1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 44 #define RING_SIZE_MIN 64 45 #define LINKCHANGE_INT (2 * HZ) 46 #define NETVSC_HW_FEATURES (NETIF_F_RXCSUM | \ 47 NETIF_F_SG | \ 48 NETIF_F_TSO | \ 49 NETIF_F_TSO6 | \ 50 NETIF_F_HW_CSUM) 51 static int ring_size = 128; 52 module_param(ring_size, int, S_IRUGO); 53 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 54 55 static int max_num_vrss_chns = 8; 56 57 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 58 NETIF_MSG_LINK | NETIF_MSG_IFUP | 59 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 60 NETIF_MSG_TX_ERR; 61 62 static int debug = -1; 63 module_param(debug, int, S_IRUGO); 64 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 65 66 static void do_set_multicast(struct work_struct *w) 67 { 68 struct net_device_context *ndevctx = 69 container_of(w, struct net_device_context, work); 70 struct hv_device *device_obj = ndevctx->device_ctx; 71 struct net_device *ndev = hv_get_drvdata(device_obj); 72 struct netvsc_device *nvdev = ndevctx->nvdev; 73 struct rndis_device *rdev; 74 75 if (!nvdev) 76 return; 77 78 rdev = nvdev->extension; 79 if (rdev == NULL) 80 return; 81 82 if (ndev->flags & IFF_PROMISC) 83 rndis_filter_set_packet_filter(rdev, 84 NDIS_PACKET_TYPE_PROMISCUOUS); 85 else 86 rndis_filter_set_packet_filter(rdev, 87 NDIS_PACKET_TYPE_BROADCAST | 88 NDIS_PACKET_TYPE_ALL_MULTICAST | 89 NDIS_PACKET_TYPE_DIRECTED); 90 } 91 92 static void netvsc_set_multicast_list(struct net_device *net) 93 { 94 struct net_device_context *net_device_ctx = netdev_priv(net); 95 96 schedule_work(&net_device_ctx->work); 97 } 98 99 static int netvsc_open(struct net_device *net) 100 { 101 struct netvsc_device *nvdev = net_device_to_netvsc_device(net); 102 struct rndis_device *rdev; 103 int ret = 0; 104 105 netif_carrier_off(net); 106 107 /* Open up the device */ 108 ret = rndis_filter_open(nvdev); 109 if (ret != 0) { 110 netdev_err(net, "unable to open device (ret %d).\n", ret); 111 return ret; 112 } 113 114 netif_tx_wake_all_queues(net); 115 116 rdev = nvdev->extension; 117 if (!rdev->link_state) 118 netif_carrier_on(net); 119 120 return ret; 121 } 122 123 static int netvsc_close(struct net_device *net) 124 { 125 struct net_device_context *net_device_ctx = netdev_priv(net); 126 struct netvsc_device *nvdev = net_device_ctx->nvdev; 127 int ret; 128 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20; 129 struct vmbus_channel *chn; 130 131 netif_tx_disable(net); 132 133 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ 134 cancel_work_sync(&net_device_ctx->work); 135 ret = rndis_filter_close(nvdev); 136 if (ret != 0) { 137 netdev_err(net, "unable to close device (ret %d).\n", ret); 138 return ret; 139 } 140 141 /* Ensure pending bytes in ring are read */ 142 while (true) { 143 aread = 0; 144 for (i = 0; i < nvdev->num_chn; i++) { 145 chn = nvdev->chn_table[i]; 146 if (!chn) 147 continue; 148 149 hv_get_ringbuffer_availbytes(&chn->inbound, &aread, 150 &awrite); 151 152 if (aread) 153 break; 154 155 hv_get_ringbuffer_availbytes(&chn->outbound, &aread, 156 &awrite); 157 158 if (aread) 159 break; 160 } 161 162 retry++; 163 if (retry > retry_max || aread == 0) 164 break; 165 166 msleep(msec); 167 168 if (msec < 1000) 169 msec *= 2; 170 } 171 172 if (aread) { 173 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 174 ret = -ETIMEDOUT; 175 } 176 177 return ret; 178 } 179 180 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 181 int pkt_type) 182 { 183 struct rndis_packet *rndis_pkt; 184 struct rndis_per_packet_info *ppi; 185 186 rndis_pkt = &msg->msg.pkt; 187 rndis_pkt->data_offset += ppi_size; 188 189 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 190 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 191 192 ppi->size = ppi_size; 193 ppi->type = pkt_type; 194 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 195 196 rndis_pkt->per_pkt_info_len += ppi_size; 197 198 return ppi; 199 } 200 201 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 202 void *accel_priv, select_queue_fallback_t fallback) 203 { 204 struct net_device_context *net_device_ctx = netdev_priv(ndev); 205 struct netvsc_device *nvsc_dev = net_device_ctx->nvdev; 206 u32 hash; 207 u16 q_idx = 0; 208 209 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1) 210 return 0; 211 212 hash = skb_get_hash(skb); 213 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] % 214 ndev->real_num_tx_queues; 215 216 if (!nvsc_dev->chn_table[q_idx]) 217 q_idx = 0; 218 219 return q_idx; 220 } 221 222 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 223 struct hv_page_buffer *pb) 224 { 225 int j = 0; 226 227 /* Deal with compund pages by ignoring unused part 228 * of the page. 229 */ 230 page += (offset >> PAGE_SHIFT); 231 offset &= ~PAGE_MASK; 232 233 while (len > 0) { 234 unsigned long bytes; 235 236 bytes = PAGE_SIZE - offset; 237 if (bytes > len) 238 bytes = len; 239 pb[j].pfn = page_to_pfn(page); 240 pb[j].offset = offset; 241 pb[j].len = bytes; 242 243 offset += bytes; 244 len -= bytes; 245 246 if (offset == PAGE_SIZE && len) { 247 page++; 248 offset = 0; 249 j++; 250 } 251 } 252 253 return j + 1; 254 } 255 256 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 257 struct hv_netvsc_packet *packet, 258 struct hv_page_buffer **page_buf) 259 { 260 struct hv_page_buffer *pb = *page_buf; 261 u32 slots_used = 0; 262 char *data = skb->data; 263 int frags = skb_shinfo(skb)->nr_frags; 264 int i; 265 266 /* The packet is laid out thus: 267 * 1. hdr: RNDIS header and PPI 268 * 2. skb linear data 269 * 3. skb fragment data 270 */ 271 if (hdr != NULL) 272 slots_used += fill_pg_buf(virt_to_page(hdr), 273 offset_in_page(hdr), 274 len, &pb[slots_used]); 275 276 packet->rmsg_size = len; 277 packet->rmsg_pgcnt = slots_used; 278 279 slots_used += fill_pg_buf(virt_to_page(data), 280 offset_in_page(data), 281 skb_headlen(skb), &pb[slots_used]); 282 283 for (i = 0; i < frags; i++) { 284 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 285 286 slots_used += fill_pg_buf(skb_frag_page(frag), 287 frag->page_offset, 288 skb_frag_size(frag), &pb[slots_used]); 289 } 290 return slots_used; 291 } 292 293 static int count_skb_frag_slots(struct sk_buff *skb) 294 { 295 int i, frags = skb_shinfo(skb)->nr_frags; 296 int pages = 0; 297 298 for (i = 0; i < frags; i++) { 299 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 300 unsigned long size = skb_frag_size(frag); 301 unsigned long offset = frag->page_offset; 302 303 /* Skip unused frames from start of page */ 304 offset &= ~PAGE_MASK; 305 pages += PFN_UP(offset + size); 306 } 307 return pages; 308 } 309 310 static int netvsc_get_slots(struct sk_buff *skb) 311 { 312 char *data = skb->data; 313 unsigned int offset = offset_in_page(data); 314 unsigned int len = skb_headlen(skb); 315 int slots; 316 int frag_slots; 317 318 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 319 frag_slots = count_skb_frag_slots(skb); 320 return slots + frag_slots; 321 } 322 323 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off) 324 { 325 u32 ret_val = TRANSPORT_INFO_NOT_IP; 326 327 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) && 328 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) { 329 goto not_ip; 330 } 331 332 *trans_off = skb_transport_offset(skb); 333 334 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) { 335 struct iphdr *iphdr = ip_hdr(skb); 336 337 if (iphdr->protocol == IPPROTO_TCP) 338 ret_val = TRANSPORT_INFO_IPV4_TCP; 339 else if (iphdr->protocol == IPPROTO_UDP) 340 ret_val = TRANSPORT_INFO_IPV4_UDP; 341 } else { 342 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 343 ret_val = TRANSPORT_INFO_IPV6_TCP; 344 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 345 ret_val = TRANSPORT_INFO_IPV6_UDP; 346 } 347 348 not_ip: 349 return ret_val; 350 } 351 352 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 353 { 354 struct net_device_context *net_device_ctx = netdev_priv(net); 355 struct hv_netvsc_packet *packet = NULL; 356 int ret; 357 unsigned int num_data_pgs; 358 struct rndis_message *rndis_msg; 359 struct rndis_packet *rndis_pkt; 360 u32 rndis_msg_size; 361 bool isvlan; 362 bool linear = false; 363 struct rndis_per_packet_info *ppi; 364 struct ndis_tcp_ip_checksum_info *csum_info; 365 struct ndis_tcp_lso_info *lso_info; 366 int hdr_offset; 367 u32 net_trans_info; 368 u32 hash; 369 u32 skb_length; 370 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; 371 struct hv_page_buffer *pb = page_buf; 372 struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats); 373 374 /* We will atmost need two pages to describe the rndis 375 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 376 * of pages in a single packet. If skb is scattered around 377 * more pages we try linearizing it. 378 */ 379 380 check_size: 381 skb_length = skb->len; 382 num_data_pgs = netvsc_get_slots(skb) + 2; 383 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) { 384 net_alert_ratelimited("packet too big: %u pages (%u bytes)\n", 385 num_data_pgs, skb->len); 386 ret = -EFAULT; 387 goto drop; 388 } else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 389 if (skb_linearize(skb)) { 390 net_alert_ratelimited("failed to linearize skb\n"); 391 ret = -ENOMEM; 392 goto drop; 393 } 394 linear = true; 395 goto check_size; 396 } 397 398 /* 399 * Place the rndis header in the skb head room and 400 * the skb->cb will be used for hv_netvsc_packet 401 * structure. 402 */ 403 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 404 if (ret) { 405 netdev_err(net, "unable to alloc hv_netvsc_packet\n"); 406 ret = -ENOMEM; 407 goto drop; 408 } 409 /* Use the skb control buffer for building up the packet */ 410 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 411 FIELD_SIZEOF(struct sk_buff, cb)); 412 packet = (struct hv_netvsc_packet *)skb->cb; 413 414 415 packet->q_idx = skb_get_queue_mapping(skb); 416 417 packet->total_data_buflen = skb->len; 418 419 rndis_msg = (struct rndis_message *)skb->head; 420 421 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 422 423 isvlan = skb->vlan_tci & VLAN_TAG_PRESENT; 424 425 /* Add the rndis header */ 426 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 427 rndis_msg->msg_len = packet->total_data_buflen; 428 rndis_pkt = &rndis_msg->msg.pkt; 429 rndis_pkt->data_offset = sizeof(struct rndis_packet); 430 rndis_pkt->data_len = packet->total_data_buflen; 431 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 432 433 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 434 435 hash = skb_get_hash_raw(skb); 436 if (hash != 0 && net->real_num_tx_queues > 1) { 437 rndis_msg_size += NDIS_HASH_PPI_SIZE; 438 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 439 NBL_HASH_VALUE); 440 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 441 } 442 443 if (isvlan) { 444 struct ndis_pkt_8021q_info *vlan; 445 446 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 447 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 448 IEEE_8021Q_INFO); 449 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 450 ppi->ppi_offset); 451 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 452 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 453 VLAN_PRIO_SHIFT; 454 } 455 456 net_trans_info = get_net_transport_info(skb, &hdr_offset); 457 if (net_trans_info == TRANSPORT_INFO_NOT_IP) 458 goto do_send; 459 460 /* 461 * Setup the sendside checksum offload only if this is not a 462 * GSO packet. 463 */ 464 if (skb_is_gso(skb)) 465 goto do_lso; 466 467 if ((skb->ip_summed == CHECKSUM_NONE) || 468 (skb->ip_summed == CHECKSUM_UNNECESSARY)) 469 goto do_send; 470 471 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 472 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 473 TCPIP_CHKSUM_PKTINFO); 474 475 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 476 ppi->ppi_offset); 477 478 if (net_trans_info & (INFO_IPV4 << 16)) 479 csum_info->transmit.is_ipv4 = 1; 480 else 481 csum_info->transmit.is_ipv6 = 1; 482 483 if (net_trans_info & INFO_TCP) { 484 csum_info->transmit.tcp_checksum = 1; 485 csum_info->transmit.tcp_header_offset = hdr_offset; 486 } else if (net_trans_info & INFO_UDP) { 487 /* UDP checksum offload is not supported on ws2008r2. 488 * Furthermore, on ws2012 and ws2012r2, there are some 489 * issues with udp checksum offload from Linux guests. 490 * (these are host issues). 491 * For now compute the checksum here. 492 */ 493 struct udphdr *uh; 494 u16 udp_len; 495 496 ret = skb_cow_head(skb, 0); 497 if (ret) 498 goto drop; 499 500 uh = udp_hdr(skb); 501 udp_len = ntohs(uh->len); 502 uh->check = 0; 503 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr, 504 ip_hdr(skb)->daddr, 505 udp_len, IPPROTO_UDP, 506 csum_partial(uh, udp_len, 0)); 507 if (uh->check == 0) 508 uh->check = CSUM_MANGLED_0; 509 510 csum_info->transmit.udp_checksum = 0; 511 } 512 goto do_send; 513 514 do_lso: 515 rndis_msg_size += NDIS_LSO_PPI_SIZE; 516 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 517 TCP_LARGESEND_PKTINFO); 518 519 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 520 ppi->ppi_offset); 521 522 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 523 if (net_trans_info & (INFO_IPV4 << 16)) { 524 lso_info->lso_v2_transmit.ip_version = 525 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 526 ip_hdr(skb)->tot_len = 0; 527 ip_hdr(skb)->check = 0; 528 tcp_hdr(skb)->check = 529 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 530 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 531 } else { 532 lso_info->lso_v2_transmit.ip_version = 533 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 534 ipv6_hdr(skb)->payload_len = 0; 535 tcp_hdr(skb)->check = 536 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 537 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 538 } 539 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset; 540 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 541 542 do_send: 543 /* Start filling in the page buffers with the rndis hdr */ 544 rndis_msg->msg_len += rndis_msg_size; 545 packet->total_data_buflen = rndis_msg->msg_len; 546 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 547 skb, packet, &pb); 548 549 /* timestamp packet in software */ 550 skb_tx_timestamp(skb); 551 ret = netvsc_send(net_device_ctx->device_ctx, packet, 552 rndis_msg, &pb, skb); 553 554 drop: 555 if (ret == 0) { 556 u64_stats_update_begin(&tx_stats->syncp); 557 tx_stats->packets++; 558 tx_stats->bytes += skb_length; 559 u64_stats_update_end(&tx_stats->syncp); 560 } else { 561 if (ret != -EAGAIN) { 562 dev_kfree_skb_any(skb); 563 net->stats.tx_dropped++; 564 } 565 } 566 567 return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK; 568 } 569 570 /* 571 * netvsc_linkstatus_callback - Link up/down notification 572 */ 573 void netvsc_linkstatus_callback(struct hv_device *device_obj, 574 struct rndis_message *resp) 575 { 576 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 577 struct net_device *net; 578 struct net_device_context *ndev_ctx; 579 struct netvsc_reconfig *event; 580 unsigned long flags; 581 582 /* Handle link change statuses only */ 583 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 584 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 585 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 586 return; 587 588 net = hv_get_drvdata(device_obj); 589 590 if (!net || net->reg_state != NETREG_REGISTERED) 591 return; 592 593 ndev_ctx = netdev_priv(net); 594 595 event = kzalloc(sizeof(*event), GFP_ATOMIC); 596 if (!event) 597 return; 598 event->event = indicate->status; 599 600 spin_lock_irqsave(&ndev_ctx->lock, flags); 601 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 602 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 603 604 schedule_delayed_work(&ndev_ctx->dwork, 0); 605 } 606 607 608 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 609 struct hv_netvsc_packet *packet, 610 struct ndis_tcp_ip_checksum_info *csum_info, 611 void *data, u16 vlan_tci) 612 { 613 struct sk_buff *skb; 614 615 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen); 616 if (!skb) 617 return skb; 618 619 /* 620 * Copy to skb. This copy is needed here since the memory pointed by 621 * hv_netvsc_packet cannot be deallocated 622 */ 623 memcpy(skb_put(skb, packet->total_data_buflen), data, 624 packet->total_data_buflen); 625 626 skb->protocol = eth_type_trans(skb, net); 627 if (csum_info) { 628 /* We only look at the IP checksum here. 629 * Should we be dropping the packet if checksum 630 * failed? How do we deal with other checksums - TCP/UDP? 631 */ 632 if (csum_info->receive.ip_checksum_succeeded) 633 skb->ip_summed = CHECKSUM_UNNECESSARY; 634 else 635 skb->ip_summed = CHECKSUM_NONE; 636 } 637 638 if (vlan_tci & VLAN_TAG_PRESENT) 639 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 640 vlan_tci); 641 642 return skb; 643 } 644 645 /* 646 * netvsc_recv_callback - Callback when we receive a packet from the 647 * "wire" on the specified device. 648 */ 649 int netvsc_recv_callback(struct hv_device *device_obj, 650 struct hv_netvsc_packet *packet, 651 void **data, 652 struct ndis_tcp_ip_checksum_info *csum_info, 653 struct vmbus_channel *channel, 654 u16 vlan_tci) 655 { 656 struct net_device *net = hv_get_drvdata(device_obj); 657 struct net_device_context *net_device_ctx = netdev_priv(net); 658 struct sk_buff *skb; 659 struct sk_buff *vf_skb; 660 struct netvsc_stats *rx_stats; 661 struct netvsc_device *netvsc_dev = net_device_ctx->nvdev; 662 u32 bytes_recvd = packet->total_data_buflen; 663 int ret = 0; 664 665 if (!net || net->reg_state != NETREG_REGISTERED) 666 return NVSP_STAT_FAIL; 667 668 if (READ_ONCE(netvsc_dev->vf_inject)) { 669 atomic_inc(&netvsc_dev->vf_use_cnt); 670 if (!READ_ONCE(netvsc_dev->vf_inject)) { 671 /* 672 * We raced; just move on. 673 */ 674 atomic_dec(&netvsc_dev->vf_use_cnt); 675 goto vf_injection_done; 676 } 677 678 /* 679 * Inject this packet into the VF inerface. 680 * On Hyper-V, multicast and brodcast packets 681 * are only delivered on the synthetic interface 682 * (after subjecting these to policy filters on 683 * the host). Deliver these via the VF interface 684 * in the guest. 685 */ 686 vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet, 687 csum_info, *data, vlan_tci); 688 if (vf_skb != NULL) { 689 ++netvsc_dev->vf_netdev->stats.rx_packets; 690 netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd; 691 netif_receive_skb(vf_skb); 692 } else { 693 ++net->stats.rx_dropped; 694 ret = NVSP_STAT_FAIL; 695 } 696 atomic_dec(&netvsc_dev->vf_use_cnt); 697 return ret; 698 } 699 700 vf_injection_done: 701 rx_stats = this_cpu_ptr(net_device_ctx->rx_stats); 702 703 /* Allocate a skb - TODO direct I/O to pages? */ 704 skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci); 705 if (unlikely(!skb)) { 706 ++net->stats.rx_dropped; 707 return NVSP_STAT_FAIL; 708 } 709 skb_record_rx_queue(skb, channel-> 710 offermsg.offer.sub_channel_index); 711 712 u64_stats_update_begin(&rx_stats->syncp); 713 rx_stats->packets++; 714 rx_stats->bytes += packet->total_data_buflen; 715 u64_stats_update_end(&rx_stats->syncp); 716 717 /* 718 * Pass the skb back up. Network stack will deallocate the skb when it 719 * is done. 720 * TODO - use NAPI? 721 */ 722 netif_rx(skb); 723 724 return 0; 725 } 726 727 static void netvsc_get_drvinfo(struct net_device *net, 728 struct ethtool_drvinfo *info) 729 { 730 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 731 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 732 } 733 734 static void netvsc_get_channels(struct net_device *net, 735 struct ethtool_channels *channel) 736 { 737 struct net_device_context *net_device_ctx = netdev_priv(net); 738 struct netvsc_device *nvdev = net_device_ctx->nvdev; 739 740 if (nvdev) { 741 channel->max_combined = nvdev->max_chn; 742 channel->combined_count = nvdev->num_chn; 743 } 744 } 745 746 static int netvsc_set_channels(struct net_device *net, 747 struct ethtool_channels *channels) 748 { 749 struct net_device_context *net_device_ctx = netdev_priv(net); 750 struct hv_device *dev = net_device_ctx->device_ctx; 751 struct netvsc_device *nvdev = net_device_ctx->nvdev; 752 struct netvsc_device_info device_info; 753 u32 num_chn; 754 u32 max_chn; 755 int ret = 0; 756 bool recovering = false; 757 758 if (net_device_ctx->start_remove || !nvdev || nvdev->destroy) 759 return -ENODEV; 760 761 num_chn = nvdev->num_chn; 762 max_chn = min_t(u32, nvdev->max_chn, num_online_cpus()); 763 764 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) { 765 pr_info("vRSS unsupported before NVSP Version 5\n"); 766 return -EINVAL; 767 } 768 769 /* We do not support rx, tx, or other */ 770 if (!channels || 771 channels->rx_count || 772 channels->tx_count || 773 channels->other_count || 774 (channels->combined_count < 1)) 775 return -EINVAL; 776 777 if (channels->combined_count > max_chn) { 778 pr_info("combined channels too high, using %d\n", max_chn); 779 channels->combined_count = max_chn; 780 } 781 782 ret = netvsc_close(net); 783 if (ret) 784 goto out; 785 786 do_set: 787 net_device_ctx->start_remove = true; 788 rndis_filter_device_remove(dev); 789 790 nvdev->num_chn = channels->combined_count; 791 792 memset(&device_info, 0, sizeof(device_info)); 793 device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */ 794 device_info.ring_size = ring_size; 795 device_info.max_num_vrss_chns = max_num_vrss_chns; 796 797 ret = rndis_filter_device_add(dev, &device_info); 798 if (ret) { 799 if (recovering) { 800 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 801 return ret; 802 } 803 goto recover; 804 } 805 806 nvdev = net_device_ctx->nvdev; 807 808 ret = netif_set_real_num_tx_queues(net, nvdev->num_chn); 809 if (ret) { 810 if (recovering) { 811 netdev_err(net, "could not set tx queue count (ret %d)\n", ret); 812 return ret; 813 } 814 goto recover; 815 } 816 817 ret = netif_set_real_num_rx_queues(net, nvdev->num_chn); 818 if (ret) { 819 if (recovering) { 820 netdev_err(net, "could not set rx queue count (ret %d)\n", ret); 821 return ret; 822 } 823 goto recover; 824 } 825 826 out: 827 netvsc_open(net); 828 net_device_ctx->start_remove = false; 829 /* We may have missed link change notifications */ 830 schedule_delayed_work(&net_device_ctx->dwork, 0); 831 832 return ret; 833 834 recover: 835 /* If the above failed, we attempt to recover through the same 836 * process but with the original number of channels. 837 */ 838 netdev_err(net, "could not set channels, recovering\n"); 839 recovering = true; 840 channels->combined_count = num_chn; 841 goto do_set; 842 } 843 844 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd) 845 { 846 struct ethtool_cmd diff1 = *cmd; 847 struct ethtool_cmd diff2 = {}; 848 849 ethtool_cmd_speed_set(&diff1, 0); 850 diff1.duplex = 0; 851 /* advertising and cmd are usually set */ 852 diff1.advertising = 0; 853 diff1.cmd = 0; 854 /* We set port to PORT_OTHER */ 855 diff2.port = PORT_OTHER; 856 857 return !memcmp(&diff1, &diff2, sizeof(diff1)); 858 } 859 860 static void netvsc_init_settings(struct net_device *dev) 861 { 862 struct net_device_context *ndc = netdev_priv(dev); 863 864 ndc->speed = SPEED_UNKNOWN; 865 ndc->duplex = DUPLEX_UNKNOWN; 866 } 867 868 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 869 { 870 struct net_device_context *ndc = netdev_priv(dev); 871 872 ethtool_cmd_speed_set(cmd, ndc->speed); 873 cmd->duplex = ndc->duplex; 874 cmd->port = PORT_OTHER; 875 876 return 0; 877 } 878 879 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 880 { 881 struct net_device_context *ndc = netdev_priv(dev); 882 u32 speed; 883 884 speed = ethtool_cmd_speed(cmd); 885 if (!ethtool_validate_speed(speed) || 886 !ethtool_validate_duplex(cmd->duplex) || 887 !netvsc_validate_ethtool_ss_cmd(cmd)) 888 return -EINVAL; 889 890 ndc->speed = speed; 891 ndc->duplex = cmd->duplex; 892 893 return 0; 894 } 895 896 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 897 { 898 struct net_device_context *ndevctx = netdev_priv(ndev); 899 struct netvsc_device *nvdev = ndevctx->nvdev; 900 struct hv_device *hdev = ndevctx->device_ctx; 901 struct netvsc_device_info device_info; 902 int limit = ETH_DATA_LEN; 903 u32 num_chn; 904 int ret = 0; 905 906 if (ndevctx->start_remove || !nvdev || nvdev->destroy) 907 return -ENODEV; 908 909 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 910 limit = NETVSC_MTU - ETH_HLEN; 911 912 if (mtu < NETVSC_MTU_MIN || mtu > limit) 913 return -EINVAL; 914 915 ret = netvsc_close(ndev); 916 if (ret) 917 goto out; 918 919 num_chn = nvdev->num_chn; 920 921 ndevctx->start_remove = true; 922 rndis_filter_device_remove(hdev); 923 924 ndev->mtu = mtu; 925 926 memset(&device_info, 0, sizeof(device_info)); 927 device_info.ring_size = ring_size; 928 device_info.num_chn = num_chn; 929 device_info.max_num_vrss_chns = max_num_vrss_chns; 930 rndis_filter_device_add(hdev, &device_info); 931 932 out: 933 netvsc_open(ndev); 934 ndevctx->start_remove = false; 935 936 /* We may have missed link change notifications */ 937 schedule_delayed_work(&ndevctx->dwork, 0); 938 939 return ret; 940 } 941 942 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net, 943 struct rtnl_link_stats64 *t) 944 { 945 struct net_device_context *ndev_ctx = netdev_priv(net); 946 int cpu; 947 948 for_each_possible_cpu(cpu) { 949 struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats, 950 cpu); 951 struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats, 952 cpu); 953 u64 tx_packets, tx_bytes, rx_packets, rx_bytes; 954 unsigned int start; 955 956 do { 957 start = u64_stats_fetch_begin_irq(&tx_stats->syncp); 958 tx_packets = tx_stats->packets; 959 tx_bytes = tx_stats->bytes; 960 } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start)); 961 962 do { 963 start = u64_stats_fetch_begin_irq(&rx_stats->syncp); 964 rx_packets = rx_stats->packets; 965 rx_bytes = rx_stats->bytes; 966 } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start)); 967 968 t->tx_bytes += tx_bytes; 969 t->tx_packets += tx_packets; 970 t->rx_bytes += rx_bytes; 971 t->rx_packets += rx_packets; 972 } 973 974 t->tx_dropped = net->stats.tx_dropped; 975 t->tx_errors = net->stats.tx_dropped; 976 977 t->rx_dropped = net->stats.rx_dropped; 978 t->rx_errors = net->stats.rx_errors; 979 980 return t; 981 } 982 983 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 984 { 985 struct sockaddr *addr = p; 986 char save_adr[ETH_ALEN]; 987 unsigned char save_aatype; 988 int err; 989 990 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 991 save_aatype = ndev->addr_assign_type; 992 993 err = eth_mac_addr(ndev, p); 994 if (err != 0) 995 return err; 996 997 err = rndis_filter_set_device_mac(ndev, addr->sa_data); 998 if (err != 0) { 999 /* roll back to saved MAC */ 1000 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 1001 ndev->addr_assign_type = save_aatype; 1002 } 1003 1004 return err; 1005 } 1006 1007 #ifdef CONFIG_NET_POLL_CONTROLLER 1008 static void netvsc_poll_controller(struct net_device *net) 1009 { 1010 /* As netvsc_start_xmit() works synchronous we don't have to 1011 * trigger anything here. 1012 */ 1013 } 1014 #endif 1015 1016 static const struct ethtool_ops ethtool_ops = { 1017 .get_drvinfo = netvsc_get_drvinfo, 1018 .get_link = ethtool_op_get_link, 1019 .get_channels = netvsc_get_channels, 1020 .set_channels = netvsc_set_channels, 1021 .get_ts_info = ethtool_op_get_ts_info, 1022 .get_settings = netvsc_get_settings, 1023 .set_settings = netvsc_set_settings, 1024 }; 1025 1026 static const struct net_device_ops device_ops = { 1027 .ndo_open = netvsc_open, 1028 .ndo_stop = netvsc_close, 1029 .ndo_start_xmit = netvsc_start_xmit, 1030 .ndo_set_rx_mode = netvsc_set_multicast_list, 1031 .ndo_change_mtu = netvsc_change_mtu, 1032 .ndo_validate_addr = eth_validate_addr, 1033 .ndo_set_mac_address = netvsc_set_mac_addr, 1034 .ndo_select_queue = netvsc_select_queue, 1035 .ndo_get_stats64 = netvsc_get_stats64, 1036 #ifdef CONFIG_NET_POLL_CONTROLLER 1037 .ndo_poll_controller = netvsc_poll_controller, 1038 #endif 1039 }; 1040 1041 /* 1042 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1043 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1044 * present send GARP packet to network peers with netif_notify_peers(). 1045 */ 1046 static void netvsc_link_change(struct work_struct *w) 1047 { 1048 struct net_device_context *ndev_ctx = 1049 container_of(w, struct net_device_context, dwork.work); 1050 struct hv_device *device_obj = ndev_ctx->device_ctx; 1051 struct net_device *net = hv_get_drvdata(device_obj); 1052 struct netvsc_device *net_device; 1053 struct rndis_device *rdev; 1054 struct netvsc_reconfig *event = NULL; 1055 bool notify = false, reschedule = false; 1056 unsigned long flags, next_reconfig, delay; 1057 1058 rtnl_lock(); 1059 if (ndev_ctx->start_remove) 1060 goto out_unlock; 1061 1062 net_device = ndev_ctx->nvdev; 1063 rdev = net_device->extension; 1064 1065 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1066 if (time_is_after_jiffies(next_reconfig)) { 1067 /* link_watch only sends one notification with current state 1068 * per second, avoid doing reconfig more frequently. Handle 1069 * wrap around. 1070 */ 1071 delay = next_reconfig - jiffies; 1072 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1073 schedule_delayed_work(&ndev_ctx->dwork, delay); 1074 goto out_unlock; 1075 } 1076 ndev_ctx->last_reconfig = jiffies; 1077 1078 spin_lock_irqsave(&ndev_ctx->lock, flags); 1079 if (!list_empty(&ndev_ctx->reconfig_events)) { 1080 event = list_first_entry(&ndev_ctx->reconfig_events, 1081 struct netvsc_reconfig, list); 1082 list_del(&event->list); 1083 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1084 } 1085 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1086 1087 if (!event) 1088 goto out_unlock; 1089 1090 switch (event->event) { 1091 /* Only the following events are possible due to the check in 1092 * netvsc_linkstatus_callback() 1093 */ 1094 case RNDIS_STATUS_MEDIA_CONNECT: 1095 if (rdev->link_state) { 1096 rdev->link_state = false; 1097 netif_carrier_on(net); 1098 netif_tx_wake_all_queues(net); 1099 } else { 1100 notify = true; 1101 } 1102 kfree(event); 1103 break; 1104 case RNDIS_STATUS_MEDIA_DISCONNECT: 1105 if (!rdev->link_state) { 1106 rdev->link_state = true; 1107 netif_carrier_off(net); 1108 netif_tx_stop_all_queues(net); 1109 } 1110 kfree(event); 1111 break; 1112 case RNDIS_STATUS_NETWORK_CHANGE: 1113 /* Only makes sense if carrier is present */ 1114 if (!rdev->link_state) { 1115 rdev->link_state = true; 1116 netif_carrier_off(net); 1117 netif_tx_stop_all_queues(net); 1118 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1119 spin_lock_irqsave(&ndev_ctx->lock, flags); 1120 list_add(&event->list, &ndev_ctx->reconfig_events); 1121 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1122 reschedule = true; 1123 } 1124 break; 1125 } 1126 1127 rtnl_unlock(); 1128 1129 if (notify) 1130 netdev_notify_peers(net); 1131 1132 /* link_watch only sends one notification with current state per 1133 * second, handle next reconfig event in 2 seconds. 1134 */ 1135 if (reschedule) 1136 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1137 1138 return; 1139 1140 out_unlock: 1141 rtnl_unlock(); 1142 } 1143 1144 static void netvsc_free_netdev(struct net_device *netdev) 1145 { 1146 struct net_device_context *net_device_ctx = netdev_priv(netdev); 1147 1148 free_percpu(net_device_ctx->tx_stats); 1149 free_percpu(net_device_ctx->rx_stats); 1150 free_netdev(netdev); 1151 } 1152 1153 static void netvsc_notify_peers(struct work_struct *wrk) 1154 { 1155 struct garp_wrk *gwrk; 1156 1157 gwrk = container_of(wrk, struct garp_wrk, dwrk); 1158 1159 netdev_notify_peers(gwrk->netdev); 1160 1161 atomic_dec(&gwrk->netvsc_dev->vf_use_cnt); 1162 } 1163 1164 static struct net_device *get_netvsc_net_device(char *mac) 1165 { 1166 struct net_device *dev, *found = NULL; 1167 int rtnl_locked; 1168 1169 rtnl_locked = rtnl_trylock(); 1170 1171 for_each_netdev(&init_net, dev) { 1172 if (memcmp(dev->dev_addr, mac, ETH_ALEN) == 0) { 1173 if (dev->netdev_ops != &device_ops) 1174 continue; 1175 found = dev; 1176 break; 1177 } 1178 } 1179 if (rtnl_locked) 1180 rtnl_unlock(); 1181 1182 return found; 1183 } 1184 1185 static int netvsc_register_vf(struct net_device *vf_netdev) 1186 { 1187 struct net_device *ndev; 1188 struct net_device_context *net_device_ctx; 1189 struct netvsc_device *netvsc_dev; 1190 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops; 1191 1192 if (eth_ops == NULL || eth_ops == ðtool_ops) 1193 return NOTIFY_DONE; 1194 1195 /* 1196 * We will use the MAC address to locate the synthetic interface to 1197 * associate with the VF interface. If we don't find a matching 1198 * synthetic interface, move on. 1199 */ 1200 ndev = get_netvsc_net_device(vf_netdev->dev_addr); 1201 if (!ndev) 1202 return NOTIFY_DONE; 1203 1204 net_device_ctx = netdev_priv(ndev); 1205 netvsc_dev = net_device_ctx->nvdev; 1206 if (netvsc_dev == NULL) 1207 return NOTIFY_DONE; 1208 1209 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1210 /* 1211 * Take a reference on the module. 1212 */ 1213 try_module_get(THIS_MODULE); 1214 netvsc_dev->vf_netdev = vf_netdev; 1215 return NOTIFY_OK; 1216 } 1217 1218 1219 static int netvsc_vf_up(struct net_device *vf_netdev) 1220 { 1221 struct net_device *ndev; 1222 struct netvsc_device *netvsc_dev; 1223 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops; 1224 struct net_device_context *net_device_ctx; 1225 1226 if (eth_ops == ðtool_ops) 1227 return NOTIFY_DONE; 1228 1229 ndev = get_netvsc_net_device(vf_netdev->dev_addr); 1230 if (!ndev) 1231 return NOTIFY_DONE; 1232 1233 net_device_ctx = netdev_priv(ndev); 1234 netvsc_dev = net_device_ctx->nvdev; 1235 1236 if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL)) 1237 return NOTIFY_DONE; 1238 1239 netdev_info(ndev, "VF up: %s\n", vf_netdev->name); 1240 netvsc_dev->vf_inject = true; 1241 1242 /* 1243 * Open the device before switching data path. 1244 */ 1245 rndis_filter_open(netvsc_dev); 1246 1247 /* 1248 * notify the host to switch the data path. 1249 */ 1250 netvsc_switch_datapath(ndev, true); 1251 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name); 1252 1253 netif_carrier_off(ndev); 1254 1255 /* 1256 * Now notify peers. We are scheduling work to 1257 * notify peers; take a reference to prevent 1258 * the VF interface from vanishing. 1259 */ 1260 atomic_inc(&netvsc_dev->vf_use_cnt); 1261 net_device_ctx->gwrk.netdev = vf_netdev; 1262 net_device_ctx->gwrk.netvsc_dev = netvsc_dev; 1263 schedule_work(&net_device_ctx->gwrk.dwrk); 1264 1265 return NOTIFY_OK; 1266 } 1267 1268 1269 static int netvsc_vf_down(struct net_device *vf_netdev) 1270 { 1271 struct net_device *ndev; 1272 struct netvsc_device *netvsc_dev; 1273 struct net_device_context *net_device_ctx; 1274 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops; 1275 1276 if (eth_ops == ðtool_ops) 1277 return NOTIFY_DONE; 1278 1279 ndev = get_netvsc_net_device(vf_netdev->dev_addr); 1280 if (!ndev) 1281 return NOTIFY_DONE; 1282 1283 net_device_ctx = netdev_priv(ndev); 1284 netvsc_dev = net_device_ctx->nvdev; 1285 1286 if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL)) 1287 return NOTIFY_DONE; 1288 1289 netdev_info(ndev, "VF down: %s\n", vf_netdev->name); 1290 netvsc_dev->vf_inject = false; 1291 /* 1292 * Wait for currently active users to 1293 * drain out. 1294 */ 1295 1296 while (atomic_read(&netvsc_dev->vf_use_cnt) != 0) 1297 udelay(50); 1298 netvsc_switch_datapath(ndev, false); 1299 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name); 1300 rndis_filter_close(netvsc_dev); 1301 netif_carrier_on(ndev); 1302 /* 1303 * Notify peers. 1304 */ 1305 atomic_inc(&netvsc_dev->vf_use_cnt); 1306 net_device_ctx->gwrk.netdev = ndev; 1307 net_device_ctx->gwrk.netvsc_dev = netvsc_dev; 1308 schedule_work(&net_device_ctx->gwrk.dwrk); 1309 1310 return NOTIFY_OK; 1311 } 1312 1313 1314 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1315 { 1316 struct net_device *ndev; 1317 struct netvsc_device *netvsc_dev; 1318 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops; 1319 struct net_device_context *net_device_ctx; 1320 1321 if (eth_ops == ðtool_ops) 1322 return NOTIFY_DONE; 1323 1324 ndev = get_netvsc_net_device(vf_netdev->dev_addr); 1325 if (!ndev) 1326 return NOTIFY_DONE; 1327 1328 net_device_ctx = netdev_priv(ndev); 1329 netvsc_dev = net_device_ctx->nvdev; 1330 if (netvsc_dev == NULL) 1331 return NOTIFY_DONE; 1332 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1333 1334 netvsc_dev->vf_netdev = NULL; 1335 module_put(THIS_MODULE); 1336 return NOTIFY_OK; 1337 } 1338 1339 static int netvsc_probe(struct hv_device *dev, 1340 const struct hv_vmbus_device_id *dev_id) 1341 { 1342 struct net_device *net = NULL; 1343 struct net_device_context *net_device_ctx; 1344 struct netvsc_device_info device_info; 1345 struct netvsc_device *nvdev; 1346 int ret; 1347 1348 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1349 num_online_cpus()); 1350 if (!net) 1351 return -ENOMEM; 1352 1353 netif_carrier_off(net); 1354 1355 net_device_ctx = netdev_priv(net); 1356 net_device_ctx->device_ctx = dev; 1357 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1358 if (netif_msg_probe(net_device_ctx)) 1359 netdev_dbg(net, "netvsc msg_enable: %d\n", 1360 net_device_ctx->msg_enable); 1361 1362 net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats); 1363 if (!net_device_ctx->tx_stats) { 1364 free_netdev(net); 1365 return -ENOMEM; 1366 } 1367 net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats); 1368 if (!net_device_ctx->rx_stats) { 1369 free_percpu(net_device_ctx->tx_stats); 1370 free_netdev(net); 1371 return -ENOMEM; 1372 } 1373 1374 hv_set_drvdata(dev, net); 1375 1376 net_device_ctx->start_remove = false; 1377 1378 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1379 INIT_WORK(&net_device_ctx->work, do_set_multicast); 1380 INIT_WORK(&net_device_ctx->gwrk.dwrk, netvsc_notify_peers); 1381 1382 spin_lock_init(&net_device_ctx->lock); 1383 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1384 1385 net->netdev_ops = &device_ops; 1386 1387 net->hw_features = NETVSC_HW_FEATURES; 1388 net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX; 1389 1390 net->ethtool_ops = ðtool_ops; 1391 SET_NETDEV_DEV(net, &dev->device); 1392 1393 /* We always need headroom for rndis header */ 1394 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1395 1396 /* Notify the netvsc driver of the new device */ 1397 memset(&device_info, 0, sizeof(device_info)); 1398 device_info.ring_size = ring_size; 1399 device_info.max_num_vrss_chns = max_num_vrss_chns; 1400 ret = rndis_filter_device_add(dev, &device_info); 1401 if (ret != 0) { 1402 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1403 netvsc_free_netdev(net); 1404 hv_set_drvdata(dev, NULL); 1405 return ret; 1406 } 1407 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1408 1409 nvdev = net_device_ctx->nvdev; 1410 netif_set_real_num_tx_queues(net, nvdev->num_chn); 1411 netif_set_real_num_rx_queues(net, nvdev->num_chn); 1412 1413 netvsc_init_settings(net); 1414 1415 ret = register_netdev(net); 1416 if (ret != 0) { 1417 pr_err("Unable to register netdev.\n"); 1418 rndis_filter_device_remove(dev); 1419 netvsc_free_netdev(net); 1420 } 1421 1422 return ret; 1423 } 1424 1425 static int netvsc_remove(struct hv_device *dev) 1426 { 1427 struct net_device *net; 1428 struct net_device_context *ndev_ctx; 1429 struct netvsc_device *net_device; 1430 1431 net = hv_get_drvdata(dev); 1432 1433 if (net == NULL) { 1434 dev_err(&dev->device, "No net device to remove\n"); 1435 return 0; 1436 } 1437 1438 1439 ndev_ctx = netdev_priv(net); 1440 net_device = ndev_ctx->nvdev; 1441 1442 /* Avoid racing with netvsc_change_mtu()/netvsc_set_channels() 1443 * removing the device. 1444 */ 1445 rtnl_lock(); 1446 ndev_ctx->start_remove = true; 1447 rtnl_unlock(); 1448 1449 cancel_delayed_work_sync(&ndev_ctx->dwork); 1450 cancel_work_sync(&ndev_ctx->work); 1451 1452 /* Stop outbound asap */ 1453 netif_tx_disable(net); 1454 1455 unregister_netdev(net); 1456 1457 /* 1458 * Call to the vsc driver to let it know that the device is being 1459 * removed 1460 */ 1461 rndis_filter_device_remove(dev); 1462 1463 hv_set_drvdata(dev, NULL); 1464 1465 netvsc_free_netdev(net); 1466 return 0; 1467 } 1468 1469 static const struct hv_vmbus_device_id id_table[] = { 1470 /* Network guid */ 1471 { HV_NIC_GUID, }, 1472 { }, 1473 }; 1474 1475 MODULE_DEVICE_TABLE(vmbus, id_table); 1476 1477 /* The one and only one */ 1478 static struct hv_driver netvsc_drv = { 1479 .name = KBUILD_MODNAME, 1480 .id_table = id_table, 1481 .probe = netvsc_probe, 1482 .remove = netvsc_remove, 1483 }; 1484 1485 1486 /* 1487 * On Hyper-V, every VF interface is matched with a corresponding 1488 * synthetic interface. The synthetic interface is presented first 1489 * to the guest. When the corresponding VF instance is registered, 1490 * we will take care of switching the data path. 1491 */ 1492 static int netvsc_netdev_event(struct notifier_block *this, 1493 unsigned long event, void *ptr) 1494 { 1495 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 1496 1497 /* Avoid Vlan, Bonding dev with same MAC registering as VF */ 1498 if (event_dev->priv_flags & (IFF_802_1Q_VLAN | IFF_BONDING)) 1499 return NOTIFY_DONE; 1500 1501 switch (event) { 1502 case NETDEV_REGISTER: 1503 return netvsc_register_vf(event_dev); 1504 case NETDEV_UNREGISTER: 1505 return netvsc_unregister_vf(event_dev); 1506 case NETDEV_UP: 1507 return netvsc_vf_up(event_dev); 1508 case NETDEV_DOWN: 1509 return netvsc_vf_down(event_dev); 1510 default: 1511 return NOTIFY_DONE; 1512 } 1513 } 1514 1515 static struct notifier_block netvsc_netdev_notifier = { 1516 .notifier_call = netvsc_netdev_event, 1517 }; 1518 1519 static void __exit netvsc_drv_exit(void) 1520 { 1521 unregister_netdevice_notifier(&netvsc_netdev_notifier); 1522 vmbus_driver_unregister(&netvsc_drv); 1523 } 1524 1525 static int __init netvsc_drv_init(void) 1526 { 1527 int ret; 1528 1529 if (ring_size < RING_SIZE_MIN) { 1530 ring_size = RING_SIZE_MIN; 1531 pr_info("Increased ring_size to %d (min allowed)\n", 1532 ring_size); 1533 } 1534 ret = vmbus_driver_register(&netvsc_drv); 1535 1536 if (ret) 1537 return ret; 1538 1539 register_netdevice_notifier(&netvsc_netdev_notifier); 1540 return 0; 1541 } 1542 1543 MODULE_LICENSE("GPL"); 1544 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 1545 1546 module_init(netvsc_drv_init); 1547 module_exit(netvsc_drv_exit); 1548