1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 struct net_device_context { 44 /* point back to our device context */ 45 struct hv_device *device_ctx; 46 struct delayed_work dwork; 47 struct work_struct work; 48 }; 49 50 #define RING_SIZE_MIN 64 51 static int ring_size = 128; 52 module_param(ring_size, int, S_IRUGO); 53 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 54 55 static void do_set_multicast(struct work_struct *w) 56 { 57 struct net_device_context *ndevctx = 58 container_of(w, struct net_device_context, work); 59 struct netvsc_device *nvdev; 60 struct rndis_device *rdev; 61 62 nvdev = hv_get_drvdata(ndevctx->device_ctx); 63 if (nvdev == NULL || nvdev->ndev == NULL) 64 return; 65 66 rdev = nvdev->extension; 67 if (rdev == NULL) 68 return; 69 70 if (nvdev->ndev->flags & IFF_PROMISC) 71 rndis_filter_set_packet_filter(rdev, 72 NDIS_PACKET_TYPE_PROMISCUOUS); 73 else 74 rndis_filter_set_packet_filter(rdev, 75 NDIS_PACKET_TYPE_BROADCAST | 76 NDIS_PACKET_TYPE_ALL_MULTICAST | 77 NDIS_PACKET_TYPE_DIRECTED); 78 } 79 80 static void netvsc_set_multicast_list(struct net_device *net) 81 { 82 struct net_device_context *net_device_ctx = netdev_priv(net); 83 84 schedule_work(&net_device_ctx->work); 85 } 86 87 static int netvsc_open(struct net_device *net) 88 { 89 struct net_device_context *net_device_ctx = netdev_priv(net); 90 struct hv_device *device_obj = net_device_ctx->device_ctx; 91 struct netvsc_device *nvdev; 92 struct rndis_device *rdev; 93 int ret = 0; 94 95 netif_carrier_off(net); 96 97 /* Open up the device */ 98 ret = rndis_filter_open(device_obj); 99 if (ret != 0) { 100 netdev_err(net, "unable to open device (ret %d).\n", ret); 101 return ret; 102 } 103 104 netif_tx_start_all_queues(net); 105 106 nvdev = hv_get_drvdata(device_obj); 107 rdev = nvdev->extension; 108 if (!rdev->link_state) 109 netif_carrier_on(net); 110 111 return ret; 112 } 113 114 static int netvsc_close(struct net_device *net) 115 { 116 struct net_device_context *net_device_ctx = netdev_priv(net); 117 struct hv_device *device_obj = net_device_ctx->device_ctx; 118 int ret; 119 120 netif_tx_disable(net); 121 122 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ 123 cancel_work_sync(&net_device_ctx->work); 124 ret = rndis_filter_close(device_obj); 125 if (ret != 0) 126 netdev_err(net, "unable to close device (ret %d).\n", ret); 127 128 return ret; 129 } 130 131 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 132 int pkt_type) 133 { 134 struct rndis_packet *rndis_pkt; 135 struct rndis_per_packet_info *ppi; 136 137 rndis_pkt = &msg->msg.pkt; 138 rndis_pkt->data_offset += ppi_size; 139 140 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 141 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 142 143 ppi->size = ppi_size; 144 ppi->type = pkt_type; 145 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 146 147 rndis_pkt->per_pkt_info_len += ppi_size; 148 149 return ppi; 150 } 151 152 union sub_key { 153 u64 k; 154 struct { 155 u8 pad[3]; 156 u8 kb; 157 u32 ka; 158 }; 159 }; 160 161 /* Toeplitz hash function 162 * data: network byte order 163 * return: host byte order 164 */ 165 static u32 comp_hash(u8 *key, int klen, void *data, int dlen) 166 { 167 union sub_key subk; 168 int k_next = 4; 169 u8 dt; 170 int i, j; 171 u32 ret = 0; 172 173 subk.k = 0; 174 subk.ka = ntohl(*(u32 *)key); 175 176 for (i = 0; i < dlen; i++) { 177 subk.kb = key[k_next]; 178 k_next = (k_next + 1) % klen; 179 dt = ((u8 *)data)[i]; 180 for (j = 0; j < 8; j++) { 181 if (dt & 0x80) 182 ret ^= subk.ka; 183 dt <<= 1; 184 subk.k <<= 1; 185 } 186 } 187 188 return ret; 189 } 190 191 static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb) 192 { 193 struct flow_keys flow; 194 int data_len; 195 196 if (!skb_flow_dissect(skb, &flow) || 197 !(flow.n_proto == htons(ETH_P_IP) || 198 flow.n_proto == htons(ETH_P_IPV6))) 199 return false; 200 201 if (flow.ip_proto == IPPROTO_TCP) 202 data_len = 12; 203 else 204 data_len = 8; 205 206 *hash = comp_hash(netvsc_hash_key, HASH_KEYLEN, &flow, data_len); 207 208 return true; 209 } 210 211 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 212 void *accel_priv, select_queue_fallback_t fallback) 213 { 214 struct net_device_context *net_device_ctx = netdev_priv(ndev); 215 struct hv_device *hdev = net_device_ctx->device_ctx; 216 struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev); 217 u32 hash; 218 u16 q_idx = 0; 219 220 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1) 221 return 0; 222 223 if (netvsc_set_hash(&hash, skb)) { 224 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] % 225 ndev->real_num_tx_queues; 226 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 227 } 228 229 return q_idx; 230 } 231 232 static void netvsc_xmit_completion(void *context) 233 { 234 struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context; 235 struct sk_buff *skb = (struct sk_buff *) 236 (unsigned long)packet->send_completion_tid; 237 u32 index = packet->send_buf_index; 238 239 kfree(packet); 240 241 if (skb && (index == NETVSC_INVALID_INDEX)) 242 dev_kfree_skb_any(skb); 243 } 244 245 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 246 struct hv_page_buffer *pb) 247 { 248 int j = 0; 249 250 /* Deal with compund pages by ignoring unused part 251 * of the page. 252 */ 253 page += (offset >> PAGE_SHIFT); 254 offset &= ~PAGE_MASK; 255 256 while (len > 0) { 257 unsigned long bytes; 258 259 bytes = PAGE_SIZE - offset; 260 if (bytes > len) 261 bytes = len; 262 pb[j].pfn = page_to_pfn(page); 263 pb[j].offset = offset; 264 pb[j].len = bytes; 265 266 offset += bytes; 267 len -= bytes; 268 269 if (offset == PAGE_SIZE && len) { 270 page++; 271 offset = 0; 272 j++; 273 } 274 } 275 276 return j + 1; 277 } 278 279 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 280 struct hv_page_buffer *pb) 281 { 282 u32 slots_used = 0; 283 char *data = skb->data; 284 int frags = skb_shinfo(skb)->nr_frags; 285 int i; 286 287 /* The packet is laid out thus: 288 * 1. hdr 289 * 2. skb linear data 290 * 3. skb fragment data 291 */ 292 if (hdr != NULL) 293 slots_used += fill_pg_buf(virt_to_page(hdr), 294 offset_in_page(hdr), 295 len, &pb[slots_used]); 296 297 slots_used += fill_pg_buf(virt_to_page(data), 298 offset_in_page(data), 299 skb_headlen(skb), &pb[slots_used]); 300 301 for (i = 0; i < frags; i++) { 302 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 303 304 slots_used += fill_pg_buf(skb_frag_page(frag), 305 frag->page_offset, 306 skb_frag_size(frag), &pb[slots_used]); 307 } 308 return slots_used; 309 } 310 311 static int count_skb_frag_slots(struct sk_buff *skb) 312 { 313 int i, frags = skb_shinfo(skb)->nr_frags; 314 int pages = 0; 315 316 for (i = 0; i < frags; i++) { 317 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 318 unsigned long size = skb_frag_size(frag); 319 unsigned long offset = frag->page_offset; 320 321 /* Skip unused frames from start of page */ 322 offset &= ~PAGE_MASK; 323 pages += PFN_UP(offset + size); 324 } 325 return pages; 326 } 327 328 static int netvsc_get_slots(struct sk_buff *skb) 329 { 330 char *data = skb->data; 331 unsigned int offset = offset_in_page(data); 332 unsigned int len = skb_headlen(skb); 333 int slots; 334 int frag_slots; 335 336 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 337 frag_slots = count_skb_frag_slots(skb); 338 return slots + frag_slots; 339 } 340 341 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off) 342 { 343 u32 ret_val = TRANSPORT_INFO_NOT_IP; 344 345 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) && 346 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) { 347 goto not_ip; 348 } 349 350 *trans_off = skb_transport_offset(skb); 351 352 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) { 353 struct iphdr *iphdr = ip_hdr(skb); 354 355 if (iphdr->protocol == IPPROTO_TCP) 356 ret_val = TRANSPORT_INFO_IPV4_TCP; 357 else if (iphdr->protocol == IPPROTO_UDP) 358 ret_val = TRANSPORT_INFO_IPV4_UDP; 359 } else { 360 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 361 ret_val = TRANSPORT_INFO_IPV6_TCP; 362 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 363 ret_val = TRANSPORT_INFO_IPV6_UDP; 364 } 365 366 not_ip: 367 return ret_val; 368 } 369 370 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 371 { 372 struct net_device_context *net_device_ctx = netdev_priv(net); 373 struct hv_netvsc_packet *packet; 374 int ret; 375 unsigned int num_data_pgs; 376 struct rndis_message *rndis_msg; 377 struct rndis_packet *rndis_pkt; 378 u32 rndis_msg_size; 379 bool isvlan; 380 struct rndis_per_packet_info *ppi; 381 struct ndis_tcp_ip_checksum_info *csum_info; 382 struct ndis_tcp_lso_info *lso_info; 383 int hdr_offset; 384 u32 net_trans_info; 385 u32 hash; 386 u32 skb_length = skb->len; 387 388 389 /* We will atmost need two pages to describe the rndis 390 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 391 * of pages in a single packet. 392 */ 393 num_data_pgs = netvsc_get_slots(skb) + 2; 394 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 395 netdev_err(net, "Packet too big: %u\n", skb->len); 396 dev_kfree_skb(skb); 397 net->stats.tx_dropped++; 398 return NETDEV_TX_OK; 399 } 400 401 /* Allocate a netvsc packet based on # of frags. */ 402 packet = kzalloc(sizeof(struct hv_netvsc_packet) + 403 (num_data_pgs * sizeof(struct hv_page_buffer)) + 404 sizeof(struct rndis_message) + 405 NDIS_VLAN_PPI_SIZE + NDIS_CSUM_PPI_SIZE + 406 NDIS_LSO_PPI_SIZE + NDIS_HASH_PPI_SIZE, GFP_ATOMIC); 407 if (!packet) { 408 /* out of memory, drop packet */ 409 netdev_err(net, "unable to allocate hv_netvsc_packet\n"); 410 411 dev_kfree_skb(skb); 412 net->stats.tx_dropped++; 413 return NETDEV_TX_OK; 414 } 415 416 packet->vlan_tci = skb->vlan_tci; 417 418 packet->q_idx = skb_get_queue_mapping(skb); 419 420 packet->is_data_pkt = true; 421 packet->total_data_buflen = skb->len; 422 423 packet->rndis_msg = (struct rndis_message *)((unsigned long)packet + 424 sizeof(struct hv_netvsc_packet) + 425 (num_data_pgs * sizeof(struct hv_page_buffer))); 426 427 /* Set the completion routine */ 428 packet->send_completion = netvsc_xmit_completion; 429 packet->send_completion_ctx = packet; 430 packet->send_completion_tid = (unsigned long)skb; 431 432 isvlan = packet->vlan_tci & VLAN_TAG_PRESENT; 433 434 /* Add the rndis header */ 435 rndis_msg = packet->rndis_msg; 436 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 437 rndis_msg->msg_len = packet->total_data_buflen; 438 rndis_pkt = &rndis_msg->msg.pkt; 439 rndis_pkt->data_offset = sizeof(struct rndis_packet); 440 rndis_pkt->data_len = packet->total_data_buflen; 441 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 442 443 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 444 445 hash = skb_get_hash_raw(skb); 446 if (hash != 0 && net->real_num_tx_queues > 1) { 447 rndis_msg_size += NDIS_HASH_PPI_SIZE; 448 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 449 NBL_HASH_VALUE); 450 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 451 } 452 453 if (isvlan) { 454 struct ndis_pkt_8021q_info *vlan; 455 456 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 457 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 458 IEEE_8021Q_INFO); 459 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 460 ppi->ppi_offset); 461 vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK; 462 vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >> 463 VLAN_PRIO_SHIFT; 464 } 465 466 net_trans_info = get_net_transport_info(skb, &hdr_offset); 467 if (net_trans_info == TRANSPORT_INFO_NOT_IP) 468 goto do_send; 469 470 /* 471 * Setup the sendside checksum offload only if this is not a 472 * GSO packet. 473 */ 474 if (skb_is_gso(skb)) 475 goto do_lso; 476 477 if ((skb->ip_summed == CHECKSUM_NONE) || 478 (skb->ip_summed == CHECKSUM_UNNECESSARY)) 479 goto do_send; 480 481 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 482 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 483 TCPIP_CHKSUM_PKTINFO); 484 485 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 486 ppi->ppi_offset); 487 488 if (net_trans_info & (INFO_IPV4 << 16)) 489 csum_info->transmit.is_ipv4 = 1; 490 else 491 csum_info->transmit.is_ipv6 = 1; 492 493 if (net_trans_info & INFO_TCP) { 494 csum_info->transmit.tcp_checksum = 1; 495 csum_info->transmit.tcp_header_offset = hdr_offset; 496 } else if (net_trans_info & INFO_UDP) { 497 /* UDP checksum offload is not supported on ws2008r2. 498 * Furthermore, on ws2012 and ws2012r2, there are some 499 * issues with udp checksum offload from Linux guests. 500 * (these are host issues). 501 * For now compute the checksum here. 502 */ 503 struct udphdr *uh; 504 u16 udp_len; 505 506 ret = skb_cow_head(skb, 0); 507 if (ret) 508 goto drop; 509 510 uh = udp_hdr(skb); 511 udp_len = ntohs(uh->len); 512 uh->check = 0; 513 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr, 514 ip_hdr(skb)->daddr, 515 udp_len, IPPROTO_UDP, 516 csum_partial(uh, udp_len, 0)); 517 if (uh->check == 0) 518 uh->check = CSUM_MANGLED_0; 519 520 csum_info->transmit.udp_checksum = 0; 521 } 522 goto do_send; 523 524 do_lso: 525 rndis_msg_size += NDIS_LSO_PPI_SIZE; 526 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 527 TCP_LARGESEND_PKTINFO); 528 529 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 530 ppi->ppi_offset); 531 532 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 533 if (net_trans_info & (INFO_IPV4 << 16)) { 534 lso_info->lso_v2_transmit.ip_version = 535 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 536 ip_hdr(skb)->tot_len = 0; 537 ip_hdr(skb)->check = 0; 538 tcp_hdr(skb)->check = 539 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 540 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 541 } else { 542 lso_info->lso_v2_transmit.ip_version = 543 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 544 ipv6_hdr(skb)->payload_len = 0; 545 tcp_hdr(skb)->check = 546 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 547 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 548 } 549 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset; 550 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 551 552 do_send: 553 /* Start filling in the page buffers with the rndis hdr */ 554 rndis_msg->msg_len += rndis_msg_size; 555 packet->total_data_buflen = rndis_msg->msg_len; 556 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 557 skb, &packet->page_buf[0]); 558 559 ret = netvsc_send(net_device_ctx->device_ctx, packet); 560 561 drop: 562 if (ret == 0) { 563 net->stats.tx_bytes += skb_length; 564 net->stats.tx_packets++; 565 } else { 566 kfree(packet); 567 if (ret != -EAGAIN) { 568 dev_kfree_skb_any(skb); 569 net->stats.tx_dropped++; 570 } 571 } 572 573 return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK; 574 } 575 576 /* 577 * netvsc_linkstatus_callback - Link up/down notification 578 */ 579 void netvsc_linkstatus_callback(struct hv_device *device_obj, 580 struct rndis_message *resp) 581 { 582 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 583 struct net_device *net; 584 struct net_device_context *ndev_ctx; 585 struct netvsc_device *net_device; 586 struct rndis_device *rdev; 587 588 net_device = hv_get_drvdata(device_obj); 589 rdev = net_device->extension; 590 591 switch (indicate->status) { 592 case RNDIS_STATUS_MEDIA_CONNECT: 593 rdev->link_state = false; 594 break; 595 case RNDIS_STATUS_MEDIA_DISCONNECT: 596 rdev->link_state = true; 597 break; 598 case RNDIS_STATUS_NETWORK_CHANGE: 599 rdev->link_change = true; 600 break; 601 default: 602 return; 603 } 604 605 net = net_device->ndev; 606 607 if (!net || net->reg_state != NETREG_REGISTERED) 608 return; 609 610 ndev_ctx = netdev_priv(net); 611 if (!rdev->link_state) { 612 schedule_delayed_work(&ndev_ctx->dwork, 0); 613 schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20)); 614 } else { 615 schedule_delayed_work(&ndev_ctx->dwork, 0); 616 } 617 } 618 619 /* 620 * netvsc_recv_callback - Callback when we receive a packet from the 621 * "wire" on the specified device. 622 */ 623 int netvsc_recv_callback(struct hv_device *device_obj, 624 struct hv_netvsc_packet *packet, 625 struct ndis_tcp_ip_checksum_info *csum_info) 626 { 627 struct net_device *net; 628 struct sk_buff *skb; 629 630 net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev; 631 if (!net || net->reg_state != NETREG_REGISTERED) { 632 packet->status = NVSP_STAT_FAIL; 633 return 0; 634 } 635 636 /* Allocate a skb - TODO direct I/O to pages? */ 637 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen); 638 if (unlikely(!skb)) { 639 ++net->stats.rx_dropped; 640 packet->status = NVSP_STAT_FAIL; 641 return 0; 642 } 643 644 /* 645 * Copy to skb. This copy is needed here since the memory pointed by 646 * hv_netvsc_packet cannot be deallocated 647 */ 648 memcpy(skb_put(skb, packet->total_data_buflen), packet->data, 649 packet->total_data_buflen); 650 651 skb->protocol = eth_type_trans(skb, net); 652 if (csum_info) { 653 /* We only look at the IP checksum here. 654 * Should we be dropping the packet if checksum 655 * failed? How do we deal with other checksums - TCP/UDP? 656 */ 657 if (csum_info->receive.ip_checksum_succeeded) 658 skb->ip_summed = CHECKSUM_UNNECESSARY; 659 else 660 skb->ip_summed = CHECKSUM_NONE; 661 } 662 663 if (packet->vlan_tci & VLAN_TAG_PRESENT) 664 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 665 packet->vlan_tci); 666 667 skb_record_rx_queue(skb, packet->channel-> 668 offermsg.offer.sub_channel_index); 669 670 net->stats.rx_packets++; 671 net->stats.rx_bytes += packet->total_data_buflen; 672 673 /* 674 * Pass the skb back up. Network stack will deallocate the skb when it 675 * is done. 676 * TODO - use NAPI? 677 */ 678 netif_rx(skb); 679 680 return 0; 681 } 682 683 static void netvsc_get_drvinfo(struct net_device *net, 684 struct ethtool_drvinfo *info) 685 { 686 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 687 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 688 } 689 690 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 691 { 692 struct net_device_context *ndevctx = netdev_priv(ndev); 693 struct hv_device *hdev = ndevctx->device_ctx; 694 struct netvsc_device *nvdev = hv_get_drvdata(hdev); 695 struct netvsc_device_info device_info; 696 int limit = ETH_DATA_LEN; 697 698 if (nvdev == NULL || nvdev->destroy) 699 return -ENODEV; 700 701 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 702 limit = NETVSC_MTU - ETH_HLEN; 703 704 /* Hyper-V hosts don't support MTU < ETH_DATA_LEN (1500) */ 705 if (mtu < ETH_DATA_LEN || mtu > limit) 706 return -EINVAL; 707 708 nvdev->start_remove = true; 709 cancel_work_sync(&ndevctx->work); 710 netif_tx_disable(ndev); 711 rndis_filter_device_remove(hdev); 712 713 ndev->mtu = mtu; 714 715 ndevctx->device_ctx = hdev; 716 hv_set_drvdata(hdev, ndev); 717 device_info.ring_size = ring_size; 718 rndis_filter_device_add(hdev, &device_info); 719 netif_tx_wake_all_queues(ndev); 720 721 return 0; 722 } 723 724 725 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 726 { 727 struct net_device_context *ndevctx = netdev_priv(ndev); 728 struct hv_device *hdev = ndevctx->device_ctx; 729 struct sockaddr *addr = p; 730 char save_adr[ETH_ALEN]; 731 unsigned char save_aatype; 732 int err; 733 734 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 735 save_aatype = ndev->addr_assign_type; 736 737 err = eth_mac_addr(ndev, p); 738 if (err != 0) 739 return err; 740 741 err = rndis_filter_set_device_mac(hdev, addr->sa_data); 742 if (err != 0) { 743 /* roll back to saved MAC */ 744 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 745 ndev->addr_assign_type = save_aatype; 746 } 747 748 return err; 749 } 750 751 #ifdef CONFIG_NET_POLL_CONTROLLER 752 static void netvsc_poll_controller(struct net_device *net) 753 { 754 /* As netvsc_start_xmit() works synchronous we don't have to 755 * trigger anything here. 756 */ 757 } 758 #endif 759 760 static const struct ethtool_ops ethtool_ops = { 761 .get_drvinfo = netvsc_get_drvinfo, 762 .get_link = ethtool_op_get_link, 763 }; 764 765 static const struct net_device_ops device_ops = { 766 .ndo_open = netvsc_open, 767 .ndo_stop = netvsc_close, 768 .ndo_start_xmit = netvsc_start_xmit, 769 .ndo_set_rx_mode = netvsc_set_multicast_list, 770 .ndo_change_mtu = netvsc_change_mtu, 771 .ndo_validate_addr = eth_validate_addr, 772 .ndo_set_mac_address = netvsc_set_mac_addr, 773 .ndo_select_queue = netvsc_select_queue, 774 #ifdef CONFIG_NET_POLL_CONTROLLER 775 .ndo_poll_controller = netvsc_poll_controller, 776 #endif 777 }; 778 779 /* 780 * Send GARP packet to network peers after migrations. 781 * After Quick Migration, the network is not immediately operational in the 782 * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add 783 * another netif_notify_peers() into a delayed work, otherwise GARP packet 784 * will not be sent after quick migration, and cause network disconnection. 785 * Also, we update the carrier status here. 786 */ 787 static void netvsc_link_change(struct work_struct *w) 788 { 789 struct net_device_context *ndev_ctx; 790 struct net_device *net; 791 struct netvsc_device *net_device; 792 struct rndis_device *rdev; 793 bool notify, refresh = false; 794 char *argv[] = { "/etc/init.d/network", "restart", NULL }; 795 char *envp[] = { "HOME=/", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; 796 797 rtnl_lock(); 798 799 ndev_ctx = container_of(w, struct net_device_context, dwork.work); 800 net_device = hv_get_drvdata(ndev_ctx->device_ctx); 801 rdev = net_device->extension; 802 net = net_device->ndev; 803 804 if (rdev->link_state) { 805 netif_carrier_off(net); 806 notify = false; 807 } else { 808 netif_carrier_on(net); 809 notify = true; 810 if (rdev->link_change) { 811 rdev->link_change = false; 812 refresh = true; 813 } 814 } 815 816 rtnl_unlock(); 817 818 if (refresh) 819 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 820 821 if (notify) 822 netdev_notify_peers(net); 823 } 824 825 826 static int netvsc_probe(struct hv_device *dev, 827 const struct hv_vmbus_device_id *dev_id) 828 { 829 struct net_device *net = NULL; 830 struct net_device_context *net_device_ctx; 831 struct netvsc_device_info device_info; 832 struct netvsc_device *nvdev; 833 int ret; 834 835 net = alloc_etherdev_mq(sizeof(struct net_device_context), 836 num_online_cpus()); 837 if (!net) 838 return -ENOMEM; 839 840 netif_carrier_off(net); 841 842 net_device_ctx = netdev_priv(net); 843 net_device_ctx->device_ctx = dev; 844 hv_set_drvdata(dev, net); 845 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 846 INIT_WORK(&net_device_ctx->work, do_set_multicast); 847 848 net->netdev_ops = &device_ops; 849 850 net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM | 851 NETIF_F_TSO; 852 net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM | 853 NETIF_F_IP_CSUM | NETIF_F_TSO; 854 855 net->ethtool_ops = ðtool_ops; 856 SET_NETDEV_DEV(net, &dev->device); 857 858 /* Notify the netvsc driver of the new device */ 859 device_info.ring_size = ring_size; 860 ret = rndis_filter_device_add(dev, &device_info); 861 if (ret != 0) { 862 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 863 free_netdev(net); 864 hv_set_drvdata(dev, NULL); 865 return ret; 866 } 867 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 868 869 nvdev = hv_get_drvdata(dev); 870 netif_set_real_num_tx_queues(net, nvdev->num_chn); 871 netif_set_real_num_rx_queues(net, nvdev->num_chn); 872 873 ret = register_netdev(net); 874 if (ret != 0) { 875 pr_err("Unable to register netdev.\n"); 876 rndis_filter_device_remove(dev); 877 free_netdev(net); 878 } else { 879 schedule_delayed_work(&net_device_ctx->dwork, 0); 880 } 881 882 return ret; 883 } 884 885 static int netvsc_remove(struct hv_device *dev) 886 { 887 struct net_device *net; 888 struct net_device_context *ndev_ctx; 889 struct netvsc_device *net_device; 890 891 net_device = hv_get_drvdata(dev); 892 net = net_device->ndev; 893 894 if (net == NULL) { 895 dev_err(&dev->device, "No net device to remove\n"); 896 return 0; 897 } 898 899 net_device->start_remove = true; 900 901 ndev_ctx = netdev_priv(net); 902 cancel_delayed_work_sync(&ndev_ctx->dwork); 903 cancel_work_sync(&ndev_ctx->work); 904 905 /* Stop outbound asap */ 906 netif_tx_disable(net); 907 908 unregister_netdev(net); 909 910 /* 911 * Call to the vsc driver to let it know that the device is being 912 * removed 913 */ 914 rndis_filter_device_remove(dev); 915 916 free_netdev(net); 917 return 0; 918 } 919 920 static const struct hv_vmbus_device_id id_table[] = { 921 /* Network guid */ 922 { HV_NIC_GUID, }, 923 { }, 924 }; 925 926 MODULE_DEVICE_TABLE(vmbus, id_table); 927 928 /* The one and only one */ 929 static struct hv_driver netvsc_drv = { 930 .name = KBUILD_MODNAME, 931 .id_table = id_table, 932 .probe = netvsc_probe, 933 .remove = netvsc_remove, 934 }; 935 936 static void __exit netvsc_drv_exit(void) 937 { 938 vmbus_driver_unregister(&netvsc_drv); 939 } 940 941 static int __init netvsc_drv_init(void) 942 { 943 if (ring_size < RING_SIZE_MIN) { 944 ring_size = RING_SIZE_MIN; 945 pr_info("Increased ring_size to %d (min allowed)\n", 946 ring_size); 947 } 948 return vmbus_driver_register(&netvsc_drv); 949 } 950 951 MODULE_LICENSE("GPL"); 952 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 953 954 module_init(netvsc_drv_init); 955 module_exit(netvsc_drv_exit); 956