1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 #define RING_SIZE_MIN 64 44 #define LINKCHANGE_INT (2 * HZ) 45 #define NETVSC_HW_FEATURES (NETIF_F_RXCSUM | \ 46 NETIF_F_SG | \ 47 NETIF_F_TSO | \ 48 NETIF_F_TSO6 | \ 49 NETIF_F_HW_CSUM) 50 51 /* Restrict GSO size to account for NVGRE */ 52 #define NETVSC_GSO_MAX_SIZE 62768 53 54 static int ring_size = 128; 55 module_param(ring_size, int, S_IRUGO); 56 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 57 58 static int max_num_vrss_chns = 8; 59 60 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 61 NETIF_MSG_LINK | NETIF_MSG_IFUP | 62 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 63 NETIF_MSG_TX_ERR; 64 65 static int debug = -1; 66 module_param(debug, int, S_IRUGO); 67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 68 69 static void do_set_multicast(struct work_struct *w) 70 { 71 struct net_device_context *ndevctx = 72 container_of(w, struct net_device_context, work); 73 struct hv_device *device_obj = ndevctx->device_ctx; 74 struct net_device *ndev = hv_get_drvdata(device_obj); 75 struct netvsc_device *nvdev = ndevctx->nvdev; 76 struct rndis_device *rdev; 77 78 if (!nvdev) 79 return; 80 81 rdev = nvdev->extension; 82 if (rdev == NULL) 83 return; 84 85 if (ndev->flags & IFF_PROMISC) 86 rndis_filter_set_packet_filter(rdev, 87 NDIS_PACKET_TYPE_PROMISCUOUS); 88 else 89 rndis_filter_set_packet_filter(rdev, 90 NDIS_PACKET_TYPE_BROADCAST | 91 NDIS_PACKET_TYPE_ALL_MULTICAST | 92 NDIS_PACKET_TYPE_DIRECTED); 93 } 94 95 static void netvsc_set_multicast_list(struct net_device *net) 96 { 97 struct net_device_context *net_device_ctx = netdev_priv(net); 98 99 schedule_work(&net_device_ctx->work); 100 } 101 102 static int netvsc_open(struct net_device *net) 103 { 104 struct netvsc_device *nvdev = net_device_to_netvsc_device(net); 105 struct rndis_device *rdev; 106 int ret = 0; 107 108 netif_carrier_off(net); 109 110 /* Open up the device */ 111 ret = rndis_filter_open(nvdev); 112 if (ret != 0) { 113 netdev_err(net, "unable to open device (ret %d).\n", ret); 114 return ret; 115 } 116 117 netif_tx_wake_all_queues(net); 118 119 rdev = nvdev->extension; 120 if (!rdev->link_state) 121 netif_carrier_on(net); 122 123 return ret; 124 } 125 126 static int netvsc_close(struct net_device *net) 127 { 128 struct net_device_context *net_device_ctx = netdev_priv(net); 129 struct netvsc_device *nvdev = net_device_ctx->nvdev; 130 int ret; 131 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20; 132 struct vmbus_channel *chn; 133 134 netif_tx_disable(net); 135 136 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ 137 cancel_work_sync(&net_device_ctx->work); 138 ret = rndis_filter_close(nvdev); 139 if (ret != 0) { 140 netdev_err(net, "unable to close device (ret %d).\n", ret); 141 return ret; 142 } 143 144 /* Ensure pending bytes in ring are read */ 145 while (true) { 146 aread = 0; 147 for (i = 0; i < nvdev->num_chn; i++) { 148 chn = nvdev->chn_table[i]; 149 if (!chn) 150 continue; 151 152 hv_get_ringbuffer_availbytes(&chn->inbound, &aread, 153 &awrite); 154 155 if (aread) 156 break; 157 158 hv_get_ringbuffer_availbytes(&chn->outbound, &aread, 159 &awrite); 160 161 if (aread) 162 break; 163 } 164 165 retry++; 166 if (retry > retry_max || aread == 0) 167 break; 168 169 msleep(msec); 170 171 if (msec < 1000) 172 msec *= 2; 173 } 174 175 if (aread) { 176 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 177 ret = -ETIMEDOUT; 178 } 179 180 return ret; 181 } 182 183 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 184 int pkt_type) 185 { 186 struct rndis_packet *rndis_pkt; 187 struct rndis_per_packet_info *ppi; 188 189 rndis_pkt = &msg->msg.pkt; 190 rndis_pkt->data_offset += ppi_size; 191 192 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 193 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 194 195 ppi->size = ppi_size; 196 ppi->type = pkt_type; 197 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 198 199 rndis_pkt->per_pkt_info_len += ppi_size; 200 201 return ppi; 202 } 203 204 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 205 void *accel_priv, select_queue_fallback_t fallback) 206 { 207 struct net_device_context *net_device_ctx = netdev_priv(ndev); 208 struct netvsc_device *nvsc_dev = net_device_ctx->nvdev; 209 u32 hash; 210 u16 q_idx = 0; 211 212 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1) 213 return 0; 214 215 hash = skb_get_hash(skb); 216 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] % 217 ndev->real_num_tx_queues; 218 219 if (!nvsc_dev->chn_table[q_idx]) 220 q_idx = 0; 221 222 return q_idx; 223 } 224 225 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 226 struct hv_page_buffer *pb) 227 { 228 int j = 0; 229 230 /* Deal with compund pages by ignoring unused part 231 * of the page. 232 */ 233 page += (offset >> PAGE_SHIFT); 234 offset &= ~PAGE_MASK; 235 236 while (len > 0) { 237 unsigned long bytes; 238 239 bytes = PAGE_SIZE - offset; 240 if (bytes > len) 241 bytes = len; 242 pb[j].pfn = page_to_pfn(page); 243 pb[j].offset = offset; 244 pb[j].len = bytes; 245 246 offset += bytes; 247 len -= bytes; 248 249 if (offset == PAGE_SIZE && len) { 250 page++; 251 offset = 0; 252 j++; 253 } 254 } 255 256 return j + 1; 257 } 258 259 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 260 struct hv_netvsc_packet *packet, 261 struct hv_page_buffer **page_buf) 262 { 263 struct hv_page_buffer *pb = *page_buf; 264 u32 slots_used = 0; 265 char *data = skb->data; 266 int frags = skb_shinfo(skb)->nr_frags; 267 int i; 268 269 /* The packet is laid out thus: 270 * 1. hdr: RNDIS header and PPI 271 * 2. skb linear data 272 * 3. skb fragment data 273 */ 274 if (hdr != NULL) 275 slots_used += fill_pg_buf(virt_to_page(hdr), 276 offset_in_page(hdr), 277 len, &pb[slots_used]); 278 279 packet->rmsg_size = len; 280 packet->rmsg_pgcnt = slots_used; 281 282 slots_used += fill_pg_buf(virt_to_page(data), 283 offset_in_page(data), 284 skb_headlen(skb), &pb[slots_used]); 285 286 for (i = 0; i < frags; i++) { 287 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 288 289 slots_used += fill_pg_buf(skb_frag_page(frag), 290 frag->page_offset, 291 skb_frag_size(frag), &pb[slots_used]); 292 } 293 return slots_used; 294 } 295 296 static int count_skb_frag_slots(struct sk_buff *skb) 297 { 298 int i, frags = skb_shinfo(skb)->nr_frags; 299 int pages = 0; 300 301 for (i = 0; i < frags; i++) { 302 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 303 unsigned long size = skb_frag_size(frag); 304 unsigned long offset = frag->page_offset; 305 306 /* Skip unused frames from start of page */ 307 offset &= ~PAGE_MASK; 308 pages += PFN_UP(offset + size); 309 } 310 return pages; 311 } 312 313 static int netvsc_get_slots(struct sk_buff *skb) 314 { 315 char *data = skb->data; 316 unsigned int offset = offset_in_page(data); 317 unsigned int len = skb_headlen(skb); 318 int slots; 319 int frag_slots; 320 321 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 322 frag_slots = count_skb_frag_slots(skb); 323 return slots + frag_slots; 324 } 325 326 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off) 327 { 328 u32 ret_val = TRANSPORT_INFO_NOT_IP; 329 330 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) && 331 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) { 332 goto not_ip; 333 } 334 335 *trans_off = skb_transport_offset(skb); 336 337 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) { 338 struct iphdr *iphdr = ip_hdr(skb); 339 340 if (iphdr->protocol == IPPROTO_TCP) 341 ret_val = TRANSPORT_INFO_IPV4_TCP; 342 else if (iphdr->protocol == IPPROTO_UDP) 343 ret_val = TRANSPORT_INFO_IPV4_UDP; 344 } else { 345 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 346 ret_val = TRANSPORT_INFO_IPV6_TCP; 347 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 348 ret_val = TRANSPORT_INFO_IPV6_UDP; 349 } 350 351 not_ip: 352 return ret_val; 353 } 354 355 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 356 { 357 struct net_device_context *net_device_ctx = netdev_priv(net); 358 struct hv_netvsc_packet *packet = NULL; 359 int ret; 360 unsigned int num_data_pgs; 361 struct rndis_message *rndis_msg; 362 struct rndis_packet *rndis_pkt; 363 u32 rndis_msg_size; 364 struct rndis_per_packet_info *ppi; 365 struct ndis_tcp_ip_checksum_info *csum_info; 366 int hdr_offset; 367 u32 net_trans_info; 368 u32 hash; 369 u32 skb_length; 370 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; 371 struct hv_page_buffer *pb = page_buf; 372 373 /* We will atmost need two pages to describe the rndis 374 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 375 * of pages in a single packet. If skb is scattered around 376 * more pages we try linearizing it. 377 */ 378 379 skb_length = skb->len; 380 num_data_pgs = netvsc_get_slots(skb) + 2; 381 382 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 383 ++net_device_ctx->eth_stats.tx_scattered; 384 385 if (skb_linearize(skb)) 386 goto no_memory; 387 388 num_data_pgs = netvsc_get_slots(skb) + 2; 389 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 390 ++net_device_ctx->eth_stats.tx_too_big; 391 goto drop; 392 } 393 } 394 395 /* 396 * Place the rndis header in the skb head room and 397 * the skb->cb will be used for hv_netvsc_packet 398 * structure. 399 */ 400 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 401 if (ret) 402 goto no_memory; 403 404 /* Use the skb control buffer for building up the packet */ 405 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 406 FIELD_SIZEOF(struct sk_buff, cb)); 407 packet = (struct hv_netvsc_packet *)skb->cb; 408 409 packet->q_idx = skb_get_queue_mapping(skb); 410 411 packet->total_data_buflen = skb->len; 412 413 rndis_msg = (struct rndis_message *)skb->head; 414 415 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 416 417 /* Add the rndis header */ 418 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 419 rndis_msg->msg_len = packet->total_data_buflen; 420 rndis_pkt = &rndis_msg->msg.pkt; 421 rndis_pkt->data_offset = sizeof(struct rndis_packet); 422 rndis_pkt->data_len = packet->total_data_buflen; 423 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 424 425 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 426 427 hash = skb_get_hash_raw(skb); 428 if (hash != 0 && net->real_num_tx_queues > 1) { 429 rndis_msg_size += NDIS_HASH_PPI_SIZE; 430 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 431 NBL_HASH_VALUE); 432 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 433 } 434 435 if (skb_vlan_tag_present(skb)) { 436 struct ndis_pkt_8021q_info *vlan; 437 438 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 439 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 440 IEEE_8021Q_INFO); 441 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 442 ppi->ppi_offset); 443 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 444 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 445 VLAN_PRIO_SHIFT; 446 } 447 448 net_trans_info = get_net_transport_info(skb, &hdr_offset); 449 450 /* 451 * Setup the sendside checksum offload only if this is not a 452 * GSO packet. 453 */ 454 if ((net_trans_info & (INFO_TCP | INFO_UDP)) && skb_is_gso(skb)) { 455 struct ndis_tcp_lso_info *lso_info; 456 457 rndis_msg_size += NDIS_LSO_PPI_SIZE; 458 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 459 TCP_LARGESEND_PKTINFO); 460 461 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 462 ppi->ppi_offset); 463 464 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 465 if (net_trans_info & (INFO_IPV4 << 16)) { 466 lso_info->lso_v2_transmit.ip_version = 467 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 468 ip_hdr(skb)->tot_len = 0; 469 ip_hdr(skb)->check = 0; 470 tcp_hdr(skb)->check = 471 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 472 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 473 } else { 474 lso_info->lso_v2_transmit.ip_version = 475 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 476 ipv6_hdr(skb)->payload_len = 0; 477 tcp_hdr(skb)->check = 478 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 479 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 480 } 481 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset; 482 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 483 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 484 if (net_trans_info & INFO_TCP) { 485 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 486 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 487 TCPIP_CHKSUM_PKTINFO); 488 489 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 490 ppi->ppi_offset); 491 492 if (net_trans_info & (INFO_IPV4 << 16)) 493 csum_info->transmit.is_ipv4 = 1; 494 else 495 csum_info->transmit.is_ipv6 = 1; 496 497 csum_info->transmit.tcp_checksum = 1; 498 csum_info->transmit.tcp_header_offset = hdr_offset; 499 } else { 500 /* UDP checksum (and other) offload is not supported. */ 501 if (skb_checksum_help(skb)) 502 goto drop; 503 } 504 } 505 506 /* Start filling in the page buffers with the rndis hdr */ 507 rndis_msg->msg_len += rndis_msg_size; 508 packet->total_data_buflen = rndis_msg->msg_len; 509 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 510 skb, packet, &pb); 511 512 /* timestamp packet in software */ 513 skb_tx_timestamp(skb); 514 ret = netvsc_send(net_device_ctx->device_ctx, packet, 515 rndis_msg, &pb, skb); 516 if (likely(ret == 0)) { 517 struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats); 518 519 u64_stats_update_begin(&tx_stats->syncp); 520 tx_stats->packets++; 521 tx_stats->bytes += skb_length; 522 u64_stats_update_end(&tx_stats->syncp); 523 return NETDEV_TX_OK; 524 } 525 526 if (ret == -EAGAIN) { 527 ++net_device_ctx->eth_stats.tx_busy; 528 return NETDEV_TX_BUSY; 529 } 530 531 if (ret == -ENOSPC) 532 ++net_device_ctx->eth_stats.tx_no_space; 533 534 drop: 535 dev_kfree_skb_any(skb); 536 net->stats.tx_dropped++; 537 538 return NETDEV_TX_OK; 539 540 no_memory: 541 ++net_device_ctx->eth_stats.tx_no_memory; 542 goto drop; 543 } 544 545 /* 546 * netvsc_linkstatus_callback - Link up/down notification 547 */ 548 void netvsc_linkstatus_callback(struct hv_device *device_obj, 549 struct rndis_message *resp) 550 { 551 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 552 struct net_device *net; 553 struct net_device_context *ndev_ctx; 554 struct netvsc_reconfig *event; 555 unsigned long flags; 556 557 net = hv_get_drvdata(device_obj); 558 559 if (!net) 560 return; 561 562 ndev_ctx = netdev_priv(net); 563 564 /* Update the physical link speed when changing to another vSwitch */ 565 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 566 u32 speed; 567 568 speed = *(u32 *)((void *)indicate + indicate-> 569 status_buf_offset) / 10000; 570 ndev_ctx->speed = speed; 571 return; 572 } 573 574 /* Handle these link change statuses below */ 575 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 576 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 577 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 578 return; 579 580 if (net->reg_state != NETREG_REGISTERED) 581 return; 582 583 event = kzalloc(sizeof(*event), GFP_ATOMIC); 584 if (!event) 585 return; 586 event->event = indicate->status; 587 588 spin_lock_irqsave(&ndev_ctx->lock, flags); 589 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 590 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 591 592 schedule_delayed_work(&ndev_ctx->dwork, 0); 593 } 594 595 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 596 struct hv_netvsc_packet *packet, 597 struct ndis_tcp_ip_checksum_info *csum_info, 598 void *data, u16 vlan_tci) 599 { 600 struct sk_buff *skb; 601 602 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen); 603 if (!skb) 604 return skb; 605 606 /* 607 * Copy to skb. This copy is needed here since the memory pointed by 608 * hv_netvsc_packet cannot be deallocated 609 */ 610 memcpy(skb_put(skb, packet->total_data_buflen), data, 611 packet->total_data_buflen); 612 613 skb->protocol = eth_type_trans(skb, net); 614 615 /* skb is already created with CHECKSUM_NONE */ 616 skb_checksum_none_assert(skb); 617 618 /* 619 * In Linux, the IP checksum is always checked. 620 * Do L4 checksum offload if enabled and present. 621 */ 622 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 623 if (csum_info->receive.tcp_checksum_succeeded || 624 csum_info->receive.udp_checksum_succeeded) 625 skb->ip_summed = CHECKSUM_UNNECESSARY; 626 } 627 628 if (vlan_tci & VLAN_TAG_PRESENT) 629 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 630 vlan_tci); 631 632 return skb; 633 } 634 635 /* 636 * netvsc_recv_callback - Callback when we receive a packet from the 637 * "wire" on the specified device. 638 */ 639 int netvsc_recv_callback(struct hv_device *device_obj, 640 struct hv_netvsc_packet *packet, 641 void **data, 642 struct ndis_tcp_ip_checksum_info *csum_info, 643 struct vmbus_channel *channel, 644 u16 vlan_tci) 645 { 646 struct net_device *net = hv_get_drvdata(device_obj); 647 struct net_device_context *net_device_ctx = netdev_priv(net); 648 struct net_device *vf_netdev; 649 struct sk_buff *skb; 650 struct netvsc_stats *rx_stats; 651 652 if (net->reg_state != NETREG_REGISTERED) 653 return NVSP_STAT_FAIL; 654 655 /* 656 * If necessary, inject this packet into the VF interface. 657 * On Hyper-V, multicast and brodcast packets are only delivered 658 * to the synthetic interface (after subjecting these to 659 * policy filters on the host). Deliver these via the VF 660 * interface in the guest. 661 */ 662 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev); 663 if (vf_netdev && (vf_netdev->flags & IFF_UP)) 664 net = vf_netdev; 665 666 /* Allocate a skb - TODO direct I/O to pages? */ 667 skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci); 668 if (unlikely(!skb)) { 669 ++net->stats.rx_dropped; 670 return NVSP_STAT_FAIL; 671 } 672 673 if (net != vf_netdev) 674 skb_record_rx_queue(skb, 675 channel->offermsg.offer.sub_channel_index); 676 677 /* 678 * Even if injecting the packet, record the statistics 679 * on the synthetic device because modifying the VF device 680 * statistics will not work correctly. 681 */ 682 rx_stats = this_cpu_ptr(net_device_ctx->rx_stats); 683 u64_stats_update_begin(&rx_stats->syncp); 684 rx_stats->packets++; 685 rx_stats->bytes += packet->total_data_buflen; 686 687 if (skb->pkt_type == PACKET_BROADCAST) 688 ++rx_stats->broadcast; 689 else if (skb->pkt_type == PACKET_MULTICAST) 690 ++rx_stats->multicast; 691 u64_stats_update_end(&rx_stats->syncp); 692 693 /* 694 * Pass the skb back up. Network stack will deallocate the skb when it 695 * is done. 696 * TODO - use NAPI? 697 */ 698 netif_rx(skb); 699 700 return 0; 701 } 702 703 static void netvsc_get_drvinfo(struct net_device *net, 704 struct ethtool_drvinfo *info) 705 { 706 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 707 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 708 } 709 710 static void netvsc_get_channels(struct net_device *net, 711 struct ethtool_channels *channel) 712 { 713 struct net_device_context *net_device_ctx = netdev_priv(net); 714 struct netvsc_device *nvdev = net_device_ctx->nvdev; 715 716 if (nvdev) { 717 channel->max_combined = nvdev->max_chn; 718 channel->combined_count = nvdev->num_chn; 719 } 720 } 721 722 static int netvsc_set_channels(struct net_device *net, 723 struct ethtool_channels *channels) 724 { 725 struct net_device_context *net_device_ctx = netdev_priv(net); 726 struct hv_device *dev = net_device_ctx->device_ctx; 727 struct netvsc_device *nvdev = net_device_ctx->nvdev; 728 struct netvsc_device_info device_info; 729 u32 num_chn; 730 u32 max_chn; 731 int ret = 0; 732 bool recovering = false; 733 734 if (net_device_ctx->start_remove || !nvdev || nvdev->destroy) 735 return -ENODEV; 736 737 num_chn = nvdev->num_chn; 738 max_chn = min_t(u32, nvdev->max_chn, num_online_cpus()); 739 740 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) { 741 pr_info("vRSS unsupported before NVSP Version 5\n"); 742 return -EINVAL; 743 } 744 745 /* We do not support rx, tx, or other */ 746 if (!channels || 747 channels->rx_count || 748 channels->tx_count || 749 channels->other_count || 750 (channels->combined_count < 1)) 751 return -EINVAL; 752 753 if (channels->combined_count > max_chn) { 754 pr_info("combined channels too high, using %d\n", max_chn); 755 channels->combined_count = max_chn; 756 } 757 758 ret = netvsc_close(net); 759 if (ret) 760 goto out; 761 762 do_set: 763 net_device_ctx->start_remove = true; 764 rndis_filter_device_remove(dev); 765 766 nvdev->num_chn = channels->combined_count; 767 768 memset(&device_info, 0, sizeof(device_info)); 769 device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */ 770 device_info.ring_size = ring_size; 771 device_info.max_num_vrss_chns = max_num_vrss_chns; 772 773 ret = rndis_filter_device_add(dev, &device_info); 774 if (ret) { 775 if (recovering) { 776 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 777 return ret; 778 } 779 goto recover; 780 } 781 782 nvdev = net_device_ctx->nvdev; 783 784 ret = netif_set_real_num_tx_queues(net, nvdev->num_chn); 785 if (ret) { 786 if (recovering) { 787 netdev_err(net, "could not set tx queue count (ret %d)\n", ret); 788 return ret; 789 } 790 goto recover; 791 } 792 793 ret = netif_set_real_num_rx_queues(net, nvdev->num_chn); 794 if (ret) { 795 if (recovering) { 796 netdev_err(net, "could not set rx queue count (ret %d)\n", ret); 797 return ret; 798 } 799 goto recover; 800 } 801 802 out: 803 netvsc_open(net); 804 net_device_ctx->start_remove = false; 805 /* We may have missed link change notifications */ 806 schedule_delayed_work(&net_device_ctx->dwork, 0); 807 808 return ret; 809 810 recover: 811 /* If the above failed, we attempt to recover through the same 812 * process but with the original number of channels. 813 */ 814 netdev_err(net, "could not set channels, recovering\n"); 815 recovering = true; 816 channels->combined_count = num_chn; 817 goto do_set; 818 } 819 820 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd) 821 { 822 struct ethtool_cmd diff1 = *cmd; 823 struct ethtool_cmd diff2 = {}; 824 825 ethtool_cmd_speed_set(&diff1, 0); 826 diff1.duplex = 0; 827 /* advertising and cmd are usually set */ 828 diff1.advertising = 0; 829 diff1.cmd = 0; 830 /* We set port to PORT_OTHER */ 831 diff2.port = PORT_OTHER; 832 833 return !memcmp(&diff1, &diff2, sizeof(diff1)); 834 } 835 836 static void netvsc_init_settings(struct net_device *dev) 837 { 838 struct net_device_context *ndc = netdev_priv(dev); 839 840 ndc->speed = SPEED_UNKNOWN; 841 ndc->duplex = DUPLEX_UNKNOWN; 842 } 843 844 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 845 { 846 struct net_device_context *ndc = netdev_priv(dev); 847 848 ethtool_cmd_speed_set(cmd, ndc->speed); 849 cmd->duplex = ndc->duplex; 850 cmd->port = PORT_OTHER; 851 852 return 0; 853 } 854 855 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 856 { 857 struct net_device_context *ndc = netdev_priv(dev); 858 u32 speed; 859 860 speed = ethtool_cmd_speed(cmd); 861 if (!ethtool_validate_speed(speed) || 862 !ethtool_validate_duplex(cmd->duplex) || 863 !netvsc_validate_ethtool_ss_cmd(cmd)) 864 return -EINVAL; 865 866 ndc->speed = speed; 867 ndc->duplex = cmd->duplex; 868 869 return 0; 870 } 871 872 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 873 { 874 struct net_device_context *ndevctx = netdev_priv(ndev); 875 struct netvsc_device *nvdev = ndevctx->nvdev; 876 struct hv_device *hdev = ndevctx->device_ctx; 877 struct netvsc_device_info device_info; 878 int limit = ETH_DATA_LEN; 879 u32 num_chn; 880 int ret = 0; 881 882 if (ndevctx->start_remove || !nvdev || nvdev->destroy) 883 return -ENODEV; 884 885 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 886 limit = NETVSC_MTU - ETH_HLEN; 887 888 if (mtu < NETVSC_MTU_MIN || mtu > limit) 889 return -EINVAL; 890 891 ret = netvsc_close(ndev); 892 if (ret) 893 goto out; 894 895 num_chn = nvdev->num_chn; 896 897 ndevctx->start_remove = true; 898 rndis_filter_device_remove(hdev); 899 900 ndev->mtu = mtu; 901 902 memset(&device_info, 0, sizeof(device_info)); 903 device_info.ring_size = ring_size; 904 device_info.num_chn = num_chn; 905 device_info.max_num_vrss_chns = max_num_vrss_chns; 906 rndis_filter_device_add(hdev, &device_info); 907 908 out: 909 netvsc_open(ndev); 910 ndevctx->start_remove = false; 911 912 /* We may have missed link change notifications */ 913 schedule_delayed_work(&ndevctx->dwork, 0); 914 915 return ret; 916 } 917 918 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net, 919 struct rtnl_link_stats64 *t) 920 { 921 struct net_device_context *ndev_ctx = netdev_priv(net); 922 int cpu; 923 924 for_each_possible_cpu(cpu) { 925 struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats, 926 cpu); 927 struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats, 928 cpu); 929 u64 tx_packets, tx_bytes, rx_packets, rx_bytes, rx_multicast; 930 unsigned int start; 931 932 do { 933 start = u64_stats_fetch_begin_irq(&tx_stats->syncp); 934 tx_packets = tx_stats->packets; 935 tx_bytes = tx_stats->bytes; 936 } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start)); 937 938 do { 939 start = u64_stats_fetch_begin_irq(&rx_stats->syncp); 940 rx_packets = rx_stats->packets; 941 rx_bytes = rx_stats->bytes; 942 rx_multicast = rx_stats->multicast + rx_stats->broadcast; 943 } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start)); 944 945 t->tx_bytes += tx_bytes; 946 t->tx_packets += tx_packets; 947 t->rx_bytes += rx_bytes; 948 t->rx_packets += rx_packets; 949 t->multicast += rx_multicast; 950 } 951 952 t->tx_dropped = net->stats.tx_dropped; 953 t->tx_errors = net->stats.tx_dropped; 954 955 t->rx_dropped = net->stats.rx_dropped; 956 t->rx_errors = net->stats.rx_errors; 957 958 return t; 959 } 960 961 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 962 { 963 struct sockaddr *addr = p; 964 char save_adr[ETH_ALEN]; 965 unsigned char save_aatype; 966 int err; 967 968 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 969 save_aatype = ndev->addr_assign_type; 970 971 err = eth_mac_addr(ndev, p); 972 if (err != 0) 973 return err; 974 975 err = rndis_filter_set_device_mac(ndev, addr->sa_data); 976 if (err != 0) { 977 /* roll back to saved MAC */ 978 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 979 ndev->addr_assign_type = save_aatype; 980 } 981 982 return err; 983 } 984 985 static const struct { 986 char name[ETH_GSTRING_LEN]; 987 u16 offset; 988 } netvsc_stats[] = { 989 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 990 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 991 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 992 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 993 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 994 }; 995 996 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 997 { 998 switch (string_set) { 999 case ETH_SS_STATS: 1000 return ARRAY_SIZE(netvsc_stats); 1001 default: 1002 return -EINVAL; 1003 } 1004 } 1005 1006 static void netvsc_get_ethtool_stats(struct net_device *dev, 1007 struct ethtool_stats *stats, u64 *data) 1008 { 1009 struct net_device_context *ndc = netdev_priv(dev); 1010 const void *nds = &ndc->eth_stats; 1011 int i; 1012 1013 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1014 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1015 } 1016 1017 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1018 { 1019 int i; 1020 1021 switch (stringset) { 1022 case ETH_SS_STATS: 1023 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1024 memcpy(data + i * ETH_GSTRING_LEN, 1025 netvsc_stats[i].name, ETH_GSTRING_LEN); 1026 break; 1027 } 1028 } 1029 1030 #ifdef CONFIG_NET_POLL_CONTROLLER 1031 static void netvsc_poll_controller(struct net_device *net) 1032 { 1033 /* As netvsc_start_xmit() works synchronous we don't have to 1034 * trigger anything here. 1035 */ 1036 } 1037 #endif 1038 1039 static const struct ethtool_ops ethtool_ops = { 1040 .get_drvinfo = netvsc_get_drvinfo, 1041 .get_link = ethtool_op_get_link, 1042 .get_ethtool_stats = netvsc_get_ethtool_stats, 1043 .get_sset_count = netvsc_get_sset_count, 1044 .get_strings = netvsc_get_strings, 1045 .get_channels = netvsc_get_channels, 1046 .set_channels = netvsc_set_channels, 1047 .get_ts_info = ethtool_op_get_ts_info, 1048 .get_settings = netvsc_get_settings, 1049 .set_settings = netvsc_set_settings, 1050 }; 1051 1052 static const struct net_device_ops device_ops = { 1053 .ndo_open = netvsc_open, 1054 .ndo_stop = netvsc_close, 1055 .ndo_start_xmit = netvsc_start_xmit, 1056 .ndo_set_rx_mode = netvsc_set_multicast_list, 1057 .ndo_change_mtu = netvsc_change_mtu, 1058 .ndo_validate_addr = eth_validate_addr, 1059 .ndo_set_mac_address = netvsc_set_mac_addr, 1060 .ndo_select_queue = netvsc_select_queue, 1061 .ndo_get_stats64 = netvsc_get_stats64, 1062 #ifdef CONFIG_NET_POLL_CONTROLLER 1063 .ndo_poll_controller = netvsc_poll_controller, 1064 #endif 1065 }; 1066 1067 /* 1068 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1069 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1070 * present send GARP packet to network peers with netif_notify_peers(). 1071 */ 1072 static void netvsc_link_change(struct work_struct *w) 1073 { 1074 struct net_device_context *ndev_ctx = 1075 container_of(w, struct net_device_context, dwork.work); 1076 struct hv_device *device_obj = ndev_ctx->device_ctx; 1077 struct net_device *net = hv_get_drvdata(device_obj); 1078 struct netvsc_device *net_device; 1079 struct rndis_device *rdev; 1080 struct netvsc_reconfig *event = NULL; 1081 bool notify = false, reschedule = false; 1082 unsigned long flags, next_reconfig, delay; 1083 1084 rtnl_lock(); 1085 if (ndev_ctx->start_remove) 1086 goto out_unlock; 1087 1088 net_device = ndev_ctx->nvdev; 1089 rdev = net_device->extension; 1090 1091 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1092 if (time_is_after_jiffies(next_reconfig)) { 1093 /* link_watch only sends one notification with current state 1094 * per second, avoid doing reconfig more frequently. Handle 1095 * wrap around. 1096 */ 1097 delay = next_reconfig - jiffies; 1098 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1099 schedule_delayed_work(&ndev_ctx->dwork, delay); 1100 goto out_unlock; 1101 } 1102 ndev_ctx->last_reconfig = jiffies; 1103 1104 spin_lock_irqsave(&ndev_ctx->lock, flags); 1105 if (!list_empty(&ndev_ctx->reconfig_events)) { 1106 event = list_first_entry(&ndev_ctx->reconfig_events, 1107 struct netvsc_reconfig, list); 1108 list_del(&event->list); 1109 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1110 } 1111 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1112 1113 if (!event) 1114 goto out_unlock; 1115 1116 switch (event->event) { 1117 /* Only the following events are possible due to the check in 1118 * netvsc_linkstatus_callback() 1119 */ 1120 case RNDIS_STATUS_MEDIA_CONNECT: 1121 if (rdev->link_state) { 1122 rdev->link_state = false; 1123 netif_carrier_on(net); 1124 netif_tx_wake_all_queues(net); 1125 } else { 1126 notify = true; 1127 } 1128 kfree(event); 1129 break; 1130 case RNDIS_STATUS_MEDIA_DISCONNECT: 1131 if (!rdev->link_state) { 1132 rdev->link_state = true; 1133 netif_carrier_off(net); 1134 netif_tx_stop_all_queues(net); 1135 } 1136 kfree(event); 1137 break; 1138 case RNDIS_STATUS_NETWORK_CHANGE: 1139 /* Only makes sense if carrier is present */ 1140 if (!rdev->link_state) { 1141 rdev->link_state = true; 1142 netif_carrier_off(net); 1143 netif_tx_stop_all_queues(net); 1144 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1145 spin_lock_irqsave(&ndev_ctx->lock, flags); 1146 list_add(&event->list, &ndev_ctx->reconfig_events); 1147 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1148 reschedule = true; 1149 } 1150 break; 1151 } 1152 1153 rtnl_unlock(); 1154 1155 if (notify) 1156 netdev_notify_peers(net); 1157 1158 /* link_watch only sends one notification with current state per 1159 * second, handle next reconfig event in 2 seconds. 1160 */ 1161 if (reschedule) 1162 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1163 1164 return; 1165 1166 out_unlock: 1167 rtnl_unlock(); 1168 } 1169 1170 static void netvsc_free_netdev(struct net_device *netdev) 1171 { 1172 struct net_device_context *net_device_ctx = netdev_priv(netdev); 1173 1174 free_percpu(net_device_ctx->tx_stats); 1175 free_percpu(net_device_ctx->rx_stats); 1176 free_netdev(netdev); 1177 } 1178 1179 static struct net_device *get_netvsc_bymac(const u8 *mac) 1180 { 1181 struct net_device *dev; 1182 1183 ASSERT_RTNL(); 1184 1185 for_each_netdev(&init_net, dev) { 1186 if (dev->netdev_ops != &device_ops) 1187 continue; /* not a netvsc device */ 1188 1189 if (ether_addr_equal(mac, dev->perm_addr)) 1190 return dev; 1191 } 1192 1193 return NULL; 1194 } 1195 1196 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1197 { 1198 struct net_device *dev; 1199 1200 ASSERT_RTNL(); 1201 1202 for_each_netdev(&init_net, dev) { 1203 struct net_device_context *net_device_ctx; 1204 1205 if (dev->netdev_ops != &device_ops) 1206 continue; /* not a netvsc device */ 1207 1208 net_device_ctx = netdev_priv(dev); 1209 if (net_device_ctx->nvdev == NULL) 1210 continue; /* device is removed */ 1211 1212 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1213 return dev; /* a match */ 1214 } 1215 1216 return NULL; 1217 } 1218 1219 static int netvsc_register_vf(struct net_device *vf_netdev) 1220 { 1221 struct net_device *ndev; 1222 struct net_device_context *net_device_ctx; 1223 struct netvsc_device *netvsc_dev; 1224 1225 if (vf_netdev->addr_len != ETH_ALEN) 1226 return NOTIFY_DONE; 1227 1228 /* 1229 * We will use the MAC address to locate the synthetic interface to 1230 * associate with the VF interface. If we don't find a matching 1231 * synthetic interface, move on. 1232 */ 1233 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1234 if (!ndev) 1235 return NOTIFY_DONE; 1236 1237 net_device_ctx = netdev_priv(ndev); 1238 netvsc_dev = net_device_ctx->nvdev; 1239 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1240 return NOTIFY_DONE; 1241 1242 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1243 /* 1244 * Take a reference on the module. 1245 */ 1246 try_module_get(THIS_MODULE); 1247 1248 dev_hold(vf_netdev); 1249 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1250 return NOTIFY_OK; 1251 } 1252 1253 static int netvsc_vf_up(struct net_device *vf_netdev) 1254 { 1255 struct net_device *ndev; 1256 struct netvsc_device *netvsc_dev; 1257 struct net_device_context *net_device_ctx; 1258 1259 ndev = get_netvsc_byref(vf_netdev); 1260 if (!ndev) 1261 return NOTIFY_DONE; 1262 1263 net_device_ctx = netdev_priv(ndev); 1264 netvsc_dev = net_device_ctx->nvdev; 1265 1266 netdev_info(ndev, "VF up: %s\n", vf_netdev->name); 1267 1268 /* 1269 * Open the device before switching data path. 1270 */ 1271 rndis_filter_open(netvsc_dev); 1272 1273 /* 1274 * notify the host to switch the data path. 1275 */ 1276 netvsc_switch_datapath(ndev, true); 1277 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name); 1278 1279 netif_carrier_off(ndev); 1280 1281 /* Now notify peers through VF device. */ 1282 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev); 1283 1284 return NOTIFY_OK; 1285 } 1286 1287 static int netvsc_vf_down(struct net_device *vf_netdev) 1288 { 1289 struct net_device *ndev; 1290 struct netvsc_device *netvsc_dev; 1291 struct net_device_context *net_device_ctx; 1292 1293 ndev = get_netvsc_byref(vf_netdev); 1294 if (!ndev) 1295 return NOTIFY_DONE; 1296 1297 net_device_ctx = netdev_priv(ndev); 1298 netvsc_dev = net_device_ctx->nvdev; 1299 1300 netdev_info(ndev, "VF down: %s\n", vf_netdev->name); 1301 netvsc_switch_datapath(ndev, false); 1302 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name); 1303 rndis_filter_close(netvsc_dev); 1304 netif_carrier_on(ndev); 1305 1306 /* Now notify peers through netvsc device. */ 1307 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev); 1308 1309 return NOTIFY_OK; 1310 } 1311 1312 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1313 { 1314 struct net_device *ndev; 1315 struct netvsc_device *netvsc_dev; 1316 struct net_device_context *net_device_ctx; 1317 1318 ndev = get_netvsc_byref(vf_netdev); 1319 if (!ndev) 1320 return NOTIFY_DONE; 1321 1322 net_device_ctx = netdev_priv(ndev); 1323 netvsc_dev = net_device_ctx->nvdev; 1324 1325 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1326 1327 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1328 dev_put(vf_netdev); 1329 module_put(THIS_MODULE); 1330 return NOTIFY_OK; 1331 } 1332 1333 static int netvsc_probe(struct hv_device *dev, 1334 const struct hv_vmbus_device_id *dev_id) 1335 { 1336 struct net_device *net = NULL; 1337 struct net_device_context *net_device_ctx; 1338 struct netvsc_device_info device_info; 1339 struct netvsc_device *nvdev; 1340 int ret; 1341 1342 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1343 num_online_cpus()); 1344 if (!net) 1345 return -ENOMEM; 1346 1347 netif_carrier_off(net); 1348 1349 netvsc_init_settings(net); 1350 1351 net_device_ctx = netdev_priv(net); 1352 net_device_ctx->device_ctx = dev; 1353 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1354 if (netif_msg_probe(net_device_ctx)) 1355 netdev_dbg(net, "netvsc msg_enable: %d\n", 1356 net_device_ctx->msg_enable); 1357 1358 net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats); 1359 if (!net_device_ctx->tx_stats) { 1360 free_netdev(net); 1361 return -ENOMEM; 1362 } 1363 net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats); 1364 if (!net_device_ctx->rx_stats) { 1365 free_percpu(net_device_ctx->tx_stats); 1366 free_netdev(net); 1367 return -ENOMEM; 1368 } 1369 1370 hv_set_drvdata(dev, net); 1371 1372 net_device_ctx->start_remove = false; 1373 1374 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1375 INIT_WORK(&net_device_ctx->work, do_set_multicast); 1376 1377 spin_lock_init(&net_device_ctx->lock); 1378 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1379 1380 net->netdev_ops = &device_ops; 1381 1382 net->hw_features = NETVSC_HW_FEATURES; 1383 net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX; 1384 1385 net->ethtool_ops = ðtool_ops; 1386 SET_NETDEV_DEV(net, &dev->device); 1387 1388 /* We always need headroom for rndis header */ 1389 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1390 1391 /* Notify the netvsc driver of the new device */ 1392 memset(&device_info, 0, sizeof(device_info)); 1393 device_info.ring_size = ring_size; 1394 device_info.max_num_vrss_chns = max_num_vrss_chns; 1395 ret = rndis_filter_device_add(dev, &device_info); 1396 if (ret != 0) { 1397 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1398 netvsc_free_netdev(net); 1399 hv_set_drvdata(dev, NULL); 1400 return ret; 1401 } 1402 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1403 1404 nvdev = net_device_ctx->nvdev; 1405 netif_set_real_num_tx_queues(net, nvdev->num_chn); 1406 netif_set_real_num_rx_queues(net, nvdev->num_chn); 1407 netif_set_gso_max_size(net, NETVSC_GSO_MAX_SIZE); 1408 1409 ret = register_netdev(net); 1410 if (ret != 0) { 1411 pr_err("Unable to register netdev.\n"); 1412 rndis_filter_device_remove(dev); 1413 netvsc_free_netdev(net); 1414 } 1415 1416 return ret; 1417 } 1418 1419 static int netvsc_remove(struct hv_device *dev) 1420 { 1421 struct net_device *net; 1422 struct net_device_context *ndev_ctx; 1423 struct netvsc_device *net_device; 1424 1425 net = hv_get_drvdata(dev); 1426 1427 if (net == NULL) { 1428 dev_err(&dev->device, "No net device to remove\n"); 1429 return 0; 1430 } 1431 1432 ndev_ctx = netdev_priv(net); 1433 net_device = ndev_ctx->nvdev; 1434 1435 /* Avoid racing with netvsc_change_mtu()/netvsc_set_channels() 1436 * removing the device. 1437 */ 1438 rtnl_lock(); 1439 ndev_ctx->start_remove = true; 1440 rtnl_unlock(); 1441 1442 cancel_delayed_work_sync(&ndev_ctx->dwork); 1443 cancel_work_sync(&ndev_ctx->work); 1444 1445 /* Stop outbound asap */ 1446 netif_tx_disable(net); 1447 1448 unregister_netdev(net); 1449 1450 /* 1451 * Call to the vsc driver to let it know that the device is being 1452 * removed 1453 */ 1454 rndis_filter_device_remove(dev); 1455 1456 hv_set_drvdata(dev, NULL); 1457 1458 netvsc_free_netdev(net); 1459 return 0; 1460 } 1461 1462 static const struct hv_vmbus_device_id id_table[] = { 1463 /* Network guid */ 1464 { HV_NIC_GUID, }, 1465 { }, 1466 }; 1467 1468 MODULE_DEVICE_TABLE(vmbus, id_table); 1469 1470 /* The one and only one */ 1471 static struct hv_driver netvsc_drv = { 1472 .name = KBUILD_MODNAME, 1473 .id_table = id_table, 1474 .probe = netvsc_probe, 1475 .remove = netvsc_remove, 1476 }; 1477 1478 /* 1479 * On Hyper-V, every VF interface is matched with a corresponding 1480 * synthetic interface. The synthetic interface is presented first 1481 * to the guest. When the corresponding VF instance is registered, 1482 * we will take care of switching the data path. 1483 */ 1484 static int netvsc_netdev_event(struct notifier_block *this, 1485 unsigned long event, void *ptr) 1486 { 1487 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 1488 1489 /* Skip our own events */ 1490 if (event_dev->netdev_ops == &device_ops) 1491 return NOTIFY_DONE; 1492 1493 /* Avoid non-Ethernet type devices */ 1494 if (event_dev->type != ARPHRD_ETHER) 1495 return NOTIFY_DONE; 1496 1497 /* Avoid Vlan dev with same MAC registering as VF */ 1498 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 1499 return NOTIFY_DONE; 1500 1501 /* Avoid Bonding master dev with same MAC registering as VF */ 1502 if ((event_dev->priv_flags & IFF_BONDING) && 1503 (event_dev->flags & IFF_MASTER)) 1504 return NOTIFY_DONE; 1505 1506 switch (event) { 1507 case NETDEV_REGISTER: 1508 return netvsc_register_vf(event_dev); 1509 case NETDEV_UNREGISTER: 1510 return netvsc_unregister_vf(event_dev); 1511 case NETDEV_UP: 1512 return netvsc_vf_up(event_dev); 1513 case NETDEV_DOWN: 1514 return netvsc_vf_down(event_dev); 1515 default: 1516 return NOTIFY_DONE; 1517 } 1518 } 1519 1520 static struct notifier_block netvsc_netdev_notifier = { 1521 .notifier_call = netvsc_netdev_event, 1522 }; 1523 1524 static void __exit netvsc_drv_exit(void) 1525 { 1526 unregister_netdevice_notifier(&netvsc_netdev_notifier); 1527 vmbus_driver_unregister(&netvsc_drv); 1528 } 1529 1530 static int __init netvsc_drv_init(void) 1531 { 1532 int ret; 1533 1534 if (ring_size < RING_SIZE_MIN) { 1535 ring_size = RING_SIZE_MIN; 1536 pr_info("Increased ring_size to %d (min allowed)\n", 1537 ring_size); 1538 } 1539 ret = vmbus_driver_register(&netvsc_drv); 1540 1541 if (ret) 1542 return ret; 1543 1544 register_netdevice_notifier(&netvsc_netdev_notifier); 1545 return 0; 1546 } 1547 1548 MODULE_LICENSE("GPL"); 1549 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 1550 1551 module_init(netvsc_drv_init); 1552 module_exit(netvsc_drv_exit); 1553