xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 
41 #include "hyperv_net.h"
42 
43 
44 #define RING_SIZE_MIN 64
45 #define LINKCHANGE_INT (2 * HZ)
46 #define NETVSC_HW_FEATURES	(NETIF_F_RXCSUM | \
47 				 NETIF_F_SG | \
48 				 NETIF_F_TSO | \
49 				 NETIF_F_TSO6 | \
50 				 NETIF_F_HW_CSUM)
51 static int ring_size = 128;
52 module_param(ring_size, int, S_IRUGO);
53 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54 
55 static int max_num_vrss_chns = 8;
56 
57 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
58 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
59 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
60 				NETIF_MSG_TX_ERR;
61 
62 static int debug = -1;
63 module_param(debug, int, S_IRUGO);
64 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
65 
66 static void do_set_multicast(struct work_struct *w)
67 {
68 	struct net_device_context *ndevctx =
69 		container_of(w, struct net_device_context, work);
70 	struct hv_device *device_obj = ndevctx->device_ctx;
71 	struct net_device *ndev = hv_get_drvdata(device_obj);
72 	struct netvsc_device *nvdev = ndevctx->nvdev;
73 	struct rndis_device *rdev;
74 
75 	if (!nvdev)
76 		return;
77 
78 	rdev = nvdev->extension;
79 	if (rdev == NULL)
80 		return;
81 
82 	if (ndev->flags & IFF_PROMISC)
83 		rndis_filter_set_packet_filter(rdev,
84 			NDIS_PACKET_TYPE_PROMISCUOUS);
85 	else
86 		rndis_filter_set_packet_filter(rdev,
87 			NDIS_PACKET_TYPE_BROADCAST |
88 			NDIS_PACKET_TYPE_ALL_MULTICAST |
89 			NDIS_PACKET_TYPE_DIRECTED);
90 }
91 
92 static void netvsc_set_multicast_list(struct net_device *net)
93 {
94 	struct net_device_context *net_device_ctx = netdev_priv(net);
95 
96 	schedule_work(&net_device_ctx->work);
97 }
98 
99 static int netvsc_open(struct net_device *net)
100 {
101 	struct netvsc_device *nvdev = net_device_to_netvsc_device(net);
102 	struct rndis_device *rdev;
103 	int ret = 0;
104 
105 	netif_carrier_off(net);
106 
107 	/* Open up the device */
108 	ret = rndis_filter_open(nvdev);
109 	if (ret != 0) {
110 		netdev_err(net, "unable to open device (ret %d).\n", ret);
111 		return ret;
112 	}
113 
114 	netif_tx_wake_all_queues(net);
115 
116 	rdev = nvdev->extension;
117 	if (!rdev->link_state)
118 		netif_carrier_on(net);
119 
120 	return ret;
121 }
122 
123 static int netvsc_close(struct net_device *net)
124 {
125 	struct net_device_context *net_device_ctx = netdev_priv(net);
126 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
127 	int ret;
128 	u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
129 	struct vmbus_channel *chn;
130 
131 	netif_tx_disable(net);
132 
133 	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
134 	cancel_work_sync(&net_device_ctx->work);
135 	ret = rndis_filter_close(nvdev);
136 	if (ret != 0) {
137 		netdev_err(net, "unable to close device (ret %d).\n", ret);
138 		return ret;
139 	}
140 
141 	/* Ensure pending bytes in ring are read */
142 	while (true) {
143 		aread = 0;
144 		for (i = 0; i < nvdev->num_chn; i++) {
145 			chn = nvdev->chn_table[i];
146 			if (!chn)
147 				continue;
148 
149 			hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
150 						     &awrite);
151 
152 			if (aread)
153 				break;
154 
155 			hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
156 						     &awrite);
157 
158 			if (aread)
159 				break;
160 		}
161 
162 		retry++;
163 		if (retry > retry_max || aread == 0)
164 			break;
165 
166 		msleep(msec);
167 
168 		if (msec < 1000)
169 			msec *= 2;
170 	}
171 
172 	if (aread) {
173 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
174 		ret = -ETIMEDOUT;
175 	}
176 
177 	return ret;
178 }
179 
180 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
181 				int pkt_type)
182 {
183 	struct rndis_packet *rndis_pkt;
184 	struct rndis_per_packet_info *ppi;
185 
186 	rndis_pkt = &msg->msg.pkt;
187 	rndis_pkt->data_offset += ppi_size;
188 
189 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
190 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
191 
192 	ppi->size = ppi_size;
193 	ppi->type = pkt_type;
194 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
195 
196 	rndis_pkt->per_pkt_info_len += ppi_size;
197 
198 	return ppi;
199 }
200 
201 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
202 			void *accel_priv, select_queue_fallback_t fallback)
203 {
204 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
205 	struct netvsc_device *nvsc_dev = net_device_ctx->nvdev;
206 	u32 hash;
207 	u16 q_idx = 0;
208 
209 	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
210 		return 0;
211 
212 	hash = skb_get_hash(skb);
213 	q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
214 		ndev->real_num_tx_queues;
215 
216 	if (!nvsc_dev->chn_table[q_idx])
217 		q_idx = 0;
218 
219 	return q_idx;
220 }
221 
222 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
223 			struct hv_page_buffer *pb)
224 {
225 	int j = 0;
226 
227 	/* Deal with compund pages by ignoring unused part
228 	 * of the page.
229 	 */
230 	page += (offset >> PAGE_SHIFT);
231 	offset &= ~PAGE_MASK;
232 
233 	while (len > 0) {
234 		unsigned long bytes;
235 
236 		bytes = PAGE_SIZE - offset;
237 		if (bytes > len)
238 			bytes = len;
239 		pb[j].pfn = page_to_pfn(page);
240 		pb[j].offset = offset;
241 		pb[j].len = bytes;
242 
243 		offset += bytes;
244 		len -= bytes;
245 
246 		if (offset == PAGE_SIZE && len) {
247 			page++;
248 			offset = 0;
249 			j++;
250 		}
251 	}
252 
253 	return j + 1;
254 }
255 
256 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
257 			   struct hv_netvsc_packet *packet,
258 			   struct hv_page_buffer **page_buf)
259 {
260 	struct hv_page_buffer *pb = *page_buf;
261 	u32 slots_used = 0;
262 	char *data = skb->data;
263 	int frags = skb_shinfo(skb)->nr_frags;
264 	int i;
265 
266 	/* The packet is laid out thus:
267 	 * 1. hdr: RNDIS header and PPI
268 	 * 2. skb linear data
269 	 * 3. skb fragment data
270 	 */
271 	if (hdr != NULL)
272 		slots_used += fill_pg_buf(virt_to_page(hdr),
273 					offset_in_page(hdr),
274 					len, &pb[slots_used]);
275 
276 	packet->rmsg_size = len;
277 	packet->rmsg_pgcnt = slots_used;
278 
279 	slots_used += fill_pg_buf(virt_to_page(data),
280 				offset_in_page(data),
281 				skb_headlen(skb), &pb[slots_used]);
282 
283 	for (i = 0; i < frags; i++) {
284 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
285 
286 		slots_used += fill_pg_buf(skb_frag_page(frag),
287 					frag->page_offset,
288 					skb_frag_size(frag), &pb[slots_used]);
289 	}
290 	return slots_used;
291 }
292 
293 static int count_skb_frag_slots(struct sk_buff *skb)
294 {
295 	int i, frags = skb_shinfo(skb)->nr_frags;
296 	int pages = 0;
297 
298 	for (i = 0; i < frags; i++) {
299 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
300 		unsigned long size = skb_frag_size(frag);
301 		unsigned long offset = frag->page_offset;
302 
303 		/* Skip unused frames from start of page */
304 		offset &= ~PAGE_MASK;
305 		pages += PFN_UP(offset + size);
306 	}
307 	return pages;
308 }
309 
310 static int netvsc_get_slots(struct sk_buff *skb)
311 {
312 	char *data = skb->data;
313 	unsigned int offset = offset_in_page(data);
314 	unsigned int len = skb_headlen(skb);
315 	int slots;
316 	int frag_slots;
317 
318 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
319 	frag_slots = count_skb_frag_slots(skb);
320 	return slots + frag_slots;
321 }
322 
323 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
324 {
325 	u32 ret_val = TRANSPORT_INFO_NOT_IP;
326 
327 	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
328 		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
329 		goto not_ip;
330 	}
331 
332 	*trans_off = skb_transport_offset(skb);
333 
334 	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
335 		struct iphdr *iphdr = ip_hdr(skb);
336 
337 		if (iphdr->protocol == IPPROTO_TCP)
338 			ret_val = TRANSPORT_INFO_IPV4_TCP;
339 		else if (iphdr->protocol == IPPROTO_UDP)
340 			ret_val = TRANSPORT_INFO_IPV4_UDP;
341 	} else {
342 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
343 			ret_val = TRANSPORT_INFO_IPV6_TCP;
344 		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
345 			ret_val = TRANSPORT_INFO_IPV6_UDP;
346 	}
347 
348 not_ip:
349 	return ret_val;
350 }
351 
352 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
353 {
354 	struct net_device_context *net_device_ctx = netdev_priv(net);
355 	struct hv_netvsc_packet *packet = NULL;
356 	int ret;
357 	unsigned int num_data_pgs;
358 	struct rndis_message *rndis_msg;
359 	struct rndis_packet *rndis_pkt;
360 	u32 rndis_msg_size;
361 	bool isvlan;
362 	bool linear = false;
363 	struct rndis_per_packet_info *ppi;
364 	struct ndis_tcp_ip_checksum_info *csum_info;
365 	struct ndis_tcp_lso_info *lso_info;
366 	int  hdr_offset;
367 	u32 net_trans_info;
368 	u32 hash;
369 	u32 skb_length;
370 	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
371 	struct hv_page_buffer *pb = page_buf;
372 	struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
373 
374 	/* We will atmost need two pages to describe the rndis
375 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
376 	 * of pages in a single packet. If skb is scattered around
377 	 * more pages we try linearizing it.
378 	 */
379 
380 check_size:
381 	skb_length = skb->len;
382 	num_data_pgs = netvsc_get_slots(skb) + 2;
383 	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
384 		net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
385 				      num_data_pgs, skb->len);
386 		ret = -EFAULT;
387 		goto drop;
388 	} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
389 		if (skb_linearize(skb)) {
390 			net_alert_ratelimited("failed to linearize skb\n");
391 			ret = -ENOMEM;
392 			goto drop;
393 		}
394 		linear = true;
395 		goto check_size;
396 	}
397 
398 	/*
399 	 * Place the rndis header in the skb head room and
400 	 * the skb->cb will be used for hv_netvsc_packet
401 	 * structure.
402 	 */
403 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
404 	if (ret) {
405 		netdev_err(net, "unable to alloc hv_netvsc_packet\n");
406 		ret = -ENOMEM;
407 		goto drop;
408 	}
409 	/* Use the skb control buffer for building up the packet */
410 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
411 			FIELD_SIZEOF(struct sk_buff, cb));
412 	packet = (struct hv_netvsc_packet *)skb->cb;
413 
414 
415 	packet->q_idx = skb_get_queue_mapping(skb);
416 
417 	packet->total_data_buflen = skb->len;
418 
419 	rndis_msg = (struct rndis_message *)skb->head;
420 
421 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
422 
423 	isvlan = skb->vlan_tci & VLAN_TAG_PRESENT;
424 
425 	/* Add the rndis header */
426 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
427 	rndis_msg->msg_len = packet->total_data_buflen;
428 	rndis_pkt = &rndis_msg->msg.pkt;
429 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
430 	rndis_pkt->data_len = packet->total_data_buflen;
431 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
432 
433 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
434 
435 	hash = skb_get_hash_raw(skb);
436 	if (hash != 0 && net->real_num_tx_queues > 1) {
437 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
438 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
439 				    NBL_HASH_VALUE);
440 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
441 	}
442 
443 	if (isvlan) {
444 		struct ndis_pkt_8021q_info *vlan;
445 
446 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
447 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
448 					IEEE_8021Q_INFO);
449 		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
450 						ppi->ppi_offset);
451 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
452 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
453 				VLAN_PRIO_SHIFT;
454 	}
455 
456 	net_trans_info = get_net_transport_info(skb, &hdr_offset);
457 	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
458 		goto do_send;
459 
460 	/*
461 	 * Setup the sendside checksum offload only if this is not a
462 	 * GSO packet.
463 	 */
464 	if (skb_is_gso(skb))
465 		goto do_lso;
466 
467 	if ((skb->ip_summed == CHECKSUM_NONE) ||
468 	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
469 		goto do_send;
470 
471 	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
472 	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
473 			    TCPIP_CHKSUM_PKTINFO);
474 
475 	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
476 			ppi->ppi_offset);
477 
478 	if (net_trans_info & (INFO_IPV4 << 16))
479 		csum_info->transmit.is_ipv4 = 1;
480 	else
481 		csum_info->transmit.is_ipv6 = 1;
482 
483 	if (net_trans_info & INFO_TCP) {
484 		csum_info->transmit.tcp_checksum = 1;
485 		csum_info->transmit.tcp_header_offset = hdr_offset;
486 	} else if (net_trans_info & INFO_UDP) {
487 		/* UDP checksum offload is not supported on ws2008r2.
488 		 * Furthermore, on ws2012 and ws2012r2, there are some
489 		 * issues with udp checksum offload from Linux guests.
490 		 * (these are host issues).
491 		 * For now compute the checksum here.
492 		 */
493 		struct udphdr *uh;
494 		u16 udp_len;
495 
496 		ret = skb_cow_head(skb, 0);
497 		if (ret)
498 			goto drop;
499 
500 		uh = udp_hdr(skb);
501 		udp_len = ntohs(uh->len);
502 		uh->check = 0;
503 		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
504 					      ip_hdr(skb)->daddr,
505 					      udp_len, IPPROTO_UDP,
506 					      csum_partial(uh, udp_len, 0));
507 		if (uh->check == 0)
508 			uh->check = CSUM_MANGLED_0;
509 
510 		csum_info->transmit.udp_checksum = 0;
511 	}
512 	goto do_send;
513 
514 do_lso:
515 	rndis_msg_size += NDIS_LSO_PPI_SIZE;
516 	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
517 			    TCP_LARGESEND_PKTINFO);
518 
519 	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
520 			ppi->ppi_offset);
521 
522 	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
523 	if (net_trans_info & (INFO_IPV4 << 16)) {
524 		lso_info->lso_v2_transmit.ip_version =
525 			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
526 		ip_hdr(skb)->tot_len = 0;
527 		ip_hdr(skb)->check = 0;
528 		tcp_hdr(skb)->check =
529 		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
530 				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
531 	} else {
532 		lso_info->lso_v2_transmit.ip_version =
533 			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
534 		ipv6_hdr(skb)->payload_len = 0;
535 		tcp_hdr(skb)->check =
536 		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
537 				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
538 	}
539 	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
540 	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
541 
542 do_send:
543 	/* Start filling in the page buffers with the rndis hdr */
544 	rndis_msg->msg_len += rndis_msg_size;
545 	packet->total_data_buflen = rndis_msg->msg_len;
546 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
547 					       skb, packet, &pb);
548 
549 	/* timestamp packet in software */
550 	skb_tx_timestamp(skb);
551 	ret = netvsc_send(net_device_ctx->device_ctx, packet,
552 			  rndis_msg, &pb, skb);
553 
554 drop:
555 	if (ret == 0) {
556 		u64_stats_update_begin(&tx_stats->syncp);
557 		tx_stats->packets++;
558 		tx_stats->bytes += skb_length;
559 		u64_stats_update_end(&tx_stats->syncp);
560 	} else {
561 		if (ret != -EAGAIN) {
562 			dev_kfree_skb_any(skb);
563 			net->stats.tx_dropped++;
564 		}
565 	}
566 
567 	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
568 }
569 
570 /*
571  * netvsc_linkstatus_callback - Link up/down notification
572  */
573 void netvsc_linkstatus_callback(struct hv_device *device_obj,
574 				struct rndis_message *resp)
575 {
576 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
577 	struct net_device *net;
578 	struct net_device_context *ndev_ctx;
579 	struct netvsc_reconfig *event;
580 	unsigned long flags;
581 
582 	/* Handle link change statuses only */
583 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
584 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
585 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
586 		return;
587 
588 	net = hv_get_drvdata(device_obj);
589 
590 	if (!net || net->reg_state != NETREG_REGISTERED)
591 		return;
592 
593 	ndev_ctx = netdev_priv(net);
594 
595 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
596 	if (!event)
597 		return;
598 	event->event = indicate->status;
599 
600 	spin_lock_irqsave(&ndev_ctx->lock, flags);
601 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
602 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
603 
604 	schedule_delayed_work(&ndev_ctx->dwork, 0);
605 }
606 
607 
608 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
609 				struct hv_netvsc_packet *packet,
610 				struct ndis_tcp_ip_checksum_info *csum_info,
611 				void *data, u16 vlan_tci)
612 {
613 	struct sk_buff *skb;
614 
615 	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
616 	if (!skb)
617 		return skb;
618 
619 	/*
620 	 * Copy to skb. This copy is needed here since the memory pointed by
621 	 * hv_netvsc_packet cannot be deallocated
622 	 */
623 	memcpy(skb_put(skb, packet->total_data_buflen), data,
624 	       packet->total_data_buflen);
625 
626 	skb->protocol = eth_type_trans(skb, net);
627 	if (csum_info) {
628 		/* We only look at the IP checksum here.
629 		 * Should we be dropping the packet if checksum
630 		 * failed? How do we deal with other checksums - TCP/UDP?
631 		 */
632 		if (csum_info->receive.ip_checksum_succeeded)
633 			skb->ip_summed = CHECKSUM_UNNECESSARY;
634 		else
635 			skb->ip_summed = CHECKSUM_NONE;
636 	}
637 
638 	if (vlan_tci & VLAN_TAG_PRESENT)
639 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
640 				       vlan_tci);
641 
642 	return skb;
643 }
644 
645 /*
646  * netvsc_recv_callback -  Callback when we receive a packet from the
647  * "wire" on the specified device.
648  */
649 int netvsc_recv_callback(struct hv_device *device_obj,
650 				struct hv_netvsc_packet *packet,
651 				void **data,
652 				struct ndis_tcp_ip_checksum_info *csum_info,
653 				struct vmbus_channel *channel,
654 				u16 vlan_tci)
655 {
656 	struct net_device *net = hv_get_drvdata(device_obj);
657 	struct net_device_context *net_device_ctx = netdev_priv(net);
658 	struct sk_buff *skb;
659 	struct sk_buff *vf_skb;
660 	struct netvsc_stats *rx_stats;
661 	struct netvsc_device *netvsc_dev = net_device_ctx->nvdev;
662 	u32 bytes_recvd = packet->total_data_buflen;
663 	int ret = 0;
664 
665 	if (!net || net->reg_state != NETREG_REGISTERED)
666 		return NVSP_STAT_FAIL;
667 
668 	if (READ_ONCE(netvsc_dev->vf_inject)) {
669 		atomic_inc(&netvsc_dev->vf_use_cnt);
670 		if (!READ_ONCE(netvsc_dev->vf_inject)) {
671 			/*
672 			 * We raced; just move on.
673 			 */
674 			atomic_dec(&netvsc_dev->vf_use_cnt);
675 			goto vf_injection_done;
676 		}
677 
678 		/*
679 		 * Inject this packet into the VF inerface.
680 		 * On Hyper-V, multicast and brodcast packets
681 		 * are only delivered on the synthetic interface
682 		 * (after subjecting these to policy filters on
683 		 * the host). Deliver these via the VF interface
684 		 * in the guest.
685 		 */
686 		vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet,
687 					       csum_info, *data, vlan_tci);
688 		if (vf_skb != NULL) {
689 			++netvsc_dev->vf_netdev->stats.rx_packets;
690 			netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd;
691 			netif_receive_skb(vf_skb);
692 		} else {
693 			++net->stats.rx_dropped;
694 			ret = NVSP_STAT_FAIL;
695 		}
696 		atomic_dec(&netvsc_dev->vf_use_cnt);
697 		return ret;
698 	}
699 
700 vf_injection_done:
701 	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
702 
703 	/* Allocate a skb - TODO direct I/O to pages? */
704 	skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
705 	if (unlikely(!skb)) {
706 		++net->stats.rx_dropped;
707 		return NVSP_STAT_FAIL;
708 	}
709 	skb_record_rx_queue(skb, channel->
710 			    offermsg.offer.sub_channel_index);
711 
712 	u64_stats_update_begin(&rx_stats->syncp);
713 	rx_stats->packets++;
714 	rx_stats->bytes += packet->total_data_buflen;
715 	u64_stats_update_end(&rx_stats->syncp);
716 
717 	/*
718 	 * Pass the skb back up. Network stack will deallocate the skb when it
719 	 * is done.
720 	 * TODO - use NAPI?
721 	 */
722 	netif_rx(skb);
723 
724 	return 0;
725 }
726 
727 static void netvsc_get_drvinfo(struct net_device *net,
728 			       struct ethtool_drvinfo *info)
729 {
730 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
731 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
732 }
733 
734 static void netvsc_get_channels(struct net_device *net,
735 				struct ethtool_channels *channel)
736 {
737 	struct net_device_context *net_device_ctx = netdev_priv(net);
738 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
739 
740 	if (nvdev) {
741 		channel->max_combined	= nvdev->max_chn;
742 		channel->combined_count = nvdev->num_chn;
743 	}
744 }
745 
746 static int netvsc_set_channels(struct net_device *net,
747 			       struct ethtool_channels *channels)
748 {
749 	struct net_device_context *net_device_ctx = netdev_priv(net);
750 	struct hv_device *dev = net_device_ctx->device_ctx;
751 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
752 	struct netvsc_device_info device_info;
753 	u32 num_chn;
754 	u32 max_chn;
755 	int ret = 0;
756 	bool recovering = false;
757 
758 	if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
759 		return -ENODEV;
760 
761 	num_chn = nvdev->num_chn;
762 	max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());
763 
764 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
765 		pr_info("vRSS unsupported before NVSP Version 5\n");
766 		return -EINVAL;
767 	}
768 
769 	/* We do not support rx, tx, or other */
770 	if (!channels ||
771 	    channels->rx_count ||
772 	    channels->tx_count ||
773 	    channels->other_count ||
774 	    (channels->combined_count < 1))
775 		return -EINVAL;
776 
777 	if (channels->combined_count > max_chn) {
778 		pr_info("combined channels too high, using %d\n", max_chn);
779 		channels->combined_count = max_chn;
780 	}
781 
782 	ret = netvsc_close(net);
783 	if (ret)
784 		goto out;
785 
786  do_set:
787 	net_device_ctx->start_remove = true;
788 	rndis_filter_device_remove(dev);
789 
790 	nvdev->num_chn = channels->combined_count;
791 
792 	memset(&device_info, 0, sizeof(device_info));
793 	device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
794 	device_info.ring_size = ring_size;
795 	device_info.max_num_vrss_chns = max_num_vrss_chns;
796 
797 	ret = rndis_filter_device_add(dev, &device_info);
798 	if (ret) {
799 		if (recovering) {
800 			netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
801 			return ret;
802 		}
803 		goto recover;
804 	}
805 
806 	nvdev = net_device_ctx->nvdev;
807 
808 	ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
809 	if (ret) {
810 		if (recovering) {
811 			netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
812 			return ret;
813 		}
814 		goto recover;
815 	}
816 
817 	ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
818 	if (ret) {
819 		if (recovering) {
820 			netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
821 			return ret;
822 		}
823 		goto recover;
824 	}
825 
826  out:
827 	netvsc_open(net);
828 	net_device_ctx->start_remove = false;
829 	/* We may have missed link change notifications */
830 	schedule_delayed_work(&net_device_ctx->dwork, 0);
831 
832 	return ret;
833 
834  recover:
835 	/* If the above failed, we attempt to recover through the same
836 	 * process but with the original number of channels.
837 	 */
838 	netdev_err(net, "could not set channels, recovering\n");
839 	recovering = true;
840 	channels->combined_count = num_chn;
841 	goto do_set;
842 }
843 
844 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
845 {
846 	struct ethtool_cmd diff1 = *cmd;
847 	struct ethtool_cmd diff2 = {};
848 
849 	ethtool_cmd_speed_set(&diff1, 0);
850 	diff1.duplex = 0;
851 	/* advertising and cmd are usually set */
852 	diff1.advertising = 0;
853 	diff1.cmd = 0;
854 	/* We set port to PORT_OTHER */
855 	diff2.port = PORT_OTHER;
856 
857 	return !memcmp(&diff1, &diff2, sizeof(diff1));
858 }
859 
860 static void netvsc_init_settings(struct net_device *dev)
861 {
862 	struct net_device_context *ndc = netdev_priv(dev);
863 
864 	ndc->speed = SPEED_UNKNOWN;
865 	ndc->duplex = DUPLEX_UNKNOWN;
866 }
867 
868 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
869 {
870 	struct net_device_context *ndc = netdev_priv(dev);
871 
872 	ethtool_cmd_speed_set(cmd, ndc->speed);
873 	cmd->duplex = ndc->duplex;
874 	cmd->port = PORT_OTHER;
875 
876 	return 0;
877 }
878 
879 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
880 {
881 	struct net_device_context *ndc = netdev_priv(dev);
882 	u32 speed;
883 
884 	speed = ethtool_cmd_speed(cmd);
885 	if (!ethtool_validate_speed(speed) ||
886 	    !ethtool_validate_duplex(cmd->duplex) ||
887 	    !netvsc_validate_ethtool_ss_cmd(cmd))
888 		return -EINVAL;
889 
890 	ndc->speed = speed;
891 	ndc->duplex = cmd->duplex;
892 
893 	return 0;
894 }
895 
896 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
897 {
898 	struct net_device_context *ndevctx = netdev_priv(ndev);
899 	struct netvsc_device *nvdev = ndevctx->nvdev;
900 	struct hv_device *hdev = ndevctx->device_ctx;
901 	struct netvsc_device_info device_info;
902 	int limit = ETH_DATA_LEN;
903 	u32 num_chn;
904 	int ret = 0;
905 
906 	if (ndevctx->start_remove || !nvdev || nvdev->destroy)
907 		return -ENODEV;
908 
909 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
910 		limit = NETVSC_MTU - ETH_HLEN;
911 
912 	if (mtu < NETVSC_MTU_MIN || mtu > limit)
913 		return -EINVAL;
914 
915 	ret = netvsc_close(ndev);
916 	if (ret)
917 		goto out;
918 
919 	num_chn = nvdev->num_chn;
920 
921 	ndevctx->start_remove = true;
922 	rndis_filter_device_remove(hdev);
923 
924 	ndev->mtu = mtu;
925 
926 	memset(&device_info, 0, sizeof(device_info));
927 	device_info.ring_size = ring_size;
928 	device_info.num_chn = num_chn;
929 	device_info.max_num_vrss_chns = max_num_vrss_chns;
930 	rndis_filter_device_add(hdev, &device_info);
931 
932 out:
933 	netvsc_open(ndev);
934 	ndevctx->start_remove = false;
935 
936 	/* We may have missed link change notifications */
937 	schedule_delayed_work(&ndevctx->dwork, 0);
938 
939 	return ret;
940 }
941 
942 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
943 						    struct rtnl_link_stats64 *t)
944 {
945 	struct net_device_context *ndev_ctx = netdev_priv(net);
946 	int cpu;
947 
948 	for_each_possible_cpu(cpu) {
949 		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
950 							    cpu);
951 		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
952 							    cpu);
953 		u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
954 		unsigned int start;
955 
956 		do {
957 			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
958 			tx_packets = tx_stats->packets;
959 			tx_bytes = tx_stats->bytes;
960 		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
961 
962 		do {
963 			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
964 			rx_packets = rx_stats->packets;
965 			rx_bytes = rx_stats->bytes;
966 		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
967 
968 		t->tx_bytes	+= tx_bytes;
969 		t->tx_packets	+= tx_packets;
970 		t->rx_bytes	+= rx_bytes;
971 		t->rx_packets	+= rx_packets;
972 	}
973 
974 	t->tx_dropped	= net->stats.tx_dropped;
975 	t->tx_errors	= net->stats.tx_dropped;
976 
977 	t->rx_dropped	= net->stats.rx_dropped;
978 	t->rx_errors	= net->stats.rx_errors;
979 
980 	return t;
981 }
982 
983 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
984 {
985 	struct sockaddr *addr = p;
986 	char save_adr[ETH_ALEN];
987 	unsigned char save_aatype;
988 	int err;
989 
990 	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
991 	save_aatype = ndev->addr_assign_type;
992 
993 	err = eth_mac_addr(ndev, p);
994 	if (err != 0)
995 		return err;
996 
997 	err = rndis_filter_set_device_mac(ndev, addr->sa_data);
998 	if (err != 0) {
999 		/* roll back to saved MAC */
1000 		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
1001 		ndev->addr_assign_type = save_aatype;
1002 	}
1003 
1004 	return err;
1005 }
1006 
1007 #ifdef CONFIG_NET_POLL_CONTROLLER
1008 static void netvsc_poll_controller(struct net_device *net)
1009 {
1010 	/* As netvsc_start_xmit() works synchronous we don't have to
1011 	 * trigger anything here.
1012 	 */
1013 }
1014 #endif
1015 
1016 static const struct ethtool_ops ethtool_ops = {
1017 	.get_drvinfo	= netvsc_get_drvinfo,
1018 	.get_link	= ethtool_op_get_link,
1019 	.get_channels   = netvsc_get_channels,
1020 	.set_channels   = netvsc_set_channels,
1021 	.get_ts_info	= ethtool_op_get_ts_info,
1022 	.get_settings	= netvsc_get_settings,
1023 	.set_settings	= netvsc_set_settings,
1024 };
1025 
1026 static const struct net_device_ops device_ops = {
1027 	.ndo_open =			netvsc_open,
1028 	.ndo_stop =			netvsc_close,
1029 	.ndo_start_xmit =		netvsc_start_xmit,
1030 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1031 	.ndo_change_mtu =		netvsc_change_mtu,
1032 	.ndo_validate_addr =		eth_validate_addr,
1033 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1034 	.ndo_select_queue =		netvsc_select_queue,
1035 	.ndo_get_stats64 =		netvsc_get_stats64,
1036 #ifdef CONFIG_NET_POLL_CONTROLLER
1037 	.ndo_poll_controller =		netvsc_poll_controller,
1038 #endif
1039 };
1040 
1041 /*
1042  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1043  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1044  * present send GARP packet to network peers with netif_notify_peers().
1045  */
1046 static void netvsc_link_change(struct work_struct *w)
1047 {
1048 	struct net_device_context *ndev_ctx =
1049 		container_of(w, struct net_device_context, dwork.work);
1050 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1051 	struct net_device *net = hv_get_drvdata(device_obj);
1052 	struct netvsc_device *net_device;
1053 	struct rndis_device *rdev;
1054 	struct netvsc_reconfig *event = NULL;
1055 	bool notify = false, reschedule = false;
1056 	unsigned long flags, next_reconfig, delay;
1057 
1058 	rtnl_lock();
1059 	if (ndev_ctx->start_remove)
1060 		goto out_unlock;
1061 
1062 	net_device = ndev_ctx->nvdev;
1063 	rdev = net_device->extension;
1064 
1065 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1066 	if (time_is_after_jiffies(next_reconfig)) {
1067 		/* link_watch only sends one notification with current state
1068 		 * per second, avoid doing reconfig more frequently. Handle
1069 		 * wrap around.
1070 		 */
1071 		delay = next_reconfig - jiffies;
1072 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1073 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1074 		goto out_unlock;
1075 	}
1076 	ndev_ctx->last_reconfig = jiffies;
1077 
1078 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1079 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1080 		event = list_first_entry(&ndev_ctx->reconfig_events,
1081 					 struct netvsc_reconfig, list);
1082 		list_del(&event->list);
1083 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1084 	}
1085 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1086 
1087 	if (!event)
1088 		goto out_unlock;
1089 
1090 	switch (event->event) {
1091 		/* Only the following events are possible due to the check in
1092 		 * netvsc_linkstatus_callback()
1093 		 */
1094 	case RNDIS_STATUS_MEDIA_CONNECT:
1095 		if (rdev->link_state) {
1096 			rdev->link_state = false;
1097 			netif_carrier_on(net);
1098 			netif_tx_wake_all_queues(net);
1099 		} else {
1100 			notify = true;
1101 		}
1102 		kfree(event);
1103 		break;
1104 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1105 		if (!rdev->link_state) {
1106 			rdev->link_state = true;
1107 			netif_carrier_off(net);
1108 			netif_tx_stop_all_queues(net);
1109 		}
1110 		kfree(event);
1111 		break;
1112 	case RNDIS_STATUS_NETWORK_CHANGE:
1113 		/* Only makes sense if carrier is present */
1114 		if (!rdev->link_state) {
1115 			rdev->link_state = true;
1116 			netif_carrier_off(net);
1117 			netif_tx_stop_all_queues(net);
1118 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1119 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1120 			list_add(&event->list, &ndev_ctx->reconfig_events);
1121 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1122 			reschedule = true;
1123 		}
1124 		break;
1125 	}
1126 
1127 	rtnl_unlock();
1128 
1129 	if (notify)
1130 		netdev_notify_peers(net);
1131 
1132 	/* link_watch only sends one notification with current state per
1133 	 * second, handle next reconfig event in 2 seconds.
1134 	 */
1135 	if (reschedule)
1136 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1137 
1138 	return;
1139 
1140 out_unlock:
1141 	rtnl_unlock();
1142 }
1143 
1144 static void netvsc_free_netdev(struct net_device *netdev)
1145 {
1146 	struct net_device_context *net_device_ctx = netdev_priv(netdev);
1147 
1148 	free_percpu(net_device_ctx->tx_stats);
1149 	free_percpu(net_device_ctx->rx_stats);
1150 	free_netdev(netdev);
1151 }
1152 
1153 static void netvsc_notify_peers(struct work_struct *wrk)
1154 {
1155 	struct garp_wrk *gwrk;
1156 
1157 	gwrk = container_of(wrk, struct garp_wrk, dwrk);
1158 
1159 	netdev_notify_peers(gwrk->netdev);
1160 
1161 	atomic_dec(&gwrk->netvsc_dev->vf_use_cnt);
1162 }
1163 
1164 static struct net_device *get_netvsc_net_device(char *mac)
1165 {
1166 	struct net_device *dev, *found = NULL;
1167 	int rtnl_locked;
1168 
1169 	rtnl_locked = rtnl_trylock();
1170 
1171 	for_each_netdev(&init_net, dev) {
1172 		if (memcmp(dev->dev_addr, mac, ETH_ALEN) == 0) {
1173 			if (dev->netdev_ops != &device_ops)
1174 				continue;
1175 			found = dev;
1176 			break;
1177 		}
1178 	}
1179 	if (rtnl_locked)
1180 		rtnl_unlock();
1181 
1182 	return found;
1183 }
1184 
1185 static int netvsc_register_vf(struct net_device *vf_netdev)
1186 {
1187 	struct net_device *ndev;
1188 	struct net_device_context *net_device_ctx;
1189 	struct netvsc_device *netvsc_dev;
1190 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1191 
1192 	if (eth_ops == NULL || eth_ops == &ethtool_ops)
1193 		return NOTIFY_DONE;
1194 
1195 	/*
1196 	 * We will use the MAC address to locate the synthetic interface to
1197 	 * associate with the VF interface. If we don't find a matching
1198 	 * synthetic interface, move on.
1199 	 */
1200 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1201 	if (!ndev)
1202 		return NOTIFY_DONE;
1203 
1204 	net_device_ctx = netdev_priv(ndev);
1205 	netvsc_dev = net_device_ctx->nvdev;
1206 	if (netvsc_dev == NULL)
1207 		return NOTIFY_DONE;
1208 
1209 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1210 	/*
1211 	 * Take a reference on the module.
1212 	 */
1213 	try_module_get(THIS_MODULE);
1214 	netvsc_dev->vf_netdev = vf_netdev;
1215 	return NOTIFY_OK;
1216 }
1217 
1218 
1219 static int netvsc_vf_up(struct net_device *vf_netdev)
1220 {
1221 	struct net_device *ndev;
1222 	struct netvsc_device *netvsc_dev;
1223 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1224 	struct net_device_context *net_device_ctx;
1225 
1226 	if (eth_ops == &ethtool_ops)
1227 		return NOTIFY_DONE;
1228 
1229 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1230 	if (!ndev)
1231 		return NOTIFY_DONE;
1232 
1233 	net_device_ctx = netdev_priv(ndev);
1234 	netvsc_dev = net_device_ctx->nvdev;
1235 
1236 	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1237 		return NOTIFY_DONE;
1238 
1239 	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1240 	netvsc_dev->vf_inject = true;
1241 
1242 	/*
1243 	 * Open the device before switching data path.
1244 	 */
1245 	rndis_filter_open(netvsc_dev);
1246 
1247 	/*
1248 	 * notify the host to switch the data path.
1249 	 */
1250 	netvsc_switch_datapath(ndev, true);
1251 	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1252 
1253 	netif_carrier_off(ndev);
1254 
1255 	/*
1256 	 * Now notify peers. We are scheduling work to
1257 	 * notify peers; take a reference to prevent
1258 	 * the VF interface from vanishing.
1259 	 */
1260 	atomic_inc(&netvsc_dev->vf_use_cnt);
1261 	net_device_ctx->gwrk.netdev = vf_netdev;
1262 	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1263 	schedule_work(&net_device_ctx->gwrk.dwrk);
1264 
1265 	return NOTIFY_OK;
1266 }
1267 
1268 
1269 static int netvsc_vf_down(struct net_device *vf_netdev)
1270 {
1271 	struct net_device *ndev;
1272 	struct netvsc_device *netvsc_dev;
1273 	struct net_device_context *net_device_ctx;
1274 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1275 
1276 	if (eth_ops == &ethtool_ops)
1277 		return NOTIFY_DONE;
1278 
1279 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1280 	if (!ndev)
1281 		return NOTIFY_DONE;
1282 
1283 	net_device_ctx = netdev_priv(ndev);
1284 	netvsc_dev = net_device_ctx->nvdev;
1285 
1286 	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1287 		return NOTIFY_DONE;
1288 
1289 	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1290 	netvsc_dev->vf_inject = false;
1291 	/*
1292 	 * Wait for currently active users to
1293 	 * drain out.
1294 	 */
1295 
1296 	while (atomic_read(&netvsc_dev->vf_use_cnt) != 0)
1297 		udelay(50);
1298 	netvsc_switch_datapath(ndev, false);
1299 	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1300 	rndis_filter_close(netvsc_dev);
1301 	netif_carrier_on(ndev);
1302 	/*
1303 	 * Notify peers.
1304 	 */
1305 	atomic_inc(&netvsc_dev->vf_use_cnt);
1306 	net_device_ctx->gwrk.netdev = ndev;
1307 	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1308 	schedule_work(&net_device_ctx->gwrk.dwrk);
1309 
1310 	return NOTIFY_OK;
1311 }
1312 
1313 
1314 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1315 {
1316 	struct net_device *ndev;
1317 	struct netvsc_device *netvsc_dev;
1318 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1319 	struct net_device_context *net_device_ctx;
1320 
1321 	if (eth_ops == &ethtool_ops)
1322 		return NOTIFY_DONE;
1323 
1324 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1325 	if (!ndev)
1326 		return NOTIFY_DONE;
1327 
1328 	net_device_ctx = netdev_priv(ndev);
1329 	netvsc_dev = net_device_ctx->nvdev;
1330 	if (netvsc_dev == NULL)
1331 		return NOTIFY_DONE;
1332 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1333 
1334 	netvsc_dev->vf_netdev = NULL;
1335 	module_put(THIS_MODULE);
1336 	return NOTIFY_OK;
1337 }
1338 
1339 static int netvsc_probe(struct hv_device *dev,
1340 			const struct hv_vmbus_device_id *dev_id)
1341 {
1342 	struct net_device *net = NULL;
1343 	struct net_device_context *net_device_ctx;
1344 	struct netvsc_device_info device_info;
1345 	struct netvsc_device *nvdev;
1346 	int ret;
1347 
1348 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1349 				num_online_cpus());
1350 	if (!net)
1351 		return -ENOMEM;
1352 
1353 	netif_carrier_off(net);
1354 
1355 	net_device_ctx = netdev_priv(net);
1356 	net_device_ctx->device_ctx = dev;
1357 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1358 	if (netif_msg_probe(net_device_ctx))
1359 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1360 			   net_device_ctx->msg_enable);
1361 
1362 	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1363 	if (!net_device_ctx->tx_stats) {
1364 		free_netdev(net);
1365 		return -ENOMEM;
1366 	}
1367 	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1368 	if (!net_device_ctx->rx_stats) {
1369 		free_percpu(net_device_ctx->tx_stats);
1370 		free_netdev(net);
1371 		return -ENOMEM;
1372 	}
1373 
1374 	hv_set_drvdata(dev, net);
1375 
1376 	net_device_ctx->start_remove = false;
1377 
1378 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1379 	INIT_WORK(&net_device_ctx->work, do_set_multicast);
1380 	INIT_WORK(&net_device_ctx->gwrk.dwrk, netvsc_notify_peers);
1381 
1382 	spin_lock_init(&net_device_ctx->lock);
1383 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1384 
1385 	net->netdev_ops = &device_ops;
1386 
1387 	net->hw_features = NETVSC_HW_FEATURES;
1388 	net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1389 
1390 	net->ethtool_ops = &ethtool_ops;
1391 	SET_NETDEV_DEV(net, &dev->device);
1392 
1393 	/* We always need headroom for rndis header */
1394 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1395 
1396 	/* Notify the netvsc driver of the new device */
1397 	memset(&device_info, 0, sizeof(device_info));
1398 	device_info.ring_size = ring_size;
1399 	device_info.max_num_vrss_chns = max_num_vrss_chns;
1400 	ret = rndis_filter_device_add(dev, &device_info);
1401 	if (ret != 0) {
1402 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1403 		netvsc_free_netdev(net);
1404 		hv_set_drvdata(dev, NULL);
1405 		return ret;
1406 	}
1407 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1408 
1409 	nvdev = net_device_ctx->nvdev;
1410 	netif_set_real_num_tx_queues(net, nvdev->num_chn);
1411 	netif_set_real_num_rx_queues(net, nvdev->num_chn);
1412 
1413 	netvsc_init_settings(net);
1414 
1415 	ret = register_netdev(net);
1416 	if (ret != 0) {
1417 		pr_err("Unable to register netdev.\n");
1418 		rndis_filter_device_remove(dev);
1419 		netvsc_free_netdev(net);
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 static int netvsc_remove(struct hv_device *dev)
1426 {
1427 	struct net_device *net;
1428 	struct net_device_context *ndev_ctx;
1429 	struct netvsc_device *net_device;
1430 
1431 	net = hv_get_drvdata(dev);
1432 
1433 	if (net == NULL) {
1434 		dev_err(&dev->device, "No net device to remove\n");
1435 		return 0;
1436 	}
1437 
1438 
1439 	ndev_ctx = netdev_priv(net);
1440 	net_device = ndev_ctx->nvdev;
1441 
1442 	/* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
1443 	 * removing the device.
1444 	 */
1445 	rtnl_lock();
1446 	ndev_ctx->start_remove = true;
1447 	rtnl_unlock();
1448 
1449 	cancel_delayed_work_sync(&ndev_ctx->dwork);
1450 	cancel_work_sync(&ndev_ctx->work);
1451 
1452 	/* Stop outbound asap */
1453 	netif_tx_disable(net);
1454 
1455 	unregister_netdev(net);
1456 
1457 	/*
1458 	 * Call to the vsc driver to let it know that the device is being
1459 	 * removed
1460 	 */
1461 	rndis_filter_device_remove(dev);
1462 
1463 	hv_set_drvdata(dev, NULL);
1464 
1465 	netvsc_free_netdev(net);
1466 	return 0;
1467 }
1468 
1469 static const struct hv_vmbus_device_id id_table[] = {
1470 	/* Network guid */
1471 	{ HV_NIC_GUID, },
1472 	{ },
1473 };
1474 
1475 MODULE_DEVICE_TABLE(vmbus, id_table);
1476 
1477 /* The one and only one */
1478 static struct  hv_driver netvsc_drv = {
1479 	.name = KBUILD_MODNAME,
1480 	.id_table = id_table,
1481 	.probe = netvsc_probe,
1482 	.remove = netvsc_remove,
1483 };
1484 
1485 
1486 /*
1487  * On Hyper-V, every VF interface is matched with a corresponding
1488  * synthetic interface. The synthetic interface is presented first
1489  * to the guest. When the corresponding VF instance is registered,
1490  * we will take care of switching the data path.
1491  */
1492 static int netvsc_netdev_event(struct notifier_block *this,
1493 			       unsigned long event, void *ptr)
1494 {
1495 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1496 
1497 	/* Avoid Vlan, Bonding dev with same MAC registering as VF */
1498 	if (event_dev->priv_flags & (IFF_802_1Q_VLAN | IFF_BONDING))
1499 		return NOTIFY_DONE;
1500 
1501 	switch (event) {
1502 	case NETDEV_REGISTER:
1503 		return netvsc_register_vf(event_dev);
1504 	case NETDEV_UNREGISTER:
1505 		return netvsc_unregister_vf(event_dev);
1506 	case NETDEV_UP:
1507 		return netvsc_vf_up(event_dev);
1508 	case NETDEV_DOWN:
1509 		return netvsc_vf_down(event_dev);
1510 	default:
1511 		return NOTIFY_DONE;
1512 	}
1513 }
1514 
1515 static struct notifier_block netvsc_netdev_notifier = {
1516 	.notifier_call = netvsc_netdev_event,
1517 };
1518 
1519 static void __exit netvsc_drv_exit(void)
1520 {
1521 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1522 	vmbus_driver_unregister(&netvsc_drv);
1523 }
1524 
1525 static int __init netvsc_drv_init(void)
1526 {
1527 	int ret;
1528 
1529 	if (ring_size < RING_SIZE_MIN) {
1530 		ring_size = RING_SIZE_MIN;
1531 		pr_info("Increased ring_size to %d (min allowed)\n",
1532 			ring_size);
1533 	}
1534 	ret = vmbus_driver_register(&netvsc_drv);
1535 
1536 	if (ret)
1537 		return ret;
1538 
1539 	register_netdevice_notifier(&netvsc_netdev_notifier);
1540 	return 0;
1541 }
1542 
1543 MODULE_LICENSE("GPL");
1544 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1545 
1546 module_init(netvsc_drv_init);
1547 module_exit(netvsc_drv_exit);
1548