xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 
41 #include "hyperv_net.h"
42 
43 #define RING_SIZE_MIN 64
44 #define LINKCHANGE_INT (2 * HZ)
45 #define NETVSC_HW_FEATURES	(NETIF_F_RXCSUM | \
46 				 NETIF_F_SG | \
47 				 NETIF_F_TSO | \
48 				 NETIF_F_TSO6 | \
49 				 NETIF_F_HW_CSUM)
50 static int ring_size = 128;
51 module_param(ring_size, int, S_IRUGO);
52 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
53 
54 static int max_num_vrss_chns = 8;
55 
56 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
57 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
58 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
59 				NETIF_MSG_TX_ERR;
60 
61 static int debug = -1;
62 module_param(debug, int, S_IRUGO);
63 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
64 
65 static void do_set_multicast(struct work_struct *w)
66 {
67 	struct net_device_context *ndevctx =
68 		container_of(w, struct net_device_context, work);
69 	struct hv_device *device_obj = ndevctx->device_ctx;
70 	struct net_device *ndev = hv_get_drvdata(device_obj);
71 	struct netvsc_device *nvdev = ndevctx->nvdev;
72 	struct rndis_device *rdev;
73 
74 	if (!nvdev)
75 		return;
76 
77 	rdev = nvdev->extension;
78 	if (rdev == NULL)
79 		return;
80 
81 	if (ndev->flags & IFF_PROMISC)
82 		rndis_filter_set_packet_filter(rdev,
83 			NDIS_PACKET_TYPE_PROMISCUOUS);
84 	else
85 		rndis_filter_set_packet_filter(rdev,
86 			NDIS_PACKET_TYPE_BROADCAST |
87 			NDIS_PACKET_TYPE_ALL_MULTICAST |
88 			NDIS_PACKET_TYPE_DIRECTED);
89 }
90 
91 static void netvsc_set_multicast_list(struct net_device *net)
92 {
93 	struct net_device_context *net_device_ctx = netdev_priv(net);
94 
95 	schedule_work(&net_device_ctx->work);
96 }
97 
98 static int netvsc_open(struct net_device *net)
99 {
100 	struct netvsc_device *nvdev = net_device_to_netvsc_device(net);
101 	struct rndis_device *rdev;
102 	int ret = 0;
103 
104 	netif_carrier_off(net);
105 
106 	/* Open up the device */
107 	ret = rndis_filter_open(nvdev);
108 	if (ret != 0) {
109 		netdev_err(net, "unable to open device (ret %d).\n", ret);
110 		return ret;
111 	}
112 
113 	netif_tx_wake_all_queues(net);
114 
115 	rdev = nvdev->extension;
116 	if (!rdev->link_state)
117 		netif_carrier_on(net);
118 
119 	return ret;
120 }
121 
122 static int netvsc_close(struct net_device *net)
123 {
124 	struct net_device_context *net_device_ctx = netdev_priv(net);
125 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
126 	int ret;
127 	u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
128 	struct vmbus_channel *chn;
129 
130 	netif_tx_disable(net);
131 
132 	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
133 	cancel_work_sync(&net_device_ctx->work);
134 	ret = rndis_filter_close(nvdev);
135 	if (ret != 0) {
136 		netdev_err(net, "unable to close device (ret %d).\n", ret);
137 		return ret;
138 	}
139 
140 	/* Ensure pending bytes in ring are read */
141 	while (true) {
142 		aread = 0;
143 		for (i = 0; i < nvdev->num_chn; i++) {
144 			chn = nvdev->chn_table[i];
145 			if (!chn)
146 				continue;
147 
148 			hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
149 						     &awrite);
150 
151 			if (aread)
152 				break;
153 
154 			hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
155 						     &awrite);
156 
157 			if (aread)
158 				break;
159 		}
160 
161 		retry++;
162 		if (retry > retry_max || aread == 0)
163 			break;
164 
165 		msleep(msec);
166 
167 		if (msec < 1000)
168 			msec *= 2;
169 	}
170 
171 	if (aread) {
172 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
173 		ret = -ETIMEDOUT;
174 	}
175 
176 	return ret;
177 }
178 
179 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
180 				int pkt_type)
181 {
182 	struct rndis_packet *rndis_pkt;
183 	struct rndis_per_packet_info *ppi;
184 
185 	rndis_pkt = &msg->msg.pkt;
186 	rndis_pkt->data_offset += ppi_size;
187 
188 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
189 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
190 
191 	ppi->size = ppi_size;
192 	ppi->type = pkt_type;
193 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
194 
195 	rndis_pkt->per_pkt_info_len += ppi_size;
196 
197 	return ppi;
198 }
199 
200 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
201 			void *accel_priv, select_queue_fallback_t fallback)
202 {
203 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
204 	struct netvsc_device *nvsc_dev = net_device_ctx->nvdev;
205 	u32 hash;
206 	u16 q_idx = 0;
207 
208 	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
209 		return 0;
210 
211 	hash = skb_get_hash(skb);
212 	q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
213 		ndev->real_num_tx_queues;
214 
215 	if (!nvsc_dev->chn_table[q_idx])
216 		q_idx = 0;
217 
218 	return q_idx;
219 }
220 
221 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
222 			struct hv_page_buffer *pb)
223 {
224 	int j = 0;
225 
226 	/* Deal with compund pages by ignoring unused part
227 	 * of the page.
228 	 */
229 	page += (offset >> PAGE_SHIFT);
230 	offset &= ~PAGE_MASK;
231 
232 	while (len > 0) {
233 		unsigned long bytes;
234 
235 		bytes = PAGE_SIZE - offset;
236 		if (bytes > len)
237 			bytes = len;
238 		pb[j].pfn = page_to_pfn(page);
239 		pb[j].offset = offset;
240 		pb[j].len = bytes;
241 
242 		offset += bytes;
243 		len -= bytes;
244 
245 		if (offset == PAGE_SIZE && len) {
246 			page++;
247 			offset = 0;
248 			j++;
249 		}
250 	}
251 
252 	return j + 1;
253 }
254 
255 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
256 			   struct hv_netvsc_packet *packet,
257 			   struct hv_page_buffer **page_buf)
258 {
259 	struct hv_page_buffer *pb = *page_buf;
260 	u32 slots_used = 0;
261 	char *data = skb->data;
262 	int frags = skb_shinfo(skb)->nr_frags;
263 	int i;
264 
265 	/* The packet is laid out thus:
266 	 * 1. hdr: RNDIS header and PPI
267 	 * 2. skb linear data
268 	 * 3. skb fragment data
269 	 */
270 	if (hdr != NULL)
271 		slots_used += fill_pg_buf(virt_to_page(hdr),
272 					offset_in_page(hdr),
273 					len, &pb[slots_used]);
274 
275 	packet->rmsg_size = len;
276 	packet->rmsg_pgcnt = slots_used;
277 
278 	slots_used += fill_pg_buf(virt_to_page(data),
279 				offset_in_page(data),
280 				skb_headlen(skb), &pb[slots_used]);
281 
282 	for (i = 0; i < frags; i++) {
283 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
284 
285 		slots_used += fill_pg_buf(skb_frag_page(frag),
286 					frag->page_offset,
287 					skb_frag_size(frag), &pb[slots_used]);
288 	}
289 	return slots_used;
290 }
291 
292 static int count_skb_frag_slots(struct sk_buff *skb)
293 {
294 	int i, frags = skb_shinfo(skb)->nr_frags;
295 	int pages = 0;
296 
297 	for (i = 0; i < frags; i++) {
298 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
299 		unsigned long size = skb_frag_size(frag);
300 		unsigned long offset = frag->page_offset;
301 
302 		/* Skip unused frames from start of page */
303 		offset &= ~PAGE_MASK;
304 		pages += PFN_UP(offset + size);
305 	}
306 	return pages;
307 }
308 
309 static int netvsc_get_slots(struct sk_buff *skb)
310 {
311 	char *data = skb->data;
312 	unsigned int offset = offset_in_page(data);
313 	unsigned int len = skb_headlen(skb);
314 	int slots;
315 	int frag_slots;
316 
317 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
318 	frag_slots = count_skb_frag_slots(skb);
319 	return slots + frag_slots;
320 }
321 
322 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
323 {
324 	u32 ret_val = TRANSPORT_INFO_NOT_IP;
325 
326 	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
327 		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
328 		goto not_ip;
329 	}
330 
331 	*trans_off = skb_transport_offset(skb);
332 
333 	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
334 		struct iphdr *iphdr = ip_hdr(skb);
335 
336 		if (iphdr->protocol == IPPROTO_TCP)
337 			ret_val = TRANSPORT_INFO_IPV4_TCP;
338 		else if (iphdr->protocol == IPPROTO_UDP)
339 			ret_val = TRANSPORT_INFO_IPV4_UDP;
340 	} else {
341 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
342 			ret_val = TRANSPORT_INFO_IPV6_TCP;
343 		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
344 			ret_val = TRANSPORT_INFO_IPV6_UDP;
345 	}
346 
347 not_ip:
348 	return ret_val;
349 }
350 
351 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
352 {
353 	struct net_device_context *net_device_ctx = netdev_priv(net);
354 	struct hv_netvsc_packet *packet = NULL;
355 	int ret;
356 	unsigned int num_data_pgs;
357 	struct rndis_message *rndis_msg;
358 	struct rndis_packet *rndis_pkt;
359 	u32 rndis_msg_size;
360 	struct rndis_per_packet_info *ppi;
361 	struct ndis_tcp_ip_checksum_info *csum_info;
362 	int  hdr_offset;
363 	u32 net_trans_info;
364 	u32 hash;
365 	u32 skb_length;
366 	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
367 	struct hv_page_buffer *pb = page_buf;
368 
369 	/* We will atmost need two pages to describe the rndis
370 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
371 	 * of pages in a single packet. If skb is scattered around
372 	 * more pages we try linearizing it.
373 	 */
374 
375 	skb_length = skb->len;
376 	num_data_pgs = netvsc_get_slots(skb) + 2;
377 
378 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
379 		++net_device_ctx->eth_stats.tx_scattered;
380 
381 		if (skb_linearize(skb))
382 			goto no_memory;
383 
384 		num_data_pgs = netvsc_get_slots(skb) + 2;
385 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
386 			++net_device_ctx->eth_stats.tx_too_big;
387 			goto drop;
388 		}
389 	}
390 
391 	/*
392 	 * Place the rndis header in the skb head room and
393 	 * the skb->cb will be used for hv_netvsc_packet
394 	 * structure.
395 	 */
396 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
397 	if (ret)
398 		goto no_memory;
399 
400 	/* Use the skb control buffer for building up the packet */
401 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
402 			FIELD_SIZEOF(struct sk_buff, cb));
403 	packet = (struct hv_netvsc_packet *)skb->cb;
404 
405 	packet->q_idx = skb_get_queue_mapping(skb);
406 
407 	packet->total_data_buflen = skb->len;
408 
409 	rndis_msg = (struct rndis_message *)skb->head;
410 
411 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
412 
413 	/* Add the rndis header */
414 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
415 	rndis_msg->msg_len = packet->total_data_buflen;
416 	rndis_pkt = &rndis_msg->msg.pkt;
417 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
418 	rndis_pkt->data_len = packet->total_data_buflen;
419 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
420 
421 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
422 
423 	hash = skb_get_hash_raw(skb);
424 	if (hash != 0 && net->real_num_tx_queues > 1) {
425 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
426 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
427 				    NBL_HASH_VALUE);
428 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
429 	}
430 
431 	if (skb_vlan_tag_present(skb)) {
432 		struct ndis_pkt_8021q_info *vlan;
433 
434 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
435 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
436 					IEEE_8021Q_INFO);
437 		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
438 						ppi->ppi_offset);
439 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
440 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
441 				VLAN_PRIO_SHIFT;
442 	}
443 
444 	net_trans_info = get_net_transport_info(skb, &hdr_offset);
445 	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
446 		goto do_send;
447 
448 	/*
449 	 * Setup the sendside checksum offload only if this is not a
450 	 * GSO packet.
451 	 */
452 	if (skb_is_gso(skb)) {
453 		struct ndis_tcp_lso_info *lso_info;
454 
455 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
456 		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
457 				    TCP_LARGESEND_PKTINFO);
458 
459 		lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
460 							ppi->ppi_offset);
461 
462 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
463 		if (net_trans_info & (INFO_IPV4 << 16)) {
464 			lso_info->lso_v2_transmit.ip_version =
465 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
466 			ip_hdr(skb)->tot_len = 0;
467 			ip_hdr(skb)->check = 0;
468 			tcp_hdr(skb)->check =
469 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
470 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
471 		} else {
472 			lso_info->lso_v2_transmit.ip_version =
473 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
474 			ipv6_hdr(skb)->payload_len = 0;
475 			tcp_hdr(skb)->check =
476 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
477 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
478 		}
479 		lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
480 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
481 		goto do_send;
482 	}
483 
484 	if ((skb->ip_summed == CHECKSUM_NONE) ||
485 	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
486 		goto do_send;
487 
488 	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
489 	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
490 			    TCPIP_CHKSUM_PKTINFO);
491 
492 	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
493 			ppi->ppi_offset);
494 
495 	if (net_trans_info & (INFO_IPV4 << 16))
496 		csum_info->transmit.is_ipv4 = 1;
497 	else
498 		csum_info->transmit.is_ipv6 = 1;
499 
500 	if (net_trans_info & INFO_TCP) {
501 		csum_info->transmit.tcp_checksum = 1;
502 		csum_info->transmit.tcp_header_offset = hdr_offset;
503 	} else if (net_trans_info & INFO_UDP) {
504 		/* UDP checksum offload is not supported on ws2008r2.
505 		 * Furthermore, on ws2012 and ws2012r2, there are some
506 		 * issues with udp checksum offload from Linux guests.
507 		 * (these are host issues).
508 		 * For now compute the checksum here.
509 		 */
510 		struct udphdr *uh;
511 		u16 udp_len;
512 
513 		ret = skb_cow_head(skb, 0);
514 		if (ret)
515 			goto no_memory;
516 
517 		uh = udp_hdr(skb);
518 		udp_len = ntohs(uh->len);
519 		uh->check = 0;
520 		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
521 					      ip_hdr(skb)->daddr,
522 					      udp_len, IPPROTO_UDP,
523 					      csum_partial(uh, udp_len, 0));
524 		if (uh->check == 0)
525 			uh->check = CSUM_MANGLED_0;
526 
527 		csum_info->transmit.udp_checksum = 0;
528 	}
529 
530 do_send:
531 	/* Start filling in the page buffers with the rndis hdr */
532 	rndis_msg->msg_len += rndis_msg_size;
533 	packet->total_data_buflen = rndis_msg->msg_len;
534 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
535 					       skb, packet, &pb);
536 
537 	/* timestamp packet in software */
538 	skb_tx_timestamp(skb);
539 	ret = netvsc_send(net_device_ctx->device_ctx, packet,
540 			  rndis_msg, &pb, skb);
541 	if (likely(ret == 0)) {
542 		struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
543 
544 		u64_stats_update_begin(&tx_stats->syncp);
545 		tx_stats->packets++;
546 		tx_stats->bytes += skb_length;
547 		u64_stats_update_end(&tx_stats->syncp);
548 		return NETDEV_TX_OK;
549 	}
550 
551 	if (ret == -EAGAIN) {
552 		++net_device_ctx->eth_stats.tx_busy;
553 		return NETDEV_TX_BUSY;
554 	}
555 
556 	if (ret == -ENOSPC)
557 		++net_device_ctx->eth_stats.tx_no_space;
558 
559 drop:
560 	dev_kfree_skb_any(skb);
561 	net->stats.tx_dropped++;
562 
563 	return NETDEV_TX_OK;
564 
565 no_memory:
566 	++net_device_ctx->eth_stats.tx_no_memory;
567 	goto drop;
568 }
569 
570 /*
571  * netvsc_linkstatus_callback - Link up/down notification
572  */
573 void netvsc_linkstatus_callback(struct hv_device *device_obj,
574 				struct rndis_message *resp)
575 {
576 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
577 	struct net_device *net;
578 	struct net_device_context *ndev_ctx;
579 	struct netvsc_reconfig *event;
580 	unsigned long flags;
581 
582 	net = hv_get_drvdata(device_obj);
583 
584 	if (!net)
585 		return;
586 
587 	ndev_ctx = netdev_priv(net);
588 
589 	/* Update the physical link speed when changing to another vSwitch */
590 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
591 		u32 speed;
592 
593 		speed = *(u32 *)((void *)indicate + indicate->
594 				 status_buf_offset) / 10000;
595 		ndev_ctx->speed = speed;
596 		return;
597 	}
598 
599 	/* Handle these link change statuses below */
600 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
601 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
602 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
603 		return;
604 
605 	if (net->reg_state != NETREG_REGISTERED)
606 		return;
607 
608 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
609 	if (!event)
610 		return;
611 	event->event = indicate->status;
612 
613 	spin_lock_irqsave(&ndev_ctx->lock, flags);
614 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
615 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
616 
617 	schedule_delayed_work(&ndev_ctx->dwork, 0);
618 }
619 
620 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
621 				struct hv_netvsc_packet *packet,
622 				struct ndis_tcp_ip_checksum_info *csum_info,
623 				void *data, u16 vlan_tci)
624 {
625 	struct sk_buff *skb;
626 
627 	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
628 	if (!skb)
629 		return skb;
630 
631 	/*
632 	 * Copy to skb. This copy is needed here since the memory pointed by
633 	 * hv_netvsc_packet cannot be deallocated
634 	 */
635 	memcpy(skb_put(skb, packet->total_data_buflen), data,
636 	       packet->total_data_buflen);
637 
638 	skb->protocol = eth_type_trans(skb, net);
639 	if (csum_info) {
640 		/* We only look at the IP checksum here.
641 		 * Should we be dropping the packet if checksum
642 		 * failed? How do we deal with other checksums - TCP/UDP?
643 		 */
644 		if (csum_info->receive.ip_checksum_succeeded)
645 			skb->ip_summed = CHECKSUM_UNNECESSARY;
646 		else
647 			skb->ip_summed = CHECKSUM_NONE;
648 	}
649 
650 	if (vlan_tci & VLAN_TAG_PRESENT)
651 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
652 				       vlan_tci);
653 
654 	return skb;
655 }
656 
657 /*
658  * netvsc_recv_callback -  Callback when we receive a packet from the
659  * "wire" on the specified device.
660  */
661 int netvsc_recv_callback(struct hv_device *device_obj,
662 				struct hv_netvsc_packet *packet,
663 				void **data,
664 				struct ndis_tcp_ip_checksum_info *csum_info,
665 				struct vmbus_channel *channel,
666 				u16 vlan_tci)
667 {
668 	struct net_device *net = hv_get_drvdata(device_obj);
669 	struct net_device_context *net_device_ctx = netdev_priv(net);
670 	struct net_device *vf_netdev;
671 	struct sk_buff *skb;
672 	struct netvsc_stats *rx_stats;
673 
674 	if (net->reg_state != NETREG_REGISTERED)
675 		return NVSP_STAT_FAIL;
676 
677 	/*
678 	 * If necessary, inject this packet into the VF interface.
679 	 * On Hyper-V, multicast and brodcast packets are only delivered
680 	 * to the synthetic interface (after subjecting these to
681 	 * policy filters on the host). Deliver these via the VF
682 	 * interface in the guest.
683 	 */
684 	vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
685 	if (vf_netdev && (vf_netdev->flags & IFF_UP))
686 		net = vf_netdev;
687 
688 	/* Allocate a skb - TODO direct I/O to pages? */
689 	skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
690 	if (unlikely(!skb)) {
691 		++net->stats.rx_dropped;
692 		return NVSP_STAT_FAIL;
693 	}
694 
695 	if (net != vf_netdev)
696 		skb_record_rx_queue(skb,
697 				    channel->offermsg.offer.sub_channel_index);
698 
699 	/*
700 	 * Even if injecting the packet, record the statistics
701 	 * on the synthetic device because modifying the VF device
702 	 * statistics will not work correctly.
703 	 */
704 	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
705 	u64_stats_update_begin(&rx_stats->syncp);
706 	rx_stats->packets++;
707 	rx_stats->bytes += packet->total_data_buflen;
708 
709 	if (skb->pkt_type == PACKET_BROADCAST)
710 		++rx_stats->broadcast;
711 	else if (skb->pkt_type == PACKET_MULTICAST)
712 		++rx_stats->multicast;
713 	u64_stats_update_end(&rx_stats->syncp);
714 
715 	/*
716 	 * Pass the skb back up. Network stack will deallocate the skb when it
717 	 * is done.
718 	 * TODO - use NAPI?
719 	 */
720 	netif_rx(skb);
721 
722 	return 0;
723 }
724 
725 static void netvsc_get_drvinfo(struct net_device *net,
726 			       struct ethtool_drvinfo *info)
727 {
728 	struct net_device_context *net_device_ctx = netdev_priv(net);
729 	struct hv_device *dev = net_device_ctx->device_ctx;
730 
731 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
732 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
733 	strlcpy(info->bus_info, vmbus_dev_name(dev), sizeof(info->bus_info));
734 }
735 
736 static void netvsc_get_channels(struct net_device *net,
737 				struct ethtool_channels *channel)
738 {
739 	struct net_device_context *net_device_ctx = netdev_priv(net);
740 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
741 
742 	if (nvdev) {
743 		channel->max_combined	= nvdev->max_chn;
744 		channel->combined_count = nvdev->num_chn;
745 	}
746 }
747 
748 static int netvsc_set_channels(struct net_device *net,
749 			       struct ethtool_channels *channels)
750 {
751 	struct net_device_context *net_device_ctx = netdev_priv(net);
752 	struct hv_device *dev = net_device_ctx->device_ctx;
753 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
754 	struct netvsc_device_info device_info;
755 	u32 num_chn;
756 	u32 max_chn;
757 	int ret = 0;
758 	bool recovering = false;
759 
760 	if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
761 		return -ENODEV;
762 
763 	num_chn = nvdev->num_chn;
764 	max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());
765 
766 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
767 		pr_info("vRSS unsupported before NVSP Version 5\n");
768 		return -EINVAL;
769 	}
770 
771 	/* We do not support rx, tx, or other */
772 	if (!channels ||
773 	    channels->rx_count ||
774 	    channels->tx_count ||
775 	    channels->other_count ||
776 	    (channels->combined_count < 1))
777 		return -EINVAL;
778 
779 	if (channels->combined_count > max_chn) {
780 		pr_info("combined channels too high, using %d\n", max_chn);
781 		channels->combined_count = max_chn;
782 	}
783 
784 	ret = netvsc_close(net);
785 	if (ret)
786 		goto out;
787 
788  do_set:
789 	net_device_ctx->start_remove = true;
790 	rndis_filter_device_remove(dev);
791 
792 	nvdev->num_chn = channels->combined_count;
793 
794 	memset(&device_info, 0, sizeof(device_info));
795 	device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
796 	device_info.ring_size = ring_size;
797 	device_info.max_num_vrss_chns = max_num_vrss_chns;
798 
799 	ret = rndis_filter_device_add(dev, &device_info);
800 	if (ret) {
801 		if (recovering) {
802 			netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
803 			return ret;
804 		}
805 		goto recover;
806 	}
807 
808 	nvdev = net_device_ctx->nvdev;
809 
810 	ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
811 	if (ret) {
812 		if (recovering) {
813 			netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
814 			return ret;
815 		}
816 		goto recover;
817 	}
818 
819 	ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
820 	if (ret) {
821 		if (recovering) {
822 			netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
823 			return ret;
824 		}
825 		goto recover;
826 	}
827 
828  out:
829 	netvsc_open(net);
830 	net_device_ctx->start_remove = false;
831 	/* We may have missed link change notifications */
832 	schedule_delayed_work(&net_device_ctx->dwork, 0);
833 
834 	return ret;
835 
836  recover:
837 	/* If the above failed, we attempt to recover through the same
838 	 * process but with the original number of channels.
839 	 */
840 	netdev_err(net, "could not set channels, recovering\n");
841 	recovering = true;
842 	channels->combined_count = num_chn;
843 	goto do_set;
844 }
845 
846 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
847 {
848 	struct ethtool_cmd diff1 = *cmd;
849 	struct ethtool_cmd diff2 = {};
850 
851 	ethtool_cmd_speed_set(&diff1, 0);
852 	diff1.duplex = 0;
853 	/* advertising and cmd are usually set */
854 	diff1.advertising = 0;
855 	diff1.cmd = 0;
856 	/* We set port to PORT_OTHER */
857 	diff2.port = PORT_OTHER;
858 
859 	return !memcmp(&diff1, &diff2, sizeof(diff1));
860 }
861 
862 static void netvsc_init_settings(struct net_device *dev)
863 {
864 	struct net_device_context *ndc = netdev_priv(dev);
865 
866 	ndc->speed = SPEED_UNKNOWN;
867 	ndc->duplex = DUPLEX_UNKNOWN;
868 }
869 
870 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
871 {
872 	struct net_device_context *ndc = netdev_priv(dev);
873 
874 	ethtool_cmd_speed_set(cmd, ndc->speed);
875 	cmd->duplex = ndc->duplex;
876 	cmd->port = PORT_OTHER;
877 
878 	return 0;
879 }
880 
881 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
882 {
883 	struct net_device_context *ndc = netdev_priv(dev);
884 	u32 speed;
885 
886 	speed = ethtool_cmd_speed(cmd);
887 	if (!ethtool_validate_speed(speed) ||
888 	    !ethtool_validate_duplex(cmd->duplex) ||
889 	    !netvsc_validate_ethtool_ss_cmd(cmd))
890 		return -EINVAL;
891 
892 	ndc->speed = speed;
893 	ndc->duplex = cmd->duplex;
894 
895 	return 0;
896 }
897 
898 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
899 {
900 	struct net_device_context *ndevctx = netdev_priv(ndev);
901 	struct netvsc_device *nvdev = ndevctx->nvdev;
902 	struct hv_device *hdev = ndevctx->device_ctx;
903 	struct netvsc_device_info device_info;
904 	int limit = ETH_DATA_LEN;
905 	u32 num_chn;
906 	int ret = 0;
907 
908 	if (ndevctx->start_remove || !nvdev || nvdev->destroy)
909 		return -ENODEV;
910 
911 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
912 		limit = NETVSC_MTU - ETH_HLEN;
913 
914 	if (mtu < NETVSC_MTU_MIN || mtu > limit)
915 		return -EINVAL;
916 
917 	ret = netvsc_close(ndev);
918 	if (ret)
919 		goto out;
920 
921 	num_chn = nvdev->num_chn;
922 
923 	ndevctx->start_remove = true;
924 	rndis_filter_device_remove(hdev);
925 
926 	ndev->mtu = mtu;
927 
928 	memset(&device_info, 0, sizeof(device_info));
929 	device_info.ring_size = ring_size;
930 	device_info.num_chn = num_chn;
931 	device_info.max_num_vrss_chns = max_num_vrss_chns;
932 	rndis_filter_device_add(hdev, &device_info);
933 
934 out:
935 	netvsc_open(ndev);
936 	ndevctx->start_remove = false;
937 
938 	/* We may have missed link change notifications */
939 	schedule_delayed_work(&ndevctx->dwork, 0);
940 
941 	return ret;
942 }
943 
944 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
945 						    struct rtnl_link_stats64 *t)
946 {
947 	struct net_device_context *ndev_ctx = netdev_priv(net);
948 	int cpu;
949 
950 	for_each_possible_cpu(cpu) {
951 		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
952 							    cpu);
953 		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
954 							    cpu);
955 		u64 tx_packets, tx_bytes, rx_packets, rx_bytes, rx_multicast;
956 		unsigned int start;
957 
958 		do {
959 			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
960 			tx_packets = tx_stats->packets;
961 			tx_bytes = tx_stats->bytes;
962 		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
963 
964 		do {
965 			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
966 			rx_packets = rx_stats->packets;
967 			rx_bytes = rx_stats->bytes;
968 			rx_multicast = rx_stats->multicast + rx_stats->broadcast;
969 		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
970 
971 		t->tx_bytes	+= tx_bytes;
972 		t->tx_packets	+= tx_packets;
973 		t->rx_bytes	+= rx_bytes;
974 		t->rx_packets	+= rx_packets;
975 		t->multicast	+= rx_multicast;
976 	}
977 
978 	t->tx_dropped	= net->stats.tx_dropped;
979 	t->tx_errors	= net->stats.tx_dropped;
980 
981 	t->rx_dropped	= net->stats.rx_dropped;
982 	t->rx_errors	= net->stats.rx_errors;
983 
984 	return t;
985 }
986 
987 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
988 {
989 	struct sockaddr *addr = p;
990 	char save_adr[ETH_ALEN];
991 	unsigned char save_aatype;
992 	int err;
993 
994 	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
995 	save_aatype = ndev->addr_assign_type;
996 
997 	err = eth_mac_addr(ndev, p);
998 	if (err != 0)
999 		return err;
1000 
1001 	err = rndis_filter_set_device_mac(ndev, addr->sa_data);
1002 	if (err != 0) {
1003 		/* roll back to saved MAC */
1004 		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
1005 		ndev->addr_assign_type = save_aatype;
1006 	}
1007 
1008 	return err;
1009 }
1010 
1011 static const struct {
1012 	char name[ETH_GSTRING_LEN];
1013 	u16 offset;
1014 } netvsc_stats[] = {
1015 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1016 	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1017 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1018 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1019 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1020 };
1021 
1022 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1023 {
1024 	switch (string_set) {
1025 	case ETH_SS_STATS:
1026 		return ARRAY_SIZE(netvsc_stats);
1027 	default:
1028 		return -EINVAL;
1029 	}
1030 }
1031 
1032 static void netvsc_get_ethtool_stats(struct net_device *dev,
1033 				     struct ethtool_stats *stats, u64 *data)
1034 {
1035 	struct net_device_context *ndc = netdev_priv(dev);
1036 	const void *nds = &ndc->eth_stats;
1037 	int i;
1038 
1039 	for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1040 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1041 }
1042 
1043 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1044 {
1045 	int i;
1046 
1047 	switch (stringset) {
1048 	case ETH_SS_STATS:
1049 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1050 			memcpy(data + i * ETH_GSTRING_LEN,
1051 			       netvsc_stats[i].name, ETH_GSTRING_LEN);
1052 		break;
1053 	}
1054 }
1055 
1056 #ifdef CONFIG_NET_POLL_CONTROLLER
1057 static void netvsc_poll_controller(struct net_device *net)
1058 {
1059 	/* As netvsc_start_xmit() works synchronous we don't have to
1060 	 * trigger anything here.
1061 	 */
1062 }
1063 #endif
1064 
1065 static const struct ethtool_ops ethtool_ops = {
1066 	.get_drvinfo	= netvsc_get_drvinfo,
1067 	.get_link	= ethtool_op_get_link,
1068 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1069 	.get_sset_count = netvsc_get_sset_count,
1070 	.get_strings	= netvsc_get_strings,
1071 	.get_channels   = netvsc_get_channels,
1072 	.set_channels   = netvsc_set_channels,
1073 	.get_ts_info	= ethtool_op_get_ts_info,
1074 	.get_settings	= netvsc_get_settings,
1075 	.set_settings	= netvsc_set_settings,
1076 };
1077 
1078 static const struct net_device_ops device_ops = {
1079 	.ndo_open =			netvsc_open,
1080 	.ndo_stop =			netvsc_close,
1081 	.ndo_start_xmit =		netvsc_start_xmit,
1082 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1083 	.ndo_change_mtu =		netvsc_change_mtu,
1084 	.ndo_validate_addr =		eth_validate_addr,
1085 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1086 	.ndo_select_queue =		netvsc_select_queue,
1087 	.ndo_get_stats64 =		netvsc_get_stats64,
1088 #ifdef CONFIG_NET_POLL_CONTROLLER
1089 	.ndo_poll_controller =		netvsc_poll_controller,
1090 #endif
1091 };
1092 
1093 /*
1094  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1095  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1096  * present send GARP packet to network peers with netif_notify_peers().
1097  */
1098 static void netvsc_link_change(struct work_struct *w)
1099 {
1100 	struct net_device_context *ndev_ctx =
1101 		container_of(w, struct net_device_context, dwork.work);
1102 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1103 	struct net_device *net = hv_get_drvdata(device_obj);
1104 	struct netvsc_device *net_device;
1105 	struct rndis_device *rdev;
1106 	struct netvsc_reconfig *event = NULL;
1107 	bool notify = false, reschedule = false;
1108 	unsigned long flags, next_reconfig, delay;
1109 
1110 	rtnl_lock();
1111 	if (ndev_ctx->start_remove)
1112 		goto out_unlock;
1113 
1114 	net_device = ndev_ctx->nvdev;
1115 	rdev = net_device->extension;
1116 
1117 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1118 	if (time_is_after_jiffies(next_reconfig)) {
1119 		/* link_watch only sends one notification with current state
1120 		 * per second, avoid doing reconfig more frequently. Handle
1121 		 * wrap around.
1122 		 */
1123 		delay = next_reconfig - jiffies;
1124 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1125 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1126 		goto out_unlock;
1127 	}
1128 	ndev_ctx->last_reconfig = jiffies;
1129 
1130 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1131 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1132 		event = list_first_entry(&ndev_ctx->reconfig_events,
1133 					 struct netvsc_reconfig, list);
1134 		list_del(&event->list);
1135 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1136 	}
1137 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1138 
1139 	if (!event)
1140 		goto out_unlock;
1141 
1142 	switch (event->event) {
1143 		/* Only the following events are possible due to the check in
1144 		 * netvsc_linkstatus_callback()
1145 		 */
1146 	case RNDIS_STATUS_MEDIA_CONNECT:
1147 		if (rdev->link_state) {
1148 			rdev->link_state = false;
1149 			netif_carrier_on(net);
1150 			netif_tx_wake_all_queues(net);
1151 		} else {
1152 			notify = true;
1153 		}
1154 		kfree(event);
1155 		break;
1156 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1157 		if (!rdev->link_state) {
1158 			rdev->link_state = true;
1159 			netif_carrier_off(net);
1160 			netif_tx_stop_all_queues(net);
1161 		}
1162 		kfree(event);
1163 		break;
1164 	case RNDIS_STATUS_NETWORK_CHANGE:
1165 		/* Only makes sense if carrier is present */
1166 		if (!rdev->link_state) {
1167 			rdev->link_state = true;
1168 			netif_carrier_off(net);
1169 			netif_tx_stop_all_queues(net);
1170 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1171 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1172 			list_add(&event->list, &ndev_ctx->reconfig_events);
1173 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1174 			reschedule = true;
1175 		}
1176 		break;
1177 	}
1178 
1179 	rtnl_unlock();
1180 
1181 	if (notify)
1182 		netdev_notify_peers(net);
1183 
1184 	/* link_watch only sends one notification with current state per
1185 	 * second, handle next reconfig event in 2 seconds.
1186 	 */
1187 	if (reschedule)
1188 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1189 
1190 	return;
1191 
1192 out_unlock:
1193 	rtnl_unlock();
1194 }
1195 
1196 static void netvsc_free_netdev(struct net_device *netdev)
1197 {
1198 	struct net_device_context *net_device_ctx = netdev_priv(netdev);
1199 
1200 	free_percpu(net_device_ctx->tx_stats);
1201 	free_percpu(net_device_ctx->rx_stats);
1202 	free_netdev(netdev);
1203 }
1204 
1205 static struct net_device *get_netvsc_bymac(const u8 *mac)
1206 {
1207 	struct net_device *dev;
1208 
1209 	ASSERT_RTNL();
1210 
1211 	for_each_netdev(&init_net, dev) {
1212 		if (dev->netdev_ops != &device_ops)
1213 			continue;	/* not a netvsc device */
1214 
1215 		if (ether_addr_equal(mac, dev->perm_addr))
1216 			return dev;
1217 	}
1218 
1219 	return NULL;
1220 }
1221 
1222 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1223 {
1224 	struct net_device *dev;
1225 
1226 	ASSERT_RTNL();
1227 
1228 	for_each_netdev(&init_net, dev) {
1229 		struct net_device_context *net_device_ctx;
1230 
1231 		if (dev->netdev_ops != &device_ops)
1232 			continue;	/* not a netvsc device */
1233 
1234 		net_device_ctx = netdev_priv(dev);
1235 		if (net_device_ctx->nvdev == NULL)
1236 			continue;	/* device is removed */
1237 
1238 		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1239 			return dev;	/* a match */
1240 	}
1241 
1242 	return NULL;
1243 }
1244 
1245 static int netvsc_register_vf(struct net_device *vf_netdev)
1246 {
1247 	struct net_device *ndev;
1248 	struct net_device_context *net_device_ctx;
1249 	struct netvsc_device *netvsc_dev;
1250 
1251 	if (vf_netdev->addr_len != ETH_ALEN)
1252 		return NOTIFY_DONE;
1253 
1254 	/*
1255 	 * We will use the MAC address to locate the synthetic interface to
1256 	 * associate with the VF interface. If we don't find a matching
1257 	 * synthetic interface, move on.
1258 	 */
1259 	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1260 	if (!ndev)
1261 		return NOTIFY_DONE;
1262 
1263 	net_device_ctx = netdev_priv(ndev);
1264 	netvsc_dev = net_device_ctx->nvdev;
1265 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1266 		return NOTIFY_DONE;
1267 
1268 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1269 	/*
1270 	 * Take a reference on the module.
1271 	 */
1272 	try_module_get(THIS_MODULE);
1273 
1274 	dev_hold(vf_netdev);
1275 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1276 	return NOTIFY_OK;
1277 }
1278 
1279 static int netvsc_vf_up(struct net_device *vf_netdev)
1280 {
1281 	struct net_device *ndev;
1282 	struct netvsc_device *netvsc_dev;
1283 	struct net_device_context *net_device_ctx;
1284 
1285 	ndev = get_netvsc_byref(vf_netdev);
1286 	if (!ndev)
1287 		return NOTIFY_DONE;
1288 
1289 	net_device_ctx = netdev_priv(ndev);
1290 	netvsc_dev = net_device_ctx->nvdev;
1291 
1292 	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1293 
1294 	/*
1295 	 * Open the device before switching data path.
1296 	 */
1297 	rndis_filter_open(netvsc_dev);
1298 
1299 	/*
1300 	 * notify the host to switch the data path.
1301 	 */
1302 	netvsc_switch_datapath(ndev, true);
1303 	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1304 
1305 	netif_carrier_off(ndev);
1306 
1307 	/* Now notify peers through VF device. */
1308 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1309 
1310 	return NOTIFY_OK;
1311 }
1312 
1313 static int netvsc_vf_down(struct net_device *vf_netdev)
1314 {
1315 	struct net_device *ndev;
1316 	struct netvsc_device *netvsc_dev;
1317 	struct net_device_context *net_device_ctx;
1318 
1319 	ndev = get_netvsc_byref(vf_netdev);
1320 	if (!ndev)
1321 		return NOTIFY_DONE;
1322 
1323 	net_device_ctx = netdev_priv(ndev);
1324 	netvsc_dev = net_device_ctx->nvdev;
1325 
1326 	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1327 	netvsc_switch_datapath(ndev, false);
1328 	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1329 	rndis_filter_close(netvsc_dev);
1330 	netif_carrier_on(ndev);
1331 
1332 	/* Now notify peers through netvsc device. */
1333 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1334 
1335 	return NOTIFY_OK;
1336 }
1337 
1338 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1339 {
1340 	struct net_device *ndev;
1341 	struct netvsc_device *netvsc_dev;
1342 	struct net_device_context *net_device_ctx;
1343 
1344 	ndev = get_netvsc_byref(vf_netdev);
1345 	if (!ndev)
1346 		return NOTIFY_DONE;
1347 
1348 	net_device_ctx = netdev_priv(ndev);
1349 	netvsc_dev = net_device_ctx->nvdev;
1350 
1351 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1352 
1353 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1354 	dev_put(vf_netdev);
1355 	module_put(THIS_MODULE);
1356 	return NOTIFY_OK;
1357 }
1358 
1359 static int netvsc_probe(struct hv_device *dev,
1360 			const struct hv_vmbus_device_id *dev_id)
1361 {
1362 	struct net_device *net = NULL;
1363 	struct net_device_context *net_device_ctx;
1364 	struct netvsc_device_info device_info;
1365 	struct netvsc_device *nvdev;
1366 	int ret;
1367 
1368 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1369 				num_online_cpus());
1370 	if (!net)
1371 		return -ENOMEM;
1372 
1373 	netif_carrier_off(net);
1374 
1375 	netvsc_init_settings(net);
1376 
1377 	net_device_ctx = netdev_priv(net);
1378 	net_device_ctx->device_ctx = dev;
1379 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1380 	if (netif_msg_probe(net_device_ctx))
1381 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1382 			   net_device_ctx->msg_enable);
1383 
1384 	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1385 	if (!net_device_ctx->tx_stats) {
1386 		free_netdev(net);
1387 		return -ENOMEM;
1388 	}
1389 	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1390 	if (!net_device_ctx->rx_stats) {
1391 		free_percpu(net_device_ctx->tx_stats);
1392 		free_netdev(net);
1393 		return -ENOMEM;
1394 	}
1395 
1396 	hv_set_drvdata(dev, net);
1397 
1398 	net_device_ctx->start_remove = false;
1399 
1400 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1401 	INIT_WORK(&net_device_ctx->work, do_set_multicast);
1402 
1403 	spin_lock_init(&net_device_ctx->lock);
1404 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1405 
1406 	net->netdev_ops = &device_ops;
1407 
1408 	net->hw_features = NETVSC_HW_FEATURES;
1409 	net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1410 
1411 	net->ethtool_ops = &ethtool_ops;
1412 	SET_NETDEV_DEV(net, &dev->device);
1413 
1414 	/* We always need headroom for rndis header */
1415 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1416 
1417 	/* Notify the netvsc driver of the new device */
1418 	memset(&device_info, 0, sizeof(device_info));
1419 	device_info.ring_size = ring_size;
1420 	device_info.max_num_vrss_chns = max_num_vrss_chns;
1421 	ret = rndis_filter_device_add(dev, &device_info);
1422 	if (ret != 0) {
1423 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1424 		netvsc_free_netdev(net);
1425 		hv_set_drvdata(dev, NULL);
1426 		return ret;
1427 	}
1428 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1429 
1430 	nvdev = net_device_ctx->nvdev;
1431 	netif_set_real_num_tx_queues(net, nvdev->num_chn);
1432 	netif_set_real_num_rx_queues(net, nvdev->num_chn);
1433 
1434 	ret = register_netdev(net);
1435 	if (ret != 0) {
1436 		pr_err("Unable to register netdev.\n");
1437 		rndis_filter_device_remove(dev);
1438 		netvsc_free_netdev(net);
1439 	}
1440 
1441 	return ret;
1442 }
1443 
1444 static int netvsc_remove(struct hv_device *dev)
1445 {
1446 	struct net_device *net;
1447 	struct net_device_context *ndev_ctx;
1448 	struct netvsc_device *net_device;
1449 
1450 	net = hv_get_drvdata(dev);
1451 
1452 	if (net == NULL) {
1453 		dev_err(&dev->device, "No net device to remove\n");
1454 		return 0;
1455 	}
1456 
1457 	ndev_ctx = netdev_priv(net);
1458 	net_device = ndev_ctx->nvdev;
1459 
1460 	/* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
1461 	 * removing the device.
1462 	 */
1463 	rtnl_lock();
1464 	ndev_ctx->start_remove = true;
1465 	rtnl_unlock();
1466 
1467 	cancel_delayed_work_sync(&ndev_ctx->dwork);
1468 	cancel_work_sync(&ndev_ctx->work);
1469 
1470 	/* Stop outbound asap */
1471 	netif_tx_disable(net);
1472 
1473 	unregister_netdev(net);
1474 
1475 	/*
1476 	 * Call to the vsc driver to let it know that the device is being
1477 	 * removed
1478 	 */
1479 	rndis_filter_device_remove(dev);
1480 
1481 	hv_set_drvdata(dev, NULL);
1482 
1483 	netvsc_free_netdev(net);
1484 	return 0;
1485 }
1486 
1487 static const struct hv_vmbus_device_id id_table[] = {
1488 	/* Network guid */
1489 	{ HV_NIC_GUID, },
1490 	{ },
1491 };
1492 
1493 MODULE_DEVICE_TABLE(vmbus, id_table);
1494 
1495 /* The one and only one */
1496 static struct  hv_driver netvsc_drv = {
1497 	.name = KBUILD_MODNAME,
1498 	.id_table = id_table,
1499 	.probe = netvsc_probe,
1500 	.remove = netvsc_remove,
1501 };
1502 
1503 /*
1504  * On Hyper-V, every VF interface is matched with a corresponding
1505  * synthetic interface. The synthetic interface is presented first
1506  * to the guest. When the corresponding VF instance is registered,
1507  * we will take care of switching the data path.
1508  */
1509 static int netvsc_netdev_event(struct notifier_block *this,
1510 			       unsigned long event, void *ptr)
1511 {
1512 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1513 
1514 	/* Skip our own events */
1515 	if (event_dev->netdev_ops == &device_ops)
1516 		return NOTIFY_DONE;
1517 
1518 	/* Avoid non-Ethernet type devices */
1519 	if (event_dev->type != ARPHRD_ETHER)
1520 		return NOTIFY_DONE;
1521 
1522 	/* Avoid Vlan dev with same MAC registering as VF */
1523 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
1524 		return NOTIFY_DONE;
1525 
1526 	/* Avoid Bonding master dev with same MAC registering as VF */
1527 	if ((event_dev->priv_flags & IFF_BONDING) &&
1528 	    (event_dev->flags & IFF_MASTER))
1529 		return NOTIFY_DONE;
1530 
1531 	switch (event) {
1532 	case NETDEV_REGISTER:
1533 		return netvsc_register_vf(event_dev);
1534 	case NETDEV_UNREGISTER:
1535 		return netvsc_unregister_vf(event_dev);
1536 	case NETDEV_UP:
1537 		return netvsc_vf_up(event_dev);
1538 	case NETDEV_DOWN:
1539 		return netvsc_vf_down(event_dev);
1540 	default:
1541 		return NOTIFY_DONE;
1542 	}
1543 }
1544 
1545 static struct notifier_block netvsc_netdev_notifier = {
1546 	.notifier_call = netvsc_netdev_event,
1547 };
1548 
1549 static void __exit netvsc_drv_exit(void)
1550 {
1551 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1552 	vmbus_driver_unregister(&netvsc_drv);
1553 }
1554 
1555 static int __init netvsc_drv_init(void)
1556 {
1557 	int ret;
1558 
1559 	if (ring_size < RING_SIZE_MIN) {
1560 		ring_size = RING_SIZE_MIN;
1561 		pr_info("Increased ring_size to %d (min allowed)\n",
1562 			ring_size);
1563 	}
1564 	ret = vmbus_driver_register(&netvsc_drv);
1565 
1566 	if (ret)
1567 		return ret;
1568 
1569 	register_netdevice_notifier(&netvsc_netdev_notifier);
1570 	return 0;
1571 }
1572 
1573 MODULE_LICENSE("GPL");
1574 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1575 
1576 module_init(netvsc_drv_init);
1577 module_exit(netvsc_drv_exit);
1578