xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision 8230b905a6780c60372bf5df7bf5f23041ca3196)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38 
39 #include <net/arp.h>
40 #include <net/route.h>
41 #include <net/sock.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 
46 #include "hyperv_net.h"
47 
48 #define RING_SIZE_MIN		64
49 #define NETVSC_MIN_TX_SECTIONS	10
50 #define NETVSC_DEFAULT_TX	192	/* ~1M */
51 #define NETVSC_MIN_RX_SECTIONS	10	/* ~64K */
52 #define NETVSC_DEFAULT_RX	10485   /* Max ~16M */
53 
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56 
57 static int ring_size = 128;
58 module_param(ring_size, int, S_IRUGO);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64 				NETIF_MSG_TX_ERR;
65 
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 static void netvsc_set_multicast_list(struct net_device *net)
71 {
72 	struct net_device_context *net_device_ctx = netdev_priv(net);
73 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
74 
75 	rndis_filter_update(nvdev);
76 }
77 
78 static int netvsc_open(struct net_device *net)
79 {
80 	struct net_device_context *ndev_ctx = netdev_priv(net);
81 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
82 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
83 	struct rndis_device *rdev;
84 	int ret = 0;
85 
86 	netif_carrier_off(net);
87 
88 	/* Open up the device */
89 	ret = rndis_filter_open(nvdev);
90 	if (ret != 0) {
91 		netdev_err(net, "unable to open device (ret %d).\n", ret);
92 		return ret;
93 	}
94 
95 	netif_tx_wake_all_queues(net);
96 
97 	rdev = nvdev->extension;
98 
99 	if (!rdev->link_state)
100 		netif_carrier_on(net);
101 
102 	if (vf_netdev) {
103 		/* Setting synthetic device up transparently sets
104 		 * slave as up. If open fails, then slave will be
105 		 * still be offline (and not used).
106 		 */
107 		ret = dev_open(vf_netdev);
108 		if (ret)
109 			netdev_warn(net,
110 				    "unable to open slave: %s: %d\n",
111 				    vf_netdev->name, ret);
112 	}
113 	return 0;
114 }
115 
116 static int netvsc_close(struct net_device *net)
117 {
118 	struct net_device_context *net_device_ctx = netdev_priv(net);
119 	struct net_device *vf_netdev
120 		= rtnl_dereference(net_device_ctx->vf_netdev);
121 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
122 	int ret = 0;
123 	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
124 	struct vmbus_channel *chn;
125 
126 	netif_tx_disable(net);
127 
128 	/* No need to close rndis filter if it is removed already */
129 	if (!nvdev)
130 		goto out;
131 
132 	ret = rndis_filter_close(nvdev);
133 	if (ret != 0) {
134 		netdev_err(net, "unable to close device (ret %d).\n", ret);
135 		return ret;
136 	}
137 
138 	/* Ensure pending bytes in ring are read */
139 	while (true) {
140 		aread = 0;
141 		for (i = 0; i < nvdev->num_chn; i++) {
142 			chn = nvdev->chan_table[i].channel;
143 			if (!chn)
144 				continue;
145 
146 			aread = hv_get_bytes_to_read(&chn->inbound);
147 			if (aread)
148 				break;
149 
150 			aread = hv_get_bytes_to_read(&chn->outbound);
151 			if (aread)
152 				break;
153 		}
154 
155 		retry++;
156 		if (retry > retry_max || aread == 0)
157 			break;
158 
159 		msleep(msec);
160 
161 		if (msec < 1000)
162 			msec *= 2;
163 	}
164 
165 	if (aread) {
166 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
167 		ret = -ETIMEDOUT;
168 	}
169 
170 out:
171 	if (vf_netdev)
172 		dev_close(vf_netdev);
173 
174 	return ret;
175 }
176 
177 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
178 			   int pkt_type)
179 {
180 	struct rndis_packet *rndis_pkt;
181 	struct rndis_per_packet_info *ppi;
182 
183 	rndis_pkt = &msg->msg.pkt;
184 	rndis_pkt->data_offset += ppi_size;
185 
186 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
187 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
188 
189 	ppi->size = ppi_size;
190 	ppi->type = pkt_type;
191 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
192 
193 	rndis_pkt->per_pkt_info_len += ppi_size;
194 
195 	return ppi;
196 }
197 
198 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
199  * packets. We can use ethtool to change UDP hash level when necessary.
200  */
201 static inline u32 netvsc_get_hash(
202 	struct sk_buff *skb,
203 	const struct net_device_context *ndc)
204 {
205 	struct flow_keys flow;
206 	u32 hash;
207 	static u32 hashrnd __read_mostly;
208 
209 	net_get_random_once(&hashrnd, sizeof(hashrnd));
210 
211 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
212 		return 0;
213 
214 	if (flow.basic.ip_proto == IPPROTO_TCP ||
215 	    (flow.basic.ip_proto == IPPROTO_UDP &&
216 	     ((flow.basic.n_proto == htons(ETH_P_IP) && ndc->udp4_l4_hash) ||
217 	      (flow.basic.n_proto == htons(ETH_P_IPV6) &&
218 	       ndc->udp6_l4_hash)))) {
219 		return skb_get_hash(skb);
220 	} else {
221 		if (flow.basic.n_proto == htons(ETH_P_IP))
222 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
223 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
224 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
225 		else
226 			hash = 0;
227 
228 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
229 	}
230 
231 	return hash;
232 }
233 
234 static inline int netvsc_get_tx_queue(struct net_device *ndev,
235 				      struct sk_buff *skb, int old_idx)
236 {
237 	const struct net_device_context *ndc = netdev_priv(ndev);
238 	struct sock *sk = skb->sk;
239 	int q_idx;
240 
241 	q_idx = ndc->tx_send_table[netvsc_get_hash(skb, ndc) &
242 				   (VRSS_SEND_TAB_SIZE - 1)];
243 
244 	/* If queue index changed record the new value */
245 	if (q_idx != old_idx &&
246 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
247 		sk_tx_queue_set(sk, q_idx);
248 
249 	return q_idx;
250 }
251 
252 /*
253  * Select queue for transmit.
254  *
255  * If a valid queue has already been assigned, then use that.
256  * Otherwise compute tx queue based on hash and the send table.
257  *
258  * This is basically similar to default (__netdev_pick_tx) with the added step
259  * of using the host send_table when no other queue has been assigned.
260  *
261  * TODO support XPS - but get_xps_queue not exported
262  */
263 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
264 {
265 	int q_idx = sk_tx_queue_get(skb->sk);
266 
267 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
268 		/* If forwarding a packet, we use the recorded queue when
269 		 * available for better cache locality.
270 		 */
271 		if (skb_rx_queue_recorded(skb))
272 			q_idx = skb_get_rx_queue(skb);
273 		else
274 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
275 	}
276 
277 	return q_idx;
278 }
279 
280 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
281 			       void *accel_priv,
282 			       select_queue_fallback_t fallback)
283 {
284 	struct net_device_context *ndc = netdev_priv(ndev);
285 	struct net_device *vf_netdev;
286 	u16 txq;
287 
288 	rcu_read_lock();
289 	vf_netdev = rcu_dereference(ndc->vf_netdev);
290 	if (vf_netdev) {
291 		txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
292 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
293 	} else {
294 		txq = netvsc_pick_tx(ndev, skb);
295 	}
296 	rcu_read_unlock();
297 
298 	while (unlikely(txq >= ndev->real_num_tx_queues))
299 		txq -= ndev->real_num_tx_queues;
300 
301 	return txq;
302 }
303 
304 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
305 		       struct hv_page_buffer *pb)
306 {
307 	int j = 0;
308 
309 	/* Deal with compund pages by ignoring unused part
310 	 * of the page.
311 	 */
312 	page += (offset >> PAGE_SHIFT);
313 	offset &= ~PAGE_MASK;
314 
315 	while (len > 0) {
316 		unsigned long bytes;
317 
318 		bytes = PAGE_SIZE - offset;
319 		if (bytes > len)
320 			bytes = len;
321 		pb[j].pfn = page_to_pfn(page);
322 		pb[j].offset = offset;
323 		pb[j].len = bytes;
324 
325 		offset += bytes;
326 		len -= bytes;
327 
328 		if (offset == PAGE_SIZE && len) {
329 			page++;
330 			offset = 0;
331 			j++;
332 		}
333 	}
334 
335 	return j + 1;
336 }
337 
338 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
339 			   struct hv_netvsc_packet *packet,
340 			   struct hv_page_buffer *pb)
341 {
342 	u32 slots_used = 0;
343 	char *data = skb->data;
344 	int frags = skb_shinfo(skb)->nr_frags;
345 	int i;
346 
347 	/* The packet is laid out thus:
348 	 * 1. hdr: RNDIS header and PPI
349 	 * 2. skb linear data
350 	 * 3. skb fragment data
351 	 */
352 	slots_used += fill_pg_buf(virt_to_page(hdr),
353 				  offset_in_page(hdr),
354 				  len, &pb[slots_used]);
355 
356 	packet->rmsg_size = len;
357 	packet->rmsg_pgcnt = slots_used;
358 
359 	slots_used += fill_pg_buf(virt_to_page(data),
360 				offset_in_page(data),
361 				skb_headlen(skb), &pb[slots_used]);
362 
363 	for (i = 0; i < frags; i++) {
364 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
365 
366 		slots_used += fill_pg_buf(skb_frag_page(frag),
367 					frag->page_offset,
368 					skb_frag_size(frag), &pb[slots_used]);
369 	}
370 	return slots_used;
371 }
372 
373 static int count_skb_frag_slots(struct sk_buff *skb)
374 {
375 	int i, frags = skb_shinfo(skb)->nr_frags;
376 	int pages = 0;
377 
378 	for (i = 0; i < frags; i++) {
379 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
380 		unsigned long size = skb_frag_size(frag);
381 		unsigned long offset = frag->page_offset;
382 
383 		/* Skip unused frames from start of page */
384 		offset &= ~PAGE_MASK;
385 		pages += PFN_UP(offset + size);
386 	}
387 	return pages;
388 }
389 
390 static int netvsc_get_slots(struct sk_buff *skb)
391 {
392 	char *data = skb->data;
393 	unsigned int offset = offset_in_page(data);
394 	unsigned int len = skb_headlen(skb);
395 	int slots;
396 	int frag_slots;
397 
398 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
399 	frag_slots = count_skb_frag_slots(skb);
400 	return slots + frag_slots;
401 }
402 
403 static u32 net_checksum_info(struct sk_buff *skb)
404 {
405 	if (skb->protocol == htons(ETH_P_IP)) {
406 		struct iphdr *ip = ip_hdr(skb);
407 
408 		if (ip->protocol == IPPROTO_TCP)
409 			return TRANSPORT_INFO_IPV4_TCP;
410 		else if (ip->protocol == IPPROTO_UDP)
411 			return TRANSPORT_INFO_IPV4_UDP;
412 	} else {
413 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
414 
415 		if (ip6->nexthdr == IPPROTO_TCP)
416 			return TRANSPORT_INFO_IPV6_TCP;
417 		else if (ip6->nexthdr == IPPROTO_UDP)
418 			return TRANSPORT_INFO_IPV6_UDP;
419 	}
420 
421 	return TRANSPORT_INFO_NOT_IP;
422 }
423 
424 /* Send skb on the slave VF device. */
425 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
426 			  struct sk_buff *skb)
427 {
428 	struct net_device_context *ndev_ctx = netdev_priv(net);
429 	unsigned int len = skb->len;
430 	int rc;
431 
432 	skb->dev = vf_netdev;
433 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
434 
435 	rc = dev_queue_xmit(skb);
436 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
437 		struct netvsc_vf_pcpu_stats *pcpu_stats
438 			= this_cpu_ptr(ndev_ctx->vf_stats);
439 
440 		u64_stats_update_begin(&pcpu_stats->syncp);
441 		pcpu_stats->tx_packets++;
442 		pcpu_stats->tx_bytes += len;
443 		u64_stats_update_end(&pcpu_stats->syncp);
444 	} else {
445 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
446 	}
447 
448 	return rc;
449 }
450 
451 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
452 {
453 	struct net_device_context *net_device_ctx = netdev_priv(net);
454 	struct hv_netvsc_packet *packet = NULL;
455 	int ret;
456 	unsigned int num_data_pgs;
457 	struct rndis_message *rndis_msg;
458 	struct rndis_packet *rndis_pkt;
459 	struct net_device *vf_netdev;
460 	u32 rndis_msg_size;
461 	struct rndis_per_packet_info *ppi;
462 	u32 hash;
463 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
464 
465 	/* if VF is present and up then redirect packets
466 	 * already called with rcu_read_lock_bh
467 	 */
468 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
469 	if (vf_netdev && netif_running(vf_netdev) &&
470 	    !netpoll_tx_running(net))
471 		return netvsc_vf_xmit(net, vf_netdev, skb);
472 
473 	/* We will atmost need two pages to describe the rndis
474 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
475 	 * of pages in a single packet. If skb is scattered around
476 	 * more pages we try linearizing it.
477 	 */
478 
479 	num_data_pgs = netvsc_get_slots(skb) + 2;
480 
481 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
482 		++net_device_ctx->eth_stats.tx_scattered;
483 
484 		if (skb_linearize(skb))
485 			goto no_memory;
486 
487 		num_data_pgs = netvsc_get_slots(skb) + 2;
488 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
489 			++net_device_ctx->eth_stats.tx_too_big;
490 			goto drop;
491 		}
492 	}
493 
494 	/*
495 	 * Place the rndis header in the skb head room and
496 	 * the skb->cb will be used for hv_netvsc_packet
497 	 * structure.
498 	 */
499 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
500 	if (ret)
501 		goto no_memory;
502 
503 	/* Use the skb control buffer for building up the packet */
504 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
505 			FIELD_SIZEOF(struct sk_buff, cb));
506 	packet = (struct hv_netvsc_packet *)skb->cb;
507 
508 	packet->q_idx = skb_get_queue_mapping(skb);
509 
510 	packet->total_data_buflen = skb->len;
511 	packet->total_bytes = skb->len;
512 	packet->total_packets = 1;
513 
514 	rndis_msg = (struct rndis_message *)skb->head;
515 
516 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
517 
518 	/* Add the rndis header */
519 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
520 	rndis_msg->msg_len = packet->total_data_buflen;
521 	rndis_pkt = &rndis_msg->msg.pkt;
522 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
523 	rndis_pkt->data_len = packet->total_data_buflen;
524 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
525 
526 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
527 
528 	hash = skb_get_hash_raw(skb);
529 	if (hash != 0 && net->real_num_tx_queues > 1) {
530 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
531 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
532 				    NBL_HASH_VALUE);
533 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
534 	}
535 
536 	if (skb_vlan_tag_present(skb)) {
537 		struct ndis_pkt_8021q_info *vlan;
538 
539 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
540 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
541 				    IEEE_8021Q_INFO);
542 
543 		vlan = (void *)ppi + ppi->ppi_offset;
544 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
545 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
546 				VLAN_PRIO_SHIFT;
547 	}
548 
549 	if (skb_is_gso(skb)) {
550 		struct ndis_tcp_lso_info *lso_info;
551 
552 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
553 		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
554 				    TCP_LARGESEND_PKTINFO);
555 
556 		lso_info = (void *)ppi + ppi->ppi_offset;
557 
558 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
559 		if (skb->protocol == htons(ETH_P_IP)) {
560 			lso_info->lso_v2_transmit.ip_version =
561 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
562 			ip_hdr(skb)->tot_len = 0;
563 			ip_hdr(skb)->check = 0;
564 			tcp_hdr(skb)->check =
565 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
566 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
567 		} else {
568 			lso_info->lso_v2_transmit.ip_version =
569 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
570 			ipv6_hdr(skb)->payload_len = 0;
571 			tcp_hdr(skb)->check =
572 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
573 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
574 		}
575 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
576 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
577 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
578 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
579 			struct ndis_tcp_ip_checksum_info *csum_info;
580 
581 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
582 			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
583 					    TCPIP_CHKSUM_PKTINFO);
584 
585 			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
586 									 ppi->ppi_offset);
587 
588 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
589 
590 			if (skb->protocol == htons(ETH_P_IP)) {
591 				csum_info->transmit.is_ipv4 = 1;
592 
593 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
594 					csum_info->transmit.tcp_checksum = 1;
595 				else
596 					csum_info->transmit.udp_checksum = 1;
597 			} else {
598 				csum_info->transmit.is_ipv6 = 1;
599 
600 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
601 					csum_info->transmit.tcp_checksum = 1;
602 				else
603 					csum_info->transmit.udp_checksum = 1;
604 			}
605 		} else {
606 			/* Can't do offload of this type of checksum */
607 			if (skb_checksum_help(skb))
608 				goto drop;
609 		}
610 	}
611 
612 	/* Start filling in the page buffers with the rndis hdr */
613 	rndis_msg->msg_len += rndis_msg_size;
614 	packet->total_data_buflen = rndis_msg->msg_len;
615 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
616 					       skb, packet, pb);
617 
618 	/* timestamp packet in software */
619 	skb_tx_timestamp(skb);
620 
621 	ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb);
622 	if (likely(ret == 0))
623 		return NETDEV_TX_OK;
624 
625 	if (ret == -EAGAIN) {
626 		++net_device_ctx->eth_stats.tx_busy;
627 		return NETDEV_TX_BUSY;
628 	}
629 
630 	if (ret == -ENOSPC)
631 		++net_device_ctx->eth_stats.tx_no_space;
632 
633 drop:
634 	dev_kfree_skb_any(skb);
635 	net->stats.tx_dropped++;
636 
637 	return NETDEV_TX_OK;
638 
639 no_memory:
640 	++net_device_ctx->eth_stats.tx_no_memory;
641 	goto drop;
642 }
643 
644 /*
645  * netvsc_linkstatus_callback - Link up/down notification
646  */
647 void netvsc_linkstatus_callback(struct hv_device *device_obj,
648 				struct rndis_message *resp)
649 {
650 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
651 	struct net_device *net;
652 	struct net_device_context *ndev_ctx;
653 	struct netvsc_reconfig *event;
654 	unsigned long flags;
655 
656 	net = hv_get_drvdata(device_obj);
657 
658 	if (!net)
659 		return;
660 
661 	ndev_ctx = netdev_priv(net);
662 
663 	/* Update the physical link speed when changing to another vSwitch */
664 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
665 		u32 speed;
666 
667 		speed = *(u32 *)((void *)indicate
668 				 + indicate->status_buf_offset) / 10000;
669 		ndev_ctx->speed = speed;
670 		return;
671 	}
672 
673 	/* Handle these link change statuses below */
674 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
675 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
676 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
677 		return;
678 
679 	if (net->reg_state != NETREG_REGISTERED)
680 		return;
681 
682 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
683 	if (!event)
684 		return;
685 	event->event = indicate->status;
686 
687 	spin_lock_irqsave(&ndev_ctx->lock, flags);
688 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
689 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
690 
691 	schedule_delayed_work(&ndev_ctx->dwork, 0);
692 }
693 
694 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
695 					     struct napi_struct *napi,
696 					     const struct ndis_tcp_ip_checksum_info *csum_info,
697 					     const struct ndis_pkt_8021q_info *vlan,
698 					     void *data, u32 buflen)
699 {
700 	struct sk_buff *skb;
701 
702 	skb = napi_alloc_skb(napi, buflen);
703 	if (!skb)
704 		return skb;
705 
706 	/*
707 	 * Copy to skb. This copy is needed here since the memory pointed by
708 	 * hv_netvsc_packet cannot be deallocated
709 	 */
710 	skb_put_data(skb, data, buflen);
711 
712 	skb->protocol = eth_type_trans(skb, net);
713 
714 	/* skb is already created with CHECKSUM_NONE */
715 	skb_checksum_none_assert(skb);
716 
717 	/*
718 	 * In Linux, the IP checksum is always checked.
719 	 * Do L4 checksum offload if enabled and present.
720 	 */
721 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
722 		if (csum_info->receive.tcp_checksum_succeeded ||
723 		    csum_info->receive.udp_checksum_succeeded)
724 			skb->ip_summed = CHECKSUM_UNNECESSARY;
725 	}
726 
727 	if (vlan) {
728 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
729 
730 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
731 				       vlan_tci);
732 	}
733 
734 	return skb;
735 }
736 
737 /*
738  * netvsc_recv_callback -  Callback when we receive a packet from the
739  * "wire" on the specified device.
740  */
741 int netvsc_recv_callback(struct net_device *net,
742 			 struct vmbus_channel *channel,
743 			 void  *data, u32 len,
744 			 const struct ndis_tcp_ip_checksum_info *csum_info,
745 			 const struct ndis_pkt_8021q_info *vlan)
746 {
747 	struct net_device_context *net_device_ctx = netdev_priv(net);
748 	struct netvsc_device *net_device;
749 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
750 	struct netvsc_channel *nvchan;
751 	struct sk_buff *skb;
752 	struct netvsc_stats *rx_stats;
753 
754 	if (net->reg_state != NETREG_REGISTERED)
755 		return NVSP_STAT_FAIL;
756 
757 	rcu_read_lock();
758 	net_device = rcu_dereference(net_device_ctx->nvdev);
759 	if (unlikely(!net_device))
760 		goto drop;
761 
762 	nvchan = &net_device->chan_table[q_idx];
763 
764 	/* Allocate a skb - TODO direct I/O to pages? */
765 	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
766 				    csum_info, vlan, data, len);
767 	if (unlikely(!skb)) {
768 drop:
769 		++net->stats.rx_dropped;
770 		rcu_read_unlock();
771 		return NVSP_STAT_FAIL;
772 	}
773 
774 	skb_record_rx_queue(skb, q_idx);
775 
776 	/*
777 	 * Even if injecting the packet, record the statistics
778 	 * on the synthetic device because modifying the VF device
779 	 * statistics will not work correctly.
780 	 */
781 	rx_stats = &nvchan->rx_stats;
782 	u64_stats_update_begin(&rx_stats->syncp);
783 	rx_stats->packets++;
784 	rx_stats->bytes += len;
785 
786 	if (skb->pkt_type == PACKET_BROADCAST)
787 		++rx_stats->broadcast;
788 	else if (skb->pkt_type == PACKET_MULTICAST)
789 		++rx_stats->multicast;
790 	u64_stats_update_end(&rx_stats->syncp);
791 
792 	napi_gro_receive(&nvchan->napi, skb);
793 	rcu_read_unlock();
794 
795 	return 0;
796 }
797 
798 static void netvsc_get_drvinfo(struct net_device *net,
799 			       struct ethtool_drvinfo *info)
800 {
801 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
802 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
803 }
804 
805 static void netvsc_get_channels(struct net_device *net,
806 				struct ethtool_channels *channel)
807 {
808 	struct net_device_context *net_device_ctx = netdev_priv(net);
809 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
810 
811 	if (nvdev) {
812 		channel->max_combined	= nvdev->max_chn;
813 		channel->combined_count = nvdev->num_chn;
814 	}
815 }
816 
817 static int netvsc_set_channels(struct net_device *net,
818 			       struct ethtool_channels *channels)
819 {
820 	struct net_device_context *net_device_ctx = netdev_priv(net);
821 	struct hv_device *dev = net_device_ctx->device_ctx;
822 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
823 	unsigned int orig, count = channels->combined_count;
824 	struct netvsc_device_info device_info;
825 	bool was_opened;
826 	int ret = 0;
827 
828 	/* We do not support separate count for rx, tx, or other */
829 	if (count == 0 ||
830 	    channels->rx_count || channels->tx_count || channels->other_count)
831 		return -EINVAL;
832 
833 	if (!nvdev || nvdev->destroy)
834 		return -ENODEV;
835 
836 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
837 		return -EINVAL;
838 
839 	if (count > nvdev->max_chn)
840 		return -EINVAL;
841 
842 	orig = nvdev->num_chn;
843 	was_opened = rndis_filter_opened(nvdev);
844 	if (was_opened)
845 		rndis_filter_close(nvdev);
846 
847 	memset(&device_info, 0, sizeof(device_info));
848 	device_info.num_chn = count;
849 	device_info.ring_size = ring_size;
850 	device_info.send_sections = nvdev->send_section_cnt;
851 	device_info.recv_sections = nvdev->recv_section_cnt;
852 
853 	rndis_filter_device_remove(dev, nvdev);
854 
855 	nvdev = rndis_filter_device_add(dev, &device_info);
856 	if (IS_ERR(nvdev)) {
857 		ret = PTR_ERR(nvdev);
858 		device_info.num_chn = orig;
859 		nvdev = rndis_filter_device_add(dev, &device_info);
860 
861 		if (IS_ERR(nvdev)) {
862 			netdev_err(net, "restoring channel setting failed: %ld\n",
863 				   PTR_ERR(nvdev));
864 			return ret;
865 		}
866 	}
867 
868 	if (was_opened)
869 		rndis_filter_open(nvdev);
870 
871 	/* We may have missed link change notifications */
872 	net_device_ctx->last_reconfig = 0;
873 	schedule_delayed_work(&net_device_ctx->dwork, 0);
874 
875 	return ret;
876 }
877 
878 static bool
879 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
880 {
881 	struct ethtool_link_ksettings diff1 = *cmd;
882 	struct ethtool_link_ksettings diff2 = {};
883 
884 	diff1.base.speed = 0;
885 	diff1.base.duplex = 0;
886 	/* advertising and cmd are usually set */
887 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
888 	diff1.base.cmd = 0;
889 	/* We set port to PORT_OTHER */
890 	diff2.base.port = PORT_OTHER;
891 
892 	return !memcmp(&diff1, &diff2, sizeof(diff1));
893 }
894 
895 static void netvsc_init_settings(struct net_device *dev)
896 {
897 	struct net_device_context *ndc = netdev_priv(dev);
898 
899 	ndc->udp4_l4_hash = true;
900 	ndc->udp6_l4_hash = true;
901 
902 	ndc->speed = SPEED_UNKNOWN;
903 	ndc->duplex = DUPLEX_FULL;
904 }
905 
906 static int netvsc_get_link_ksettings(struct net_device *dev,
907 				     struct ethtool_link_ksettings *cmd)
908 {
909 	struct net_device_context *ndc = netdev_priv(dev);
910 
911 	cmd->base.speed = ndc->speed;
912 	cmd->base.duplex = ndc->duplex;
913 	cmd->base.port = PORT_OTHER;
914 
915 	return 0;
916 }
917 
918 static int netvsc_set_link_ksettings(struct net_device *dev,
919 				     const struct ethtool_link_ksettings *cmd)
920 {
921 	struct net_device_context *ndc = netdev_priv(dev);
922 	u32 speed;
923 
924 	speed = cmd->base.speed;
925 	if (!ethtool_validate_speed(speed) ||
926 	    !ethtool_validate_duplex(cmd->base.duplex) ||
927 	    !netvsc_validate_ethtool_ss_cmd(cmd))
928 		return -EINVAL;
929 
930 	ndc->speed = speed;
931 	ndc->duplex = cmd->base.duplex;
932 
933 	return 0;
934 }
935 
936 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
937 {
938 	struct net_device_context *ndevctx = netdev_priv(ndev);
939 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
940 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
941 	struct hv_device *hdev = ndevctx->device_ctx;
942 	int orig_mtu = ndev->mtu;
943 	struct netvsc_device_info device_info;
944 	bool was_opened;
945 	int ret = 0;
946 
947 	if (!nvdev || nvdev->destroy)
948 		return -ENODEV;
949 
950 	/* Change MTU of underlying VF netdev first. */
951 	if (vf_netdev) {
952 		ret = dev_set_mtu(vf_netdev, mtu);
953 		if (ret)
954 			return ret;
955 	}
956 
957 	netif_device_detach(ndev);
958 	was_opened = rndis_filter_opened(nvdev);
959 	if (was_opened)
960 		rndis_filter_close(nvdev);
961 
962 	memset(&device_info, 0, sizeof(device_info));
963 	device_info.ring_size = ring_size;
964 	device_info.num_chn = nvdev->num_chn;
965 	device_info.send_sections = nvdev->send_section_cnt;
966 	device_info.recv_sections = nvdev->recv_section_cnt;
967 
968 	rndis_filter_device_remove(hdev, nvdev);
969 
970 	ndev->mtu = mtu;
971 
972 	nvdev = rndis_filter_device_add(hdev, &device_info);
973 	if (IS_ERR(nvdev)) {
974 		ret = PTR_ERR(nvdev);
975 
976 		/* Attempt rollback to original MTU */
977 		ndev->mtu = orig_mtu;
978 		nvdev = rndis_filter_device_add(hdev, &device_info);
979 
980 		if (vf_netdev)
981 			dev_set_mtu(vf_netdev, orig_mtu);
982 
983 		if (IS_ERR(nvdev)) {
984 			netdev_err(ndev, "restoring mtu failed: %ld\n",
985 				   PTR_ERR(nvdev));
986 			return ret;
987 		}
988 	}
989 
990 	if (was_opened)
991 		rndis_filter_open(nvdev);
992 
993 	netif_device_attach(ndev);
994 
995 	/* We may have missed link change notifications */
996 	schedule_delayed_work(&ndevctx->dwork, 0);
997 
998 	return ret;
999 }
1000 
1001 static void netvsc_get_vf_stats(struct net_device *net,
1002 				struct netvsc_vf_pcpu_stats *tot)
1003 {
1004 	struct net_device_context *ndev_ctx = netdev_priv(net);
1005 	int i;
1006 
1007 	memset(tot, 0, sizeof(*tot));
1008 
1009 	for_each_possible_cpu(i) {
1010 		const struct netvsc_vf_pcpu_stats *stats
1011 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1012 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1013 		unsigned int start;
1014 
1015 		do {
1016 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1017 			rx_packets = stats->rx_packets;
1018 			tx_packets = stats->tx_packets;
1019 			rx_bytes = stats->rx_bytes;
1020 			tx_bytes = stats->tx_bytes;
1021 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1022 
1023 		tot->rx_packets += rx_packets;
1024 		tot->tx_packets += tx_packets;
1025 		tot->rx_bytes   += rx_bytes;
1026 		tot->tx_bytes   += tx_bytes;
1027 		tot->tx_dropped += stats->tx_dropped;
1028 	}
1029 }
1030 
1031 static void netvsc_get_stats64(struct net_device *net,
1032 			       struct rtnl_link_stats64 *t)
1033 {
1034 	struct net_device_context *ndev_ctx = netdev_priv(net);
1035 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1036 	struct netvsc_vf_pcpu_stats vf_tot;
1037 	int i;
1038 
1039 	if (!nvdev)
1040 		return;
1041 
1042 	netdev_stats_to_stats64(t, &net->stats);
1043 
1044 	netvsc_get_vf_stats(net, &vf_tot);
1045 	t->rx_packets += vf_tot.rx_packets;
1046 	t->tx_packets += vf_tot.tx_packets;
1047 	t->rx_bytes   += vf_tot.rx_bytes;
1048 	t->tx_bytes   += vf_tot.tx_bytes;
1049 	t->tx_dropped += vf_tot.tx_dropped;
1050 
1051 	for (i = 0; i < nvdev->num_chn; i++) {
1052 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1053 		const struct netvsc_stats *stats;
1054 		u64 packets, bytes, multicast;
1055 		unsigned int start;
1056 
1057 		stats = &nvchan->tx_stats;
1058 		do {
1059 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1060 			packets = stats->packets;
1061 			bytes = stats->bytes;
1062 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1063 
1064 		t->tx_bytes	+= bytes;
1065 		t->tx_packets	+= packets;
1066 
1067 		stats = &nvchan->rx_stats;
1068 		do {
1069 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1070 			packets = stats->packets;
1071 			bytes = stats->bytes;
1072 			multicast = stats->multicast + stats->broadcast;
1073 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1074 
1075 		t->rx_bytes	+= bytes;
1076 		t->rx_packets	+= packets;
1077 		t->multicast	+= multicast;
1078 	}
1079 }
1080 
1081 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1082 {
1083 	struct net_device_context *ndc = netdev_priv(ndev);
1084 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1085 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1086 	struct sockaddr *addr = p;
1087 	int err;
1088 
1089 	err = eth_prepare_mac_addr_change(ndev, p);
1090 	if (err)
1091 		return err;
1092 
1093 	if (!nvdev)
1094 		return -ENODEV;
1095 
1096 	if (vf_netdev) {
1097 		err = dev_set_mac_address(vf_netdev, addr);
1098 		if (err)
1099 			return err;
1100 	}
1101 
1102 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1103 	if (!err) {
1104 		eth_commit_mac_addr_change(ndev, p);
1105 	} else if (vf_netdev) {
1106 		/* rollback change on VF */
1107 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1108 		dev_set_mac_address(vf_netdev, addr);
1109 	}
1110 
1111 	return err;
1112 }
1113 
1114 static const struct {
1115 	char name[ETH_GSTRING_LEN];
1116 	u16 offset;
1117 } netvsc_stats[] = {
1118 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1119 	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1120 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1121 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1122 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1123 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1124 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1125 }, vf_stats[] = {
1126 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1127 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1128 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1129 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1130 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1131 };
1132 
1133 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1134 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1135 
1136 /* 4 statistics per queue (rx/tx packets/bytes) */
1137 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1138 
1139 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1140 {
1141 	struct net_device_context *ndc = netdev_priv(dev);
1142 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1143 
1144 	if (!nvdev)
1145 		return -ENODEV;
1146 
1147 	switch (string_set) {
1148 	case ETH_SS_STATS:
1149 		return NETVSC_GLOBAL_STATS_LEN
1150 			+ NETVSC_VF_STATS_LEN
1151 			+ NETVSC_QUEUE_STATS_LEN(nvdev);
1152 	default:
1153 		return -EINVAL;
1154 	}
1155 }
1156 
1157 static void netvsc_get_ethtool_stats(struct net_device *dev,
1158 				     struct ethtool_stats *stats, u64 *data)
1159 {
1160 	struct net_device_context *ndc = netdev_priv(dev);
1161 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162 	const void *nds = &ndc->eth_stats;
1163 	const struct netvsc_stats *qstats;
1164 	struct netvsc_vf_pcpu_stats sum;
1165 	unsigned int start;
1166 	u64 packets, bytes;
1167 	int i, j;
1168 
1169 	if (!nvdev)
1170 		return;
1171 
1172 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1173 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1174 
1175 	netvsc_get_vf_stats(dev, &sum);
1176 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1177 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1178 
1179 	for (j = 0; j < nvdev->num_chn; j++) {
1180 		qstats = &nvdev->chan_table[j].tx_stats;
1181 
1182 		do {
1183 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1184 			packets = qstats->packets;
1185 			bytes = qstats->bytes;
1186 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1187 		data[i++] = packets;
1188 		data[i++] = bytes;
1189 
1190 		qstats = &nvdev->chan_table[j].rx_stats;
1191 		do {
1192 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1193 			packets = qstats->packets;
1194 			bytes = qstats->bytes;
1195 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1196 		data[i++] = packets;
1197 		data[i++] = bytes;
1198 	}
1199 }
1200 
1201 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1202 {
1203 	struct net_device_context *ndc = netdev_priv(dev);
1204 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1205 	u8 *p = data;
1206 	int i;
1207 
1208 	if (!nvdev)
1209 		return;
1210 
1211 	switch (stringset) {
1212 	case ETH_SS_STATS:
1213 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1214 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1215 			p += ETH_GSTRING_LEN;
1216 		}
1217 
1218 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1219 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1220 			p += ETH_GSTRING_LEN;
1221 		}
1222 
1223 		for (i = 0; i < nvdev->num_chn; i++) {
1224 			sprintf(p, "tx_queue_%u_packets", i);
1225 			p += ETH_GSTRING_LEN;
1226 			sprintf(p, "tx_queue_%u_bytes", i);
1227 			p += ETH_GSTRING_LEN;
1228 			sprintf(p, "rx_queue_%u_packets", i);
1229 			p += ETH_GSTRING_LEN;
1230 			sprintf(p, "rx_queue_%u_bytes", i);
1231 			p += ETH_GSTRING_LEN;
1232 		}
1233 
1234 		break;
1235 	}
1236 }
1237 
1238 static int
1239 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1240 			 struct ethtool_rxnfc *info)
1241 {
1242 	info->data = RXH_IP_SRC | RXH_IP_DST;
1243 
1244 	switch (info->flow_type) {
1245 	case TCP_V4_FLOW:
1246 	case TCP_V6_FLOW:
1247 		info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1248 		break;
1249 
1250 	case UDP_V4_FLOW:
1251 		if (ndc->udp4_l4_hash)
1252 			info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1253 
1254 		break;
1255 
1256 	case UDP_V6_FLOW:
1257 		if (ndc->udp6_l4_hash)
1258 			info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1259 
1260 		break;
1261 
1262 	case IPV4_FLOW:
1263 	case IPV6_FLOW:
1264 		break;
1265 	default:
1266 		info->data = 0;
1267 		break;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int
1274 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1275 		 u32 *rules)
1276 {
1277 	struct net_device_context *ndc = netdev_priv(dev);
1278 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1279 
1280 	if (!nvdev)
1281 		return -ENODEV;
1282 
1283 	switch (info->cmd) {
1284 	case ETHTOOL_GRXRINGS:
1285 		info->data = nvdev->num_chn;
1286 		return 0;
1287 
1288 	case ETHTOOL_GRXFH:
1289 		return netvsc_get_rss_hash_opts(ndc, info);
1290 	}
1291 	return -EOPNOTSUPP;
1292 }
1293 
1294 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1295 				    struct ethtool_rxnfc *info)
1296 {
1297 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1298 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1299 		if (info->flow_type == UDP_V4_FLOW)
1300 			ndc->udp4_l4_hash = true;
1301 		else if (info->flow_type == UDP_V6_FLOW)
1302 			ndc->udp6_l4_hash = true;
1303 		else
1304 			return -EOPNOTSUPP;
1305 
1306 		return 0;
1307 	}
1308 
1309 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1310 		if (info->flow_type == UDP_V4_FLOW)
1311 			ndc->udp4_l4_hash = false;
1312 		else if (info->flow_type == UDP_V6_FLOW)
1313 			ndc->udp6_l4_hash = false;
1314 		else
1315 			return -EOPNOTSUPP;
1316 
1317 		return 0;
1318 	}
1319 
1320 	return -EOPNOTSUPP;
1321 }
1322 
1323 static int
1324 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1325 {
1326 	struct net_device_context *ndc = netdev_priv(ndev);
1327 
1328 	if (info->cmd == ETHTOOL_SRXFH)
1329 		return netvsc_set_rss_hash_opts(ndc, info);
1330 
1331 	return -EOPNOTSUPP;
1332 }
1333 
1334 #ifdef CONFIG_NET_POLL_CONTROLLER
1335 static void netvsc_poll_controller(struct net_device *dev)
1336 {
1337 	struct net_device_context *ndc = netdev_priv(dev);
1338 	struct netvsc_device *ndev;
1339 	int i;
1340 
1341 	rcu_read_lock();
1342 	ndev = rcu_dereference(ndc->nvdev);
1343 	if (ndev) {
1344 		for (i = 0; i < ndev->num_chn; i++) {
1345 			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1346 
1347 			napi_schedule(&nvchan->napi);
1348 		}
1349 	}
1350 	rcu_read_unlock();
1351 }
1352 #endif
1353 
1354 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1355 {
1356 	return NETVSC_HASH_KEYLEN;
1357 }
1358 
1359 static u32 netvsc_rss_indir_size(struct net_device *dev)
1360 {
1361 	return ITAB_NUM;
1362 }
1363 
1364 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1365 			   u8 *hfunc)
1366 {
1367 	struct net_device_context *ndc = netdev_priv(dev);
1368 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1369 	struct rndis_device *rndis_dev;
1370 	int i;
1371 
1372 	if (!ndev)
1373 		return -ENODEV;
1374 
1375 	if (hfunc)
1376 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1377 
1378 	rndis_dev = ndev->extension;
1379 	if (indir) {
1380 		for (i = 0; i < ITAB_NUM; i++)
1381 			indir[i] = rndis_dev->ind_table[i];
1382 	}
1383 
1384 	if (key)
1385 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1386 
1387 	return 0;
1388 }
1389 
1390 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1391 			   const u8 *key, const u8 hfunc)
1392 {
1393 	struct net_device_context *ndc = netdev_priv(dev);
1394 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1395 	struct rndis_device *rndis_dev;
1396 	int i;
1397 
1398 	if (!ndev)
1399 		return -ENODEV;
1400 
1401 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1402 		return -EOPNOTSUPP;
1403 
1404 	rndis_dev = ndev->extension;
1405 	if (indir) {
1406 		for (i = 0; i < ITAB_NUM; i++)
1407 			if (indir[i] >= ndev->num_chn)
1408 				return -EINVAL;
1409 
1410 		for (i = 0; i < ITAB_NUM; i++)
1411 			rndis_dev->ind_table[i] = indir[i];
1412 	}
1413 
1414 	if (!key) {
1415 		if (!indir)
1416 			return 0;
1417 
1418 		key = rndis_dev->rss_key;
1419 	}
1420 
1421 	return rndis_filter_set_rss_param(rndis_dev, key);
1422 }
1423 
1424 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1425  * It does have pre-allocated receive area which is divided into sections.
1426  */
1427 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1428 				   struct ethtool_ringparam *ring)
1429 {
1430 	u32 max_buf_size;
1431 
1432 	ring->rx_pending = nvdev->recv_section_cnt;
1433 	ring->tx_pending = nvdev->send_section_cnt;
1434 
1435 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1436 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1437 	else
1438 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1439 
1440 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1441 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1442 		/ nvdev->send_section_size;
1443 }
1444 
1445 static void netvsc_get_ringparam(struct net_device *ndev,
1446 				 struct ethtool_ringparam *ring)
1447 {
1448 	struct net_device_context *ndevctx = netdev_priv(ndev);
1449 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1450 
1451 	if (!nvdev)
1452 		return;
1453 
1454 	__netvsc_get_ringparam(nvdev, ring);
1455 }
1456 
1457 static int netvsc_set_ringparam(struct net_device *ndev,
1458 				struct ethtool_ringparam *ring)
1459 {
1460 	struct net_device_context *ndevctx = netdev_priv(ndev);
1461 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1462 	struct hv_device *hdev = ndevctx->device_ctx;
1463 	struct netvsc_device_info device_info;
1464 	struct ethtool_ringparam orig;
1465 	u32 new_tx, new_rx;
1466 	bool was_opened;
1467 	int ret = 0;
1468 
1469 	if (!nvdev || nvdev->destroy)
1470 		return -ENODEV;
1471 
1472 	memset(&orig, 0, sizeof(orig));
1473 	__netvsc_get_ringparam(nvdev, &orig);
1474 
1475 	new_tx = clamp_t(u32, ring->tx_pending,
1476 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1477 	new_rx = clamp_t(u32, ring->rx_pending,
1478 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1479 
1480 	if (new_tx == orig.tx_pending &&
1481 	    new_rx == orig.rx_pending)
1482 		return 0;	 /* no change */
1483 
1484 	memset(&device_info, 0, sizeof(device_info));
1485 	device_info.num_chn = nvdev->num_chn;
1486 	device_info.ring_size = ring_size;
1487 	device_info.send_sections = new_tx;
1488 	device_info.recv_sections = new_rx;
1489 
1490 	netif_device_detach(ndev);
1491 	was_opened = rndis_filter_opened(nvdev);
1492 	if (was_opened)
1493 		rndis_filter_close(nvdev);
1494 
1495 	rndis_filter_device_remove(hdev, nvdev);
1496 
1497 	nvdev = rndis_filter_device_add(hdev, &device_info);
1498 	if (IS_ERR(nvdev)) {
1499 		ret = PTR_ERR(nvdev);
1500 
1501 		device_info.send_sections = orig.tx_pending;
1502 		device_info.recv_sections = orig.rx_pending;
1503 		nvdev = rndis_filter_device_add(hdev, &device_info);
1504 		if (IS_ERR(nvdev)) {
1505 			netdev_err(ndev, "restoring ringparam failed: %ld\n",
1506 				   PTR_ERR(nvdev));
1507 			return ret;
1508 		}
1509 	}
1510 
1511 	if (was_opened)
1512 		rndis_filter_open(nvdev);
1513 	netif_device_attach(ndev);
1514 
1515 	/* We may have missed link change notifications */
1516 	ndevctx->last_reconfig = 0;
1517 	schedule_delayed_work(&ndevctx->dwork, 0);
1518 
1519 	return ret;
1520 }
1521 
1522 static const struct ethtool_ops ethtool_ops = {
1523 	.get_drvinfo	= netvsc_get_drvinfo,
1524 	.get_link	= ethtool_op_get_link,
1525 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1526 	.get_sset_count = netvsc_get_sset_count,
1527 	.get_strings	= netvsc_get_strings,
1528 	.get_channels   = netvsc_get_channels,
1529 	.set_channels   = netvsc_set_channels,
1530 	.get_ts_info	= ethtool_op_get_ts_info,
1531 	.get_rxnfc	= netvsc_get_rxnfc,
1532 	.set_rxnfc	= netvsc_set_rxnfc,
1533 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1534 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1535 	.get_rxfh	= netvsc_get_rxfh,
1536 	.set_rxfh	= netvsc_set_rxfh,
1537 	.get_link_ksettings = netvsc_get_link_ksettings,
1538 	.set_link_ksettings = netvsc_set_link_ksettings,
1539 	.get_ringparam	= netvsc_get_ringparam,
1540 	.set_ringparam	= netvsc_set_ringparam,
1541 };
1542 
1543 static const struct net_device_ops device_ops = {
1544 	.ndo_open =			netvsc_open,
1545 	.ndo_stop =			netvsc_close,
1546 	.ndo_start_xmit =		netvsc_start_xmit,
1547 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1548 	.ndo_change_mtu =		netvsc_change_mtu,
1549 	.ndo_validate_addr =		eth_validate_addr,
1550 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1551 	.ndo_select_queue =		netvsc_select_queue,
1552 	.ndo_get_stats64 =		netvsc_get_stats64,
1553 #ifdef CONFIG_NET_POLL_CONTROLLER
1554 	.ndo_poll_controller =		netvsc_poll_controller,
1555 #endif
1556 };
1557 
1558 /*
1559  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1560  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1561  * present send GARP packet to network peers with netif_notify_peers().
1562  */
1563 static void netvsc_link_change(struct work_struct *w)
1564 {
1565 	struct net_device_context *ndev_ctx =
1566 		container_of(w, struct net_device_context, dwork.work);
1567 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1568 	struct net_device *net = hv_get_drvdata(device_obj);
1569 	struct netvsc_device *net_device;
1570 	struct rndis_device *rdev;
1571 	struct netvsc_reconfig *event = NULL;
1572 	bool notify = false, reschedule = false;
1573 	unsigned long flags, next_reconfig, delay;
1574 
1575 	/* if changes are happening, comeback later */
1576 	if (!rtnl_trylock()) {
1577 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1578 		return;
1579 	}
1580 
1581 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1582 	if (!net_device)
1583 		goto out_unlock;
1584 
1585 	rdev = net_device->extension;
1586 
1587 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1588 	if (time_is_after_jiffies(next_reconfig)) {
1589 		/* link_watch only sends one notification with current state
1590 		 * per second, avoid doing reconfig more frequently. Handle
1591 		 * wrap around.
1592 		 */
1593 		delay = next_reconfig - jiffies;
1594 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1595 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1596 		goto out_unlock;
1597 	}
1598 	ndev_ctx->last_reconfig = jiffies;
1599 
1600 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1601 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1602 		event = list_first_entry(&ndev_ctx->reconfig_events,
1603 					 struct netvsc_reconfig, list);
1604 		list_del(&event->list);
1605 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1606 	}
1607 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1608 
1609 	if (!event)
1610 		goto out_unlock;
1611 
1612 	switch (event->event) {
1613 		/* Only the following events are possible due to the check in
1614 		 * netvsc_linkstatus_callback()
1615 		 */
1616 	case RNDIS_STATUS_MEDIA_CONNECT:
1617 		if (rdev->link_state) {
1618 			rdev->link_state = false;
1619 			netif_carrier_on(net);
1620 			netif_tx_wake_all_queues(net);
1621 		} else {
1622 			notify = true;
1623 		}
1624 		kfree(event);
1625 		break;
1626 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1627 		if (!rdev->link_state) {
1628 			rdev->link_state = true;
1629 			netif_carrier_off(net);
1630 			netif_tx_stop_all_queues(net);
1631 		}
1632 		kfree(event);
1633 		break;
1634 	case RNDIS_STATUS_NETWORK_CHANGE:
1635 		/* Only makes sense if carrier is present */
1636 		if (!rdev->link_state) {
1637 			rdev->link_state = true;
1638 			netif_carrier_off(net);
1639 			netif_tx_stop_all_queues(net);
1640 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1641 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1642 			list_add(&event->list, &ndev_ctx->reconfig_events);
1643 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1644 			reschedule = true;
1645 		}
1646 		break;
1647 	}
1648 
1649 	rtnl_unlock();
1650 
1651 	if (notify)
1652 		netdev_notify_peers(net);
1653 
1654 	/* link_watch only sends one notification with current state per
1655 	 * second, handle next reconfig event in 2 seconds.
1656 	 */
1657 	if (reschedule)
1658 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1659 
1660 	return;
1661 
1662 out_unlock:
1663 	rtnl_unlock();
1664 }
1665 
1666 static struct net_device *get_netvsc_bymac(const u8 *mac)
1667 {
1668 	struct net_device *dev;
1669 
1670 	ASSERT_RTNL();
1671 
1672 	for_each_netdev(&init_net, dev) {
1673 		if (dev->netdev_ops != &device_ops)
1674 			continue;	/* not a netvsc device */
1675 
1676 		if (ether_addr_equal(mac, dev->perm_addr))
1677 			return dev;
1678 	}
1679 
1680 	return NULL;
1681 }
1682 
1683 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1684 {
1685 	struct net_device *dev;
1686 
1687 	ASSERT_RTNL();
1688 
1689 	for_each_netdev(&init_net, dev) {
1690 		struct net_device_context *net_device_ctx;
1691 
1692 		if (dev->netdev_ops != &device_ops)
1693 			continue;	/* not a netvsc device */
1694 
1695 		net_device_ctx = netdev_priv(dev);
1696 		if (!rtnl_dereference(net_device_ctx->nvdev))
1697 			continue;	/* device is removed */
1698 
1699 		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1700 			return dev;	/* a match */
1701 	}
1702 
1703 	return NULL;
1704 }
1705 
1706 /* Called when VF is injecting data into network stack.
1707  * Change the associated network device from VF to netvsc.
1708  * note: already called with rcu_read_lock
1709  */
1710 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1711 {
1712 	struct sk_buff *skb = *pskb;
1713 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1714 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1715 	struct netvsc_vf_pcpu_stats *pcpu_stats
1716 		 = this_cpu_ptr(ndev_ctx->vf_stats);
1717 
1718 	skb->dev = ndev;
1719 
1720 	u64_stats_update_begin(&pcpu_stats->syncp);
1721 	pcpu_stats->rx_packets++;
1722 	pcpu_stats->rx_bytes += skb->len;
1723 	u64_stats_update_end(&pcpu_stats->syncp);
1724 
1725 	return RX_HANDLER_ANOTHER;
1726 }
1727 
1728 static int netvsc_vf_join(struct net_device *vf_netdev,
1729 			  struct net_device *ndev)
1730 {
1731 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1732 	int ret;
1733 
1734 	ret = netdev_rx_handler_register(vf_netdev,
1735 					 netvsc_vf_handle_frame, ndev);
1736 	if (ret != 0) {
1737 		netdev_err(vf_netdev,
1738 			   "can not register netvsc VF receive handler (err = %d)\n",
1739 			   ret);
1740 		goto rx_handler_failed;
1741 	}
1742 
1743 	ret = netdev_upper_dev_link(vf_netdev, ndev);
1744 	if (ret != 0) {
1745 		netdev_err(vf_netdev,
1746 			   "can not set master device %s (err = %d)\n",
1747 			   ndev->name, ret);
1748 		goto upper_link_failed;
1749 	}
1750 
1751 	/* set slave flag before open to prevent IPv6 addrconf */
1752 	vf_netdev->flags |= IFF_SLAVE;
1753 
1754 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1755 
1756 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1757 
1758 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1759 	return 0;
1760 
1761 upper_link_failed:
1762 	netdev_rx_handler_unregister(vf_netdev);
1763 rx_handler_failed:
1764 	return ret;
1765 }
1766 
1767 static void __netvsc_vf_setup(struct net_device *ndev,
1768 			      struct net_device *vf_netdev)
1769 {
1770 	int ret;
1771 
1772 	/* Align MTU of VF with master */
1773 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1774 	if (ret)
1775 		netdev_warn(vf_netdev,
1776 			    "unable to change mtu to %u\n", ndev->mtu);
1777 
1778 	if (netif_running(ndev)) {
1779 		ret = dev_open(vf_netdev);
1780 		if (ret)
1781 			netdev_warn(vf_netdev,
1782 				    "unable to open: %d\n", ret);
1783 	}
1784 }
1785 
1786 /* Setup VF as slave of the synthetic device.
1787  * Runs in workqueue to avoid recursion in netlink callbacks.
1788  */
1789 static void netvsc_vf_setup(struct work_struct *w)
1790 {
1791 	struct net_device_context *ndev_ctx
1792 		= container_of(w, struct net_device_context, vf_takeover.work);
1793 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1794 	struct net_device *vf_netdev;
1795 
1796 	if (!rtnl_trylock()) {
1797 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1798 		return;
1799 	}
1800 
1801 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1802 	if (vf_netdev)
1803 		__netvsc_vf_setup(ndev, vf_netdev);
1804 
1805 	rtnl_unlock();
1806 }
1807 
1808 static int netvsc_register_vf(struct net_device *vf_netdev)
1809 {
1810 	struct net_device *ndev;
1811 	struct net_device_context *net_device_ctx;
1812 	struct netvsc_device *netvsc_dev;
1813 
1814 	if (vf_netdev->addr_len != ETH_ALEN)
1815 		return NOTIFY_DONE;
1816 
1817 	/*
1818 	 * We will use the MAC address to locate the synthetic interface to
1819 	 * associate with the VF interface. If we don't find a matching
1820 	 * synthetic interface, move on.
1821 	 */
1822 	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1823 	if (!ndev)
1824 		return NOTIFY_DONE;
1825 
1826 	net_device_ctx = netdev_priv(ndev);
1827 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1828 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1829 		return NOTIFY_DONE;
1830 
1831 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
1832 		return NOTIFY_DONE;
1833 
1834 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1835 
1836 	dev_hold(vf_netdev);
1837 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1838 	return NOTIFY_OK;
1839 }
1840 
1841 /* VF up/down change detected, schedule to change data path */
1842 static int netvsc_vf_changed(struct net_device *vf_netdev)
1843 {
1844 	struct net_device_context *net_device_ctx;
1845 	struct netvsc_device *netvsc_dev;
1846 	struct net_device *ndev;
1847 	bool vf_is_up = netif_running(vf_netdev);
1848 
1849 	ndev = get_netvsc_byref(vf_netdev);
1850 	if (!ndev)
1851 		return NOTIFY_DONE;
1852 
1853 	net_device_ctx = netdev_priv(ndev);
1854 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1855 	if (!netvsc_dev)
1856 		return NOTIFY_DONE;
1857 
1858 	netvsc_switch_datapath(ndev, vf_is_up);
1859 	netdev_info(ndev, "Data path switched %s VF: %s\n",
1860 		    vf_is_up ? "to" : "from", vf_netdev->name);
1861 
1862 	return NOTIFY_OK;
1863 }
1864 
1865 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1866 {
1867 	struct net_device *ndev;
1868 	struct net_device_context *net_device_ctx;
1869 
1870 	ndev = get_netvsc_byref(vf_netdev);
1871 	if (!ndev)
1872 		return NOTIFY_DONE;
1873 
1874 	net_device_ctx = netdev_priv(ndev);
1875 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1876 
1877 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1878 
1879 	netdev_rx_handler_unregister(vf_netdev);
1880 	netdev_upper_dev_unlink(vf_netdev, ndev);
1881 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1882 	dev_put(vf_netdev);
1883 
1884 	return NOTIFY_OK;
1885 }
1886 
1887 static int netvsc_probe(struct hv_device *dev,
1888 			const struct hv_vmbus_device_id *dev_id)
1889 {
1890 	struct net_device *net = NULL;
1891 	struct net_device_context *net_device_ctx;
1892 	struct netvsc_device_info device_info;
1893 	struct netvsc_device *nvdev;
1894 	int ret = -ENOMEM;
1895 
1896 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1897 				VRSS_CHANNEL_MAX);
1898 	if (!net)
1899 		goto no_net;
1900 
1901 	netif_carrier_off(net);
1902 
1903 	netvsc_init_settings(net);
1904 
1905 	net_device_ctx = netdev_priv(net);
1906 	net_device_ctx->device_ctx = dev;
1907 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1908 	if (netif_msg_probe(net_device_ctx))
1909 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1910 			   net_device_ctx->msg_enable);
1911 
1912 	hv_set_drvdata(dev, net);
1913 
1914 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1915 
1916 	spin_lock_init(&net_device_ctx->lock);
1917 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1918 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
1919 
1920 	net_device_ctx->vf_stats
1921 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
1922 	if (!net_device_ctx->vf_stats)
1923 		goto no_stats;
1924 
1925 	net->netdev_ops = &device_ops;
1926 	net->ethtool_ops = &ethtool_ops;
1927 	SET_NETDEV_DEV(net, &dev->device);
1928 
1929 	/* We always need headroom for rndis header */
1930 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1931 
1932 	/* Notify the netvsc driver of the new device */
1933 	memset(&device_info, 0, sizeof(device_info));
1934 	device_info.ring_size = ring_size;
1935 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1936 	device_info.send_sections = NETVSC_DEFAULT_TX;
1937 	device_info.recv_sections = NETVSC_DEFAULT_RX;
1938 
1939 	nvdev = rndis_filter_device_add(dev, &device_info);
1940 	if (IS_ERR(nvdev)) {
1941 		ret = PTR_ERR(nvdev);
1942 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1943 		goto rndis_failed;
1944 	}
1945 
1946 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1947 
1948 	/* hw_features computed in rndis_filter_device_add */
1949 	net->features = net->hw_features |
1950 		NETIF_F_HIGHDMA | NETIF_F_SG |
1951 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1952 	net->vlan_features = net->features;
1953 
1954 	netdev_lockdep_set_classes(net);
1955 
1956 	/* MTU range: 68 - 1500 or 65521 */
1957 	net->min_mtu = NETVSC_MTU_MIN;
1958 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1959 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
1960 	else
1961 		net->max_mtu = ETH_DATA_LEN;
1962 
1963 	ret = register_netdev(net);
1964 	if (ret != 0) {
1965 		pr_err("Unable to register netdev.\n");
1966 		goto register_failed;
1967 	}
1968 
1969 	return ret;
1970 
1971 register_failed:
1972 	rndis_filter_device_remove(dev, nvdev);
1973 rndis_failed:
1974 	free_percpu(net_device_ctx->vf_stats);
1975 no_stats:
1976 	hv_set_drvdata(dev, NULL);
1977 	free_netdev(net);
1978 no_net:
1979 	return ret;
1980 }
1981 
1982 static int netvsc_remove(struct hv_device *dev)
1983 {
1984 	struct net_device_context *ndev_ctx;
1985 	struct net_device *vf_netdev;
1986 	struct net_device *net;
1987 
1988 	net = hv_get_drvdata(dev);
1989 	if (net == NULL) {
1990 		dev_err(&dev->device, "No net device to remove\n");
1991 		return 0;
1992 	}
1993 
1994 	ndev_ctx = netdev_priv(net);
1995 
1996 	netif_device_detach(net);
1997 
1998 	cancel_delayed_work_sync(&ndev_ctx->dwork);
1999 
2000 	/*
2001 	 * Call to the vsc driver to let it know that the device is being
2002 	 * removed. Also blocks mtu and channel changes.
2003 	 */
2004 	rtnl_lock();
2005 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2006 	if (vf_netdev)
2007 		netvsc_unregister_vf(vf_netdev);
2008 
2009 	unregister_netdevice(net);
2010 
2011 	rndis_filter_device_remove(dev,
2012 				   rtnl_dereference(ndev_ctx->nvdev));
2013 	rtnl_unlock();
2014 
2015 	hv_set_drvdata(dev, NULL);
2016 
2017 	free_percpu(ndev_ctx->vf_stats);
2018 	free_netdev(net);
2019 	return 0;
2020 }
2021 
2022 static const struct hv_vmbus_device_id id_table[] = {
2023 	/* Network guid */
2024 	{ HV_NIC_GUID, },
2025 	{ },
2026 };
2027 
2028 MODULE_DEVICE_TABLE(vmbus, id_table);
2029 
2030 /* The one and only one */
2031 static struct  hv_driver netvsc_drv = {
2032 	.name = KBUILD_MODNAME,
2033 	.id_table = id_table,
2034 	.probe = netvsc_probe,
2035 	.remove = netvsc_remove,
2036 };
2037 
2038 /*
2039  * On Hyper-V, every VF interface is matched with a corresponding
2040  * synthetic interface. The synthetic interface is presented first
2041  * to the guest. When the corresponding VF instance is registered,
2042  * we will take care of switching the data path.
2043  */
2044 static int netvsc_netdev_event(struct notifier_block *this,
2045 			       unsigned long event, void *ptr)
2046 {
2047 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2048 
2049 	/* Skip our own events */
2050 	if (event_dev->netdev_ops == &device_ops)
2051 		return NOTIFY_DONE;
2052 
2053 	/* Avoid non-Ethernet type devices */
2054 	if (event_dev->type != ARPHRD_ETHER)
2055 		return NOTIFY_DONE;
2056 
2057 	/* Avoid Vlan dev with same MAC registering as VF */
2058 	if (is_vlan_dev(event_dev))
2059 		return NOTIFY_DONE;
2060 
2061 	/* Avoid Bonding master dev with same MAC registering as VF */
2062 	if ((event_dev->priv_flags & IFF_BONDING) &&
2063 	    (event_dev->flags & IFF_MASTER))
2064 		return NOTIFY_DONE;
2065 
2066 	switch (event) {
2067 	case NETDEV_REGISTER:
2068 		return netvsc_register_vf(event_dev);
2069 	case NETDEV_UNREGISTER:
2070 		return netvsc_unregister_vf(event_dev);
2071 	case NETDEV_UP:
2072 	case NETDEV_DOWN:
2073 		return netvsc_vf_changed(event_dev);
2074 	default:
2075 		return NOTIFY_DONE;
2076 	}
2077 }
2078 
2079 static struct notifier_block netvsc_netdev_notifier = {
2080 	.notifier_call = netvsc_netdev_event,
2081 };
2082 
2083 static void __exit netvsc_drv_exit(void)
2084 {
2085 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2086 	vmbus_driver_unregister(&netvsc_drv);
2087 }
2088 
2089 static int __init netvsc_drv_init(void)
2090 {
2091 	int ret;
2092 
2093 	if (ring_size < RING_SIZE_MIN) {
2094 		ring_size = RING_SIZE_MIN;
2095 		pr_info("Increased ring_size to %d (min allowed)\n",
2096 			ring_size);
2097 	}
2098 	ret = vmbus_driver_register(&netvsc_drv);
2099 
2100 	if (ret)
2101 		return ret;
2102 
2103 	register_netdevice_notifier(&netvsc_netdev_notifier);
2104 	return 0;
2105 }
2106 
2107 MODULE_LICENSE("GPL");
2108 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2109 
2110 module_init(netvsc_drv_init);
2111 module_exit(netvsc_drv_exit);
2112