return 0; 1807 } 1808 1809 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1810 const u8 *key, const u8 hfunc) 1811 { 1812 struct net_device_context *ndc = netdev_priv(dev); 1813 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1814 struct rndis_device *rndis_dev; 1815 int i; 1816 1817 if (!ndev) 1818 return -ENODEV; 1819 1820 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1821 return -EOPNOTSUPP; 1822 1823 rndis_dev = ndev->extension; 1824 if (indir) { 1825 for (i = 0; i < ITAB_NUM; i++) 1826 if (indir[i] >= ndev->num_chn) 1827 return -EINVAL; 1828 1829 for (i = 0; i < ITAB_NUM; i++) 1830 ndc->rx_table[i] = indir[i]; 1831 } 1832 1833 if (!key) { 1834 if (!indir) 1835 return 0; 1836 1837 key = rndis_dev->rss_key; 1838 } 1839 1840 return rndis_filter_set_rss_param(rndis_dev, key); 1841 } 1842 1843 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1844 * It does have pre-allocated receive area which is divided into sections. 1845 */ 1846 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1847 struct ethtool_ringparam *ring) 1848 { 1849 u32 max_buf_size; 1850 1851 ring->rx_pending = nvdev->recv_section_cnt; 1852 ring->tx_pending = nvdev->send_section_cnt; 1853 1854 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1855 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1856 else 1857 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1858 1859 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1860 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1861 / nvdev->send_section_size; 1862 } 1863 1864 static void netvsc_get_ringparam(struct net_device *ndev, 1865 struct ethtool_ringparam *ring) 1866 { 1867 struct net_device_context *ndevctx = netdev_priv(ndev); 1868 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1869 1870 if (!nvdev) 1871 return; 1872 1873 __netvsc_get_ringparam(nvdev, ring); 1874 } 1875 1876 static int netvsc_set_ringparam(struct net_device *ndev, 1877 struct ethtool_ringparam *ring) 1878 { 1879 struct net_device_context *ndevctx = netdev_priv(ndev); 1880 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1881 struct netvsc_device_info *device_info; 1882 struct ethtool_ringparam orig; 1883 u32 new_tx, new_rx; 1884 int ret = 0; 1885 1886 if (!nvdev || nvdev->destroy) 1887 return -ENODEV; 1888 1889 memset(&orig, 0, sizeof(orig)); 1890 __netvsc_get_ringparam(nvdev, &orig); 1891 1892 new_tx = clamp_t(u32, ring->tx_pending, 1893 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1894 new_rx = clamp_t(u32, ring->rx_pending, 1895 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1896 1897 if (new_tx == orig.tx_pending && 1898 new_rx == orig.rx_pending) 1899 return 0; /* no change */ 1900 1901 device_info = netvsc_devinfo_get(nvdev); 1902 1903 if (!device_info) 1904 return -ENOMEM; 1905 1906 device_info->send_sections = new_tx; 1907 device_info->recv_sections = new_rx; 1908 1909 ret = netvsc_detach(ndev, nvdev); 1910 if (ret) 1911 goto out; 1912 1913 ret = netvsc_attach(ndev, device_info); 1914 if (ret) { 1915 device_info->send_sections = orig.tx_pending; 1916 device_info->recv_sections = orig.rx_pending; 1917 1918 if (netvsc_attach(ndev, device_info)) 1919 netdev_err(ndev, "restoring ringparam failed"); 1920 } 1921 1922 out: 1923 netvsc_devinfo_put(device_info); 1924 return ret; 1925 } 1926 1927 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1928 netdev_features_t features) 1929 { 1930 struct net_device_context *ndevctx = netdev_priv(ndev); 1931 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1932 1933 if (!nvdev || nvdev->destroy) 1934 return features; 1935 1936 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1937 features ^= NETIF_F_LRO; 1938 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1939 } 1940 1941 return features; 1942 } 1943 1944 static int netvsc_set_features(struct net_device *ndev, 1945 netdev_features_t features) 1946 { 1947 netdev_features_t change = features ^ ndev->features; 1948 struct net_device_context *ndevctx = netdev_priv(ndev); 1949 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1950 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1951 struct ndis_offload_params offloads; 1952 int ret = 0; 1953 1954 if (!nvdev || nvdev->destroy) 1955 return -ENODEV; 1956 1957 if (!(change & NETIF_F_LRO)) 1958 goto syncvf; 1959 1960 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1961 1962 if (features & NETIF_F_LRO) { 1963 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1964 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1965 } else { 1966 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1967 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1968 } 1969 1970 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1971 1972 if (ret) { 1973 features ^= NETIF_F_LRO; 1974 ndev->features = features; 1975 } 1976 1977 syncvf: 1978 if (!vf_netdev) 1979 return ret; 1980 1981 vf_netdev->wanted_features = features; 1982 netdev_update_features(vf_netdev); 1983 1984 return ret; 1985 } 1986 1987 static int netvsc_get_regs_len(struct net_device *netdev) 1988 { 1989 return VRSS_SEND_TAB_SIZE * sizeof(u32); 1990 } 1991 1992 static void netvsc_get_regs(struct net_device *netdev, 1993 struct ethtool_regs *regs, void *p) 1994 { 1995 struct net_device_context *ndc = netdev_priv(netdev); 1996 u32 *regs_buff = p; 1997 1998 /* increase the version, if buffer format is changed. */ 1999 regs->version = 1; 2000 2001 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); 2002 } 2003 2004 static u32 netvsc_get_msglevel(struct net_device *ndev) 2005 { 2006 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2007 2008 return ndev_ctx->msg_enable; 2009 } 2010 2011 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 2012 { 2013 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2014 2015 ndev_ctx->msg_enable = val; 2016 } 2017 2018 static const struct ethtool_ops ethtool_ops = { 2019 .get_drvinfo = netvsc_get_drvinfo, 2020 .get_regs_len = netvsc_get_regs_len, 2021 .get_regs = netvsc_get_regs, 2022 .get_msglevel = netvsc_get_msglevel, 2023 .set_msglevel = netvsc_set_msglevel, 2024 .get_link = ethtool_op_get_link, 2025 .get_ethtool_stats = netvsc_get_ethtool_stats, 2026 .get_sset_count = netvsc_get_sset_count, 2027 .get_strings = netvsc_get_strings, 2028 .get_channels = netvsc_get_channels, 2029 .set_channels = netvsc_set_channels, 2030 .get_ts_info = ethtool_op_get_ts_info, 2031 .get_rxnfc = netvsc_get_rxnfc, 2032 .set_rxnfc = netvsc_set_rxnfc, 2033 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 2034 .get_rxfh_indir_size = netvsc_rss_indir_size, 2035 .get_rxfh = netvsc_get_rxfh, 2036 .set_rxfh = netvsc_set_rxfh, 2037 .get_link_ksettings = netvsc_get_link_ksettings, 2038 .set_link_ksettings = netvsc_set_link_ksettings, 2039 .get_ringparam = netvsc_get_ringparam, 2040 .set_ringparam = netvsc_set_ringparam, 2041 }; 2042 2043 static const struct net_device_ops device_ops = { 2044 .ndo_open = netvsc_open, 2045 .ndo_stop = netvsc_close, 2046 .ndo_start_xmit = netvsc_start_xmit, 2047 .ndo_change_rx_flags = netvsc_change_rx_flags, 2048 .ndo_set_rx_mode = netvsc_set_rx_mode, 2049 .ndo_fix_features = netvsc_fix_features, 2050 .ndo_set_features = netvsc_set_features, 2051 .ndo_change_mtu = netvsc_change_mtu, 2052 .ndo_validate_addr = eth_validate_addr, 2053 .ndo_set_mac_address = netvsc_set_mac_addr, 2054 .ndo_select_queue = netvsc_select_queue, 2055 .ndo_get_stats64 = netvsc_get_stats64, 2056 .ndo_bpf = netvsc_bpf, 2057 }; 2058 2059 /* 2060 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 2061 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 2062 * present send GARP packet to network peers with netif_notify_peers(). 2063 */ 2064 static void netvsc_link_change(struct work_struct *w) 2065 { 2066 struct net_device_context *ndev_ctx = 2067 container_of(w, struct net_device_context, dwork.work); 2068 struct hv_device *device_obj = ndev_ctx->device_ctx; 2069 struct net_device *net = hv_get_drvdata(device_obj); 2070 unsigned long flags, next_reconfig, delay; 2071 struct netvsc_reconfig *event = NULL; 2072 struct netvsc_device *net_device; 2073 struct rndis_device *rdev; 2074 bool reschedule = false; 2075 2076 /* if changes are happening, comeback later */ 2077 if (!rtnl_trylock()) { 2078 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2079 return; 2080 } 2081 2082 net_device = rtnl_dereference(ndev_ctx->nvdev); 2083 if (!net_device) 2084 goto out_unlock; 2085 2086 rdev = net_device->extension; 2087 2088 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2089 if (time_is_after_jiffies(next_reconfig)) { 2090 /* link_watch only sends one notification with current state 2091 * per second, avoid doing reconfig more frequently. Handle 2092 * wrap around. 2093 */ 2094 delay = next_reconfig - jiffies; 2095 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2096 schedule_delayed_work(&ndev_ctx->dwork, delay); 2097 goto out_unlock; 2098 } 2099 ndev_ctx->last_reconfig = jiffies; 2100 2101 spin_lock_irqsave(&ndev_ctx->lock, flags); 2102 if (!list_empty(&ndev_ctx->reconfig_events)) { 2103 event = list_first_entry(&ndev_ctx->reconfig_events, 2104 struct netvsc_reconfig, list); 2105 list_del(&event->list); 2106 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2107 } 2108 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2109 2110 if (!event) 2111 goto out_unlock; 2112 2113 switch (event->event) { 2114 /* Only the following events are possible due to the check in 2115 * netvsc_linkstatus_callback() 2116 */ 2117 case RNDIS_STATUS_MEDIA_CONNECT: 2118 if (rdev->link_state) { 2119 rdev->link_state = false; 2120 netif_carrier_on(net); 2121 netvsc_tx_enable(net_device, net); 2122 } else { 2123 __netdev_notify_peers(net); 2124 } 2125 kfree(event); 2126 break; 2127 case RNDIS_STATUS_MEDIA_DISCONNECT: 2128 if (!rdev->link_state) { 2129 rdev->link_state = true; 2130 netif_carrier_off(net); 2131 netvsc_tx_disable(net_device, net); 2132 } 2133 kfree(event); 2134 break; 2135 case RNDIS_STATUS_NETWORK_CHANGE: 2136 /* Only makes sense if carrier is present */ 2137 if (!rdev->link_state) { 2138 rdev->link_state = true; 2139 netif_carrier_off(net); 2140 netvsc_tx_disable(net_device, net); 2141 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2142 spin_lock_irqsave(&ndev_ctx->lock, flags); 2143 list_add(&event->list, &ndev_ctx->reconfig_events); 2144 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2145 reschedule = true; 2146 } 2147 break; 2148 } 2149 2150 rtnl_unlock(); 2151 2152 /* link_watch only sends one notification with current state per 2153 * second, handle next reconfig event in 2 seconds. 2154 */ 2155 if (reschedule) 2156 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2157 2158 return; 2159 2160 out_unlock: 2161 rtnl_unlock(); 2162 } 2163 2164 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2165 { 2166 struct net_device_context *net_device_ctx; 2167 struct net_device *dev; 2168 2169 dev = netdev_master_upper_dev_get(vf_netdev); 2170 if (!dev || dev->netdev_ops != &device_ops) 2171 return NULL; /* not a netvsc device */ 2172 2173 net_device_ctx = netdev_priv(dev); 2174 if (!rtnl_dereference(net_device_ctx->nvdev)) 2175 return NULL; /* device is removed */ 2176 2177 return dev; 2178 } 2179 2180 /* Called when VF is injecting data into network stack. 2181 * Change the associated network device from VF to netvsc. 2182 * note: already called with rcu_read_lock 2183 */ 2184 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2185 { 2186 struct sk_buff *skb = *pskb; 2187 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2188 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2189 struct netvsc_vf_pcpu_stats *pcpu_stats 2190 = this_cpu_ptr(ndev_ctx->vf_stats); 2191 2192 skb = skb_share_check(skb, GFP_ATOMIC); 2193 if (unlikely(!skb)) 2194 return RX_HANDLER_CONSUMED; 2195 2196 *pskb = skb; 2197 2198 skb->dev = ndev; 2199 2200 u64_stats_update_begin(&pcpu_stats->syncp); 2201 pcpu_stats->rx_packets++; 2202 pcpu_stats->rx_bytes += skb->len; 2203 u64_stats_update_end(&pcpu_stats->syncp); 2204 2205 return RX_HANDLER_ANOTHER; 2206 } 2207 2208 static int netvsc_vf_join(struct net_device *vf_netdev, 2209 struct net_device *ndev) 2210 { 2211 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2212 int ret; 2213 2214 ret = netdev_rx_handler_register(vf_netdev, 2215 netvsc_vf_handle_frame, ndev); 2216 if (ret != 0) { 2217 netdev_err(vf_netdev, 2218 "can not register netvsc VF receive handler (err = %d)\n", 2219 ret); 2220 goto rx_handler_failed; 2221 } 2222 2223 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2224 NULL, NULL, NULL); 2225 if (ret != 0) { 2226 netdev_err(vf_netdev, 2227 "can not set master device %s (err = %d)\n", 2228 ndev->name, ret); 2229 goto upper_link_failed; 2230 } 2231 2232 /* set slave flag before open to prevent IPv6 addrconf */ 2233 vf_netdev->flags |= IFF_SLAVE; 2234 2235 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2236 2237 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2238 2239 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2240 return 0; 2241 2242 upper_link_failed: 2243 netdev_rx_handler_unregister(vf_netdev); 2244 rx_handler_failed: 2245 return ret; 2246 } 2247 2248 static void __netvsc_vf_setup(struct net_device *ndev, 2249 struct net_device *vf_netdev) 2250 { 2251 int ret; 2252 2253 /* Align MTU of VF with master */ 2254 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2255 if (ret) 2256 netdev_warn(vf_netdev, 2257 "unable to change mtu to %u\n", ndev->mtu); 2258 2259 /* set multicast etc flags on VF */ 2260 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2261 2262 /* sync address list from ndev to VF */ 2263 netif_addr_lock_bh(ndev); 2264 dev_uc_sync(vf_netdev, ndev); 2265 dev_mc_sync(vf_netdev, ndev); 2266 netif_addr_unlock_bh(ndev); 2267 2268 if (netif_running(ndev)) { 2269 ret = dev_open(vf_netdev, NULL); 2270 if (ret) 2271 netdev_warn(vf_netdev, 2272 "unable to open: %d\n", ret); 2273 } 2274 } 2275 2276 /* Setup VF as slave of the synthetic device. 2277 * Runs in workqueue to avoid recursion in netlink callbacks. 2278 */ 2279 static void netvsc_vf_setup(struct work_struct *w) 2280 { 2281 struct net_device_context *ndev_ctx 2282 = container_of(w, struct net_device_context, vf_takeover.work); 2283 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2284 struct net_device *vf_netdev; 2285 2286 if (!rtnl_trylock()) { 2287 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2288 return; 2289 } 2290 2291 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2292 if (vf_netdev) 2293 __netvsc_vf_setup(ndev, vf_netdev); 2294 2295 rtnl_unlock(); 2296 } 2297 2298 /* Find netvsc by VF serial number. 2299 * The PCI hyperv controller records the serial number as the slot kobj name. 2300 */ 2301 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2302 { 2303 struct device *parent = vf_netdev->dev.parent; 2304 struct net_device_context *ndev_ctx; 2305 struct pci_dev *pdev; 2306 u32 serial; 2307 2308 if (!parent || !dev_is_pci(parent)) 2309 return NULL; /* not a PCI device */ 2310 2311 pdev = to_pci_dev(parent); 2312 if (!pdev->slot) { 2313 netdev_notice(vf_netdev, "no PCI slot information\n"); 2314 return NULL; 2315 } 2316 2317 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2318 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2319 pci_slot_name(pdev->slot)); 2320 return NULL; 2321 } 2322 2323 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2324 if (!ndev_ctx->vf_alloc) 2325 continue; 2326 2327 if (ndev_ctx->vf_serial == serial) 2328 return hv_get_drvdata(ndev_ctx->device_ctx); 2329 } 2330 2331 netdev_notice(vf_netdev, 2332 "no netdev found for vf serial:%u\n", serial); 2333 return NULL; 2334 } 2335 2336 static int netvsc_register_vf(struct net_device *vf_netdev) 2337 { 2338 struct net_device_context *net_device_ctx; 2339 struct netvsc_device *netvsc_dev; 2340 struct bpf_prog *prog; 2341 struct net_device *ndev; 2342 int ret; 2343 2344 if (vf_netdev->addr_len != ETH_ALEN) 2345 return NOTIFY_DONE; 2346 2347 ndev = get_netvsc_byslot(vf_netdev); 2348 if (!ndev) 2349 return NOTIFY_DONE; 2350 2351 net_device_ctx = netdev_priv(ndev); 2352 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2353 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2354 return NOTIFY_DONE; 2355 2356 /* if synthetic interface is a different namespace, 2357 * then move the VF to that namespace; join will be 2358 * done again in that context. 2359 */ 2360 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2361 ret = dev_change_net_namespace(vf_netdev, 2362 dev_net(ndev), "eth%d"); 2363 if (ret) 2364 netdev_err(vf_netdev, 2365 "could not move to same namespace as %s: %d\n", 2366 ndev->name, ret); 2367 else 2368 netdev_info(vf_netdev, 2369 "VF moved to namespace with: %s\n", 2370 ndev->name); 2371 return NOTIFY_DONE; 2372 } 2373 2374 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2375 2376 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2377 return NOTIFY_DONE; 2378 2379 dev_hold(vf_netdev); 2380 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2381 2382 vf_netdev->wanted_features = ndev->features; 2383 netdev_update_features(vf_netdev); 2384 2385 prog = netvsc_xdp_get(netvsc_dev); 2386 netvsc_vf_setxdp(vf_netdev, prog); 2387 2388 return NOTIFY_OK; 2389 } 2390 2391 /* Change the data path when VF UP/DOWN/CHANGE are detected. 2392 * 2393 * Typically a UP or DOWN event is followed by a CHANGE event, so 2394 * net_device_ctx->data_path_is_vf is used to cache the current data path 2395 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate 2396 * message. 2397 * 2398 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network 2399 * interface, there is only the CHANGE event and no UP or DOWN event. 2400 */ 2401 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event) 2402 { 2403 struct net_device_context *net_device_ctx; 2404 struct netvsc_device *netvsc_dev; 2405 struct net_device *ndev; 2406 bool vf_is_up = false; 2407 2408 if (event != NETDEV_GOING_DOWN) 2409 vf_is_up = netif_running(vf_netdev); 2410 2411 ndev = get_netvsc_byref(vf_netdev); 2412 if (!ndev) 2413 return NOTIFY_DONE; 2414 2415 net_device_ctx = netdev_priv(ndev); 2416 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2417 if (!netvsc_dev) 2418 return NOTIFY_DONE; 2419 2420 if (net_device_ctx->data_path_is_vf == vf_is_up) 2421 return NOTIFY_OK; 2422 2423 netvsc_switch_datapath(ndev, vf_is_up); 2424 netdev_info(ndev, "Data path switched %s VF: %s\n", 2425 vf_is_up ? "to" : "from", vf_netdev->name); 2426 2427 return NOTIFY_OK; 2428 } 2429 2430 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2431 { 2432 struct net_device *ndev; 2433 struct net_device_context *net_device_ctx; 2434 2435 ndev = get_netvsc_byref(vf_netdev); 2436 if (!ndev) 2437 return NOTIFY_DONE; 2438 2439 net_device_ctx = netdev_priv(ndev); 2440 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2441 2442 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2443 2444 netvsc_vf_setxdp(vf_netdev, NULL); 2445 2446 netdev_rx_handler_unregister(vf_netdev); 2447 netdev_upper_dev_unlink(vf_netdev, ndev); 2448 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2449 dev_put(vf_netdev); 2450 2451 return NOTIFY_OK; 2452 } 2453 2454 static int netvsc_probe(struct hv_device *dev, 2455 const struct hv_vmbus_device_id *dev_id) 2456 { 2457 struct net_device *net = NULL; 2458 struct net_device_context *net_device_ctx; 2459 struct netvsc_device_info *device_info = NULL; 2460 struct netvsc_device *nvdev; 2461 int ret = -ENOMEM; 2462 2463 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2464 VRSS_CHANNEL_MAX); 2465 if (!net) 2466 goto no_net; 2467 2468 netif_carrier_off(net); 2469 2470 netvsc_init_settings(net); 2471 2472 net_device_ctx = netdev_priv(net); 2473 net_device_ctx->device_ctx = dev; 2474 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2475 if (netif_msg_probe(net_device_ctx)) 2476 netdev_dbg(net, "netvsc msg_enable: %d\n", 2477 net_device_ctx->msg_enable); 2478 2479 hv_set_drvdata(dev, net); 2480 2481 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2482 2483 spin_lock_init(&net_device_ctx->lock); 2484 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2485 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2486 2487 net_device_ctx->vf_stats 2488 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2489 if (!net_device_ctx->vf_stats) 2490 goto no_stats; 2491 2492 net->netdev_ops = &device_ops; 2493 net->ethtool_ops = ðtool_ops; 2494 SET_NETDEV_DEV(net, &dev->device); 2495 2496 /* We always need headroom for rndis header */ 2497 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2498 2499 /* Initialize the number of queues to be 1, we may change it if more 2500 * channels are offered later. 2501 */ 2502 netif_set_real_num_tx_queues(net, 1); 2503 netif_set_real_num_rx_queues(net, 1); 2504 2505 /* Notify the netvsc driver of the new device */ 2506 device_info = netvsc_devinfo_get(NULL); 2507 2508 if (!device_info) { 2509 ret = -ENOMEM; 2510 goto devinfo_failed; 2511 } 2512 2513 nvdev = rndis_filter_device_add(dev, device_info); 2514 if (IS_ERR(nvdev)) { 2515 ret = PTR_ERR(nvdev); 2516 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2517 goto rndis_failed; 2518 } 2519 2520 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2521 2522 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2523 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2524 * all subchannels to show up, but that may not happen because 2525 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2526 * -> ... -> device_add() -> ... -> __device_attach() can't get 2527 * the device lock, so all the subchannels can't be processed -- 2528 * finally netvsc_subchan_work() hangs forever. 2529 */ 2530 rtnl_lock(); 2531 2532 if (nvdev->num_chn > 1) 2533 schedule_work(&nvdev->subchan_work); 2534 2535 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2536 net->features = net->hw_features | 2537 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2538 NETIF_F_HW_VLAN_CTAG_RX; 2539 net->vlan_features = net->features; 2540 2541 netdev_lockdep_set_classes(net); 2542 2543 /* MTU range: 68 - 1500 or 65521 */ 2544 net->min_mtu = NETVSC_MTU_MIN; 2545 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2546 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2547 else 2548 net->max_mtu = ETH_DATA_LEN; 2549 2550 nvdev->tx_disable = false; 2551 2552 ret = register_netdevice(net); 2553 if (ret != 0) { 2554 pr_err("Unable to register netdev.\n"); 2555 goto register_failed; 2556 } 2557 2558 list_add(&net_device_ctx->list, &netvsc_dev_list); 2559 rtnl_unlock(); 2560 2561 netvsc_devinfo_put(device_info); 2562 return 0; 2563 2564 register_failed: 2565 rtnl_unlock(); 2566 rndis_filter_device_remove(dev, nvdev); 2567 rndis_failed: 2568 netvsc_devinfo_put(device_info); 2569 devinfo_failed: 2570 free_percpu(net_device_ctx->vf_stats); 2571 no_stats: 2572 hv_set_drvdata(dev, NULL); 2573 free_netdev(net); 2574 no_net: 2575 return ret; 2576 } 2577 2578 static int netvsc_remove(struct hv_device *dev) 2579 { 2580 struct net_device_context *ndev_ctx; 2581 struct net_device *vf_netdev, *net; 2582 struct netvsc_device *nvdev; 2583 2584 net = hv_get_drvdata(dev); 2585 if (net == NULL) { 2586 dev_err(&dev->device, "No net device to remove\n"); 2587 return 0; 2588 } 2589 2590 ndev_ctx = netdev_priv(net); 2591 2592 cancel_delayed_work_sync(&ndev_ctx->dwork); 2593 2594 rtnl_lock(); 2595 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2596 if (nvdev) { 2597 cancel_work_sync(&nvdev->subchan_work); 2598 netvsc_xdp_set(net, NULL, NULL, nvdev); 2599 } 2600 2601 /* 2602 * Call to the vsc driver to let it know that the device is being 2603 * removed. Also blocks mtu and channel changes. 2604 */ 2605 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2606 if (vf_netdev) 2607 netvsc_unregister_vf(vf_netdev); 2608 2609 if (nvdev) 2610 rndis_filter_device_remove(dev, nvdev); 2611 2612 unregister_netdevice(net); 2613 list_del(&ndev_ctx->list); 2614 2615 rtnl_unlock(); 2616 2617 hv_set_drvdata(dev, NULL); 2618 2619 free_percpu(ndev_ctx->vf_stats); 2620 free_netdev(net); 2621 return 0; 2622 } 2623 2624 static int netvsc_suspend(struct hv_device *dev) 2625 { 2626 struct net_device_context *ndev_ctx; 2627 struct netvsc_device *nvdev; 2628 struct net_device *net; 2629 int ret; 2630 2631 net = hv_get_drvdata(dev); 2632 2633 ndev_ctx = netdev_priv(net); 2634 cancel_delayed_work_sync(&ndev_ctx->dwork); 2635 2636 rtnl_lock(); 2637 2638 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2639 if (nvdev == NULL) { 2640 ret = -ENODEV; 2641 goto out; 2642 } 2643 2644 /* Save the current config info */ 2645 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2646 2647 ret = netvsc_detach(net, nvdev); 2648 out: 2649 rtnl_unlock(); 2650 2651 return ret; 2652 } 2653 2654 static int netvsc_resume(struct hv_device *dev) 2655 { 2656 struct net_device *net = hv_get_drvdata(dev); 2657 struct net_device_context *net_device_ctx; 2658 struct netvsc_device_info *device_info; 2659 int ret; 2660 2661 rtnl_lock(); 2662 2663 net_device_ctx = netdev_priv(net); 2664 2665 /* Reset the data path to the netvsc NIC before re-opening the vmbus 2666 * channel. Later netvsc_netdev_event() will switch the data path to 2667 * the VF upon the UP or CHANGE event. 2668 */ 2669 net_device_ctx->data_path_is_vf = false; 2670 device_info = net_device_ctx->saved_netvsc_dev_info; 2671 2672 ret = netvsc_attach(net, device_info); 2673 2674 netvsc_devinfo_put(device_info); 2675 net_device_ctx->saved_netvsc_dev_info = NULL; 2676 2677 rtnl_unlock(); 2678 2679 return ret; 2680 } 2681 static const struct hv_vmbus_device_id id_table[] = { 2682 /* Network guid */ 2683 { HV_NIC_GUID, }, 2684 { }, 2685 }; 2686 2687 MODULE_DEVICE_TABLE(vmbus, id_table); 2688 2689 /* The one and only one */ 2690 static struct hv_driver netvsc_drv = { 2691 .name = KBUILD_MODNAME, 2692 .id_table = id_table, 2693 .probe = netvsc_probe, 2694 .remove = netvsc_remove, 2695 .suspend = netvsc_suspend, 2696 .resume = netvsc_resume, 2697 .driver = { 2698 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2699 }, 2700 }; 2701 2702 /* 2703 * On Hyper-V, every VF interface is matched with a corresponding 2704 * synthetic interface. The synthetic interface is presented first 2705 * to the guest. When the corresponding VF instance is registered, 2706 * we will take care of switching the data path. 2707 */ 2708 static int netvsc_netdev_event(struct notifier_block *this, 2709 unsigned long event, void *ptr) 2710 { 2711 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2712 2713 /* Skip our own events */ 2714 if (event_dev->netdev_ops == &device_ops) 2715 return NOTIFY_DONE; 2716 2717 /* Avoid non-Ethernet type devices */ 2718 if (event_dev->type != ARPHRD_ETHER) 2719 return NOTIFY_DONE; 2720 2721 /* Avoid Vlan dev with same MAC registering as VF */ 2722 if (is_vlan_dev(event_dev)) 2723 return NOTIFY_DONE; 2724 2725 /* Avoid Bonding master dev with same MAC registering as VF */ 2726 if ((event_dev->priv_flags & IFF_BONDING) && 2727 (event_dev->flags & IFF_MASTER)) 2728 return NOTIFY_DONE; 2729 2730 switch (event) { 2731 case NETDEV_REGISTER: 2732 return netvsc_register_vf(event_dev); 2733 case NETDEV_UNREGISTER: 2734 return netvsc_unregister_vf(event_dev); 2735 case NETDEV_UP: 2736 case NETDEV_DOWN: 2737 case NETDEV_CHANGE: 2738 case NETDEV_GOING_DOWN: 2739 return netvsc_vf_changed(event_dev, event); 2740 default: 2741 return NOTIFY_DONE; 2742 } 2743 } 2744 2745 static struct notifier_block netvsc_netdev_notifier = { 2746 .notifier_call = netvsc_netdev_event, 2747 }; 2748 2749 static void __exit netvsc_drv_exit(void) 2750 { 2751 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2752 vmbus_driver_unregister(&netvsc_drv); 2753 } 2754 2755 static int __init netvsc_drv_init(void) 2756 { 2757 int ret; 2758 2759 if (ring_size < RING_SIZE_MIN) { 2760 ring_size = RING_SIZE_MIN; 2761 pr_info("Increased ring_size to %u (min allowed)\n", 2762 ring_size); 2763 } 2764 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2765 2766 ret = vmbus_driver_register(&netvsc_drv); 2767 if (ret) 2768 return ret; 2769 2770 register_netdevice_notifier(&netvsc_netdev_notifier); 2771 return 0; 2772 } 2773 2774 MODULE_LICENSE("GPL"); 2775 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2776 2777 module_init(netvsc_drv_init); 2778 module_exit(netvsc_drv_exit); 2779