xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision 2f7932b011e7fb9f98732f95a68f6017d4d8c542)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39 
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 
47 #include "hyperv_net.h"
48 
49 #define RING_SIZE_MIN	64
50 #define RETRY_US_LO	5000
51 #define RETRY_US_HI	10000
52 #define RETRY_MAX	2000	/* >10 sec */
53 
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56 
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61 
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65 				NETIF_MSG_TX_ERR;
66 
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 
71 static LIST_HEAD(netvsc_dev_list);
72 
73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75 	struct net_device_context *ndev_ctx = netdev_priv(net);
76 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77 	int inc;
78 
79 	if (!vf_netdev)
80 		return;
81 
82 	if (change & IFF_PROMISC) {
83 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84 		dev_set_promiscuity(vf_netdev, inc);
85 	}
86 
87 	if (change & IFF_ALLMULTI) {
88 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89 		dev_set_allmulti(vf_netdev, inc);
90 	}
91 }
92 
93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95 	struct net_device_context *ndev_ctx = netdev_priv(net);
96 	struct net_device *vf_netdev;
97 	struct netvsc_device *nvdev;
98 
99 	rcu_read_lock();
100 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101 	if (vf_netdev) {
102 		dev_uc_sync(vf_netdev, net);
103 		dev_mc_sync(vf_netdev, net);
104 	}
105 
106 	nvdev = rcu_dereference(ndev_ctx->nvdev);
107 	if (nvdev)
108 		rndis_filter_update(nvdev);
109 	rcu_read_unlock();
110 }
111 
112 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
113 			     struct net_device *ndev)
114 {
115 	nvscdev->tx_disable = false;
116 	virt_wmb(); /* ensure queue wake up mechanism is on */
117 
118 	netif_tx_wake_all_queues(ndev);
119 }
120 
121 static int netvsc_open(struct net_device *net)
122 {
123 	struct net_device_context *ndev_ctx = netdev_priv(net);
124 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
125 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
126 	struct rndis_device *rdev;
127 	int ret = 0;
128 
129 	netif_carrier_off(net);
130 
131 	/* Open up the device */
132 	ret = rndis_filter_open(nvdev);
133 	if (ret != 0) {
134 		netdev_err(net, "unable to open device (ret %d).\n", ret);
135 		return ret;
136 	}
137 
138 	rdev = nvdev->extension;
139 	if (!rdev->link_state) {
140 		netif_carrier_on(net);
141 		netvsc_tx_enable(nvdev, net);
142 	}
143 
144 	if (vf_netdev) {
145 		/* Setting synthetic device up transparently sets
146 		 * slave as up. If open fails, then slave will be
147 		 * still be offline (and not used).
148 		 */
149 		ret = dev_open(vf_netdev, NULL);
150 		if (ret)
151 			netdev_warn(net,
152 				    "unable to open slave: %s: %d\n",
153 				    vf_netdev->name, ret);
154 	}
155 	return 0;
156 }
157 
158 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
159 {
160 	unsigned int retry = 0;
161 	int i;
162 
163 	/* Ensure pending bytes in ring are read */
164 	for (;;) {
165 		u32 aread = 0;
166 
167 		for (i = 0; i < nvdev->num_chn; i++) {
168 			struct vmbus_channel *chn
169 				= nvdev->chan_table[i].channel;
170 
171 			if (!chn)
172 				continue;
173 
174 			/* make sure receive not running now */
175 			napi_synchronize(&nvdev->chan_table[i].napi);
176 
177 			aread = hv_get_bytes_to_read(&chn->inbound);
178 			if (aread)
179 				break;
180 
181 			aread = hv_get_bytes_to_read(&chn->outbound);
182 			if (aread)
183 				break;
184 		}
185 
186 		if (aread == 0)
187 			return 0;
188 
189 		if (++retry > RETRY_MAX)
190 			return -ETIMEDOUT;
191 
192 		usleep_range(RETRY_US_LO, RETRY_US_HI);
193 	}
194 }
195 
196 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
197 			      struct net_device *ndev)
198 {
199 	if (nvscdev) {
200 		nvscdev->tx_disable = true;
201 		virt_wmb(); /* ensure txq will not wake up after stop */
202 	}
203 
204 	netif_tx_disable(ndev);
205 }
206 
207 static int netvsc_close(struct net_device *net)
208 {
209 	struct net_device_context *net_device_ctx = netdev_priv(net);
210 	struct net_device *vf_netdev
211 		= rtnl_dereference(net_device_ctx->vf_netdev);
212 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
213 	int ret;
214 
215 	netvsc_tx_disable(nvdev, net);
216 
217 	/* No need to close rndis filter if it is removed already */
218 	if (!nvdev)
219 		return 0;
220 
221 	ret = rndis_filter_close(nvdev);
222 	if (ret != 0) {
223 		netdev_err(net, "unable to close device (ret %d).\n", ret);
224 		return ret;
225 	}
226 
227 	ret = netvsc_wait_until_empty(nvdev);
228 	if (ret)
229 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
230 
231 	if (vf_netdev)
232 		dev_close(vf_netdev);
233 
234 	return ret;
235 }
236 
237 static inline void *init_ppi_data(struct rndis_message *msg,
238 				  u32 ppi_size, u32 pkt_type)
239 {
240 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
241 	struct rndis_per_packet_info *ppi;
242 
243 	rndis_pkt->data_offset += ppi_size;
244 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
245 		+ rndis_pkt->per_pkt_info_len;
246 
247 	ppi->size = ppi_size;
248 	ppi->type = pkt_type;
249 	ppi->internal = 0;
250 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
251 
252 	rndis_pkt->per_pkt_info_len += ppi_size;
253 
254 	return ppi + 1;
255 }
256 
257 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
258  * packets. We can use ethtool to change UDP hash level when necessary.
259  */
260 static inline u32 netvsc_get_hash(
261 	struct sk_buff *skb,
262 	const struct net_device_context *ndc)
263 {
264 	struct flow_keys flow;
265 	u32 hash, pkt_proto = 0;
266 	static u32 hashrnd __read_mostly;
267 
268 	net_get_random_once(&hashrnd, sizeof(hashrnd));
269 
270 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
271 		return 0;
272 
273 	switch (flow.basic.ip_proto) {
274 	case IPPROTO_TCP:
275 		if (flow.basic.n_proto == htons(ETH_P_IP))
276 			pkt_proto = HV_TCP4_L4HASH;
277 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
278 			pkt_proto = HV_TCP6_L4HASH;
279 
280 		break;
281 
282 	case IPPROTO_UDP:
283 		if (flow.basic.n_proto == htons(ETH_P_IP))
284 			pkt_proto = HV_UDP4_L4HASH;
285 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 			pkt_proto = HV_UDP6_L4HASH;
287 
288 		break;
289 	}
290 
291 	if (pkt_proto & ndc->l4_hash) {
292 		return skb_get_hash(skb);
293 	} else {
294 		if (flow.basic.n_proto == htons(ETH_P_IP))
295 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
296 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
297 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
298 		else
299 			hash = 0;
300 
301 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
302 	}
303 
304 	return hash;
305 }
306 
307 static inline int netvsc_get_tx_queue(struct net_device *ndev,
308 				      struct sk_buff *skb, int old_idx)
309 {
310 	const struct net_device_context *ndc = netdev_priv(ndev);
311 	struct sock *sk = skb->sk;
312 	int q_idx;
313 
314 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
315 			      (VRSS_SEND_TAB_SIZE - 1)];
316 
317 	/* If queue index changed record the new value */
318 	if (q_idx != old_idx &&
319 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
320 		sk_tx_queue_set(sk, q_idx);
321 
322 	return q_idx;
323 }
324 
325 /*
326  * Select queue for transmit.
327  *
328  * If a valid queue has already been assigned, then use that.
329  * Otherwise compute tx queue based on hash and the send table.
330  *
331  * This is basically similar to default (__netdev_pick_tx) with the added step
332  * of using the host send_table when no other queue has been assigned.
333  *
334  * TODO support XPS - but get_xps_queue not exported
335  */
336 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
337 {
338 	int q_idx = sk_tx_queue_get(skb->sk);
339 
340 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
341 		/* If forwarding a packet, we use the recorded queue when
342 		 * available for better cache locality.
343 		 */
344 		if (skb_rx_queue_recorded(skb))
345 			q_idx = skb_get_rx_queue(skb);
346 		else
347 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
348 	}
349 
350 	return q_idx;
351 }
352 
353 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
354 			       struct net_device *sb_dev,
355 			       select_queue_fallback_t fallback)
356 {
357 	struct net_device_context *ndc = netdev_priv(ndev);
358 	struct net_device *vf_netdev;
359 	u16 txq;
360 
361 	rcu_read_lock();
362 	vf_netdev = rcu_dereference(ndc->vf_netdev);
363 	if (vf_netdev) {
364 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
365 
366 		if (vf_ops->ndo_select_queue)
367 			txq = vf_ops->ndo_select_queue(vf_netdev, skb,
368 						       sb_dev, fallback);
369 		else
370 			txq = fallback(vf_netdev, skb, NULL);
371 
372 		/* Record the queue selected by VF so that it can be
373 		 * used for common case where VF has more queues than
374 		 * the synthetic device.
375 		 */
376 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
377 	} else {
378 		txq = netvsc_pick_tx(ndev, skb);
379 	}
380 	rcu_read_unlock();
381 
382 	while (unlikely(txq >= ndev->real_num_tx_queues))
383 		txq -= ndev->real_num_tx_queues;
384 
385 	return txq;
386 }
387 
388 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
389 		       struct hv_page_buffer *pb)
390 {
391 	int j = 0;
392 
393 	/* Deal with compound pages by ignoring unused part
394 	 * of the page.
395 	 */
396 	page += (offset >> PAGE_SHIFT);
397 	offset &= ~PAGE_MASK;
398 
399 	while (len > 0) {
400 		unsigned long bytes;
401 
402 		bytes = PAGE_SIZE - offset;
403 		if (bytes > len)
404 			bytes = len;
405 		pb[j].pfn = page_to_pfn(page);
406 		pb[j].offset = offset;
407 		pb[j].len = bytes;
408 
409 		offset += bytes;
410 		len -= bytes;
411 
412 		if (offset == PAGE_SIZE && len) {
413 			page++;
414 			offset = 0;
415 			j++;
416 		}
417 	}
418 
419 	return j + 1;
420 }
421 
422 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
423 			   struct hv_netvsc_packet *packet,
424 			   struct hv_page_buffer *pb)
425 {
426 	u32 slots_used = 0;
427 	char *data = skb->data;
428 	int frags = skb_shinfo(skb)->nr_frags;
429 	int i;
430 
431 	/* The packet is laid out thus:
432 	 * 1. hdr: RNDIS header and PPI
433 	 * 2. skb linear data
434 	 * 3. skb fragment data
435 	 */
436 	slots_used += fill_pg_buf(virt_to_page(hdr),
437 				  offset_in_page(hdr),
438 				  len, &pb[slots_used]);
439 
440 	packet->rmsg_size = len;
441 	packet->rmsg_pgcnt = slots_used;
442 
443 	slots_used += fill_pg_buf(virt_to_page(data),
444 				offset_in_page(data),
445 				skb_headlen(skb), &pb[slots_used]);
446 
447 	for (i = 0; i < frags; i++) {
448 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
449 
450 		slots_used += fill_pg_buf(skb_frag_page(frag),
451 					frag->page_offset,
452 					skb_frag_size(frag), &pb[slots_used]);
453 	}
454 	return slots_used;
455 }
456 
457 static int count_skb_frag_slots(struct sk_buff *skb)
458 {
459 	int i, frags = skb_shinfo(skb)->nr_frags;
460 	int pages = 0;
461 
462 	for (i = 0; i < frags; i++) {
463 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
464 		unsigned long size = skb_frag_size(frag);
465 		unsigned long offset = frag->page_offset;
466 
467 		/* Skip unused frames from start of page */
468 		offset &= ~PAGE_MASK;
469 		pages += PFN_UP(offset + size);
470 	}
471 	return pages;
472 }
473 
474 static int netvsc_get_slots(struct sk_buff *skb)
475 {
476 	char *data = skb->data;
477 	unsigned int offset = offset_in_page(data);
478 	unsigned int len = skb_headlen(skb);
479 	int slots;
480 	int frag_slots;
481 
482 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
483 	frag_slots = count_skb_frag_slots(skb);
484 	return slots + frag_slots;
485 }
486 
487 static u32 net_checksum_info(struct sk_buff *skb)
488 {
489 	if (skb->protocol == htons(ETH_P_IP)) {
490 		struct iphdr *ip = ip_hdr(skb);
491 
492 		if (ip->protocol == IPPROTO_TCP)
493 			return TRANSPORT_INFO_IPV4_TCP;
494 		else if (ip->protocol == IPPROTO_UDP)
495 			return TRANSPORT_INFO_IPV4_UDP;
496 	} else {
497 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
498 
499 		if (ip6->nexthdr == IPPROTO_TCP)
500 			return TRANSPORT_INFO_IPV6_TCP;
501 		else if (ip6->nexthdr == IPPROTO_UDP)
502 			return TRANSPORT_INFO_IPV6_UDP;
503 	}
504 
505 	return TRANSPORT_INFO_NOT_IP;
506 }
507 
508 /* Send skb on the slave VF device. */
509 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
510 			  struct sk_buff *skb)
511 {
512 	struct net_device_context *ndev_ctx = netdev_priv(net);
513 	unsigned int len = skb->len;
514 	int rc;
515 
516 	skb->dev = vf_netdev;
517 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
518 
519 	rc = dev_queue_xmit(skb);
520 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
521 		struct netvsc_vf_pcpu_stats *pcpu_stats
522 			= this_cpu_ptr(ndev_ctx->vf_stats);
523 
524 		u64_stats_update_begin(&pcpu_stats->syncp);
525 		pcpu_stats->tx_packets++;
526 		pcpu_stats->tx_bytes += len;
527 		u64_stats_update_end(&pcpu_stats->syncp);
528 	} else {
529 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
530 	}
531 
532 	return rc;
533 }
534 
535 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
536 {
537 	struct net_device_context *net_device_ctx = netdev_priv(net);
538 	struct hv_netvsc_packet *packet = NULL;
539 	int ret;
540 	unsigned int num_data_pgs;
541 	struct rndis_message *rndis_msg;
542 	struct net_device *vf_netdev;
543 	u32 rndis_msg_size;
544 	u32 hash;
545 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
546 
547 	/* if VF is present and up then redirect packets
548 	 * already called with rcu_read_lock_bh
549 	 */
550 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
551 	if (vf_netdev && netif_running(vf_netdev) &&
552 	    !netpoll_tx_running(net))
553 		return netvsc_vf_xmit(net, vf_netdev, skb);
554 
555 	/* We will atmost need two pages to describe the rndis
556 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
557 	 * of pages in a single packet. If skb is scattered around
558 	 * more pages we try linearizing it.
559 	 */
560 
561 	num_data_pgs = netvsc_get_slots(skb) + 2;
562 
563 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
564 		++net_device_ctx->eth_stats.tx_scattered;
565 
566 		if (skb_linearize(skb))
567 			goto no_memory;
568 
569 		num_data_pgs = netvsc_get_slots(skb) + 2;
570 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
571 			++net_device_ctx->eth_stats.tx_too_big;
572 			goto drop;
573 		}
574 	}
575 
576 	/*
577 	 * Place the rndis header in the skb head room and
578 	 * the skb->cb will be used for hv_netvsc_packet
579 	 * structure.
580 	 */
581 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
582 	if (ret)
583 		goto no_memory;
584 
585 	/* Use the skb control buffer for building up the packet */
586 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
587 			FIELD_SIZEOF(struct sk_buff, cb));
588 	packet = (struct hv_netvsc_packet *)skb->cb;
589 
590 	packet->q_idx = skb_get_queue_mapping(skb);
591 
592 	packet->total_data_buflen = skb->len;
593 	packet->total_bytes = skb->len;
594 	packet->total_packets = 1;
595 
596 	rndis_msg = (struct rndis_message *)skb->head;
597 
598 	/* Add the rndis header */
599 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
600 	rndis_msg->msg_len = packet->total_data_buflen;
601 
602 	rndis_msg->msg.pkt = (struct rndis_packet) {
603 		.data_offset = sizeof(struct rndis_packet),
604 		.data_len = packet->total_data_buflen,
605 		.per_pkt_info_offset = sizeof(struct rndis_packet),
606 	};
607 
608 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
609 
610 	hash = skb_get_hash_raw(skb);
611 	if (hash != 0 && net->real_num_tx_queues > 1) {
612 		u32 *hash_info;
613 
614 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
615 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
616 					  NBL_HASH_VALUE);
617 		*hash_info = hash;
618 	}
619 
620 	if (skb_vlan_tag_present(skb)) {
621 		struct ndis_pkt_8021q_info *vlan;
622 
623 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
624 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
625 				     IEEE_8021Q_INFO);
626 
627 		vlan->value = 0;
628 		vlan->vlanid = skb_vlan_tag_get_id(skb);
629 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
630 		vlan->pri = skb_vlan_tag_get_prio(skb);
631 	}
632 
633 	if (skb_is_gso(skb)) {
634 		struct ndis_tcp_lso_info *lso_info;
635 
636 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
637 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
638 					 TCP_LARGESEND_PKTINFO);
639 
640 		lso_info->value = 0;
641 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
642 		if (skb->protocol == htons(ETH_P_IP)) {
643 			lso_info->lso_v2_transmit.ip_version =
644 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
645 			ip_hdr(skb)->tot_len = 0;
646 			ip_hdr(skb)->check = 0;
647 			tcp_hdr(skb)->check =
648 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
649 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
650 		} else {
651 			lso_info->lso_v2_transmit.ip_version =
652 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
653 			ipv6_hdr(skb)->payload_len = 0;
654 			tcp_hdr(skb)->check =
655 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
656 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
657 		}
658 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
659 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
660 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
661 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
662 			struct ndis_tcp_ip_checksum_info *csum_info;
663 
664 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
665 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
666 						  TCPIP_CHKSUM_PKTINFO);
667 
668 			csum_info->value = 0;
669 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
670 
671 			if (skb->protocol == htons(ETH_P_IP)) {
672 				csum_info->transmit.is_ipv4 = 1;
673 
674 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
675 					csum_info->transmit.tcp_checksum = 1;
676 				else
677 					csum_info->transmit.udp_checksum = 1;
678 			} else {
679 				csum_info->transmit.is_ipv6 = 1;
680 
681 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
682 					csum_info->transmit.tcp_checksum = 1;
683 				else
684 					csum_info->transmit.udp_checksum = 1;
685 			}
686 		} else {
687 			/* Can't do offload of this type of checksum */
688 			if (skb_checksum_help(skb))
689 				goto drop;
690 		}
691 	}
692 
693 	/* Start filling in the page buffers with the rndis hdr */
694 	rndis_msg->msg_len += rndis_msg_size;
695 	packet->total_data_buflen = rndis_msg->msg_len;
696 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
697 					       skb, packet, pb);
698 
699 	/* timestamp packet in software */
700 	skb_tx_timestamp(skb);
701 
702 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
703 	if (likely(ret == 0))
704 		return NETDEV_TX_OK;
705 
706 	if (ret == -EAGAIN) {
707 		++net_device_ctx->eth_stats.tx_busy;
708 		return NETDEV_TX_BUSY;
709 	}
710 
711 	if (ret == -ENOSPC)
712 		++net_device_ctx->eth_stats.tx_no_space;
713 
714 drop:
715 	dev_kfree_skb_any(skb);
716 	net->stats.tx_dropped++;
717 
718 	return NETDEV_TX_OK;
719 
720 no_memory:
721 	++net_device_ctx->eth_stats.tx_no_memory;
722 	goto drop;
723 }
724 
725 /*
726  * netvsc_linkstatus_callback - Link up/down notification
727  */
728 void netvsc_linkstatus_callback(struct net_device *net,
729 				struct rndis_message *resp)
730 {
731 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
732 	struct net_device_context *ndev_ctx = netdev_priv(net);
733 	struct netvsc_reconfig *event;
734 	unsigned long flags;
735 
736 	/* Update the physical link speed when changing to another vSwitch */
737 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
738 		u32 speed;
739 
740 		speed = *(u32 *)((void *)indicate
741 				 + indicate->status_buf_offset) / 10000;
742 		ndev_ctx->speed = speed;
743 		return;
744 	}
745 
746 	/* Handle these link change statuses below */
747 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
748 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
749 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
750 		return;
751 
752 	if (net->reg_state != NETREG_REGISTERED)
753 		return;
754 
755 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
756 	if (!event)
757 		return;
758 	event->event = indicate->status;
759 
760 	spin_lock_irqsave(&ndev_ctx->lock, flags);
761 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
762 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
763 
764 	schedule_delayed_work(&ndev_ctx->dwork, 0);
765 }
766 
767 static void netvsc_comp_ipcsum(struct sk_buff *skb)
768 {
769 	struct iphdr *iph = (struct iphdr *)skb->data;
770 
771 	iph->check = 0;
772 	iph->check = ip_fast_csum(iph, iph->ihl);
773 }
774 
775 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
776 					     struct netvsc_channel *nvchan)
777 {
778 	struct napi_struct *napi = &nvchan->napi;
779 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
780 	const struct ndis_tcp_ip_checksum_info *csum_info =
781 						nvchan->rsc.csum_info;
782 	struct sk_buff *skb;
783 	int i;
784 
785 	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
786 	if (!skb)
787 		return skb;
788 
789 	/*
790 	 * Copy to skb. This copy is needed here since the memory pointed by
791 	 * hv_netvsc_packet cannot be deallocated
792 	 */
793 	for (i = 0; i < nvchan->rsc.cnt; i++)
794 		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
795 
796 	skb->protocol = eth_type_trans(skb, net);
797 
798 	/* skb is already created with CHECKSUM_NONE */
799 	skb_checksum_none_assert(skb);
800 
801 	/* Incoming packets may have IP header checksum verified by the host.
802 	 * They may not have IP header checksum computed after coalescing.
803 	 * We compute it here if the flags are set, because on Linux, the IP
804 	 * checksum is always checked.
805 	 */
806 	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
807 	    csum_info->receive.ip_checksum_succeeded &&
808 	    skb->protocol == htons(ETH_P_IP))
809 		netvsc_comp_ipcsum(skb);
810 
811 	/* Do L4 checksum offload if enabled and present.
812 	 */
813 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
814 		if (csum_info->receive.tcp_checksum_succeeded ||
815 		    csum_info->receive.udp_checksum_succeeded)
816 			skb->ip_summed = CHECKSUM_UNNECESSARY;
817 	}
818 
819 	if (vlan) {
820 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
821 			(vlan->cfi ? VLAN_CFI_MASK : 0);
822 
823 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
824 				       vlan_tci);
825 	}
826 
827 	return skb;
828 }
829 
830 /*
831  * netvsc_recv_callback -  Callback when we receive a packet from the
832  * "wire" on the specified device.
833  */
834 int netvsc_recv_callback(struct net_device *net,
835 			 struct netvsc_device *net_device,
836 			 struct netvsc_channel *nvchan)
837 {
838 	struct net_device_context *net_device_ctx = netdev_priv(net);
839 	struct vmbus_channel *channel = nvchan->channel;
840 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
841 	struct sk_buff *skb;
842 	struct netvsc_stats *rx_stats;
843 
844 	if (net->reg_state != NETREG_REGISTERED)
845 		return NVSP_STAT_FAIL;
846 
847 	/* Allocate a skb - TODO direct I/O to pages? */
848 	skb = netvsc_alloc_recv_skb(net, nvchan);
849 
850 	if (unlikely(!skb)) {
851 		++net_device_ctx->eth_stats.rx_no_memory;
852 		rcu_read_unlock();
853 		return NVSP_STAT_FAIL;
854 	}
855 
856 	skb_record_rx_queue(skb, q_idx);
857 
858 	/*
859 	 * Even if injecting the packet, record the statistics
860 	 * on the synthetic device because modifying the VF device
861 	 * statistics will not work correctly.
862 	 */
863 	rx_stats = &nvchan->rx_stats;
864 	u64_stats_update_begin(&rx_stats->syncp);
865 	rx_stats->packets++;
866 	rx_stats->bytes += nvchan->rsc.pktlen;
867 
868 	if (skb->pkt_type == PACKET_BROADCAST)
869 		++rx_stats->broadcast;
870 	else if (skb->pkt_type == PACKET_MULTICAST)
871 		++rx_stats->multicast;
872 	u64_stats_update_end(&rx_stats->syncp);
873 
874 	napi_gro_receive(&nvchan->napi, skb);
875 	return NVSP_STAT_SUCCESS;
876 }
877 
878 static void netvsc_get_drvinfo(struct net_device *net,
879 			       struct ethtool_drvinfo *info)
880 {
881 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
882 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
883 }
884 
885 static void netvsc_get_channels(struct net_device *net,
886 				struct ethtool_channels *channel)
887 {
888 	struct net_device_context *net_device_ctx = netdev_priv(net);
889 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
890 
891 	if (nvdev) {
892 		channel->max_combined	= nvdev->max_chn;
893 		channel->combined_count = nvdev->num_chn;
894 	}
895 }
896 
897 /* Alloc struct netvsc_device_info, and initialize it from either existing
898  * struct netvsc_device, or from default values.
899  */
900 static struct netvsc_device_info *netvsc_devinfo_get
901 			(struct netvsc_device *nvdev)
902 {
903 	struct netvsc_device_info *dev_info;
904 
905 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
906 
907 	if (!dev_info)
908 		return NULL;
909 
910 	if (nvdev) {
911 		dev_info->num_chn = nvdev->num_chn;
912 		dev_info->send_sections = nvdev->send_section_cnt;
913 		dev_info->send_section_size = nvdev->send_section_size;
914 		dev_info->recv_sections = nvdev->recv_section_cnt;
915 		dev_info->recv_section_size = nvdev->recv_section_size;
916 
917 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
918 		       NETVSC_HASH_KEYLEN);
919 	} else {
920 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
921 		dev_info->send_sections = NETVSC_DEFAULT_TX;
922 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
923 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
924 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
925 	}
926 
927 	return dev_info;
928 }
929 
930 static int netvsc_detach(struct net_device *ndev,
931 			 struct netvsc_device *nvdev)
932 {
933 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
934 	struct hv_device *hdev = ndev_ctx->device_ctx;
935 	int ret;
936 
937 	/* Don't try continuing to try and setup sub channels */
938 	if (cancel_work_sync(&nvdev->subchan_work))
939 		nvdev->num_chn = 1;
940 
941 	/* If device was up (receiving) then shutdown */
942 	if (netif_running(ndev)) {
943 		netvsc_tx_disable(nvdev, ndev);
944 
945 		ret = rndis_filter_close(nvdev);
946 		if (ret) {
947 			netdev_err(ndev,
948 				   "unable to close device (ret %d).\n", ret);
949 			return ret;
950 		}
951 
952 		ret = netvsc_wait_until_empty(nvdev);
953 		if (ret) {
954 			netdev_err(ndev,
955 				   "Ring buffer not empty after closing rndis\n");
956 			return ret;
957 		}
958 	}
959 
960 	netif_device_detach(ndev);
961 
962 	rndis_filter_device_remove(hdev, nvdev);
963 
964 	return 0;
965 }
966 
967 static int netvsc_attach(struct net_device *ndev,
968 			 struct netvsc_device_info *dev_info)
969 {
970 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
971 	struct hv_device *hdev = ndev_ctx->device_ctx;
972 	struct netvsc_device *nvdev;
973 	struct rndis_device *rdev;
974 	int ret;
975 
976 	nvdev = rndis_filter_device_add(hdev, dev_info);
977 	if (IS_ERR(nvdev))
978 		return PTR_ERR(nvdev);
979 
980 	if (nvdev->num_chn > 1) {
981 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
982 
983 		/* if unavailable, just proceed with one queue */
984 		if (ret) {
985 			nvdev->max_chn = 1;
986 			nvdev->num_chn = 1;
987 		}
988 	}
989 
990 	/* In any case device is now ready */
991 	netif_device_attach(ndev);
992 
993 	/* Note: enable and attach happen when sub-channels setup */
994 	netif_carrier_off(ndev);
995 
996 	if (netif_running(ndev)) {
997 		ret = rndis_filter_open(nvdev);
998 		if (ret)
999 			return ret;
1000 
1001 		rdev = nvdev->extension;
1002 		if (!rdev->link_state)
1003 			netif_carrier_on(ndev);
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static int netvsc_set_channels(struct net_device *net,
1010 			       struct ethtool_channels *channels)
1011 {
1012 	struct net_device_context *net_device_ctx = netdev_priv(net);
1013 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1014 	unsigned int orig, count = channels->combined_count;
1015 	struct netvsc_device_info *device_info;
1016 	int ret;
1017 
1018 	/* We do not support separate count for rx, tx, or other */
1019 	if (count == 0 ||
1020 	    channels->rx_count || channels->tx_count || channels->other_count)
1021 		return -EINVAL;
1022 
1023 	if (!nvdev || nvdev->destroy)
1024 		return -ENODEV;
1025 
1026 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1027 		return -EINVAL;
1028 
1029 	if (count > nvdev->max_chn)
1030 		return -EINVAL;
1031 
1032 	orig = nvdev->num_chn;
1033 
1034 	device_info = netvsc_devinfo_get(nvdev);
1035 
1036 	if (!device_info)
1037 		return -ENOMEM;
1038 
1039 	device_info->num_chn = count;
1040 
1041 	ret = netvsc_detach(net, nvdev);
1042 	if (ret)
1043 		goto out;
1044 
1045 	ret = netvsc_attach(net, device_info);
1046 	if (ret) {
1047 		device_info->num_chn = orig;
1048 		if (netvsc_attach(net, device_info))
1049 			netdev_err(net, "restoring channel setting failed\n");
1050 	}
1051 
1052 out:
1053 	kfree(device_info);
1054 	return ret;
1055 }
1056 
1057 static bool
1058 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1059 {
1060 	struct ethtool_link_ksettings diff1 = *cmd;
1061 	struct ethtool_link_ksettings diff2 = {};
1062 
1063 	diff1.base.speed = 0;
1064 	diff1.base.duplex = 0;
1065 	/* advertising and cmd are usually set */
1066 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1067 	diff1.base.cmd = 0;
1068 	/* We set port to PORT_OTHER */
1069 	diff2.base.port = PORT_OTHER;
1070 
1071 	return !memcmp(&diff1, &diff2, sizeof(diff1));
1072 }
1073 
1074 static void netvsc_init_settings(struct net_device *dev)
1075 {
1076 	struct net_device_context *ndc = netdev_priv(dev);
1077 
1078 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1079 
1080 	ndc->speed = SPEED_UNKNOWN;
1081 	ndc->duplex = DUPLEX_FULL;
1082 
1083 	dev->features = NETIF_F_LRO;
1084 }
1085 
1086 static int netvsc_get_link_ksettings(struct net_device *dev,
1087 				     struct ethtool_link_ksettings *cmd)
1088 {
1089 	struct net_device_context *ndc = netdev_priv(dev);
1090 
1091 	cmd->base.speed = ndc->speed;
1092 	cmd->base.duplex = ndc->duplex;
1093 	cmd->base.port = PORT_OTHER;
1094 
1095 	return 0;
1096 }
1097 
1098 static int netvsc_set_link_ksettings(struct net_device *dev,
1099 				     const struct ethtool_link_ksettings *cmd)
1100 {
1101 	struct net_device_context *ndc = netdev_priv(dev);
1102 	u32 speed;
1103 
1104 	speed = cmd->base.speed;
1105 	if (!ethtool_validate_speed(speed) ||
1106 	    !ethtool_validate_duplex(cmd->base.duplex) ||
1107 	    !netvsc_validate_ethtool_ss_cmd(cmd))
1108 		return -EINVAL;
1109 
1110 	ndc->speed = speed;
1111 	ndc->duplex = cmd->base.duplex;
1112 
1113 	return 0;
1114 }
1115 
1116 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1117 {
1118 	struct net_device_context *ndevctx = netdev_priv(ndev);
1119 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1120 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1121 	int orig_mtu = ndev->mtu;
1122 	struct netvsc_device_info *device_info;
1123 	int ret = 0;
1124 
1125 	if (!nvdev || nvdev->destroy)
1126 		return -ENODEV;
1127 
1128 	device_info = netvsc_devinfo_get(nvdev);
1129 
1130 	if (!device_info)
1131 		return -ENOMEM;
1132 
1133 	/* Change MTU of underlying VF netdev first. */
1134 	if (vf_netdev) {
1135 		ret = dev_set_mtu(vf_netdev, mtu);
1136 		if (ret)
1137 			goto out;
1138 	}
1139 
1140 	ret = netvsc_detach(ndev, nvdev);
1141 	if (ret)
1142 		goto rollback_vf;
1143 
1144 	ndev->mtu = mtu;
1145 
1146 	ret = netvsc_attach(ndev, device_info);
1147 	if (!ret)
1148 		goto out;
1149 
1150 	/* Attempt rollback to original MTU */
1151 	ndev->mtu = orig_mtu;
1152 
1153 	if (netvsc_attach(ndev, device_info))
1154 		netdev_err(ndev, "restoring mtu failed\n");
1155 rollback_vf:
1156 	if (vf_netdev)
1157 		dev_set_mtu(vf_netdev, orig_mtu);
1158 
1159 out:
1160 	kfree(device_info);
1161 	return ret;
1162 }
1163 
1164 static void netvsc_get_vf_stats(struct net_device *net,
1165 				struct netvsc_vf_pcpu_stats *tot)
1166 {
1167 	struct net_device_context *ndev_ctx = netdev_priv(net);
1168 	int i;
1169 
1170 	memset(tot, 0, sizeof(*tot));
1171 
1172 	for_each_possible_cpu(i) {
1173 		const struct netvsc_vf_pcpu_stats *stats
1174 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1175 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1176 		unsigned int start;
1177 
1178 		do {
1179 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1180 			rx_packets = stats->rx_packets;
1181 			tx_packets = stats->tx_packets;
1182 			rx_bytes = stats->rx_bytes;
1183 			tx_bytes = stats->tx_bytes;
1184 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1185 
1186 		tot->rx_packets += rx_packets;
1187 		tot->tx_packets += tx_packets;
1188 		tot->rx_bytes   += rx_bytes;
1189 		tot->tx_bytes   += tx_bytes;
1190 		tot->tx_dropped += stats->tx_dropped;
1191 	}
1192 }
1193 
1194 static void netvsc_get_pcpu_stats(struct net_device *net,
1195 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1196 {
1197 	struct net_device_context *ndev_ctx = netdev_priv(net);
1198 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1199 	int i;
1200 
1201 	/* fetch percpu stats of vf */
1202 	for_each_possible_cpu(i) {
1203 		const struct netvsc_vf_pcpu_stats *stats =
1204 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1205 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1206 		unsigned int start;
1207 
1208 		do {
1209 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1210 			this_tot->vf_rx_packets = stats->rx_packets;
1211 			this_tot->vf_tx_packets = stats->tx_packets;
1212 			this_tot->vf_rx_bytes = stats->rx_bytes;
1213 			this_tot->vf_tx_bytes = stats->tx_bytes;
1214 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1215 		this_tot->rx_packets = this_tot->vf_rx_packets;
1216 		this_tot->tx_packets = this_tot->vf_tx_packets;
1217 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1218 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1219 	}
1220 
1221 	/* fetch percpu stats of netvsc */
1222 	for (i = 0; i < nvdev->num_chn; i++) {
1223 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1224 		const struct netvsc_stats *stats;
1225 		struct netvsc_ethtool_pcpu_stats *this_tot =
1226 			&pcpu_tot[nvchan->channel->target_cpu];
1227 		u64 packets, bytes;
1228 		unsigned int start;
1229 
1230 		stats = &nvchan->tx_stats;
1231 		do {
1232 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1233 			packets = stats->packets;
1234 			bytes = stats->bytes;
1235 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1236 
1237 		this_tot->tx_bytes	+= bytes;
1238 		this_tot->tx_packets	+= packets;
1239 
1240 		stats = &nvchan->rx_stats;
1241 		do {
1242 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1243 			packets = stats->packets;
1244 			bytes = stats->bytes;
1245 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1246 
1247 		this_tot->rx_bytes	+= bytes;
1248 		this_tot->rx_packets	+= packets;
1249 	}
1250 }
1251 
1252 static void netvsc_get_stats64(struct net_device *net,
1253 			       struct rtnl_link_stats64 *t)
1254 {
1255 	struct net_device_context *ndev_ctx = netdev_priv(net);
1256 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1257 	struct netvsc_vf_pcpu_stats vf_tot;
1258 	int i;
1259 
1260 	if (!nvdev)
1261 		return;
1262 
1263 	netdev_stats_to_stats64(t, &net->stats);
1264 
1265 	netvsc_get_vf_stats(net, &vf_tot);
1266 	t->rx_packets += vf_tot.rx_packets;
1267 	t->tx_packets += vf_tot.tx_packets;
1268 	t->rx_bytes   += vf_tot.rx_bytes;
1269 	t->tx_bytes   += vf_tot.tx_bytes;
1270 	t->tx_dropped += vf_tot.tx_dropped;
1271 
1272 	for (i = 0; i < nvdev->num_chn; i++) {
1273 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1274 		const struct netvsc_stats *stats;
1275 		u64 packets, bytes, multicast;
1276 		unsigned int start;
1277 
1278 		stats = &nvchan->tx_stats;
1279 		do {
1280 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1281 			packets = stats->packets;
1282 			bytes = stats->bytes;
1283 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1284 
1285 		t->tx_bytes	+= bytes;
1286 		t->tx_packets	+= packets;
1287 
1288 		stats = &nvchan->rx_stats;
1289 		do {
1290 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1291 			packets = stats->packets;
1292 			bytes = stats->bytes;
1293 			multicast = stats->multicast + stats->broadcast;
1294 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1295 
1296 		t->rx_bytes	+= bytes;
1297 		t->rx_packets	+= packets;
1298 		t->multicast	+= multicast;
1299 	}
1300 }
1301 
1302 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1303 {
1304 	struct net_device_context *ndc = netdev_priv(ndev);
1305 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1306 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1307 	struct sockaddr *addr = p;
1308 	int err;
1309 
1310 	err = eth_prepare_mac_addr_change(ndev, p);
1311 	if (err)
1312 		return err;
1313 
1314 	if (!nvdev)
1315 		return -ENODEV;
1316 
1317 	if (vf_netdev) {
1318 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1319 		if (err)
1320 			return err;
1321 	}
1322 
1323 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1324 	if (!err) {
1325 		eth_commit_mac_addr_change(ndev, p);
1326 	} else if (vf_netdev) {
1327 		/* rollback change on VF */
1328 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1329 		dev_set_mac_address(vf_netdev, addr, NULL);
1330 	}
1331 
1332 	return err;
1333 }
1334 
1335 static const struct {
1336 	char name[ETH_GSTRING_LEN];
1337 	u16 offset;
1338 } netvsc_stats[] = {
1339 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1340 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1341 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1342 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1343 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1344 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1345 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1346 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1347 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1348 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1349 }, pcpu_stats[] = {
1350 	{ "cpu%u_rx_packets",
1351 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1352 	{ "cpu%u_rx_bytes",
1353 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1354 	{ "cpu%u_tx_packets",
1355 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1356 	{ "cpu%u_tx_bytes",
1357 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1358 	{ "cpu%u_vf_rx_packets",
1359 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1360 	{ "cpu%u_vf_rx_bytes",
1361 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1362 	{ "cpu%u_vf_tx_packets",
1363 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1364 	{ "cpu%u_vf_tx_bytes",
1365 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1366 }, vf_stats[] = {
1367 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1368 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1369 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1370 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1371 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1372 };
1373 
1374 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1375 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1376 
1377 /* statistics per queue (rx/tx packets/bytes) */
1378 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1379 
1380 /* 4 statistics per queue (rx/tx packets/bytes) */
1381 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1382 
1383 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1384 {
1385 	struct net_device_context *ndc = netdev_priv(dev);
1386 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1387 
1388 	if (!nvdev)
1389 		return -ENODEV;
1390 
1391 	switch (string_set) {
1392 	case ETH_SS_STATS:
1393 		return NETVSC_GLOBAL_STATS_LEN
1394 			+ NETVSC_VF_STATS_LEN
1395 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1396 			+ NETVSC_PCPU_STATS_LEN;
1397 	default:
1398 		return -EINVAL;
1399 	}
1400 }
1401 
1402 static void netvsc_get_ethtool_stats(struct net_device *dev,
1403 				     struct ethtool_stats *stats, u64 *data)
1404 {
1405 	struct net_device_context *ndc = netdev_priv(dev);
1406 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1407 	const void *nds = &ndc->eth_stats;
1408 	const struct netvsc_stats *qstats;
1409 	struct netvsc_vf_pcpu_stats sum;
1410 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1411 	unsigned int start;
1412 	u64 packets, bytes;
1413 	int i, j, cpu;
1414 
1415 	if (!nvdev)
1416 		return;
1417 
1418 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1419 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1420 
1421 	netvsc_get_vf_stats(dev, &sum);
1422 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1423 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1424 
1425 	for (j = 0; j < nvdev->num_chn; j++) {
1426 		qstats = &nvdev->chan_table[j].tx_stats;
1427 
1428 		do {
1429 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1430 			packets = qstats->packets;
1431 			bytes = qstats->bytes;
1432 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1433 		data[i++] = packets;
1434 		data[i++] = bytes;
1435 
1436 		qstats = &nvdev->chan_table[j].rx_stats;
1437 		do {
1438 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1439 			packets = qstats->packets;
1440 			bytes = qstats->bytes;
1441 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1442 		data[i++] = packets;
1443 		data[i++] = bytes;
1444 	}
1445 
1446 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1447 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1448 				  GFP_KERNEL);
1449 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1450 	for_each_present_cpu(cpu) {
1451 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1452 
1453 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1454 			data[i++] = *(u64 *)((void *)this_sum
1455 					     + pcpu_stats[j].offset);
1456 	}
1457 	kvfree(pcpu_sum);
1458 }
1459 
1460 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1461 {
1462 	struct net_device_context *ndc = netdev_priv(dev);
1463 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1464 	u8 *p = data;
1465 	int i, cpu;
1466 
1467 	if (!nvdev)
1468 		return;
1469 
1470 	switch (stringset) {
1471 	case ETH_SS_STATS:
1472 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1473 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1474 			p += ETH_GSTRING_LEN;
1475 		}
1476 
1477 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1478 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1479 			p += ETH_GSTRING_LEN;
1480 		}
1481 
1482 		for (i = 0; i < nvdev->num_chn; i++) {
1483 			sprintf(p, "tx_queue_%u_packets", i);
1484 			p += ETH_GSTRING_LEN;
1485 			sprintf(p, "tx_queue_%u_bytes", i);
1486 			p += ETH_GSTRING_LEN;
1487 			sprintf(p, "rx_queue_%u_packets", i);
1488 			p += ETH_GSTRING_LEN;
1489 			sprintf(p, "rx_queue_%u_bytes", i);
1490 			p += ETH_GSTRING_LEN;
1491 		}
1492 
1493 		for_each_present_cpu(cpu) {
1494 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1495 				sprintf(p, pcpu_stats[i].name, cpu);
1496 				p += ETH_GSTRING_LEN;
1497 			}
1498 		}
1499 
1500 		break;
1501 	}
1502 }
1503 
1504 static int
1505 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1506 			 struct ethtool_rxnfc *info)
1507 {
1508 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1509 
1510 	info->data = RXH_IP_SRC | RXH_IP_DST;
1511 
1512 	switch (info->flow_type) {
1513 	case TCP_V4_FLOW:
1514 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1515 			info->data |= l4_flag;
1516 
1517 		break;
1518 
1519 	case TCP_V6_FLOW:
1520 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1521 			info->data |= l4_flag;
1522 
1523 		break;
1524 
1525 	case UDP_V4_FLOW:
1526 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1527 			info->data |= l4_flag;
1528 
1529 		break;
1530 
1531 	case UDP_V6_FLOW:
1532 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1533 			info->data |= l4_flag;
1534 
1535 		break;
1536 
1537 	case IPV4_FLOW:
1538 	case IPV6_FLOW:
1539 		break;
1540 	default:
1541 		info->data = 0;
1542 		break;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static int
1549 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1550 		 u32 *rules)
1551 {
1552 	struct net_device_context *ndc = netdev_priv(dev);
1553 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1554 
1555 	if (!nvdev)
1556 		return -ENODEV;
1557 
1558 	switch (info->cmd) {
1559 	case ETHTOOL_GRXRINGS:
1560 		info->data = nvdev->num_chn;
1561 		return 0;
1562 
1563 	case ETHTOOL_GRXFH:
1564 		return netvsc_get_rss_hash_opts(ndc, info);
1565 	}
1566 	return -EOPNOTSUPP;
1567 }
1568 
1569 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1570 				    struct ethtool_rxnfc *info)
1571 {
1572 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1573 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1574 		switch (info->flow_type) {
1575 		case TCP_V4_FLOW:
1576 			ndc->l4_hash |= HV_TCP4_L4HASH;
1577 			break;
1578 
1579 		case TCP_V6_FLOW:
1580 			ndc->l4_hash |= HV_TCP6_L4HASH;
1581 			break;
1582 
1583 		case UDP_V4_FLOW:
1584 			ndc->l4_hash |= HV_UDP4_L4HASH;
1585 			break;
1586 
1587 		case UDP_V6_FLOW:
1588 			ndc->l4_hash |= HV_UDP6_L4HASH;
1589 			break;
1590 
1591 		default:
1592 			return -EOPNOTSUPP;
1593 		}
1594 
1595 		return 0;
1596 	}
1597 
1598 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1599 		switch (info->flow_type) {
1600 		case TCP_V4_FLOW:
1601 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1602 			break;
1603 
1604 		case TCP_V6_FLOW:
1605 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1606 			break;
1607 
1608 		case UDP_V4_FLOW:
1609 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1610 			break;
1611 
1612 		case UDP_V6_FLOW:
1613 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1614 			break;
1615 
1616 		default:
1617 			return -EOPNOTSUPP;
1618 		}
1619 
1620 		return 0;
1621 	}
1622 
1623 	return -EOPNOTSUPP;
1624 }
1625 
1626 static int
1627 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1628 {
1629 	struct net_device_context *ndc = netdev_priv(ndev);
1630 
1631 	if (info->cmd == ETHTOOL_SRXFH)
1632 		return netvsc_set_rss_hash_opts(ndc, info);
1633 
1634 	return -EOPNOTSUPP;
1635 }
1636 
1637 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1638 {
1639 	return NETVSC_HASH_KEYLEN;
1640 }
1641 
1642 static u32 netvsc_rss_indir_size(struct net_device *dev)
1643 {
1644 	return ITAB_NUM;
1645 }
1646 
1647 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1648 			   u8 *hfunc)
1649 {
1650 	struct net_device_context *ndc = netdev_priv(dev);
1651 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1652 	struct rndis_device *rndis_dev;
1653 	int i;
1654 
1655 	if (!ndev)
1656 		return -ENODEV;
1657 
1658 	if (hfunc)
1659 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1660 
1661 	rndis_dev = ndev->extension;
1662 	if (indir) {
1663 		for (i = 0; i < ITAB_NUM; i++)
1664 			indir[i] = rndis_dev->rx_table[i];
1665 	}
1666 
1667 	if (key)
1668 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1669 
1670 	return 0;
1671 }
1672 
1673 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1674 			   const u8 *key, const u8 hfunc)
1675 {
1676 	struct net_device_context *ndc = netdev_priv(dev);
1677 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1678 	struct rndis_device *rndis_dev;
1679 	int i;
1680 
1681 	if (!ndev)
1682 		return -ENODEV;
1683 
1684 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1685 		return -EOPNOTSUPP;
1686 
1687 	rndis_dev = ndev->extension;
1688 	if (indir) {
1689 		for (i = 0; i < ITAB_NUM; i++)
1690 			if (indir[i] >= ndev->num_chn)
1691 				return -EINVAL;
1692 
1693 		for (i = 0; i < ITAB_NUM; i++)
1694 			rndis_dev->rx_table[i] = indir[i];
1695 	}
1696 
1697 	if (!key) {
1698 		if (!indir)
1699 			return 0;
1700 
1701 		key = rndis_dev->rss_key;
1702 	}
1703 
1704 	return rndis_filter_set_rss_param(rndis_dev, key);
1705 }
1706 
1707 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1708  * It does have pre-allocated receive area which is divided into sections.
1709  */
1710 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1711 				   struct ethtool_ringparam *ring)
1712 {
1713 	u32 max_buf_size;
1714 
1715 	ring->rx_pending = nvdev->recv_section_cnt;
1716 	ring->tx_pending = nvdev->send_section_cnt;
1717 
1718 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1719 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1720 	else
1721 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1722 
1723 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1724 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1725 		/ nvdev->send_section_size;
1726 }
1727 
1728 static void netvsc_get_ringparam(struct net_device *ndev,
1729 				 struct ethtool_ringparam *ring)
1730 {
1731 	struct net_device_context *ndevctx = netdev_priv(ndev);
1732 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1733 
1734 	if (!nvdev)
1735 		return;
1736 
1737 	__netvsc_get_ringparam(nvdev, ring);
1738 }
1739 
1740 static int netvsc_set_ringparam(struct net_device *ndev,
1741 				struct ethtool_ringparam *ring)
1742 {
1743 	struct net_device_context *ndevctx = netdev_priv(ndev);
1744 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1745 	struct netvsc_device_info *device_info;
1746 	struct ethtool_ringparam orig;
1747 	u32 new_tx, new_rx;
1748 	int ret = 0;
1749 
1750 	if (!nvdev || nvdev->destroy)
1751 		return -ENODEV;
1752 
1753 	memset(&orig, 0, sizeof(orig));
1754 	__netvsc_get_ringparam(nvdev, &orig);
1755 
1756 	new_tx = clamp_t(u32, ring->tx_pending,
1757 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1758 	new_rx = clamp_t(u32, ring->rx_pending,
1759 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1760 
1761 	if (new_tx == orig.tx_pending &&
1762 	    new_rx == orig.rx_pending)
1763 		return 0;	 /* no change */
1764 
1765 	device_info = netvsc_devinfo_get(nvdev);
1766 
1767 	if (!device_info)
1768 		return -ENOMEM;
1769 
1770 	device_info->send_sections = new_tx;
1771 	device_info->recv_sections = new_rx;
1772 
1773 	ret = netvsc_detach(ndev, nvdev);
1774 	if (ret)
1775 		goto out;
1776 
1777 	ret = netvsc_attach(ndev, device_info);
1778 	if (ret) {
1779 		device_info->send_sections = orig.tx_pending;
1780 		device_info->recv_sections = orig.rx_pending;
1781 
1782 		if (netvsc_attach(ndev, device_info))
1783 			netdev_err(ndev, "restoring ringparam failed");
1784 	}
1785 
1786 out:
1787 	kfree(device_info);
1788 	return ret;
1789 }
1790 
1791 static int netvsc_set_features(struct net_device *ndev,
1792 			       netdev_features_t features)
1793 {
1794 	netdev_features_t change = features ^ ndev->features;
1795 	struct net_device_context *ndevctx = netdev_priv(ndev);
1796 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1797 	struct ndis_offload_params offloads;
1798 
1799 	if (!nvdev || nvdev->destroy)
1800 		return -ENODEV;
1801 
1802 	if (!(change & NETIF_F_LRO))
1803 		return 0;
1804 
1805 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806 
1807 	if (features & NETIF_F_LRO) {
1808 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810 	} else {
1811 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813 	}
1814 
1815 	return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816 }
1817 
1818 static u32 netvsc_get_msglevel(struct net_device *ndev)
1819 {
1820 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1821 
1822 	return ndev_ctx->msg_enable;
1823 }
1824 
1825 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1826 {
1827 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1828 
1829 	ndev_ctx->msg_enable = val;
1830 }
1831 
1832 static const struct ethtool_ops ethtool_ops = {
1833 	.get_drvinfo	= netvsc_get_drvinfo,
1834 	.get_msglevel	= netvsc_get_msglevel,
1835 	.set_msglevel	= netvsc_set_msglevel,
1836 	.get_link	= ethtool_op_get_link,
1837 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1838 	.get_sset_count = netvsc_get_sset_count,
1839 	.get_strings	= netvsc_get_strings,
1840 	.get_channels   = netvsc_get_channels,
1841 	.set_channels   = netvsc_set_channels,
1842 	.get_ts_info	= ethtool_op_get_ts_info,
1843 	.get_rxnfc	= netvsc_get_rxnfc,
1844 	.set_rxnfc	= netvsc_set_rxnfc,
1845 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1846 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1847 	.get_rxfh	= netvsc_get_rxfh,
1848 	.set_rxfh	= netvsc_set_rxfh,
1849 	.get_link_ksettings = netvsc_get_link_ksettings,
1850 	.set_link_ksettings = netvsc_set_link_ksettings,
1851 	.get_ringparam	= netvsc_get_ringparam,
1852 	.set_ringparam	= netvsc_set_ringparam,
1853 };
1854 
1855 static const struct net_device_ops device_ops = {
1856 	.ndo_open =			netvsc_open,
1857 	.ndo_stop =			netvsc_close,
1858 	.ndo_start_xmit =		netvsc_start_xmit,
1859 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1860 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1861 	.ndo_set_features =		netvsc_set_features,
1862 	.ndo_change_mtu =		netvsc_change_mtu,
1863 	.ndo_validate_addr =		eth_validate_addr,
1864 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1865 	.ndo_select_queue =		netvsc_select_queue,
1866 	.ndo_get_stats64 =		netvsc_get_stats64,
1867 };
1868 
1869 /*
1870  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1871  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1872  * present send GARP packet to network peers with netif_notify_peers().
1873  */
1874 static void netvsc_link_change(struct work_struct *w)
1875 {
1876 	struct net_device_context *ndev_ctx =
1877 		container_of(w, struct net_device_context, dwork.work);
1878 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1879 	struct net_device *net = hv_get_drvdata(device_obj);
1880 	struct netvsc_device *net_device;
1881 	struct rndis_device *rdev;
1882 	struct netvsc_reconfig *event = NULL;
1883 	bool notify = false, reschedule = false;
1884 	unsigned long flags, next_reconfig, delay;
1885 
1886 	/* if changes are happening, comeback later */
1887 	if (!rtnl_trylock()) {
1888 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1889 		return;
1890 	}
1891 
1892 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1893 	if (!net_device)
1894 		goto out_unlock;
1895 
1896 	rdev = net_device->extension;
1897 
1898 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1899 	if (time_is_after_jiffies(next_reconfig)) {
1900 		/* link_watch only sends one notification with current state
1901 		 * per second, avoid doing reconfig more frequently. Handle
1902 		 * wrap around.
1903 		 */
1904 		delay = next_reconfig - jiffies;
1905 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1906 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1907 		goto out_unlock;
1908 	}
1909 	ndev_ctx->last_reconfig = jiffies;
1910 
1911 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1912 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1913 		event = list_first_entry(&ndev_ctx->reconfig_events,
1914 					 struct netvsc_reconfig, list);
1915 		list_del(&event->list);
1916 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1917 	}
1918 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1919 
1920 	if (!event)
1921 		goto out_unlock;
1922 
1923 	switch (event->event) {
1924 		/* Only the following events are possible due to the check in
1925 		 * netvsc_linkstatus_callback()
1926 		 */
1927 	case RNDIS_STATUS_MEDIA_CONNECT:
1928 		if (rdev->link_state) {
1929 			rdev->link_state = false;
1930 			netif_carrier_on(net);
1931 			netvsc_tx_enable(net_device, net);
1932 		} else {
1933 			notify = true;
1934 		}
1935 		kfree(event);
1936 		break;
1937 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1938 		if (!rdev->link_state) {
1939 			rdev->link_state = true;
1940 			netif_carrier_off(net);
1941 			netvsc_tx_disable(net_device, net);
1942 		}
1943 		kfree(event);
1944 		break;
1945 	case RNDIS_STATUS_NETWORK_CHANGE:
1946 		/* Only makes sense if carrier is present */
1947 		if (!rdev->link_state) {
1948 			rdev->link_state = true;
1949 			netif_carrier_off(net);
1950 			netvsc_tx_disable(net_device, net);
1951 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1952 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1953 			list_add(&event->list, &ndev_ctx->reconfig_events);
1954 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1955 			reschedule = true;
1956 		}
1957 		break;
1958 	}
1959 
1960 	rtnl_unlock();
1961 
1962 	if (notify)
1963 		netdev_notify_peers(net);
1964 
1965 	/* link_watch only sends one notification with current state per
1966 	 * second, handle next reconfig event in 2 seconds.
1967 	 */
1968 	if (reschedule)
1969 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1970 
1971 	return;
1972 
1973 out_unlock:
1974 	rtnl_unlock();
1975 }
1976 
1977 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1978 {
1979 	struct net_device_context *net_device_ctx;
1980 	struct net_device *dev;
1981 
1982 	dev = netdev_master_upper_dev_get(vf_netdev);
1983 	if (!dev || dev->netdev_ops != &device_ops)
1984 		return NULL;	/* not a netvsc device */
1985 
1986 	net_device_ctx = netdev_priv(dev);
1987 	if (!rtnl_dereference(net_device_ctx->nvdev))
1988 		return NULL;	/* device is removed */
1989 
1990 	return dev;
1991 }
1992 
1993 /* Called when VF is injecting data into network stack.
1994  * Change the associated network device from VF to netvsc.
1995  * note: already called with rcu_read_lock
1996  */
1997 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1998 {
1999 	struct sk_buff *skb = *pskb;
2000 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2001 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2002 	struct netvsc_vf_pcpu_stats *pcpu_stats
2003 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2004 
2005 	skb->dev = ndev;
2006 
2007 	u64_stats_update_begin(&pcpu_stats->syncp);
2008 	pcpu_stats->rx_packets++;
2009 	pcpu_stats->rx_bytes += skb->len;
2010 	u64_stats_update_end(&pcpu_stats->syncp);
2011 
2012 	return RX_HANDLER_ANOTHER;
2013 }
2014 
2015 static int netvsc_vf_join(struct net_device *vf_netdev,
2016 			  struct net_device *ndev)
2017 {
2018 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2019 	int ret;
2020 
2021 	ret = netdev_rx_handler_register(vf_netdev,
2022 					 netvsc_vf_handle_frame, ndev);
2023 	if (ret != 0) {
2024 		netdev_err(vf_netdev,
2025 			   "can not register netvsc VF receive handler (err = %d)\n",
2026 			   ret);
2027 		goto rx_handler_failed;
2028 	}
2029 
2030 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2031 					   NULL, NULL, NULL);
2032 	if (ret != 0) {
2033 		netdev_err(vf_netdev,
2034 			   "can not set master device %s (err = %d)\n",
2035 			   ndev->name, ret);
2036 		goto upper_link_failed;
2037 	}
2038 
2039 	/* set slave flag before open to prevent IPv6 addrconf */
2040 	vf_netdev->flags |= IFF_SLAVE;
2041 
2042 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2043 
2044 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2045 
2046 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2047 	return 0;
2048 
2049 upper_link_failed:
2050 	netdev_rx_handler_unregister(vf_netdev);
2051 rx_handler_failed:
2052 	return ret;
2053 }
2054 
2055 static void __netvsc_vf_setup(struct net_device *ndev,
2056 			      struct net_device *vf_netdev)
2057 {
2058 	int ret;
2059 
2060 	/* Align MTU of VF with master */
2061 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2062 	if (ret)
2063 		netdev_warn(vf_netdev,
2064 			    "unable to change mtu to %u\n", ndev->mtu);
2065 
2066 	/* set multicast etc flags on VF */
2067 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2068 
2069 	/* sync address list from ndev to VF */
2070 	netif_addr_lock_bh(ndev);
2071 	dev_uc_sync(vf_netdev, ndev);
2072 	dev_mc_sync(vf_netdev, ndev);
2073 	netif_addr_unlock_bh(ndev);
2074 
2075 	if (netif_running(ndev)) {
2076 		ret = dev_open(vf_netdev, NULL);
2077 		if (ret)
2078 			netdev_warn(vf_netdev,
2079 				    "unable to open: %d\n", ret);
2080 	}
2081 }
2082 
2083 /* Setup VF as slave of the synthetic device.
2084  * Runs in workqueue to avoid recursion in netlink callbacks.
2085  */
2086 static void netvsc_vf_setup(struct work_struct *w)
2087 {
2088 	struct net_device_context *ndev_ctx
2089 		= container_of(w, struct net_device_context, vf_takeover.work);
2090 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2091 	struct net_device *vf_netdev;
2092 
2093 	if (!rtnl_trylock()) {
2094 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2095 		return;
2096 	}
2097 
2098 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2099 	if (vf_netdev)
2100 		__netvsc_vf_setup(ndev, vf_netdev);
2101 
2102 	rtnl_unlock();
2103 }
2104 
2105 /* Find netvsc by VF serial number.
2106  * The PCI hyperv controller records the serial number as the slot kobj name.
2107  */
2108 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2109 {
2110 	struct device *parent = vf_netdev->dev.parent;
2111 	struct net_device_context *ndev_ctx;
2112 	struct pci_dev *pdev;
2113 	u32 serial;
2114 
2115 	if (!parent || !dev_is_pci(parent))
2116 		return NULL; /* not a PCI device */
2117 
2118 	pdev = to_pci_dev(parent);
2119 	if (!pdev->slot) {
2120 		netdev_notice(vf_netdev, "no PCI slot information\n");
2121 		return NULL;
2122 	}
2123 
2124 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2125 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2126 			      pci_slot_name(pdev->slot));
2127 		return NULL;
2128 	}
2129 
2130 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2131 		if (!ndev_ctx->vf_alloc)
2132 			continue;
2133 
2134 		if (ndev_ctx->vf_serial == serial)
2135 			return hv_get_drvdata(ndev_ctx->device_ctx);
2136 	}
2137 
2138 	netdev_notice(vf_netdev,
2139 		      "no netdev found for vf serial:%u\n", serial);
2140 	return NULL;
2141 }
2142 
2143 static int netvsc_register_vf(struct net_device *vf_netdev)
2144 {
2145 	struct net_device_context *net_device_ctx;
2146 	struct netvsc_device *netvsc_dev;
2147 	struct net_device *ndev;
2148 	int ret;
2149 
2150 	if (vf_netdev->addr_len != ETH_ALEN)
2151 		return NOTIFY_DONE;
2152 
2153 	ndev = get_netvsc_byslot(vf_netdev);
2154 	if (!ndev)
2155 		return NOTIFY_DONE;
2156 
2157 	net_device_ctx = netdev_priv(ndev);
2158 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2159 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2160 		return NOTIFY_DONE;
2161 
2162 	/* if synthetic interface is a different namespace,
2163 	 * then move the VF to that namespace; join will be
2164 	 * done again in that context.
2165 	 */
2166 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2167 		ret = dev_change_net_namespace(vf_netdev,
2168 					       dev_net(ndev), "eth%d");
2169 		if (ret)
2170 			netdev_err(vf_netdev,
2171 				   "could not move to same namespace as %s: %d\n",
2172 				   ndev->name, ret);
2173 		else
2174 			netdev_info(vf_netdev,
2175 				    "VF moved to namespace with: %s\n",
2176 				    ndev->name);
2177 		return NOTIFY_DONE;
2178 	}
2179 
2180 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2181 
2182 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2183 		return NOTIFY_DONE;
2184 
2185 	dev_hold(vf_netdev);
2186 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2187 	return NOTIFY_OK;
2188 }
2189 
2190 /* VF up/down change detected, schedule to change data path */
2191 static int netvsc_vf_changed(struct net_device *vf_netdev)
2192 {
2193 	struct net_device_context *net_device_ctx;
2194 	struct netvsc_device *netvsc_dev;
2195 	struct net_device *ndev;
2196 	bool vf_is_up = netif_running(vf_netdev);
2197 
2198 	ndev = get_netvsc_byref(vf_netdev);
2199 	if (!ndev)
2200 		return NOTIFY_DONE;
2201 
2202 	net_device_ctx = netdev_priv(ndev);
2203 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2204 	if (!netvsc_dev)
2205 		return NOTIFY_DONE;
2206 
2207 	netvsc_switch_datapath(ndev, vf_is_up);
2208 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2209 		    vf_is_up ? "to" : "from", vf_netdev->name);
2210 
2211 	return NOTIFY_OK;
2212 }
2213 
2214 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2215 {
2216 	struct net_device *ndev;
2217 	struct net_device_context *net_device_ctx;
2218 
2219 	ndev = get_netvsc_byref(vf_netdev);
2220 	if (!ndev)
2221 		return NOTIFY_DONE;
2222 
2223 	net_device_ctx = netdev_priv(ndev);
2224 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2225 
2226 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2227 
2228 	netdev_rx_handler_unregister(vf_netdev);
2229 	netdev_upper_dev_unlink(vf_netdev, ndev);
2230 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2231 	dev_put(vf_netdev);
2232 
2233 	return NOTIFY_OK;
2234 }
2235 
2236 static int netvsc_probe(struct hv_device *dev,
2237 			const struct hv_vmbus_device_id *dev_id)
2238 {
2239 	struct net_device *net = NULL;
2240 	struct net_device_context *net_device_ctx;
2241 	struct netvsc_device_info *device_info = NULL;
2242 	struct netvsc_device *nvdev;
2243 	int ret = -ENOMEM;
2244 
2245 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2246 				VRSS_CHANNEL_MAX);
2247 	if (!net)
2248 		goto no_net;
2249 
2250 	netif_carrier_off(net);
2251 
2252 	netvsc_init_settings(net);
2253 
2254 	net_device_ctx = netdev_priv(net);
2255 	net_device_ctx->device_ctx = dev;
2256 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2257 	if (netif_msg_probe(net_device_ctx))
2258 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2259 			   net_device_ctx->msg_enable);
2260 
2261 	hv_set_drvdata(dev, net);
2262 
2263 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2264 
2265 	spin_lock_init(&net_device_ctx->lock);
2266 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2267 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2268 
2269 	net_device_ctx->vf_stats
2270 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2271 	if (!net_device_ctx->vf_stats)
2272 		goto no_stats;
2273 
2274 	net->netdev_ops = &device_ops;
2275 	net->ethtool_ops = &ethtool_ops;
2276 	SET_NETDEV_DEV(net, &dev->device);
2277 
2278 	/* We always need headroom for rndis header */
2279 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2280 
2281 	/* Initialize the number of queues to be 1, we may change it if more
2282 	 * channels are offered later.
2283 	 */
2284 	netif_set_real_num_tx_queues(net, 1);
2285 	netif_set_real_num_rx_queues(net, 1);
2286 
2287 	/* Notify the netvsc driver of the new device */
2288 	device_info = netvsc_devinfo_get(NULL);
2289 
2290 	if (!device_info) {
2291 		ret = -ENOMEM;
2292 		goto devinfo_failed;
2293 	}
2294 
2295 	nvdev = rndis_filter_device_add(dev, device_info);
2296 	if (IS_ERR(nvdev)) {
2297 		ret = PTR_ERR(nvdev);
2298 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2299 		goto rndis_failed;
2300 	}
2301 
2302 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2303 
2304 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2305 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2306 	 * all subchannels to show up, but that may not happen because
2307 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2308 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2309 	 * the device lock, so all the subchannels can't be processed --
2310 	 * finally netvsc_subchan_work() hangs forever.
2311 	 */
2312 	rtnl_lock();
2313 
2314 	if (nvdev->num_chn > 1)
2315 		schedule_work(&nvdev->subchan_work);
2316 
2317 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2318 	net->features = net->hw_features |
2319 		NETIF_F_HIGHDMA | NETIF_F_SG |
2320 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2321 	net->vlan_features = net->features;
2322 
2323 	netdev_lockdep_set_classes(net);
2324 
2325 	/* MTU range: 68 - 1500 or 65521 */
2326 	net->min_mtu = NETVSC_MTU_MIN;
2327 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2328 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2329 	else
2330 		net->max_mtu = ETH_DATA_LEN;
2331 
2332 	ret = register_netdevice(net);
2333 	if (ret != 0) {
2334 		pr_err("Unable to register netdev.\n");
2335 		goto register_failed;
2336 	}
2337 
2338 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2339 	rtnl_unlock();
2340 
2341 	kfree(device_info);
2342 	return 0;
2343 
2344 register_failed:
2345 	rtnl_unlock();
2346 	rndis_filter_device_remove(dev, nvdev);
2347 rndis_failed:
2348 	kfree(device_info);
2349 devinfo_failed:
2350 	free_percpu(net_device_ctx->vf_stats);
2351 no_stats:
2352 	hv_set_drvdata(dev, NULL);
2353 	free_netdev(net);
2354 no_net:
2355 	return ret;
2356 }
2357 
2358 static int netvsc_remove(struct hv_device *dev)
2359 {
2360 	struct net_device_context *ndev_ctx;
2361 	struct net_device *vf_netdev, *net;
2362 	struct netvsc_device *nvdev;
2363 
2364 	net = hv_get_drvdata(dev);
2365 	if (net == NULL) {
2366 		dev_err(&dev->device, "No net device to remove\n");
2367 		return 0;
2368 	}
2369 
2370 	ndev_ctx = netdev_priv(net);
2371 
2372 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2373 
2374 	rtnl_lock();
2375 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2376 	if (nvdev)
2377 		cancel_work_sync(&nvdev->subchan_work);
2378 
2379 	/*
2380 	 * Call to the vsc driver to let it know that the device is being
2381 	 * removed. Also blocks mtu and channel changes.
2382 	 */
2383 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2384 	if (vf_netdev)
2385 		netvsc_unregister_vf(vf_netdev);
2386 
2387 	if (nvdev)
2388 		rndis_filter_device_remove(dev, nvdev);
2389 
2390 	unregister_netdevice(net);
2391 	list_del(&ndev_ctx->list);
2392 
2393 	rtnl_unlock();
2394 
2395 	hv_set_drvdata(dev, NULL);
2396 
2397 	free_percpu(ndev_ctx->vf_stats);
2398 	free_netdev(net);
2399 	return 0;
2400 }
2401 
2402 static const struct hv_vmbus_device_id id_table[] = {
2403 	/* Network guid */
2404 	{ HV_NIC_GUID, },
2405 	{ },
2406 };
2407 
2408 MODULE_DEVICE_TABLE(vmbus, id_table);
2409 
2410 /* The one and only one */
2411 static struct  hv_driver netvsc_drv = {
2412 	.name = KBUILD_MODNAME,
2413 	.id_table = id_table,
2414 	.probe = netvsc_probe,
2415 	.remove = netvsc_remove,
2416 	.driver = {
2417 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2418 	},
2419 };
2420 
2421 /*
2422  * On Hyper-V, every VF interface is matched with a corresponding
2423  * synthetic interface. The synthetic interface is presented first
2424  * to the guest. When the corresponding VF instance is registered,
2425  * we will take care of switching the data path.
2426  */
2427 static int netvsc_netdev_event(struct notifier_block *this,
2428 			       unsigned long event, void *ptr)
2429 {
2430 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2431 
2432 	/* Skip our own events */
2433 	if (event_dev->netdev_ops == &device_ops)
2434 		return NOTIFY_DONE;
2435 
2436 	/* Avoid non-Ethernet type devices */
2437 	if (event_dev->type != ARPHRD_ETHER)
2438 		return NOTIFY_DONE;
2439 
2440 	/* Avoid Vlan dev with same MAC registering as VF */
2441 	if (is_vlan_dev(event_dev))
2442 		return NOTIFY_DONE;
2443 
2444 	/* Avoid Bonding master dev with same MAC registering as VF */
2445 	if ((event_dev->priv_flags & IFF_BONDING) &&
2446 	    (event_dev->flags & IFF_MASTER))
2447 		return NOTIFY_DONE;
2448 
2449 	switch (event) {
2450 	case NETDEV_REGISTER:
2451 		return netvsc_register_vf(event_dev);
2452 	case NETDEV_UNREGISTER:
2453 		return netvsc_unregister_vf(event_dev);
2454 	case NETDEV_UP:
2455 	case NETDEV_DOWN:
2456 		return netvsc_vf_changed(event_dev);
2457 	default:
2458 		return NOTIFY_DONE;
2459 	}
2460 }
2461 
2462 static struct notifier_block netvsc_netdev_notifier = {
2463 	.notifier_call = netvsc_netdev_event,
2464 };
2465 
2466 static void __exit netvsc_drv_exit(void)
2467 {
2468 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2469 	vmbus_driver_unregister(&netvsc_drv);
2470 }
2471 
2472 static int __init netvsc_drv_init(void)
2473 {
2474 	int ret;
2475 
2476 	if (ring_size < RING_SIZE_MIN) {
2477 		ring_size = RING_SIZE_MIN;
2478 		pr_info("Increased ring_size to %u (min allowed)\n",
2479 			ring_size);
2480 	}
2481 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2482 
2483 	ret = vmbus_driver_register(&netvsc_drv);
2484 	if (ret)
2485 		return ret;
2486 
2487 	register_netdevice_notifier(&netvsc_netdev_notifier);
2488 	return 0;
2489 }
2490 
2491 MODULE_LICENSE("GPL");
2492 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2493 
2494 module_init(netvsc_drv_init);
2495 module_exit(netvsc_drv_exit);
2496