xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision e8e507a8ac90d48053dfdea9d4855495b0204956)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30 
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 
38 #include "hyperv_net.h"
39 
40 #define RING_SIZE_MIN	64
41 #define RETRY_US_LO	5000
42 #define RETRY_US_HI	10000
43 #define RETRY_MAX	2000	/* >10 sec */
44 
45 #define LINKCHANGE_INT (2 * HZ)
46 #define VF_TAKEOVER_INT (HZ / 10)
47 
48 static unsigned int ring_size __ro_after_init = 128;
49 module_param(ring_size, uint, 0444);
50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51 unsigned int netvsc_ring_bytes __ro_after_init;
52 
53 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
54 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
55 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
56 				NETIF_MSG_TX_ERR;
57 
58 static int debug = -1;
59 module_param(debug, int, 0444);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61 
62 static LIST_HEAD(netvsc_dev_list);
63 
64 static void netvsc_change_rx_flags(struct net_device *net, int change)
65 {
66 	struct net_device_context *ndev_ctx = netdev_priv(net);
67 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
68 	int inc;
69 
70 	if (!vf_netdev)
71 		return;
72 
73 	if (change & IFF_PROMISC) {
74 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
75 		dev_set_promiscuity(vf_netdev, inc);
76 	}
77 
78 	if (change & IFF_ALLMULTI) {
79 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
80 		dev_set_allmulti(vf_netdev, inc);
81 	}
82 }
83 
84 static void netvsc_set_rx_mode(struct net_device *net)
85 {
86 	struct net_device_context *ndev_ctx = netdev_priv(net);
87 	struct net_device *vf_netdev;
88 	struct netvsc_device *nvdev;
89 
90 	rcu_read_lock();
91 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
92 	if (vf_netdev) {
93 		dev_uc_sync(vf_netdev, net);
94 		dev_mc_sync(vf_netdev, net);
95 	}
96 
97 	nvdev = rcu_dereference(ndev_ctx->nvdev);
98 	if (nvdev)
99 		rndis_filter_update(nvdev);
100 	rcu_read_unlock();
101 }
102 
103 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
104 			     struct net_device *ndev)
105 {
106 	nvscdev->tx_disable = false;
107 	virt_wmb(); /* ensure queue wake up mechanism is on */
108 
109 	netif_tx_wake_all_queues(ndev);
110 }
111 
112 static int netvsc_open(struct net_device *net)
113 {
114 	struct net_device_context *ndev_ctx = netdev_priv(net);
115 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117 	struct rndis_device *rdev;
118 	int ret = 0;
119 
120 	netif_carrier_off(net);
121 
122 	/* Open up the device */
123 	ret = rndis_filter_open(nvdev);
124 	if (ret != 0) {
125 		netdev_err(net, "unable to open device (ret %d).\n", ret);
126 		return ret;
127 	}
128 
129 	rdev = nvdev->extension;
130 	if (!rdev->link_state) {
131 		netif_carrier_on(net);
132 		netvsc_tx_enable(nvdev, net);
133 	}
134 
135 	if (vf_netdev) {
136 		/* Setting synthetic device up transparently sets
137 		 * slave as up. If open fails, then slave will be
138 		 * still be offline (and not used).
139 		 */
140 		ret = dev_open(vf_netdev, NULL);
141 		if (ret)
142 			netdev_warn(net,
143 				    "unable to open slave: %s: %d\n",
144 				    vf_netdev->name, ret);
145 	}
146 	return 0;
147 }
148 
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151 	unsigned int retry = 0;
152 	int i;
153 
154 	/* Ensure pending bytes in ring are read */
155 	for (;;) {
156 		u32 aread = 0;
157 
158 		for (i = 0; i < nvdev->num_chn; i++) {
159 			struct vmbus_channel *chn
160 				= nvdev->chan_table[i].channel;
161 
162 			if (!chn)
163 				continue;
164 
165 			/* make sure receive not running now */
166 			napi_synchronize(&nvdev->chan_table[i].napi);
167 
168 			aread = hv_get_bytes_to_read(&chn->inbound);
169 			if (aread)
170 				break;
171 
172 			aread = hv_get_bytes_to_read(&chn->outbound);
173 			if (aread)
174 				break;
175 		}
176 
177 		if (aread == 0)
178 			return 0;
179 
180 		if (++retry > RETRY_MAX)
181 			return -ETIMEDOUT;
182 
183 		usleep_range(RETRY_US_LO, RETRY_US_HI);
184 	}
185 }
186 
187 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
188 			      struct net_device *ndev)
189 {
190 	if (nvscdev) {
191 		nvscdev->tx_disable = true;
192 		virt_wmb(); /* ensure txq will not wake up after stop */
193 	}
194 
195 	netif_tx_disable(ndev);
196 }
197 
198 static int netvsc_close(struct net_device *net)
199 {
200 	struct net_device_context *net_device_ctx = netdev_priv(net);
201 	struct net_device *vf_netdev
202 		= rtnl_dereference(net_device_ctx->vf_netdev);
203 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
204 	int ret;
205 
206 	netvsc_tx_disable(nvdev, net);
207 
208 	/* No need to close rndis filter if it is removed already */
209 	if (!nvdev)
210 		return 0;
211 
212 	ret = rndis_filter_close(nvdev);
213 	if (ret != 0) {
214 		netdev_err(net, "unable to close device (ret %d).\n", ret);
215 		return ret;
216 	}
217 
218 	ret = netvsc_wait_until_empty(nvdev);
219 	if (ret)
220 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
221 
222 	if (vf_netdev)
223 		dev_close(vf_netdev);
224 
225 	return ret;
226 }
227 
228 static inline void *init_ppi_data(struct rndis_message *msg,
229 				  u32 ppi_size, u32 pkt_type)
230 {
231 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
232 	struct rndis_per_packet_info *ppi;
233 
234 	rndis_pkt->data_offset += ppi_size;
235 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
236 		+ rndis_pkt->per_pkt_info_len;
237 
238 	ppi->size = ppi_size;
239 	ppi->type = pkt_type;
240 	ppi->internal = 0;
241 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
242 
243 	rndis_pkt->per_pkt_info_len += ppi_size;
244 
245 	return ppi + 1;
246 }
247 
248 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
249  * packets. We can use ethtool to change UDP hash level when necessary.
250  */
251 static inline u32 netvsc_get_hash(
252 	struct sk_buff *skb,
253 	const struct net_device_context *ndc)
254 {
255 	struct flow_keys flow;
256 	u32 hash, pkt_proto = 0;
257 	static u32 hashrnd __read_mostly;
258 
259 	net_get_random_once(&hashrnd, sizeof(hashrnd));
260 
261 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
262 		return 0;
263 
264 	switch (flow.basic.ip_proto) {
265 	case IPPROTO_TCP:
266 		if (flow.basic.n_proto == htons(ETH_P_IP))
267 			pkt_proto = HV_TCP4_L4HASH;
268 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
269 			pkt_proto = HV_TCP6_L4HASH;
270 
271 		break;
272 
273 	case IPPROTO_UDP:
274 		if (flow.basic.n_proto == htons(ETH_P_IP))
275 			pkt_proto = HV_UDP4_L4HASH;
276 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277 			pkt_proto = HV_UDP6_L4HASH;
278 
279 		break;
280 	}
281 
282 	if (pkt_proto & ndc->l4_hash) {
283 		return skb_get_hash(skb);
284 	} else {
285 		if (flow.basic.n_proto == htons(ETH_P_IP))
286 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
287 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
288 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
289 		else
290 			return 0;
291 
292 		__skb_set_sw_hash(skb, hash, false);
293 	}
294 
295 	return hash;
296 }
297 
298 static inline int netvsc_get_tx_queue(struct net_device *ndev,
299 				      struct sk_buff *skb, int old_idx)
300 {
301 	const struct net_device_context *ndc = netdev_priv(ndev);
302 	struct sock *sk = skb->sk;
303 	int q_idx;
304 
305 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
306 			      (VRSS_SEND_TAB_SIZE - 1)];
307 
308 	/* If queue index changed record the new value */
309 	if (q_idx != old_idx &&
310 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
311 		sk_tx_queue_set(sk, q_idx);
312 
313 	return q_idx;
314 }
315 
316 /*
317  * Select queue for transmit.
318  *
319  * If a valid queue has already been assigned, then use that.
320  * Otherwise compute tx queue based on hash and the send table.
321  *
322  * This is basically similar to default (netdev_pick_tx) with the added step
323  * of using the host send_table when no other queue has been assigned.
324  *
325  * TODO support XPS - but get_xps_queue not exported
326  */
327 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
328 {
329 	int q_idx = sk_tx_queue_get(skb->sk);
330 
331 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
332 		/* If forwarding a packet, we use the recorded queue when
333 		 * available for better cache locality.
334 		 */
335 		if (skb_rx_queue_recorded(skb))
336 			q_idx = skb_get_rx_queue(skb);
337 		else
338 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
339 	}
340 
341 	return q_idx;
342 }
343 
344 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
345 			       struct net_device *sb_dev)
346 {
347 	struct net_device_context *ndc = netdev_priv(ndev);
348 	struct net_device *vf_netdev;
349 	u16 txq;
350 
351 	rcu_read_lock();
352 	vf_netdev = rcu_dereference(ndc->vf_netdev);
353 	if (vf_netdev) {
354 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
355 
356 		if (vf_ops->ndo_select_queue)
357 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
358 		else
359 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
360 
361 		/* Record the queue selected by VF so that it can be
362 		 * used for common case where VF has more queues than
363 		 * the synthetic device.
364 		 */
365 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
366 	} else {
367 		txq = netvsc_pick_tx(ndev, skb);
368 	}
369 	rcu_read_unlock();
370 
371 	while (txq >= ndev->real_num_tx_queues)
372 		txq -= ndev->real_num_tx_queues;
373 
374 	return txq;
375 }
376 
377 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
378 		       struct hv_page_buffer *pb)
379 {
380 	int j = 0;
381 
382 	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
383 	offset = offset & ~HV_HYP_PAGE_MASK;
384 
385 	while (len > 0) {
386 		unsigned long bytes;
387 
388 		bytes = HV_HYP_PAGE_SIZE - offset;
389 		if (bytes > len)
390 			bytes = len;
391 		pb[j].pfn = hvpfn;
392 		pb[j].offset = offset;
393 		pb[j].len = bytes;
394 
395 		offset += bytes;
396 		len -= bytes;
397 
398 		if (offset == HV_HYP_PAGE_SIZE && len) {
399 			hvpfn++;
400 			offset = 0;
401 			j++;
402 		}
403 	}
404 
405 	return j + 1;
406 }
407 
408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
409 			   struct hv_netvsc_packet *packet,
410 			   struct hv_page_buffer *pb)
411 {
412 	u32 slots_used = 0;
413 	char *data = skb->data;
414 	int frags = skb_shinfo(skb)->nr_frags;
415 	int i;
416 
417 	/* The packet is laid out thus:
418 	 * 1. hdr: RNDIS header and PPI
419 	 * 2. skb linear data
420 	 * 3. skb fragment data
421 	 */
422 	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
423 				  offset_in_hvpage(hdr),
424 				  len,
425 				  &pb[slots_used]);
426 
427 	packet->rmsg_size = len;
428 	packet->rmsg_pgcnt = slots_used;
429 
430 	slots_used += fill_pg_buf(virt_to_hvpfn(data),
431 				  offset_in_hvpage(data),
432 				  skb_headlen(skb),
433 				  &pb[slots_used]);
434 
435 	for (i = 0; i < frags; i++) {
436 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437 
438 		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
439 					  skb_frag_off(frag),
440 					  skb_frag_size(frag),
441 					  &pb[slots_used]);
442 	}
443 	return slots_used;
444 }
445 
446 static int count_skb_frag_slots(struct sk_buff *skb)
447 {
448 	int i, frags = skb_shinfo(skb)->nr_frags;
449 	int pages = 0;
450 
451 	for (i = 0; i < frags; i++) {
452 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
453 		unsigned long size = skb_frag_size(frag);
454 		unsigned long offset = skb_frag_off(frag);
455 
456 		/* Skip unused frames from start of page */
457 		offset &= ~HV_HYP_PAGE_MASK;
458 		pages += HVPFN_UP(offset + size);
459 	}
460 	return pages;
461 }
462 
463 static int netvsc_get_slots(struct sk_buff *skb)
464 {
465 	char *data = skb->data;
466 	unsigned int offset = offset_in_hvpage(data);
467 	unsigned int len = skb_headlen(skb);
468 	int slots;
469 	int frag_slots;
470 
471 	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
472 	frag_slots = count_skb_frag_slots(skb);
473 	return slots + frag_slots;
474 }
475 
476 static u32 net_checksum_info(struct sk_buff *skb)
477 {
478 	if (skb->protocol == htons(ETH_P_IP)) {
479 		struct iphdr *ip = ip_hdr(skb);
480 
481 		if (ip->protocol == IPPROTO_TCP)
482 			return TRANSPORT_INFO_IPV4_TCP;
483 		else if (ip->protocol == IPPROTO_UDP)
484 			return TRANSPORT_INFO_IPV4_UDP;
485 	} else {
486 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
487 
488 		if (ip6->nexthdr == IPPROTO_TCP)
489 			return TRANSPORT_INFO_IPV6_TCP;
490 		else if (ip6->nexthdr == IPPROTO_UDP)
491 			return TRANSPORT_INFO_IPV6_UDP;
492 	}
493 
494 	return TRANSPORT_INFO_NOT_IP;
495 }
496 
497 /* Send skb on the slave VF device. */
498 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
499 			  struct sk_buff *skb)
500 {
501 	struct net_device_context *ndev_ctx = netdev_priv(net);
502 	unsigned int len = skb->len;
503 	int rc;
504 
505 	skb->dev = vf_netdev;
506 	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
507 
508 	rc = dev_queue_xmit(skb);
509 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
510 		struct netvsc_vf_pcpu_stats *pcpu_stats
511 			= this_cpu_ptr(ndev_ctx->vf_stats);
512 
513 		u64_stats_update_begin(&pcpu_stats->syncp);
514 		pcpu_stats->tx_packets++;
515 		pcpu_stats->tx_bytes += len;
516 		u64_stats_update_end(&pcpu_stats->syncp);
517 	} else {
518 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
519 	}
520 
521 	return rc;
522 }
523 
524 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
525 {
526 	struct net_device_context *net_device_ctx = netdev_priv(net);
527 	struct hv_netvsc_packet *packet = NULL;
528 	int ret;
529 	unsigned int num_data_pgs;
530 	struct rndis_message *rndis_msg;
531 	struct net_device *vf_netdev;
532 	u32 rndis_msg_size;
533 	u32 hash;
534 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
535 
536 	/* If VF is present and up then redirect packets to it.
537 	 * Skip the VF if it is marked down or has no carrier.
538 	 * If netpoll is in uses, then VF can not be used either.
539 	 */
540 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
541 	if (vf_netdev && netif_running(vf_netdev) &&
542 	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
543 	    net_device_ctx->data_path_is_vf)
544 		return netvsc_vf_xmit(net, vf_netdev, skb);
545 
546 	/* We will atmost need two pages to describe the rndis
547 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
548 	 * of pages in a single packet. If skb is scattered around
549 	 * more pages we try linearizing it.
550 	 */
551 
552 	num_data_pgs = netvsc_get_slots(skb) + 2;
553 
554 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
555 		++net_device_ctx->eth_stats.tx_scattered;
556 
557 		if (skb_linearize(skb))
558 			goto no_memory;
559 
560 		num_data_pgs = netvsc_get_slots(skb) + 2;
561 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
562 			++net_device_ctx->eth_stats.tx_too_big;
563 			goto drop;
564 		}
565 	}
566 
567 	/*
568 	 * Place the rndis header in the skb head room and
569 	 * the skb->cb will be used for hv_netvsc_packet
570 	 * structure.
571 	 */
572 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
573 	if (ret)
574 		goto no_memory;
575 
576 	/* Use the skb control buffer for building up the packet */
577 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
578 			sizeof_field(struct sk_buff, cb));
579 	packet = (struct hv_netvsc_packet *)skb->cb;
580 
581 	packet->q_idx = skb_get_queue_mapping(skb);
582 
583 	packet->total_data_buflen = skb->len;
584 	packet->total_bytes = skb->len;
585 	packet->total_packets = 1;
586 
587 	rndis_msg = (struct rndis_message *)skb->head;
588 
589 	/* Add the rndis header */
590 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
591 	rndis_msg->msg_len = packet->total_data_buflen;
592 
593 	rndis_msg->msg.pkt = (struct rndis_packet) {
594 		.data_offset = sizeof(struct rndis_packet),
595 		.data_len = packet->total_data_buflen,
596 		.per_pkt_info_offset = sizeof(struct rndis_packet),
597 	};
598 
599 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
600 
601 	hash = skb_get_hash_raw(skb);
602 	if (hash != 0 && net->real_num_tx_queues > 1) {
603 		u32 *hash_info;
604 
605 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
606 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
607 					  NBL_HASH_VALUE);
608 		*hash_info = hash;
609 	}
610 
611 	/* When using AF_PACKET we need to drop VLAN header from
612 	 * the frame and update the SKB to allow the HOST OS
613 	 * to transmit the 802.1Q packet
614 	 */
615 	if (skb->protocol == htons(ETH_P_8021Q)) {
616 		u16 vlan_tci;
617 
618 		skb_reset_mac_header(skb);
619 		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
620 			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
621 				++net_device_ctx->eth_stats.vlan_error;
622 				goto drop;
623 			}
624 
625 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
626 			/* Update the NDIS header pkt lengths */
627 			packet->total_data_buflen -= VLAN_HLEN;
628 			packet->total_bytes -= VLAN_HLEN;
629 			rndis_msg->msg_len = packet->total_data_buflen;
630 			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
631 		}
632 	}
633 
634 	if (skb_vlan_tag_present(skb)) {
635 		struct ndis_pkt_8021q_info *vlan;
636 
637 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
638 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
639 				     IEEE_8021Q_INFO);
640 
641 		vlan->value = 0;
642 		vlan->vlanid = skb_vlan_tag_get_id(skb);
643 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
644 		vlan->pri = skb_vlan_tag_get_prio(skb);
645 	}
646 
647 	if (skb_is_gso(skb)) {
648 		struct ndis_tcp_lso_info *lso_info;
649 
650 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
651 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
652 					 TCP_LARGESEND_PKTINFO);
653 
654 		lso_info->value = 0;
655 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
656 		if (skb->protocol == htons(ETH_P_IP)) {
657 			lso_info->lso_v2_transmit.ip_version =
658 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
659 			ip_hdr(skb)->tot_len = 0;
660 			ip_hdr(skb)->check = 0;
661 			tcp_hdr(skb)->check =
662 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
663 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
664 		} else {
665 			lso_info->lso_v2_transmit.ip_version =
666 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
667 			tcp_v6_gso_csum_prep(skb);
668 		}
669 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
670 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
671 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
672 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
673 			struct ndis_tcp_ip_checksum_info *csum_info;
674 
675 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
676 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
677 						  TCPIP_CHKSUM_PKTINFO);
678 
679 			csum_info->value = 0;
680 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
681 
682 			if (skb->protocol == htons(ETH_P_IP)) {
683 				csum_info->transmit.is_ipv4 = 1;
684 
685 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
686 					csum_info->transmit.tcp_checksum = 1;
687 				else
688 					csum_info->transmit.udp_checksum = 1;
689 			} else {
690 				csum_info->transmit.is_ipv6 = 1;
691 
692 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
693 					csum_info->transmit.tcp_checksum = 1;
694 				else
695 					csum_info->transmit.udp_checksum = 1;
696 			}
697 		} else {
698 			/* Can't do offload of this type of checksum */
699 			if (skb_checksum_help(skb))
700 				goto drop;
701 		}
702 	}
703 
704 	/* Start filling in the page buffers with the rndis hdr */
705 	rndis_msg->msg_len += rndis_msg_size;
706 	packet->total_data_buflen = rndis_msg->msg_len;
707 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
708 					       skb, packet, pb);
709 
710 	/* timestamp packet in software */
711 	skb_tx_timestamp(skb);
712 
713 	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
714 	if (likely(ret == 0))
715 		return NETDEV_TX_OK;
716 
717 	if (ret == -EAGAIN) {
718 		++net_device_ctx->eth_stats.tx_busy;
719 		return NETDEV_TX_BUSY;
720 	}
721 
722 	if (ret == -ENOSPC)
723 		++net_device_ctx->eth_stats.tx_no_space;
724 
725 drop:
726 	dev_kfree_skb_any(skb);
727 	net->stats.tx_dropped++;
728 
729 	return NETDEV_TX_OK;
730 
731 no_memory:
732 	++net_device_ctx->eth_stats.tx_no_memory;
733 	goto drop;
734 }
735 
736 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
737 				     struct net_device *ndev)
738 {
739 	return netvsc_xmit(skb, ndev, false);
740 }
741 
742 /*
743  * netvsc_linkstatus_callback - Link up/down notification
744  */
745 void netvsc_linkstatus_callback(struct net_device *net,
746 				struct rndis_message *resp)
747 {
748 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
749 	struct net_device_context *ndev_ctx = netdev_priv(net);
750 	struct netvsc_reconfig *event;
751 	unsigned long flags;
752 
753 	/* Ensure the packet is big enough to access its fields */
754 	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
755 		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
756 			   resp->msg_len);
757 		return;
758 	}
759 
760 	/* Update the physical link speed when changing to another vSwitch */
761 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
762 		u32 speed;
763 
764 		/* Validate status_buf_offset */
765 		if (indicate->status_buflen < sizeof(speed) ||
766 		    indicate->status_buf_offset < sizeof(*indicate) ||
767 		    resp->msg_len - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
768 		    resp->msg_len - RNDIS_HEADER_SIZE - indicate->status_buf_offset
769 				< indicate->status_buflen) {
770 			netdev_err(net, "invalid rndis_indicate_status packet\n");
771 			return;
772 		}
773 
774 		speed = *(u32 *)((void *)indicate
775 				 + indicate->status_buf_offset) / 10000;
776 		ndev_ctx->speed = speed;
777 		return;
778 	}
779 
780 	/* Handle these link change statuses below */
781 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
782 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
783 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
784 		return;
785 
786 	if (net->reg_state != NETREG_REGISTERED)
787 		return;
788 
789 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
790 	if (!event)
791 		return;
792 	event->event = indicate->status;
793 
794 	spin_lock_irqsave(&ndev_ctx->lock, flags);
795 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
796 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
797 
798 	schedule_delayed_work(&ndev_ctx->dwork, 0);
799 }
800 
801 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
802 {
803 	int rc;
804 
805 	skb->queue_mapping = skb_get_rx_queue(skb);
806 	__skb_push(skb, ETH_HLEN);
807 
808 	rc = netvsc_xmit(skb, ndev, true);
809 
810 	if (dev_xmit_complete(rc))
811 		return;
812 
813 	dev_kfree_skb_any(skb);
814 	ndev->stats.tx_dropped++;
815 }
816 
817 static void netvsc_comp_ipcsum(struct sk_buff *skb)
818 {
819 	struct iphdr *iph = (struct iphdr *)skb->data;
820 
821 	iph->check = 0;
822 	iph->check = ip_fast_csum(iph, iph->ihl);
823 }
824 
825 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
826 					     struct netvsc_channel *nvchan,
827 					     struct xdp_buff *xdp)
828 {
829 	struct napi_struct *napi = &nvchan->napi;
830 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
831 	const struct ndis_tcp_ip_checksum_info *csum_info =
832 						nvchan->rsc.csum_info;
833 	const u32 *hash_info = nvchan->rsc.hash_info;
834 	struct sk_buff *skb;
835 	void *xbuf = xdp->data_hard_start;
836 	int i;
837 
838 	if (xbuf) {
839 		unsigned int hdroom = xdp->data - xdp->data_hard_start;
840 		unsigned int xlen = xdp->data_end - xdp->data;
841 		unsigned int frag_size = xdp->frame_sz;
842 
843 		skb = build_skb(xbuf, frag_size);
844 
845 		if (!skb) {
846 			__free_page(virt_to_page(xbuf));
847 			return NULL;
848 		}
849 
850 		skb_reserve(skb, hdroom);
851 		skb_put(skb, xlen);
852 		skb->dev = napi->dev;
853 	} else {
854 		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
855 
856 		if (!skb)
857 			return NULL;
858 
859 		/* Copy to skb. This copy is needed here since the memory
860 		 * pointed by hv_netvsc_packet cannot be deallocated.
861 		 */
862 		for (i = 0; i < nvchan->rsc.cnt; i++)
863 			skb_put_data(skb, nvchan->rsc.data[i],
864 				     nvchan->rsc.len[i]);
865 	}
866 
867 	skb->protocol = eth_type_trans(skb, net);
868 
869 	/* skb is already created with CHECKSUM_NONE */
870 	skb_checksum_none_assert(skb);
871 
872 	/* Incoming packets may have IP header checksum verified by the host.
873 	 * They may not have IP header checksum computed after coalescing.
874 	 * We compute it here if the flags are set, because on Linux, the IP
875 	 * checksum is always checked.
876 	 */
877 	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
878 	    csum_info->receive.ip_checksum_succeeded &&
879 	    skb->protocol == htons(ETH_P_IP)) {
880 		/* Check that there is enough space to hold the IP header. */
881 		if (skb_headlen(skb) < sizeof(struct iphdr)) {
882 			kfree_skb(skb);
883 			return NULL;
884 		}
885 		netvsc_comp_ipcsum(skb);
886 	}
887 
888 	/* Do L4 checksum offload if enabled and present. */
889 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
890 		if (csum_info->receive.tcp_checksum_succeeded ||
891 		    csum_info->receive.udp_checksum_succeeded)
892 			skb->ip_summed = CHECKSUM_UNNECESSARY;
893 	}
894 
895 	if (hash_info && (net->features & NETIF_F_RXHASH))
896 		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
897 
898 	if (vlan) {
899 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
900 			(vlan->cfi ? VLAN_CFI_MASK : 0);
901 
902 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
903 				       vlan_tci);
904 	}
905 
906 	return skb;
907 }
908 
909 /*
910  * netvsc_recv_callback -  Callback when we receive a packet from the
911  * "wire" on the specified device.
912  */
913 int netvsc_recv_callback(struct net_device *net,
914 			 struct netvsc_device *net_device,
915 			 struct netvsc_channel *nvchan)
916 {
917 	struct net_device_context *net_device_ctx = netdev_priv(net);
918 	struct vmbus_channel *channel = nvchan->channel;
919 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
920 	struct sk_buff *skb;
921 	struct netvsc_stats *rx_stats = &nvchan->rx_stats;
922 	struct xdp_buff xdp;
923 	u32 act;
924 
925 	if (net->reg_state != NETREG_REGISTERED)
926 		return NVSP_STAT_FAIL;
927 
928 	act = netvsc_run_xdp(net, nvchan, &xdp);
929 
930 	if (act != XDP_PASS && act != XDP_TX) {
931 		u64_stats_update_begin(&rx_stats->syncp);
932 		rx_stats->xdp_drop++;
933 		u64_stats_update_end(&rx_stats->syncp);
934 
935 		return NVSP_STAT_SUCCESS; /* consumed by XDP */
936 	}
937 
938 	/* Allocate a skb - TODO direct I/O to pages? */
939 	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
940 
941 	if (unlikely(!skb)) {
942 		++net_device_ctx->eth_stats.rx_no_memory;
943 		return NVSP_STAT_FAIL;
944 	}
945 
946 	skb_record_rx_queue(skb, q_idx);
947 
948 	/*
949 	 * Even if injecting the packet, record the statistics
950 	 * on the synthetic device because modifying the VF device
951 	 * statistics will not work correctly.
952 	 */
953 	u64_stats_update_begin(&rx_stats->syncp);
954 	rx_stats->packets++;
955 	rx_stats->bytes += nvchan->rsc.pktlen;
956 
957 	if (skb->pkt_type == PACKET_BROADCAST)
958 		++rx_stats->broadcast;
959 	else if (skb->pkt_type == PACKET_MULTICAST)
960 		++rx_stats->multicast;
961 	u64_stats_update_end(&rx_stats->syncp);
962 
963 	if (act == XDP_TX) {
964 		netvsc_xdp_xmit(skb, net);
965 		return NVSP_STAT_SUCCESS;
966 	}
967 
968 	napi_gro_receive(&nvchan->napi, skb);
969 	return NVSP_STAT_SUCCESS;
970 }
971 
972 static void netvsc_get_drvinfo(struct net_device *net,
973 			       struct ethtool_drvinfo *info)
974 {
975 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
976 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
977 }
978 
979 static void netvsc_get_channels(struct net_device *net,
980 				struct ethtool_channels *channel)
981 {
982 	struct net_device_context *net_device_ctx = netdev_priv(net);
983 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
984 
985 	if (nvdev) {
986 		channel->max_combined	= nvdev->max_chn;
987 		channel->combined_count = nvdev->num_chn;
988 	}
989 }
990 
991 /* Alloc struct netvsc_device_info, and initialize it from either existing
992  * struct netvsc_device, or from default values.
993  */
994 static
995 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
996 {
997 	struct netvsc_device_info *dev_info;
998 	struct bpf_prog *prog;
999 
1000 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1001 
1002 	if (!dev_info)
1003 		return NULL;
1004 
1005 	if (nvdev) {
1006 		ASSERT_RTNL();
1007 
1008 		dev_info->num_chn = nvdev->num_chn;
1009 		dev_info->send_sections = nvdev->send_section_cnt;
1010 		dev_info->send_section_size = nvdev->send_section_size;
1011 		dev_info->recv_sections = nvdev->recv_section_cnt;
1012 		dev_info->recv_section_size = nvdev->recv_section_size;
1013 
1014 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1015 		       NETVSC_HASH_KEYLEN);
1016 
1017 		prog = netvsc_xdp_get(nvdev);
1018 		if (prog) {
1019 			bpf_prog_inc(prog);
1020 			dev_info->bprog = prog;
1021 		}
1022 	} else {
1023 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1024 		dev_info->send_sections = NETVSC_DEFAULT_TX;
1025 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1026 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
1027 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1028 	}
1029 
1030 	return dev_info;
1031 }
1032 
1033 /* Free struct netvsc_device_info */
1034 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1035 {
1036 	if (dev_info->bprog) {
1037 		ASSERT_RTNL();
1038 		bpf_prog_put(dev_info->bprog);
1039 	}
1040 
1041 	kfree(dev_info);
1042 }
1043 
1044 static int netvsc_detach(struct net_device *ndev,
1045 			 struct netvsc_device *nvdev)
1046 {
1047 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1048 	struct hv_device *hdev = ndev_ctx->device_ctx;
1049 	int ret;
1050 
1051 	/* Don't try continuing to try and setup sub channels */
1052 	if (cancel_work_sync(&nvdev->subchan_work))
1053 		nvdev->num_chn = 1;
1054 
1055 	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1056 
1057 	/* If device was up (receiving) then shutdown */
1058 	if (netif_running(ndev)) {
1059 		netvsc_tx_disable(nvdev, ndev);
1060 
1061 		ret = rndis_filter_close(nvdev);
1062 		if (ret) {
1063 			netdev_err(ndev,
1064 				   "unable to close device (ret %d).\n", ret);
1065 			return ret;
1066 		}
1067 
1068 		ret = netvsc_wait_until_empty(nvdev);
1069 		if (ret) {
1070 			netdev_err(ndev,
1071 				   "Ring buffer not empty after closing rndis\n");
1072 			return ret;
1073 		}
1074 	}
1075 
1076 	netif_device_detach(ndev);
1077 
1078 	rndis_filter_device_remove(hdev, nvdev);
1079 
1080 	return 0;
1081 }
1082 
1083 static int netvsc_attach(struct net_device *ndev,
1084 			 struct netvsc_device_info *dev_info)
1085 {
1086 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1087 	struct hv_device *hdev = ndev_ctx->device_ctx;
1088 	struct netvsc_device *nvdev;
1089 	struct rndis_device *rdev;
1090 	struct bpf_prog *prog;
1091 	int ret = 0;
1092 
1093 	nvdev = rndis_filter_device_add(hdev, dev_info);
1094 	if (IS_ERR(nvdev))
1095 		return PTR_ERR(nvdev);
1096 
1097 	if (nvdev->num_chn > 1) {
1098 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1099 
1100 		/* if unavailable, just proceed with one queue */
1101 		if (ret) {
1102 			nvdev->max_chn = 1;
1103 			nvdev->num_chn = 1;
1104 		}
1105 	}
1106 
1107 	prog = dev_info->bprog;
1108 	if (prog) {
1109 		bpf_prog_inc(prog);
1110 		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1111 		if (ret) {
1112 			bpf_prog_put(prog);
1113 			goto err1;
1114 		}
1115 	}
1116 
1117 	/* In any case device is now ready */
1118 	nvdev->tx_disable = false;
1119 	netif_device_attach(ndev);
1120 
1121 	/* Note: enable and attach happen when sub-channels setup */
1122 	netif_carrier_off(ndev);
1123 
1124 	if (netif_running(ndev)) {
1125 		ret = rndis_filter_open(nvdev);
1126 		if (ret)
1127 			goto err2;
1128 
1129 		rdev = nvdev->extension;
1130 		if (!rdev->link_state)
1131 			netif_carrier_on(ndev);
1132 	}
1133 
1134 	return 0;
1135 
1136 err2:
1137 	netif_device_detach(ndev);
1138 
1139 err1:
1140 	rndis_filter_device_remove(hdev, nvdev);
1141 
1142 	return ret;
1143 }
1144 
1145 static int netvsc_set_channels(struct net_device *net,
1146 			       struct ethtool_channels *channels)
1147 {
1148 	struct net_device_context *net_device_ctx = netdev_priv(net);
1149 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1150 	unsigned int orig, count = channels->combined_count;
1151 	struct netvsc_device_info *device_info;
1152 	int ret;
1153 
1154 	/* We do not support separate count for rx, tx, or other */
1155 	if (count == 0 ||
1156 	    channels->rx_count || channels->tx_count || channels->other_count)
1157 		return -EINVAL;
1158 
1159 	if (!nvdev || nvdev->destroy)
1160 		return -ENODEV;
1161 
1162 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1163 		return -EINVAL;
1164 
1165 	if (count > nvdev->max_chn)
1166 		return -EINVAL;
1167 
1168 	orig = nvdev->num_chn;
1169 
1170 	device_info = netvsc_devinfo_get(nvdev);
1171 
1172 	if (!device_info)
1173 		return -ENOMEM;
1174 
1175 	device_info->num_chn = count;
1176 
1177 	ret = netvsc_detach(net, nvdev);
1178 	if (ret)
1179 		goto out;
1180 
1181 	ret = netvsc_attach(net, device_info);
1182 	if (ret) {
1183 		device_info->num_chn = orig;
1184 		if (netvsc_attach(net, device_info))
1185 			netdev_err(net, "restoring channel setting failed\n");
1186 	}
1187 
1188 out:
1189 	netvsc_devinfo_put(device_info);
1190 	return ret;
1191 }
1192 
1193 static void netvsc_init_settings(struct net_device *dev)
1194 {
1195 	struct net_device_context *ndc = netdev_priv(dev);
1196 
1197 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1198 
1199 	ndc->speed = SPEED_UNKNOWN;
1200 	ndc->duplex = DUPLEX_FULL;
1201 
1202 	dev->features = NETIF_F_LRO;
1203 }
1204 
1205 static int netvsc_get_link_ksettings(struct net_device *dev,
1206 				     struct ethtool_link_ksettings *cmd)
1207 {
1208 	struct net_device_context *ndc = netdev_priv(dev);
1209 	struct net_device *vf_netdev;
1210 
1211 	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1212 
1213 	if (vf_netdev)
1214 		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1215 
1216 	cmd->base.speed = ndc->speed;
1217 	cmd->base.duplex = ndc->duplex;
1218 	cmd->base.port = PORT_OTHER;
1219 
1220 	return 0;
1221 }
1222 
1223 static int netvsc_set_link_ksettings(struct net_device *dev,
1224 				     const struct ethtool_link_ksettings *cmd)
1225 {
1226 	struct net_device_context *ndc = netdev_priv(dev);
1227 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1228 
1229 	if (vf_netdev) {
1230 		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1231 			return -EOPNOTSUPP;
1232 
1233 		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1234 								  cmd);
1235 	}
1236 
1237 	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1238 						  &ndc->speed, &ndc->duplex);
1239 }
1240 
1241 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1242 {
1243 	struct net_device_context *ndevctx = netdev_priv(ndev);
1244 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1245 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1246 	int orig_mtu = ndev->mtu;
1247 	struct netvsc_device_info *device_info;
1248 	int ret = 0;
1249 
1250 	if (!nvdev || nvdev->destroy)
1251 		return -ENODEV;
1252 
1253 	device_info = netvsc_devinfo_get(nvdev);
1254 
1255 	if (!device_info)
1256 		return -ENOMEM;
1257 
1258 	/* Change MTU of underlying VF netdev first. */
1259 	if (vf_netdev) {
1260 		ret = dev_set_mtu(vf_netdev, mtu);
1261 		if (ret)
1262 			goto out;
1263 	}
1264 
1265 	ret = netvsc_detach(ndev, nvdev);
1266 	if (ret)
1267 		goto rollback_vf;
1268 
1269 	ndev->mtu = mtu;
1270 
1271 	ret = netvsc_attach(ndev, device_info);
1272 	if (!ret)
1273 		goto out;
1274 
1275 	/* Attempt rollback to original MTU */
1276 	ndev->mtu = orig_mtu;
1277 
1278 	if (netvsc_attach(ndev, device_info))
1279 		netdev_err(ndev, "restoring mtu failed\n");
1280 rollback_vf:
1281 	if (vf_netdev)
1282 		dev_set_mtu(vf_netdev, orig_mtu);
1283 
1284 out:
1285 	netvsc_devinfo_put(device_info);
1286 	return ret;
1287 }
1288 
1289 static void netvsc_get_vf_stats(struct net_device *net,
1290 				struct netvsc_vf_pcpu_stats *tot)
1291 {
1292 	struct net_device_context *ndev_ctx = netdev_priv(net);
1293 	int i;
1294 
1295 	memset(tot, 0, sizeof(*tot));
1296 
1297 	for_each_possible_cpu(i) {
1298 		const struct netvsc_vf_pcpu_stats *stats
1299 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1300 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1301 		unsigned int start;
1302 
1303 		do {
1304 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1305 			rx_packets = stats->rx_packets;
1306 			tx_packets = stats->tx_packets;
1307 			rx_bytes = stats->rx_bytes;
1308 			tx_bytes = stats->tx_bytes;
1309 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1310 
1311 		tot->rx_packets += rx_packets;
1312 		tot->tx_packets += tx_packets;
1313 		tot->rx_bytes   += rx_bytes;
1314 		tot->tx_bytes   += tx_bytes;
1315 		tot->tx_dropped += stats->tx_dropped;
1316 	}
1317 }
1318 
1319 static void netvsc_get_pcpu_stats(struct net_device *net,
1320 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1321 {
1322 	struct net_device_context *ndev_ctx = netdev_priv(net);
1323 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1324 	int i;
1325 
1326 	/* fetch percpu stats of vf */
1327 	for_each_possible_cpu(i) {
1328 		const struct netvsc_vf_pcpu_stats *stats =
1329 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1330 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1331 		unsigned int start;
1332 
1333 		do {
1334 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1335 			this_tot->vf_rx_packets = stats->rx_packets;
1336 			this_tot->vf_tx_packets = stats->tx_packets;
1337 			this_tot->vf_rx_bytes = stats->rx_bytes;
1338 			this_tot->vf_tx_bytes = stats->tx_bytes;
1339 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1340 		this_tot->rx_packets = this_tot->vf_rx_packets;
1341 		this_tot->tx_packets = this_tot->vf_tx_packets;
1342 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1343 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1344 	}
1345 
1346 	/* fetch percpu stats of netvsc */
1347 	for (i = 0; i < nvdev->num_chn; i++) {
1348 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1349 		const struct netvsc_stats *stats;
1350 		struct netvsc_ethtool_pcpu_stats *this_tot =
1351 			&pcpu_tot[nvchan->channel->target_cpu];
1352 		u64 packets, bytes;
1353 		unsigned int start;
1354 
1355 		stats = &nvchan->tx_stats;
1356 		do {
1357 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1358 			packets = stats->packets;
1359 			bytes = stats->bytes;
1360 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1361 
1362 		this_tot->tx_bytes	+= bytes;
1363 		this_tot->tx_packets	+= packets;
1364 
1365 		stats = &nvchan->rx_stats;
1366 		do {
1367 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1368 			packets = stats->packets;
1369 			bytes = stats->bytes;
1370 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1371 
1372 		this_tot->rx_bytes	+= bytes;
1373 		this_tot->rx_packets	+= packets;
1374 	}
1375 }
1376 
1377 static void netvsc_get_stats64(struct net_device *net,
1378 			       struct rtnl_link_stats64 *t)
1379 {
1380 	struct net_device_context *ndev_ctx = netdev_priv(net);
1381 	struct netvsc_device *nvdev;
1382 	struct netvsc_vf_pcpu_stats vf_tot;
1383 	int i;
1384 
1385 	rcu_read_lock();
1386 
1387 	nvdev = rcu_dereference(ndev_ctx->nvdev);
1388 	if (!nvdev)
1389 		goto out;
1390 
1391 	netdev_stats_to_stats64(t, &net->stats);
1392 
1393 	netvsc_get_vf_stats(net, &vf_tot);
1394 	t->rx_packets += vf_tot.rx_packets;
1395 	t->tx_packets += vf_tot.tx_packets;
1396 	t->rx_bytes   += vf_tot.rx_bytes;
1397 	t->tx_bytes   += vf_tot.tx_bytes;
1398 	t->tx_dropped += vf_tot.tx_dropped;
1399 
1400 	for (i = 0; i < nvdev->num_chn; i++) {
1401 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1402 		const struct netvsc_stats *stats;
1403 		u64 packets, bytes, multicast;
1404 		unsigned int start;
1405 
1406 		stats = &nvchan->tx_stats;
1407 		do {
1408 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1409 			packets = stats->packets;
1410 			bytes = stats->bytes;
1411 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1412 
1413 		t->tx_bytes	+= bytes;
1414 		t->tx_packets	+= packets;
1415 
1416 		stats = &nvchan->rx_stats;
1417 		do {
1418 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1419 			packets = stats->packets;
1420 			bytes = stats->bytes;
1421 			multicast = stats->multicast + stats->broadcast;
1422 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1423 
1424 		t->rx_bytes	+= bytes;
1425 		t->rx_packets	+= packets;
1426 		t->multicast	+= multicast;
1427 	}
1428 out:
1429 	rcu_read_unlock();
1430 }
1431 
1432 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1433 {
1434 	struct net_device_context *ndc = netdev_priv(ndev);
1435 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1436 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1437 	struct sockaddr *addr = p;
1438 	int err;
1439 
1440 	err = eth_prepare_mac_addr_change(ndev, p);
1441 	if (err)
1442 		return err;
1443 
1444 	if (!nvdev)
1445 		return -ENODEV;
1446 
1447 	if (vf_netdev) {
1448 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1449 		if (err)
1450 			return err;
1451 	}
1452 
1453 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1454 	if (!err) {
1455 		eth_commit_mac_addr_change(ndev, p);
1456 	} else if (vf_netdev) {
1457 		/* rollback change on VF */
1458 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1459 		dev_set_mac_address(vf_netdev, addr, NULL);
1460 	}
1461 
1462 	return err;
1463 }
1464 
1465 static const struct {
1466 	char name[ETH_GSTRING_LEN];
1467 	u16 offset;
1468 } netvsc_stats[] = {
1469 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1470 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1471 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1472 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1473 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1474 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1475 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1476 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1477 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1478 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1479 	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1480 }, pcpu_stats[] = {
1481 	{ "cpu%u_rx_packets",
1482 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1483 	{ "cpu%u_rx_bytes",
1484 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1485 	{ "cpu%u_tx_packets",
1486 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1487 	{ "cpu%u_tx_bytes",
1488 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1489 	{ "cpu%u_vf_rx_packets",
1490 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1491 	{ "cpu%u_vf_rx_bytes",
1492 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1493 	{ "cpu%u_vf_tx_packets",
1494 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1495 	{ "cpu%u_vf_tx_bytes",
1496 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1497 }, vf_stats[] = {
1498 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1499 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1500 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1501 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1502 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1503 };
1504 
1505 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1506 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1507 
1508 /* statistics per queue (rx/tx packets/bytes) */
1509 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1510 
1511 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1512 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1513 
1514 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1515 {
1516 	struct net_device_context *ndc = netdev_priv(dev);
1517 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1518 
1519 	if (!nvdev)
1520 		return -ENODEV;
1521 
1522 	switch (string_set) {
1523 	case ETH_SS_STATS:
1524 		return NETVSC_GLOBAL_STATS_LEN
1525 			+ NETVSC_VF_STATS_LEN
1526 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1527 			+ NETVSC_PCPU_STATS_LEN;
1528 	default:
1529 		return -EINVAL;
1530 	}
1531 }
1532 
1533 static void netvsc_get_ethtool_stats(struct net_device *dev,
1534 				     struct ethtool_stats *stats, u64 *data)
1535 {
1536 	struct net_device_context *ndc = netdev_priv(dev);
1537 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1538 	const void *nds = &ndc->eth_stats;
1539 	const struct netvsc_stats *qstats;
1540 	struct netvsc_vf_pcpu_stats sum;
1541 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1542 	unsigned int start;
1543 	u64 packets, bytes;
1544 	u64 xdp_drop;
1545 	int i, j, cpu;
1546 
1547 	if (!nvdev)
1548 		return;
1549 
1550 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1551 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1552 
1553 	netvsc_get_vf_stats(dev, &sum);
1554 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1555 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1556 
1557 	for (j = 0; j < nvdev->num_chn; j++) {
1558 		qstats = &nvdev->chan_table[j].tx_stats;
1559 
1560 		do {
1561 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1562 			packets = qstats->packets;
1563 			bytes = qstats->bytes;
1564 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1565 		data[i++] = packets;
1566 		data[i++] = bytes;
1567 
1568 		qstats = &nvdev->chan_table[j].rx_stats;
1569 		do {
1570 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1571 			packets = qstats->packets;
1572 			bytes = qstats->bytes;
1573 			xdp_drop = qstats->xdp_drop;
1574 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1575 		data[i++] = packets;
1576 		data[i++] = bytes;
1577 		data[i++] = xdp_drop;
1578 	}
1579 
1580 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1581 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1582 				  GFP_KERNEL);
1583 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1584 	for_each_present_cpu(cpu) {
1585 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1586 
1587 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1588 			data[i++] = *(u64 *)((void *)this_sum
1589 					     + pcpu_stats[j].offset);
1590 	}
1591 	kvfree(pcpu_sum);
1592 }
1593 
1594 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1595 {
1596 	struct net_device_context *ndc = netdev_priv(dev);
1597 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1598 	u8 *p = data;
1599 	int i, cpu;
1600 
1601 	if (!nvdev)
1602 		return;
1603 
1604 	switch (stringset) {
1605 	case ETH_SS_STATS:
1606 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1607 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1608 			p += ETH_GSTRING_LEN;
1609 		}
1610 
1611 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1612 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1613 			p += ETH_GSTRING_LEN;
1614 		}
1615 
1616 		for (i = 0; i < nvdev->num_chn; i++) {
1617 			sprintf(p, "tx_queue_%u_packets", i);
1618 			p += ETH_GSTRING_LEN;
1619 			sprintf(p, "tx_queue_%u_bytes", i);
1620 			p += ETH_GSTRING_LEN;
1621 			sprintf(p, "rx_queue_%u_packets", i);
1622 			p += ETH_GSTRING_LEN;
1623 			sprintf(p, "rx_queue_%u_bytes", i);
1624 			p += ETH_GSTRING_LEN;
1625 			sprintf(p, "rx_queue_%u_xdp_drop", i);
1626 			p += ETH_GSTRING_LEN;
1627 		}
1628 
1629 		for_each_present_cpu(cpu) {
1630 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1631 				sprintf(p, pcpu_stats[i].name, cpu);
1632 				p += ETH_GSTRING_LEN;
1633 			}
1634 		}
1635 
1636 		break;
1637 	}
1638 }
1639 
1640 static int
1641 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1642 			 struct ethtool_rxnfc *info)
1643 {
1644 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1645 
1646 	info->data = RXH_IP_SRC | RXH_IP_DST;
1647 
1648 	switch (info->flow_type) {
1649 	case TCP_V4_FLOW:
1650 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1651 			info->data |= l4_flag;
1652 
1653 		break;
1654 
1655 	case TCP_V6_FLOW:
1656 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1657 			info->data |= l4_flag;
1658 
1659 		break;
1660 
1661 	case UDP_V4_FLOW:
1662 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1663 			info->data |= l4_flag;
1664 
1665 		break;
1666 
1667 	case UDP_V6_FLOW:
1668 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1669 			info->data |= l4_flag;
1670 
1671 		break;
1672 
1673 	case IPV4_FLOW:
1674 	case IPV6_FLOW:
1675 		break;
1676 	default:
1677 		info->data = 0;
1678 		break;
1679 	}
1680 
1681 	return 0;
1682 }
1683 
1684 static int
1685 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1686 		 u32 *rules)
1687 {
1688 	struct net_device_context *ndc = netdev_priv(dev);
1689 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1690 
1691 	if (!nvdev)
1692 		return -ENODEV;
1693 
1694 	switch (info->cmd) {
1695 	case ETHTOOL_GRXRINGS:
1696 		info->data = nvdev->num_chn;
1697 		return 0;
1698 
1699 	case ETHTOOL_GRXFH:
1700 		return netvsc_get_rss_hash_opts(ndc, info);
1701 	}
1702 	return -EOPNOTSUPP;
1703 }
1704 
1705 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1706 				    struct ethtool_rxnfc *info)
1707 {
1708 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1709 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1710 		switch (info->flow_type) {
1711 		case TCP_V4_FLOW:
1712 			ndc->l4_hash |= HV_TCP4_L4HASH;
1713 			break;
1714 
1715 		case TCP_V6_FLOW:
1716 			ndc->l4_hash |= HV_TCP6_L4HASH;
1717 			break;
1718 
1719 		case UDP_V4_FLOW:
1720 			ndc->l4_hash |= HV_UDP4_L4HASH;
1721 			break;
1722 
1723 		case UDP_V6_FLOW:
1724 			ndc->l4_hash |= HV_UDP6_L4HASH;
1725 			break;
1726 
1727 		default:
1728 			return -EOPNOTSUPP;
1729 		}
1730 
1731 		return 0;
1732 	}
1733 
1734 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1735 		switch (info->flow_type) {
1736 		case TCP_V4_FLOW:
1737 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1738 			break;
1739 
1740 		case TCP_V6_FLOW:
1741 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1742 			break;
1743 
1744 		case UDP_V4_FLOW:
1745 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1746 			break;
1747 
1748 		case UDP_V6_FLOW:
1749 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1750 			break;
1751 
1752 		default:
1753 			return -EOPNOTSUPP;
1754 		}
1755 
1756 		return 0;
1757 	}
1758 
1759 	return -EOPNOTSUPP;
1760 }
1761 
1762 static int
1763 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1764 {
1765 	struct net_device_context *ndc = netdev_priv(ndev);
1766 
1767 	if (info->cmd == ETHTOOL_SRXFH)
1768 		return netvsc_set_rss_hash_opts(ndc, info);
1769 
1770 	return -EOPNOTSUPP;
1771 }
1772 
1773 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1774 {
1775 	return NETVSC_HASH_KEYLEN;
1776 }
1777 
1778 static u32 netvsc_rss_indir_size(struct net_device *dev)
1779 {
1780 	return ITAB_NUM;
1781 }
1782 
1783 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1784 			   u8 *hfunc)
1785 {
1786 	struct net_device_context *ndc = netdev_priv(dev);
1787 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1788 	struct rndis_device *rndis_dev;
1789 	int i;
1790 
1791 	if (!ndev)
1792 		return -ENODEV;
1793 
1794 	if (hfunc)
1795 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1796 
1797 	rndis_dev = ndev->extension;
1798 	if (indir) {
1799 		for (i = 0; i < ITAB_NUM; i++)
1800 			indir[i] = ndc->rx_table[i];
1801 	}
1802 
1803 	if (key)
1804 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1805 
1806 	return 0;
1807 }
1808 
1809 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1810 			   const u8 *key, const u8 hfunc)
1811 {
1812 	struct net_device_context *ndc = netdev_priv(dev);
1813 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1814 	struct rndis_device *rndis_dev;
1815 	int i;
1816 
1817 	if (!ndev)
1818 		return -ENODEV;
1819 
1820 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1821 		return -EOPNOTSUPP;
1822 
1823 	rndis_dev = ndev->extension;
1824 	if (indir) {
1825 		for (i = 0; i < ITAB_NUM; i++)
1826 			if (indir[i] >= ndev->num_chn)
1827 				return -EINVAL;
1828 
1829 		for (i = 0; i < ITAB_NUM; i++)
1830 			ndc->rx_table[i] = indir[i];
1831 	}
1832 
1833 	if (!key) {
1834 		if (!indir)
1835 			return 0;
1836 
1837 		key = rndis_dev->rss_key;
1838 	}
1839 
1840 	return rndis_filter_set_rss_param(rndis_dev, key);
1841 }
1842 
1843 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1844  * It does have pre-allocated receive area which is divided into sections.
1845  */
1846 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1847 				   struct ethtool_ringparam *ring)
1848 {
1849 	u32 max_buf_size;
1850 
1851 	ring->rx_pending = nvdev->recv_section_cnt;
1852 	ring->tx_pending = nvdev->send_section_cnt;
1853 
1854 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1855 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1856 	else
1857 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1858 
1859 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1860 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1861 		/ nvdev->send_section_size;
1862 }
1863 
1864 static void netvsc_get_ringparam(struct net_device *ndev,
1865 				 struct ethtool_ringparam *ring)
1866 {
1867 	struct net_device_context *ndevctx = netdev_priv(ndev);
1868 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1869 
1870 	if (!nvdev)
1871 		return;
1872 
1873 	__netvsc_get_ringparam(nvdev, ring);
1874 }
1875 
1876 static int netvsc_set_ringparam(struct net_device *ndev,
1877 				struct ethtool_ringparam *ring)
1878 {
1879 	struct net_device_context *ndevctx = netdev_priv(ndev);
1880 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1881 	struct netvsc_device_info *device_info;
1882 	struct ethtool_ringparam orig;
1883 	u32 new_tx, new_rx;
1884 	int ret = 0;
1885 
1886 	if (!nvdev || nvdev->destroy)
1887 		return -ENODEV;
1888 
1889 	memset(&orig, 0, sizeof(orig));
1890 	__netvsc_get_ringparam(nvdev, &orig);
1891 
1892 	new_tx = clamp_t(u32, ring->tx_pending,
1893 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1894 	new_rx = clamp_t(u32, ring->rx_pending,
1895 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1896 
1897 	if (new_tx == orig.tx_pending &&
1898 	    new_rx == orig.rx_pending)
1899 		return 0;	 /* no change */
1900 
1901 	device_info = netvsc_devinfo_get(nvdev);
1902 
1903 	if (!device_info)
1904 		return -ENOMEM;
1905 
1906 	device_info->send_sections = new_tx;
1907 	device_info->recv_sections = new_rx;
1908 
1909 	ret = netvsc_detach(ndev, nvdev);
1910 	if (ret)
1911 		goto out;
1912 
1913 	ret = netvsc_attach(ndev, device_info);
1914 	if (ret) {
1915 		device_info->send_sections = orig.tx_pending;
1916 		device_info->recv_sections = orig.rx_pending;
1917 
1918 		if (netvsc_attach(ndev, device_info))
1919 			netdev_err(ndev, "restoring ringparam failed");
1920 	}
1921 
1922 out:
1923 	netvsc_devinfo_put(device_info);
1924 	return ret;
1925 }
1926 
1927 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1928 					     netdev_features_t features)
1929 {
1930 	struct net_device_context *ndevctx = netdev_priv(ndev);
1931 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932 
1933 	if (!nvdev || nvdev->destroy)
1934 		return features;
1935 
1936 	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1937 		features ^= NETIF_F_LRO;
1938 		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1939 	}
1940 
1941 	return features;
1942 }
1943 
1944 static int netvsc_set_features(struct net_device *ndev,
1945 			       netdev_features_t features)
1946 {
1947 	netdev_features_t change = features ^ ndev->features;
1948 	struct net_device_context *ndevctx = netdev_priv(ndev);
1949 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1950 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1951 	struct ndis_offload_params offloads;
1952 	int ret = 0;
1953 
1954 	if (!nvdev || nvdev->destroy)
1955 		return -ENODEV;
1956 
1957 	if (!(change & NETIF_F_LRO))
1958 		goto syncvf;
1959 
1960 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1961 
1962 	if (features & NETIF_F_LRO) {
1963 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1964 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1965 	} else {
1966 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1967 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1968 	}
1969 
1970 	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1971 
1972 	if (ret) {
1973 		features ^= NETIF_F_LRO;
1974 		ndev->features = features;
1975 	}
1976 
1977 syncvf:
1978 	if (!vf_netdev)
1979 		return ret;
1980 
1981 	vf_netdev->wanted_features = features;
1982 	netdev_update_features(vf_netdev);
1983 
1984 	return ret;
1985 }
1986 
1987 static int netvsc_get_regs_len(struct net_device *netdev)
1988 {
1989 	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1990 }
1991 
1992 static void netvsc_get_regs(struct net_device *netdev,
1993 			    struct ethtool_regs *regs, void *p)
1994 {
1995 	struct net_device_context *ndc = netdev_priv(netdev);
1996 	u32 *regs_buff = p;
1997 
1998 	/* increase the version, if buffer format is changed. */
1999 	regs->version = 1;
2000 
2001 	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
2002 }
2003 
2004 static u32 netvsc_get_msglevel(struct net_device *ndev)
2005 {
2006 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2007 
2008 	return ndev_ctx->msg_enable;
2009 }
2010 
2011 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2012 {
2013 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2014 
2015 	ndev_ctx->msg_enable = val;
2016 }
2017 
2018 static const struct ethtool_ops ethtool_ops = {
2019 	.get_drvinfo	= netvsc_get_drvinfo,
2020 	.get_regs_len	= netvsc_get_regs_len,
2021 	.get_regs	= netvsc_get_regs,
2022 	.get_msglevel	= netvsc_get_msglevel,
2023 	.set_msglevel	= netvsc_set_msglevel,
2024 	.get_link	= ethtool_op_get_link,
2025 	.get_ethtool_stats = netvsc_get_ethtool_stats,
2026 	.get_sset_count = netvsc_get_sset_count,
2027 	.get_strings	= netvsc_get_strings,
2028 	.get_channels   = netvsc_get_channels,
2029 	.set_channels   = netvsc_set_channels,
2030 	.get_ts_info	= ethtool_op_get_ts_info,
2031 	.get_rxnfc	= netvsc_get_rxnfc,
2032 	.set_rxnfc	= netvsc_set_rxnfc,
2033 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2034 	.get_rxfh_indir_size = netvsc_rss_indir_size,
2035 	.get_rxfh	= netvsc_get_rxfh,
2036 	.set_rxfh	= netvsc_set_rxfh,
2037 	.get_link_ksettings = netvsc_get_link_ksettings,
2038 	.set_link_ksettings = netvsc_set_link_ksettings,
2039 	.get_ringparam	= netvsc_get_ringparam,
2040 	.set_ringparam	= netvsc_set_ringparam,
2041 };
2042 
2043 static const struct net_device_ops device_ops = {
2044 	.ndo_open =			netvsc_open,
2045 	.ndo_stop =			netvsc_close,
2046 	.ndo_start_xmit =		netvsc_start_xmit,
2047 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2048 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2049 	.ndo_fix_features =		netvsc_fix_features,
2050 	.ndo_set_features =		netvsc_set_features,
2051 	.ndo_change_mtu =		netvsc_change_mtu,
2052 	.ndo_validate_addr =		eth_validate_addr,
2053 	.ndo_set_mac_address =		netvsc_set_mac_addr,
2054 	.ndo_select_queue =		netvsc_select_queue,
2055 	.ndo_get_stats64 =		netvsc_get_stats64,
2056 	.ndo_bpf =			netvsc_bpf,
2057 };
2058 
2059 /*
2060  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2061  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2062  * present send GARP packet to network peers with netif_notify_peers().
2063  */
2064 static void netvsc_link_change(struct work_struct *w)
2065 {
2066 	struct net_device_context *ndev_ctx =
2067 		container_of(w, struct net_device_context, dwork.work);
2068 	struct hv_device *device_obj = ndev_ctx->device_ctx;
2069 	struct net_device *net = hv_get_drvdata(device_obj);
2070 	unsigned long flags, next_reconfig, delay;
2071 	struct netvsc_reconfig *event = NULL;
2072 	struct netvsc_device *net_device;
2073 	struct rndis_device *rdev;
2074 	bool reschedule = false;
2075 
2076 	/* if changes are happening, comeback later */
2077 	if (!rtnl_trylock()) {
2078 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2079 		return;
2080 	}
2081 
2082 	net_device = rtnl_dereference(ndev_ctx->nvdev);
2083 	if (!net_device)
2084 		goto out_unlock;
2085 
2086 	rdev = net_device->extension;
2087 
2088 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2089 	if (time_is_after_jiffies(next_reconfig)) {
2090 		/* link_watch only sends one notification with current state
2091 		 * per second, avoid doing reconfig more frequently. Handle
2092 		 * wrap around.
2093 		 */
2094 		delay = next_reconfig - jiffies;
2095 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2096 		schedule_delayed_work(&ndev_ctx->dwork, delay);
2097 		goto out_unlock;
2098 	}
2099 	ndev_ctx->last_reconfig = jiffies;
2100 
2101 	spin_lock_irqsave(&ndev_ctx->lock, flags);
2102 	if (!list_empty(&ndev_ctx->reconfig_events)) {
2103 		event = list_first_entry(&ndev_ctx->reconfig_events,
2104 					 struct netvsc_reconfig, list);
2105 		list_del(&event->list);
2106 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2107 	}
2108 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2109 
2110 	if (!event)
2111 		goto out_unlock;
2112 
2113 	switch (event->event) {
2114 		/* Only the following events are possible due to the check in
2115 		 * netvsc_linkstatus_callback()
2116 		 */
2117 	case RNDIS_STATUS_MEDIA_CONNECT:
2118 		if (rdev->link_state) {
2119 			rdev->link_state = false;
2120 			netif_carrier_on(net);
2121 			netvsc_tx_enable(net_device, net);
2122 		} else {
2123 			__netdev_notify_peers(net);
2124 		}
2125 		kfree(event);
2126 		break;
2127 	case RNDIS_STATUS_MEDIA_DISCONNECT:
2128 		if (!rdev->link_state) {
2129 			rdev->link_state = true;
2130 			netif_carrier_off(net);
2131 			netvsc_tx_disable(net_device, net);
2132 		}
2133 		kfree(event);
2134 		break;
2135 	case RNDIS_STATUS_NETWORK_CHANGE:
2136 		/* Only makes sense if carrier is present */
2137 		if (!rdev->link_state) {
2138 			rdev->link_state = true;
2139 			netif_carrier_off(net);
2140 			netvsc_tx_disable(net_device, net);
2141 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2142 			spin_lock_irqsave(&ndev_ctx->lock, flags);
2143 			list_add(&event->list, &ndev_ctx->reconfig_events);
2144 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2145 			reschedule = true;
2146 		}
2147 		break;
2148 	}
2149 
2150 	rtnl_unlock();
2151 
2152 	/* link_watch only sends one notification with current state per
2153 	 * second, handle next reconfig event in 2 seconds.
2154 	 */
2155 	if (reschedule)
2156 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2157 
2158 	return;
2159 
2160 out_unlock:
2161 	rtnl_unlock();
2162 }
2163 
2164 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2165 {
2166 	struct net_device_context *net_device_ctx;
2167 	struct net_device *dev;
2168 
2169 	dev = netdev_master_upper_dev_get(vf_netdev);
2170 	if (!dev || dev->netdev_ops != &device_ops)
2171 		return NULL;	/* not a netvsc device */
2172 
2173 	net_device_ctx = netdev_priv(dev);
2174 	if (!rtnl_dereference(net_device_ctx->nvdev))
2175 		return NULL;	/* device is removed */
2176 
2177 	return dev;
2178 }
2179 
2180 /* Called when VF is injecting data into network stack.
2181  * Change the associated network device from VF to netvsc.
2182  * note: already called with rcu_read_lock
2183  */
2184 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2185 {
2186 	struct sk_buff *skb = *pskb;
2187 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2188 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2189 	struct netvsc_vf_pcpu_stats *pcpu_stats
2190 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2191 
2192 	skb = skb_share_check(skb, GFP_ATOMIC);
2193 	if (unlikely(!skb))
2194 		return RX_HANDLER_CONSUMED;
2195 
2196 	*pskb = skb;
2197 
2198 	skb->dev = ndev;
2199 
2200 	u64_stats_update_begin(&pcpu_stats->syncp);
2201 	pcpu_stats->rx_packets++;
2202 	pcpu_stats->rx_bytes += skb->len;
2203 	u64_stats_update_end(&pcpu_stats->syncp);
2204 
2205 	return RX_HANDLER_ANOTHER;
2206 }
2207 
2208 static int netvsc_vf_join(struct net_device *vf_netdev,
2209 			  struct net_device *ndev)
2210 {
2211 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2212 	int ret;
2213 
2214 	ret = netdev_rx_handler_register(vf_netdev,
2215 					 netvsc_vf_handle_frame, ndev);
2216 	if (ret != 0) {
2217 		netdev_err(vf_netdev,
2218 			   "can not register netvsc VF receive handler (err = %d)\n",
2219 			   ret);
2220 		goto rx_handler_failed;
2221 	}
2222 
2223 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2224 					   NULL, NULL, NULL);
2225 	if (ret != 0) {
2226 		netdev_err(vf_netdev,
2227 			   "can not set master device %s (err = %d)\n",
2228 			   ndev->name, ret);
2229 		goto upper_link_failed;
2230 	}
2231 
2232 	/* set slave flag before open to prevent IPv6 addrconf */
2233 	vf_netdev->flags |= IFF_SLAVE;
2234 
2235 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2236 
2237 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2238 
2239 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2240 	return 0;
2241 
2242 upper_link_failed:
2243 	netdev_rx_handler_unregister(vf_netdev);
2244 rx_handler_failed:
2245 	return ret;
2246 }
2247 
2248 static void __netvsc_vf_setup(struct net_device *ndev,
2249 			      struct net_device *vf_netdev)
2250 {
2251 	int ret;
2252 
2253 	/* Align MTU of VF with master */
2254 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2255 	if (ret)
2256 		netdev_warn(vf_netdev,
2257 			    "unable to change mtu to %u\n", ndev->mtu);
2258 
2259 	/* set multicast etc flags on VF */
2260 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2261 
2262 	/* sync address list from ndev to VF */
2263 	netif_addr_lock_bh(ndev);
2264 	dev_uc_sync(vf_netdev, ndev);
2265 	dev_mc_sync(vf_netdev, ndev);
2266 	netif_addr_unlock_bh(ndev);
2267 
2268 	if (netif_running(ndev)) {
2269 		ret = dev_open(vf_netdev, NULL);
2270 		if (ret)
2271 			netdev_warn(vf_netdev,
2272 				    "unable to open: %d\n", ret);
2273 	}
2274 }
2275 
2276 /* Setup VF as slave of the synthetic device.
2277  * Runs in workqueue to avoid recursion in netlink callbacks.
2278  */
2279 static void netvsc_vf_setup(struct work_struct *w)
2280 {
2281 	struct net_device_context *ndev_ctx
2282 		= container_of(w, struct net_device_context, vf_takeover.work);
2283 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2284 	struct net_device *vf_netdev;
2285 
2286 	if (!rtnl_trylock()) {
2287 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2288 		return;
2289 	}
2290 
2291 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2292 	if (vf_netdev)
2293 		__netvsc_vf_setup(ndev, vf_netdev);
2294 
2295 	rtnl_unlock();
2296 }
2297 
2298 /* Find netvsc by VF serial number.
2299  * The PCI hyperv controller records the serial number as the slot kobj name.
2300  */
2301 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2302 {
2303 	struct device *parent = vf_netdev->dev.parent;
2304 	struct net_device_context *ndev_ctx;
2305 	struct pci_dev *pdev;
2306 	u32 serial;
2307 
2308 	if (!parent || !dev_is_pci(parent))
2309 		return NULL; /* not a PCI device */
2310 
2311 	pdev = to_pci_dev(parent);
2312 	if (!pdev->slot) {
2313 		netdev_notice(vf_netdev, "no PCI slot information\n");
2314 		return NULL;
2315 	}
2316 
2317 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2318 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2319 			      pci_slot_name(pdev->slot));
2320 		return NULL;
2321 	}
2322 
2323 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2324 		if (!ndev_ctx->vf_alloc)
2325 			continue;
2326 
2327 		if (ndev_ctx->vf_serial == serial)
2328 			return hv_get_drvdata(ndev_ctx->device_ctx);
2329 	}
2330 
2331 	netdev_notice(vf_netdev,
2332 		      "no netdev found for vf serial:%u\n", serial);
2333 	return NULL;
2334 }
2335 
2336 static int netvsc_register_vf(struct net_device *vf_netdev)
2337 {
2338 	struct net_device_context *net_device_ctx;
2339 	struct netvsc_device *netvsc_dev;
2340 	struct bpf_prog *prog;
2341 	struct net_device *ndev;
2342 	int ret;
2343 
2344 	if (vf_netdev->addr_len != ETH_ALEN)
2345 		return NOTIFY_DONE;
2346 
2347 	ndev = get_netvsc_byslot(vf_netdev);
2348 	if (!ndev)
2349 		return NOTIFY_DONE;
2350 
2351 	net_device_ctx = netdev_priv(ndev);
2352 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2353 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2354 		return NOTIFY_DONE;
2355 
2356 	/* if synthetic interface is a different namespace,
2357 	 * then move the VF to that namespace; join will be
2358 	 * done again in that context.
2359 	 */
2360 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2361 		ret = dev_change_net_namespace(vf_netdev,
2362 					       dev_net(ndev), "eth%d");
2363 		if (ret)
2364 			netdev_err(vf_netdev,
2365 				   "could not move to same namespace as %s: %d\n",
2366 				   ndev->name, ret);
2367 		else
2368 			netdev_info(vf_netdev,
2369 				    "VF moved to namespace with: %s\n",
2370 				    ndev->name);
2371 		return NOTIFY_DONE;
2372 	}
2373 
2374 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2375 
2376 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2377 		return NOTIFY_DONE;
2378 
2379 	dev_hold(vf_netdev);
2380 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2381 
2382 	vf_netdev->wanted_features = ndev->features;
2383 	netdev_update_features(vf_netdev);
2384 
2385 	prog = netvsc_xdp_get(netvsc_dev);
2386 	netvsc_vf_setxdp(vf_netdev, prog);
2387 
2388 	return NOTIFY_OK;
2389 }
2390 
2391 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2392  *
2393  * Typically a UP or DOWN event is followed by a CHANGE event, so
2394  * net_device_ctx->data_path_is_vf is used to cache the current data path
2395  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2396  * message.
2397  *
2398  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2399  * interface, there is only the CHANGE event and no UP or DOWN event.
2400  */
2401 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2402 {
2403 	struct net_device_context *net_device_ctx;
2404 	struct netvsc_device *netvsc_dev;
2405 	struct net_device *ndev;
2406 	bool vf_is_up = false;
2407 
2408 	if (event != NETDEV_GOING_DOWN)
2409 		vf_is_up = netif_running(vf_netdev);
2410 
2411 	ndev = get_netvsc_byref(vf_netdev);
2412 	if (!ndev)
2413 		return NOTIFY_DONE;
2414 
2415 	net_device_ctx = netdev_priv(ndev);
2416 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2417 	if (!netvsc_dev)
2418 		return NOTIFY_DONE;
2419 
2420 	if (net_device_ctx->data_path_is_vf == vf_is_up)
2421 		return NOTIFY_OK;
2422 
2423 	netvsc_switch_datapath(ndev, vf_is_up);
2424 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2425 		    vf_is_up ? "to" : "from", vf_netdev->name);
2426 
2427 	return NOTIFY_OK;
2428 }
2429 
2430 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2431 {
2432 	struct net_device *ndev;
2433 	struct net_device_context *net_device_ctx;
2434 
2435 	ndev = get_netvsc_byref(vf_netdev);
2436 	if (!ndev)
2437 		return NOTIFY_DONE;
2438 
2439 	net_device_ctx = netdev_priv(ndev);
2440 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2441 
2442 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2443 
2444 	netvsc_vf_setxdp(vf_netdev, NULL);
2445 
2446 	netdev_rx_handler_unregister(vf_netdev);
2447 	netdev_upper_dev_unlink(vf_netdev, ndev);
2448 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2449 	dev_put(vf_netdev);
2450 
2451 	return NOTIFY_OK;
2452 }
2453 
2454 static int netvsc_probe(struct hv_device *dev,
2455 			const struct hv_vmbus_device_id *dev_id)
2456 {
2457 	struct net_device *net = NULL;
2458 	struct net_device_context *net_device_ctx;
2459 	struct netvsc_device_info *device_info = NULL;
2460 	struct netvsc_device *nvdev;
2461 	int ret = -ENOMEM;
2462 
2463 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2464 				VRSS_CHANNEL_MAX);
2465 	if (!net)
2466 		goto no_net;
2467 
2468 	netif_carrier_off(net);
2469 
2470 	netvsc_init_settings(net);
2471 
2472 	net_device_ctx = netdev_priv(net);
2473 	net_device_ctx->device_ctx = dev;
2474 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2475 	if (netif_msg_probe(net_device_ctx))
2476 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2477 			   net_device_ctx->msg_enable);
2478 
2479 	hv_set_drvdata(dev, net);
2480 
2481 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2482 
2483 	spin_lock_init(&net_device_ctx->lock);
2484 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2485 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2486 
2487 	net_device_ctx->vf_stats
2488 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2489 	if (!net_device_ctx->vf_stats)
2490 		goto no_stats;
2491 
2492 	net->netdev_ops = &device_ops;
2493 	net->ethtool_ops = &ethtool_ops;
2494 	SET_NETDEV_DEV(net, &dev->device);
2495 
2496 	/* We always need headroom for rndis header */
2497 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2498 
2499 	/* Initialize the number of queues to be 1, we may change it if more
2500 	 * channels are offered later.
2501 	 */
2502 	netif_set_real_num_tx_queues(net, 1);
2503 	netif_set_real_num_rx_queues(net, 1);
2504 
2505 	/* Notify the netvsc driver of the new device */
2506 	device_info = netvsc_devinfo_get(NULL);
2507 
2508 	if (!device_info) {
2509 		ret = -ENOMEM;
2510 		goto devinfo_failed;
2511 	}
2512 
2513 	nvdev = rndis_filter_device_add(dev, device_info);
2514 	if (IS_ERR(nvdev)) {
2515 		ret = PTR_ERR(nvdev);
2516 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2517 		goto rndis_failed;
2518 	}
2519 
2520 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2521 
2522 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2523 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2524 	 * all subchannels to show up, but that may not happen because
2525 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2526 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2527 	 * the device lock, so all the subchannels can't be processed --
2528 	 * finally netvsc_subchan_work() hangs forever.
2529 	 */
2530 	rtnl_lock();
2531 
2532 	if (nvdev->num_chn > 1)
2533 		schedule_work(&nvdev->subchan_work);
2534 
2535 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2536 	net->features = net->hw_features |
2537 		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2538 		NETIF_F_HW_VLAN_CTAG_RX;
2539 	net->vlan_features = net->features;
2540 
2541 	netdev_lockdep_set_classes(net);
2542 
2543 	/* MTU range: 68 - 1500 or 65521 */
2544 	net->min_mtu = NETVSC_MTU_MIN;
2545 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2546 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2547 	else
2548 		net->max_mtu = ETH_DATA_LEN;
2549 
2550 	nvdev->tx_disable = false;
2551 
2552 	ret = register_netdevice(net);
2553 	if (ret != 0) {
2554 		pr_err("Unable to register netdev.\n");
2555 		goto register_failed;
2556 	}
2557 
2558 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2559 	rtnl_unlock();
2560 
2561 	netvsc_devinfo_put(device_info);
2562 	return 0;
2563 
2564 register_failed:
2565 	rtnl_unlock();
2566 	rndis_filter_device_remove(dev, nvdev);
2567 rndis_failed:
2568 	netvsc_devinfo_put(device_info);
2569 devinfo_failed:
2570 	free_percpu(net_device_ctx->vf_stats);
2571 no_stats:
2572 	hv_set_drvdata(dev, NULL);
2573 	free_netdev(net);
2574 no_net:
2575 	return ret;
2576 }
2577 
2578 static int netvsc_remove(struct hv_device *dev)
2579 {
2580 	struct net_device_context *ndev_ctx;
2581 	struct net_device *vf_netdev, *net;
2582 	struct netvsc_device *nvdev;
2583 
2584 	net = hv_get_drvdata(dev);
2585 	if (net == NULL) {
2586 		dev_err(&dev->device, "No net device to remove\n");
2587 		return 0;
2588 	}
2589 
2590 	ndev_ctx = netdev_priv(net);
2591 
2592 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2593 
2594 	rtnl_lock();
2595 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2596 	if (nvdev) {
2597 		cancel_work_sync(&nvdev->subchan_work);
2598 		netvsc_xdp_set(net, NULL, NULL, nvdev);
2599 	}
2600 
2601 	/*
2602 	 * Call to the vsc driver to let it know that the device is being
2603 	 * removed. Also blocks mtu and channel changes.
2604 	 */
2605 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2606 	if (vf_netdev)
2607 		netvsc_unregister_vf(vf_netdev);
2608 
2609 	if (nvdev)
2610 		rndis_filter_device_remove(dev, nvdev);
2611 
2612 	unregister_netdevice(net);
2613 	list_del(&ndev_ctx->list);
2614 
2615 	rtnl_unlock();
2616 
2617 	hv_set_drvdata(dev, NULL);
2618 
2619 	free_percpu(ndev_ctx->vf_stats);
2620 	free_netdev(net);
2621 	return 0;
2622 }
2623 
2624 static int netvsc_suspend(struct hv_device *dev)
2625 {
2626 	struct net_device_context *ndev_ctx;
2627 	struct netvsc_device *nvdev;
2628 	struct net_device *net;
2629 	int ret;
2630 
2631 	net = hv_get_drvdata(dev);
2632 
2633 	ndev_ctx = netdev_priv(net);
2634 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2635 
2636 	rtnl_lock();
2637 
2638 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2639 	if (nvdev == NULL) {
2640 		ret = -ENODEV;
2641 		goto out;
2642 	}
2643 
2644 	/* Save the current config info */
2645 	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2646 
2647 	ret = netvsc_detach(net, nvdev);
2648 out:
2649 	rtnl_unlock();
2650 
2651 	return ret;
2652 }
2653 
2654 static int netvsc_resume(struct hv_device *dev)
2655 {
2656 	struct net_device *net = hv_get_drvdata(dev);
2657 	struct net_device_context *net_device_ctx;
2658 	struct netvsc_device_info *device_info;
2659 	int ret;
2660 
2661 	rtnl_lock();
2662 
2663 	net_device_ctx = netdev_priv(net);
2664 
2665 	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2666 	 * channel. Later netvsc_netdev_event() will switch the data path to
2667 	 * the VF upon the UP or CHANGE event.
2668 	 */
2669 	net_device_ctx->data_path_is_vf = false;
2670 	device_info = net_device_ctx->saved_netvsc_dev_info;
2671 
2672 	ret = netvsc_attach(net, device_info);
2673 
2674 	netvsc_devinfo_put(device_info);
2675 	net_device_ctx->saved_netvsc_dev_info = NULL;
2676 
2677 	rtnl_unlock();
2678 
2679 	return ret;
2680 }
2681 static const struct hv_vmbus_device_id id_table[] = {
2682 	/* Network guid */
2683 	{ HV_NIC_GUID, },
2684 	{ },
2685 };
2686 
2687 MODULE_DEVICE_TABLE(vmbus, id_table);
2688 
2689 /* The one and only one */
2690 static struct  hv_driver netvsc_drv = {
2691 	.name = KBUILD_MODNAME,
2692 	.id_table = id_table,
2693 	.probe = netvsc_probe,
2694 	.remove = netvsc_remove,
2695 	.suspend = netvsc_suspend,
2696 	.resume = netvsc_resume,
2697 	.driver = {
2698 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2699 	},
2700 };
2701 
2702 /*
2703  * On Hyper-V, every VF interface is matched with a corresponding
2704  * synthetic interface. The synthetic interface is presented first
2705  * to the guest. When the corresponding VF instance is registered,
2706  * we will take care of switching the data path.
2707  */
2708 static int netvsc_netdev_event(struct notifier_block *this,
2709 			       unsigned long event, void *ptr)
2710 {
2711 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2712 
2713 	/* Skip our own events */
2714 	if (event_dev->netdev_ops == &device_ops)
2715 		return NOTIFY_DONE;
2716 
2717 	/* Avoid non-Ethernet type devices */
2718 	if (event_dev->type != ARPHRD_ETHER)
2719 		return NOTIFY_DONE;
2720 
2721 	/* Avoid Vlan dev with same MAC registering as VF */
2722 	if (is_vlan_dev(event_dev))
2723 		return NOTIFY_DONE;
2724 
2725 	/* Avoid Bonding master dev with same MAC registering as VF */
2726 	if ((event_dev->priv_flags & IFF_BONDING) &&
2727 	    (event_dev->flags & IFF_MASTER))
2728 		return NOTIFY_DONE;
2729 
2730 	switch (event) {
2731 	case NETDEV_REGISTER:
2732 		return netvsc_register_vf(event_dev);
2733 	case NETDEV_UNREGISTER:
2734 		return netvsc_unregister_vf(event_dev);
2735 	case NETDEV_UP:
2736 	case NETDEV_DOWN:
2737 	case NETDEV_CHANGE:
2738 	case NETDEV_GOING_DOWN:
2739 		return netvsc_vf_changed(event_dev, event);
2740 	default:
2741 		return NOTIFY_DONE;
2742 	}
2743 }
2744 
2745 static struct notifier_block netvsc_netdev_notifier = {
2746 	.notifier_call = netvsc_netdev_event,
2747 };
2748 
2749 static void __exit netvsc_drv_exit(void)
2750 {
2751 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2752 	vmbus_driver_unregister(&netvsc_drv);
2753 }
2754 
2755 static int __init netvsc_drv_init(void)
2756 {
2757 	int ret;
2758 
2759 	if (ring_size < RING_SIZE_MIN) {
2760 		ring_size = RING_SIZE_MIN;
2761 		pr_info("Increased ring_size to %u (min allowed)\n",
2762 			ring_size);
2763 	}
2764 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2765 
2766 	ret = vmbus_driver_register(&netvsc_drv);
2767 	if (ret)
2768 		return ret;
2769 
2770 	register_netdevice_notifier(&netvsc_netdev_notifier);
2771 	return 0;
2772 }
2773 
2774 MODULE_LICENSE("GPL");
2775 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2776 
2777 module_init(netvsc_drv_init);
2778 module_exit(netvsc_drv_exit);
2779