xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 
43 #include "hyperv_net.h"
44 
45 #define RING_SIZE_MIN 64
46 #define LINKCHANGE_INT (2 * HZ)
47 
48 static int ring_size = 128;
49 module_param(ring_size, int, S_IRUGO);
50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51 
52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 				NETIF_MSG_TX_ERR;
56 
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO);
59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60 
61 static void netvsc_set_multicast_list(struct net_device *net)
62 {
63 	struct net_device_context *net_device_ctx = netdev_priv(net);
64 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
65 
66 	rndis_filter_update(nvdev);
67 }
68 
69 static int netvsc_open(struct net_device *net)
70 {
71 	struct net_device_context *ndev_ctx = netdev_priv(net);
72 	struct netvsc_device *nvdev = ndev_ctx->nvdev;
73 	struct rndis_device *rdev;
74 	int ret = 0;
75 
76 	netif_carrier_off(net);
77 
78 	/* Open up the device */
79 	ret = rndis_filter_open(nvdev);
80 	if (ret != 0) {
81 		netdev_err(net, "unable to open device (ret %d).\n", ret);
82 		return ret;
83 	}
84 
85 	netif_tx_wake_all_queues(net);
86 
87 	rdev = nvdev->extension;
88 	if (!rdev->link_state && !ndev_ctx->datapath)
89 		netif_carrier_on(net);
90 
91 	return ret;
92 }
93 
94 static int netvsc_close(struct net_device *net)
95 {
96 	struct net_device_context *net_device_ctx = netdev_priv(net);
97 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
98 	int ret;
99 	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
100 	struct vmbus_channel *chn;
101 
102 	netif_tx_disable(net);
103 
104 	ret = rndis_filter_close(nvdev);
105 	if (ret != 0) {
106 		netdev_err(net, "unable to close device (ret %d).\n", ret);
107 		return ret;
108 	}
109 
110 	/* Ensure pending bytes in ring are read */
111 	while (true) {
112 		aread = 0;
113 		for (i = 0; i < nvdev->num_chn; i++) {
114 			chn = nvdev->chan_table[i].channel;
115 			if (!chn)
116 				continue;
117 
118 			aread = hv_get_bytes_to_read(&chn->inbound);
119 			if (aread)
120 				break;
121 
122 			aread = hv_get_bytes_to_read(&chn->outbound);
123 			if (aread)
124 				break;
125 		}
126 
127 		retry++;
128 		if (retry > retry_max || aread == 0)
129 			break;
130 
131 		msleep(msec);
132 
133 		if (msec < 1000)
134 			msec *= 2;
135 	}
136 
137 	if (aread) {
138 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
139 		ret = -ETIMEDOUT;
140 	}
141 
142 	return ret;
143 }
144 
145 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
146 				int pkt_type)
147 {
148 	struct rndis_packet *rndis_pkt;
149 	struct rndis_per_packet_info *ppi;
150 
151 	rndis_pkt = &msg->msg.pkt;
152 	rndis_pkt->data_offset += ppi_size;
153 
154 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
155 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
156 
157 	ppi->size = ppi_size;
158 	ppi->type = pkt_type;
159 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
160 
161 	rndis_pkt->per_pkt_info_len += ppi_size;
162 
163 	return ppi;
164 }
165 
166 /* Azure hosts don't support non-TCP port numbers in hashing yet. We compute
167  * hash for non-TCP traffic with only IP numbers.
168  */
169 static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk)
170 {
171 	struct flow_keys flow;
172 	u32 hash;
173 	static u32 hashrnd __read_mostly;
174 
175 	net_get_random_once(&hashrnd, sizeof(hashrnd));
176 
177 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
178 		return 0;
179 
180 	if (flow.basic.ip_proto == IPPROTO_TCP) {
181 		return skb_get_hash(skb);
182 	} else {
183 		if (flow.basic.n_proto == htons(ETH_P_IP))
184 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
185 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
186 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
187 		else
188 			hash = 0;
189 
190 		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
191 	}
192 
193 	return hash;
194 }
195 
196 static inline int netvsc_get_tx_queue(struct net_device *ndev,
197 				      struct sk_buff *skb, int old_idx)
198 {
199 	const struct net_device_context *ndc = netdev_priv(ndev);
200 	struct sock *sk = skb->sk;
201 	int q_idx;
202 
203 	q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) &
204 				   (VRSS_SEND_TAB_SIZE - 1)];
205 
206 	/* If queue index changed record the new value */
207 	if (q_idx != old_idx &&
208 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
209 		sk_tx_queue_set(sk, q_idx);
210 
211 	return q_idx;
212 }
213 
214 /*
215  * Select queue for transmit.
216  *
217  * If a valid queue has already been assigned, then use that.
218  * Otherwise compute tx queue based on hash and the send table.
219  *
220  * This is basically similar to default (__netdev_pick_tx) with the added step
221  * of using the host send_table when no other queue has been assigned.
222  *
223  * TODO support XPS - but get_xps_queue not exported
224  */
225 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
226 			void *accel_priv, select_queue_fallback_t fallback)
227 {
228 	unsigned int num_tx_queues = ndev->real_num_tx_queues;
229 	int q_idx = sk_tx_queue_get(skb->sk);
230 
231 	if (q_idx < 0 || skb->ooo_okay) {
232 		/* If forwarding a packet, we use the recorded queue when
233 		 * available for better cache locality.
234 		 */
235 		if (skb_rx_queue_recorded(skb))
236 			q_idx = skb_get_rx_queue(skb);
237 		else
238 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
239 	}
240 
241 	while (unlikely(q_idx >= num_tx_queues))
242 		q_idx -= num_tx_queues;
243 
244 	return q_idx;
245 }
246 
247 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
248 			struct hv_page_buffer *pb)
249 {
250 	int j = 0;
251 
252 	/* Deal with compund pages by ignoring unused part
253 	 * of the page.
254 	 */
255 	page += (offset >> PAGE_SHIFT);
256 	offset &= ~PAGE_MASK;
257 
258 	while (len > 0) {
259 		unsigned long bytes;
260 
261 		bytes = PAGE_SIZE - offset;
262 		if (bytes > len)
263 			bytes = len;
264 		pb[j].pfn = page_to_pfn(page);
265 		pb[j].offset = offset;
266 		pb[j].len = bytes;
267 
268 		offset += bytes;
269 		len -= bytes;
270 
271 		if (offset == PAGE_SIZE && len) {
272 			page++;
273 			offset = 0;
274 			j++;
275 		}
276 	}
277 
278 	return j + 1;
279 }
280 
281 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
282 			   struct hv_netvsc_packet *packet,
283 			   struct hv_page_buffer **page_buf)
284 {
285 	struct hv_page_buffer *pb = *page_buf;
286 	u32 slots_used = 0;
287 	char *data = skb->data;
288 	int frags = skb_shinfo(skb)->nr_frags;
289 	int i;
290 
291 	/* The packet is laid out thus:
292 	 * 1. hdr: RNDIS header and PPI
293 	 * 2. skb linear data
294 	 * 3. skb fragment data
295 	 */
296 	if (hdr != NULL)
297 		slots_used += fill_pg_buf(virt_to_page(hdr),
298 					offset_in_page(hdr),
299 					len, &pb[slots_used]);
300 
301 	packet->rmsg_size = len;
302 	packet->rmsg_pgcnt = slots_used;
303 
304 	slots_used += fill_pg_buf(virt_to_page(data),
305 				offset_in_page(data),
306 				skb_headlen(skb), &pb[slots_used]);
307 
308 	for (i = 0; i < frags; i++) {
309 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
310 
311 		slots_used += fill_pg_buf(skb_frag_page(frag),
312 					frag->page_offset,
313 					skb_frag_size(frag), &pb[slots_used]);
314 	}
315 	return slots_used;
316 }
317 
318 static int count_skb_frag_slots(struct sk_buff *skb)
319 {
320 	int i, frags = skb_shinfo(skb)->nr_frags;
321 	int pages = 0;
322 
323 	for (i = 0; i < frags; i++) {
324 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
325 		unsigned long size = skb_frag_size(frag);
326 		unsigned long offset = frag->page_offset;
327 
328 		/* Skip unused frames from start of page */
329 		offset &= ~PAGE_MASK;
330 		pages += PFN_UP(offset + size);
331 	}
332 	return pages;
333 }
334 
335 static int netvsc_get_slots(struct sk_buff *skb)
336 {
337 	char *data = skb->data;
338 	unsigned int offset = offset_in_page(data);
339 	unsigned int len = skb_headlen(skb);
340 	int slots;
341 	int frag_slots;
342 
343 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
344 	frag_slots = count_skb_frag_slots(skb);
345 	return slots + frag_slots;
346 }
347 
348 static u32 net_checksum_info(struct sk_buff *skb)
349 {
350 	if (skb->protocol == htons(ETH_P_IP)) {
351 		struct iphdr *ip = ip_hdr(skb);
352 
353 		if (ip->protocol == IPPROTO_TCP)
354 			return TRANSPORT_INFO_IPV4_TCP;
355 		else if (ip->protocol == IPPROTO_UDP)
356 			return TRANSPORT_INFO_IPV4_UDP;
357 	} else {
358 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
359 
360 		if (ip6->nexthdr == IPPROTO_TCP)
361 			return TRANSPORT_INFO_IPV6_TCP;
362 		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
363 			return TRANSPORT_INFO_IPV6_UDP;
364 	}
365 
366 	return TRANSPORT_INFO_NOT_IP;
367 }
368 
369 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
370 {
371 	struct net_device_context *net_device_ctx = netdev_priv(net);
372 	struct hv_netvsc_packet *packet = NULL;
373 	int ret;
374 	unsigned int num_data_pgs;
375 	struct rndis_message *rndis_msg;
376 	struct rndis_packet *rndis_pkt;
377 	u32 rndis_msg_size;
378 	struct rndis_per_packet_info *ppi;
379 	u32 hash;
380 	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
381 	struct hv_page_buffer *pb = page_buf;
382 
383 	/* We will atmost need two pages to describe the rndis
384 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
385 	 * of pages in a single packet. If skb is scattered around
386 	 * more pages we try linearizing it.
387 	 */
388 
389 	num_data_pgs = netvsc_get_slots(skb) + 2;
390 
391 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
392 		++net_device_ctx->eth_stats.tx_scattered;
393 
394 		if (skb_linearize(skb))
395 			goto no_memory;
396 
397 		num_data_pgs = netvsc_get_slots(skb) + 2;
398 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
399 			++net_device_ctx->eth_stats.tx_too_big;
400 			goto drop;
401 		}
402 	}
403 
404 	/*
405 	 * Place the rndis header in the skb head room and
406 	 * the skb->cb will be used for hv_netvsc_packet
407 	 * structure.
408 	 */
409 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
410 	if (ret)
411 		goto no_memory;
412 
413 	/* Use the skb control buffer for building up the packet */
414 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
415 			FIELD_SIZEOF(struct sk_buff, cb));
416 	packet = (struct hv_netvsc_packet *)skb->cb;
417 
418 	packet->q_idx = skb_get_queue_mapping(skb);
419 
420 	packet->total_data_buflen = skb->len;
421 	packet->total_bytes = skb->len;
422 	packet->total_packets = 1;
423 
424 	rndis_msg = (struct rndis_message *)skb->head;
425 
426 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
427 
428 	/* Add the rndis header */
429 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
430 	rndis_msg->msg_len = packet->total_data_buflen;
431 	rndis_pkt = &rndis_msg->msg.pkt;
432 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
433 	rndis_pkt->data_len = packet->total_data_buflen;
434 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
435 
436 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
437 
438 	hash = skb_get_hash_raw(skb);
439 	if (hash != 0 && net->real_num_tx_queues > 1) {
440 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
441 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
442 				    NBL_HASH_VALUE);
443 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
444 	}
445 
446 	if (skb_vlan_tag_present(skb)) {
447 		struct ndis_pkt_8021q_info *vlan;
448 
449 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
450 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
451 					IEEE_8021Q_INFO);
452 		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
453 						ppi->ppi_offset);
454 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
455 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
456 				VLAN_PRIO_SHIFT;
457 	}
458 
459 	if (skb_is_gso(skb)) {
460 		struct ndis_tcp_lso_info *lso_info;
461 
462 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
463 		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
464 				    TCP_LARGESEND_PKTINFO);
465 
466 		lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
467 							ppi->ppi_offset);
468 
469 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
470 		if (skb->protocol == htons(ETH_P_IP)) {
471 			lso_info->lso_v2_transmit.ip_version =
472 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
473 			ip_hdr(skb)->tot_len = 0;
474 			ip_hdr(skb)->check = 0;
475 			tcp_hdr(skb)->check =
476 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
477 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
478 		} else {
479 			lso_info->lso_v2_transmit.ip_version =
480 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
481 			ipv6_hdr(skb)->payload_len = 0;
482 			tcp_hdr(skb)->check =
483 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
484 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
485 		}
486 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
487 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
488 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
489 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
490 			struct ndis_tcp_ip_checksum_info *csum_info;
491 
492 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
493 			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
494 					    TCPIP_CHKSUM_PKTINFO);
495 
496 			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
497 									 ppi->ppi_offset);
498 
499 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
500 
501 			if (skb->protocol == htons(ETH_P_IP)) {
502 				csum_info->transmit.is_ipv4 = 1;
503 
504 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
505 					csum_info->transmit.tcp_checksum = 1;
506 				else
507 					csum_info->transmit.udp_checksum = 1;
508 			} else {
509 				csum_info->transmit.is_ipv6 = 1;
510 
511 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
512 					csum_info->transmit.tcp_checksum = 1;
513 				else
514 					csum_info->transmit.udp_checksum = 1;
515 			}
516 		} else {
517 			/* Can't do offload of this type of checksum */
518 			if (skb_checksum_help(skb))
519 				goto drop;
520 		}
521 	}
522 
523 	/* Start filling in the page buffers with the rndis hdr */
524 	rndis_msg->msg_len += rndis_msg_size;
525 	packet->total_data_buflen = rndis_msg->msg_len;
526 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
527 					       skb, packet, &pb);
528 
529 	/* timestamp packet in software */
530 	skb_tx_timestamp(skb);
531 	ret = netvsc_send(net_device_ctx->device_ctx, packet,
532 			  rndis_msg, &pb, skb);
533 	if (likely(ret == 0))
534 		return NETDEV_TX_OK;
535 
536 	if (ret == -EAGAIN) {
537 		++net_device_ctx->eth_stats.tx_busy;
538 		return NETDEV_TX_BUSY;
539 	}
540 
541 	if (ret == -ENOSPC)
542 		++net_device_ctx->eth_stats.tx_no_space;
543 
544 drop:
545 	dev_kfree_skb_any(skb);
546 	net->stats.tx_dropped++;
547 
548 	return NETDEV_TX_OK;
549 
550 no_memory:
551 	++net_device_ctx->eth_stats.tx_no_memory;
552 	goto drop;
553 }
554 /*
555  * netvsc_linkstatus_callback - Link up/down notification
556  */
557 void netvsc_linkstatus_callback(struct hv_device *device_obj,
558 				struct rndis_message *resp)
559 {
560 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
561 	struct net_device *net;
562 	struct net_device_context *ndev_ctx;
563 	struct netvsc_reconfig *event;
564 	unsigned long flags;
565 
566 	net = hv_get_drvdata(device_obj);
567 
568 	if (!net)
569 		return;
570 
571 	ndev_ctx = netdev_priv(net);
572 
573 	/* Update the physical link speed when changing to another vSwitch */
574 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
575 		u32 speed;
576 
577 		speed = *(u32 *)((void *)indicate + indicate->
578 				 status_buf_offset) / 10000;
579 		ndev_ctx->speed = speed;
580 		return;
581 	}
582 
583 	/* Handle these link change statuses below */
584 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
585 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
586 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
587 		return;
588 
589 	if (net->reg_state != NETREG_REGISTERED)
590 		return;
591 
592 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
593 	if (!event)
594 		return;
595 	event->event = indicate->status;
596 
597 	spin_lock_irqsave(&ndev_ctx->lock, flags);
598 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
599 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
600 
601 	schedule_delayed_work(&ndev_ctx->dwork, 0);
602 }
603 
604 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
605 					     struct napi_struct *napi,
606 					     const struct ndis_tcp_ip_checksum_info *csum_info,
607 					     const struct ndis_pkt_8021q_info *vlan,
608 					     void *data, u32 buflen)
609 {
610 	struct sk_buff *skb;
611 
612 	skb = napi_alloc_skb(napi, buflen);
613 	if (!skb)
614 		return skb;
615 
616 	/*
617 	 * Copy to skb. This copy is needed here since the memory pointed by
618 	 * hv_netvsc_packet cannot be deallocated
619 	 */
620 	skb_put_data(skb, data, buflen);
621 
622 	skb->protocol = eth_type_trans(skb, net);
623 
624 	/* skb is already created with CHECKSUM_NONE */
625 	skb_checksum_none_assert(skb);
626 
627 	/*
628 	 * In Linux, the IP checksum is always checked.
629 	 * Do L4 checksum offload if enabled and present.
630 	 */
631 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
632 		if (csum_info->receive.tcp_checksum_succeeded ||
633 		    csum_info->receive.udp_checksum_succeeded)
634 			skb->ip_summed = CHECKSUM_UNNECESSARY;
635 	}
636 
637 	if (vlan) {
638 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
639 
640 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
641 				       vlan_tci);
642 	}
643 
644 	return skb;
645 }
646 
647 /*
648  * netvsc_recv_callback -  Callback when we receive a packet from the
649  * "wire" on the specified device.
650  */
651 int netvsc_recv_callback(struct net_device *net,
652 			 struct vmbus_channel *channel,
653 			 void  *data, u32 len,
654 			 const struct ndis_tcp_ip_checksum_info *csum_info,
655 			 const struct ndis_pkt_8021q_info *vlan)
656 {
657 	struct net_device_context *net_device_ctx = netdev_priv(net);
658 	struct netvsc_device *net_device;
659 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
660 	struct netvsc_channel *nvchan;
661 	struct net_device *vf_netdev;
662 	struct sk_buff *skb;
663 	struct netvsc_stats *rx_stats;
664 
665 	if (net->reg_state != NETREG_REGISTERED)
666 		return NVSP_STAT_FAIL;
667 
668 	/*
669 	 * If necessary, inject this packet into the VF interface.
670 	 * On Hyper-V, multicast and brodcast packets are only delivered
671 	 * to the synthetic interface (after subjecting these to
672 	 * policy filters on the host). Deliver these via the VF
673 	 * interface in the guest.
674 	 */
675 	rcu_read_lock();
676 	net_device = rcu_dereference(net_device_ctx->nvdev);
677 	if (unlikely(!net_device))
678 		goto drop;
679 
680 	nvchan = &net_device->chan_table[q_idx];
681 	vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
682 	if (vf_netdev && (vf_netdev->flags & IFF_UP))
683 		net = vf_netdev;
684 
685 	/* Allocate a skb - TODO direct I/O to pages? */
686 	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
687 				    csum_info, vlan, data, len);
688 	if (unlikely(!skb)) {
689 drop:
690 		++net->stats.rx_dropped;
691 		rcu_read_unlock();
692 		return NVSP_STAT_FAIL;
693 	}
694 
695 	if (net != vf_netdev)
696 		skb_record_rx_queue(skb, q_idx);
697 
698 	/*
699 	 * Even if injecting the packet, record the statistics
700 	 * on the synthetic device because modifying the VF device
701 	 * statistics will not work correctly.
702 	 */
703 	rx_stats = &nvchan->rx_stats;
704 	u64_stats_update_begin(&rx_stats->syncp);
705 	rx_stats->packets++;
706 	rx_stats->bytes += len;
707 
708 	if (skb->pkt_type == PACKET_BROADCAST)
709 		++rx_stats->broadcast;
710 	else if (skb->pkt_type == PACKET_MULTICAST)
711 		++rx_stats->multicast;
712 	u64_stats_update_end(&rx_stats->syncp);
713 
714 	napi_gro_receive(&nvchan->napi, skb);
715 	rcu_read_unlock();
716 
717 	return 0;
718 }
719 
720 static void netvsc_get_drvinfo(struct net_device *net,
721 			       struct ethtool_drvinfo *info)
722 {
723 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
724 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
725 }
726 
727 static void netvsc_get_channels(struct net_device *net,
728 				struct ethtool_channels *channel)
729 {
730 	struct net_device_context *net_device_ctx = netdev_priv(net);
731 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
732 
733 	if (nvdev) {
734 		channel->max_combined	= nvdev->max_chn;
735 		channel->combined_count = nvdev->num_chn;
736 	}
737 }
738 
739 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev,
740 			     u32 num_chn)
741 {
742 	struct netvsc_device_info device_info;
743 	int ret;
744 
745 	memset(&device_info, 0, sizeof(device_info));
746 	device_info.num_chn = num_chn;
747 	device_info.ring_size = ring_size;
748 	device_info.max_num_vrss_chns = num_chn;
749 
750 	ret = rndis_filter_device_add(dev, &device_info);
751 	if (ret)
752 		return ret;
753 
754 	ret = netif_set_real_num_tx_queues(net, num_chn);
755 	if (ret)
756 		return ret;
757 
758 	ret = netif_set_real_num_rx_queues(net, num_chn);
759 
760 	return ret;
761 }
762 
763 static int netvsc_set_channels(struct net_device *net,
764 			       struct ethtool_channels *channels)
765 {
766 	struct net_device_context *net_device_ctx = netdev_priv(net);
767 	struct hv_device *dev = net_device_ctx->device_ctx;
768 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
769 	unsigned int count = channels->combined_count;
770 	bool was_running;
771 	int ret;
772 
773 	/* We do not support separate count for rx, tx, or other */
774 	if (count == 0 ||
775 	    channels->rx_count || channels->tx_count || channels->other_count)
776 		return -EINVAL;
777 
778 	if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX)
779 		return -EINVAL;
780 
781 	if (!nvdev || nvdev->destroy)
782 		return -ENODEV;
783 
784 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
785 		return -EINVAL;
786 
787 	if (count > nvdev->max_chn)
788 		return -EINVAL;
789 
790 	was_running = netif_running(net);
791 	if (was_running) {
792 		ret = netvsc_close(net);
793 		if (ret)
794 			return ret;
795 	}
796 
797 	rndis_filter_device_remove(dev, nvdev);
798 
799 	ret = netvsc_set_queues(net, dev, count);
800 	if (ret == 0)
801 		nvdev->num_chn = count;
802 	else
803 		netvsc_set_queues(net, dev, nvdev->num_chn);
804 
805 	if (was_running)
806 		ret = netvsc_open(net);
807 
808 	/* We may have missed link change notifications */
809 	schedule_delayed_work(&net_device_ctx->dwork, 0);
810 
811 	return ret;
812 }
813 
814 static bool
815 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
816 {
817 	struct ethtool_link_ksettings diff1 = *cmd;
818 	struct ethtool_link_ksettings diff2 = {};
819 
820 	diff1.base.speed = 0;
821 	diff1.base.duplex = 0;
822 	/* advertising and cmd are usually set */
823 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
824 	diff1.base.cmd = 0;
825 	/* We set port to PORT_OTHER */
826 	diff2.base.port = PORT_OTHER;
827 
828 	return !memcmp(&diff1, &diff2, sizeof(diff1));
829 }
830 
831 static void netvsc_init_settings(struct net_device *dev)
832 {
833 	struct net_device_context *ndc = netdev_priv(dev);
834 
835 	ndc->speed = SPEED_UNKNOWN;
836 	ndc->duplex = DUPLEX_FULL;
837 }
838 
839 static int netvsc_get_link_ksettings(struct net_device *dev,
840 				     struct ethtool_link_ksettings *cmd)
841 {
842 	struct net_device_context *ndc = netdev_priv(dev);
843 
844 	cmd->base.speed = ndc->speed;
845 	cmd->base.duplex = ndc->duplex;
846 	cmd->base.port = PORT_OTHER;
847 
848 	return 0;
849 }
850 
851 static int netvsc_set_link_ksettings(struct net_device *dev,
852 				     const struct ethtool_link_ksettings *cmd)
853 {
854 	struct net_device_context *ndc = netdev_priv(dev);
855 	u32 speed;
856 
857 	speed = cmd->base.speed;
858 	if (!ethtool_validate_speed(speed) ||
859 	    !ethtool_validate_duplex(cmd->base.duplex) ||
860 	    !netvsc_validate_ethtool_ss_cmd(cmd))
861 		return -EINVAL;
862 
863 	ndc->speed = speed;
864 	ndc->duplex = cmd->base.duplex;
865 
866 	return 0;
867 }
868 
869 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
870 {
871 	struct net_device_context *ndevctx = netdev_priv(ndev);
872 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
873 	struct hv_device *hdev = ndevctx->device_ctx;
874 	struct netvsc_device_info device_info;
875 	bool was_running;
876 	int ret = 0;
877 
878 	if (!nvdev || nvdev->destroy)
879 		return -ENODEV;
880 
881 	was_running = netif_running(ndev);
882 	if (was_running) {
883 		ret = netvsc_close(ndev);
884 		if (ret)
885 			return ret;
886 	}
887 
888 	memset(&device_info, 0, sizeof(device_info));
889 	device_info.ring_size = ring_size;
890 	device_info.num_chn = nvdev->num_chn;
891 	device_info.max_num_vrss_chns = nvdev->num_chn;
892 
893 	rndis_filter_device_remove(hdev, nvdev);
894 
895 	/* 'nvdev' has been freed in rndis_filter_device_remove() ->
896 	 * netvsc_device_remove () -> free_netvsc_device().
897 	 * We mustn't access it before it's re-created in
898 	 * rndis_filter_device_add() -> netvsc_device_add().
899 	 */
900 
901 	ndev->mtu = mtu;
902 
903 	rndis_filter_device_add(hdev, &device_info);
904 
905 	if (was_running)
906 		ret = netvsc_open(ndev);
907 
908 	/* We may have missed link change notifications */
909 	schedule_delayed_work(&ndevctx->dwork, 0);
910 
911 	return ret;
912 }
913 
914 static void netvsc_get_stats64(struct net_device *net,
915 			       struct rtnl_link_stats64 *t)
916 {
917 	struct net_device_context *ndev_ctx = netdev_priv(net);
918 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
919 	int i;
920 
921 	if (!nvdev)
922 		return;
923 
924 	for (i = 0; i < nvdev->num_chn; i++) {
925 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
926 		const struct netvsc_stats *stats;
927 		u64 packets, bytes, multicast;
928 		unsigned int start;
929 
930 		stats = &nvchan->tx_stats;
931 		do {
932 			start = u64_stats_fetch_begin_irq(&stats->syncp);
933 			packets = stats->packets;
934 			bytes = stats->bytes;
935 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
936 
937 		t->tx_bytes	+= bytes;
938 		t->tx_packets	+= packets;
939 
940 		stats = &nvchan->rx_stats;
941 		do {
942 			start = u64_stats_fetch_begin_irq(&stats->syncp);
943 			packets = stats->packets;
944 			bytes = stats->bytes;
945 			multicast = stats->multicast + stats->broadcast;
946 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
947 
948 		t->rx_bytes	+= bytes;
949 		t->rx_packets	+= packets;
950 		t->multicast	+= multicast;
951 	}
952 
953 	t->tx_dropped	= net->stats.tx_dropped;
954 	t->tx_errors	= net->stats.tx_errors;
955 
956 	t->rx_dropped	= net->stats.rx_dropped;
957 	t->rx_errors	= net->stats.rx_errors;
958 }
959 
960 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
961 {
962 	struct sockaddr *addr = p;
963 	char save_adr[ETH_ALEN];
964 	unsigned char save_aatype;
965 	int err;
966 
967 	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
968 	save_aatype = ndev->addr_assign_type;
969 
970 	err = eth_mac_addr(ndev, p);
971 	if (err != 0)
972 		return err;
973 
974 	err = rndis_filter_set_device_mac(ndev, addr->sa_data);
975 	if (err != 0) {
976 		/* roll back to saved MAC */
977 		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
978 		ndev->addr_assign_type = save_aatype;
979 	}
980 
981 	return err;
982 }
983 
984 static const struct {
985 	char name[ETH_GSTRING_LEN];
986 	u16 offset;
987 } netvsc_stats[] = {
988 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
989 	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
990 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
991 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
992 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
993 };
994 
995 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
996 
997 /* 4 statistics per queue (rx/tx packets/bytes) */
998 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
999 
1000 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1001 {
1002 	struct net_device_context *ndc = netdev_priv(dev);
1003 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1004 
1005 	if (!nvdev)
1006 		return -ENODEV;
1007 
1008 	switch (string_set) {
1009 	case ETH_SS_STATS:
1010 		return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev);
1011 	default:
1012 		return -EINVAL;
1013 	}
1014 }
1015 
1016 static void netvsc_get_ethtool_stats(struct net_device *dev,
1017 				     struct ethtool_stats *stats, u64 *data)
1018 {
1019 	struct net_device_context *ndc = netdev_priv(dev);
1020 	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1021 	const void *nds = &ndc->eth_stats;
1022 	const struct netvsc_stats *qstats;
1023 	unsigned int start;
1024 	u64 packets, bytes;
1025 	int i, j;
1026 
1027 	if (!nvdev)
1028 		return;
1029 
1030 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1031 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1032 
1033 	for (j = 0; j < nvdev->num_chn; j++) {
1034 		qstats = &nvdev->chan_table[j].tx_stats;
1035 
1036 		do {
1037 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1038 			packets = qstats->packets;
1039 			bytes = qstats->bytes;
1040 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1041 		data[i++] = packets;
1042 		data[i++] = bytes;
1043 
1044 		qstats = &nvdev->chan_table[j].rx_stats;
1045 		do {
1046 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1047 			packets = qstats->packets;
1048 			bytes = qstats->bytes;
1049 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1050 		data[i++] = packets;
1051 		data[i++] = bytes;
1052 	}
1053 }
1054 
1055 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1056 {
1057 	struct net_device_context *ndc = netdev_priv(dev);
1058 	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1059 	u8 *p = data;
1060 	int i;
1061 
1062 	if (!nvdev)
1063 		return;
1064 
1065 	switch (stringset) {
1066 	case ETH_SS_STATS:
1067 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1068 			memcpy(p + i * ETH_GSTRING_LEN,
1069 			       netvsc_stats[i].name, ETH_GSTRING_LEN);
1070 
1071 		p += i * ETH_GSTRING_LEN;
1072 		for (i = 0; i < nvdev->num_chn; i++) {
1073 			sprintf(p, "tx_queue_%u_packets", i);
1074 			p += ETH_GSTRING_LEN;
1075 			sprintf(p, "tx_queue_%u_bytes", i);
1076 			p += ETH_GSTRING_LEN;
1077 			sprintf(p, "rx_queue_%u_packets", i);
1078 			p += ETH_GSTRING_LEN;
1079 			sprintf(p, "rx_queue_%u_bytes", i);
1080 			p += ETH_GSTRING_LEN;
1081 		}
1082 
1083 		break;
1084 	}
1085 }
1086 
1087 static int
1088 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
1089 			 struct ethtool_rxnfc *info)
1090 {
1091 	info->data = RXH_IP_SRC | RXH_IP_DST;
1092 
1093 	switch (info->flow_type) {
1094 	case TCP_V4_FLOW:
1095 	case TCP_V6_FLOW:
1096 		info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1097 		/* fallthrough */
1098 	case UDP_V4_FLOW:
1099 	case UDP_V6_FLOW:
1100 	case IPV4_FLOW:
1101 	case IPV6_FLOW:
1102 		break;
1103 	default:
1104 		info->data = 0;
1105 		break;
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static int
1112 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1113 		 u32 *rules)
1114 {
1115 	struct net_device_context *ndc = netdev_priv(dev);
1116 	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1117 
1118 	if (!nvdev)
1119 		return -ENODEV;
1120 
1121 	switch (info->cmd) {
1122 	case ETHTOOL_GRXRINGS:
1123 		info->data = nvdev->num_chn;
1124 		return 0;
1125 
1126 	case ETHTOOL_GRXFH:
1127 		return netvsc_get_rss_hash_opts(nvdev, info);
1128 	}
1129 	return -EOPNOTSUPP;
1130 }
1131 
1132 #ifdef CONFIG_NET_POLL_CONTROLLER
1133 static void netvsc_poll_controller(struct net_device *dev)
1134 {
1135 	struct net_device_context *ndc = netdev_priv(dev);
1136 	struct netvsc_device *ndev;
1137 	int i;
1138 
1139 	rcu_read_lock();
1140 	ndev = rcu_dereference(ndc->nvdev);
1141 	if (ndev) {
1142 		for (i = 0; i < ndev->num_chn; i++) {
1143 			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1144 
1145 			napi_schedule(&nvchan->napi);
1146 		}
1147 	}
1148 	rcu_read_unlock();
1149 }
1150 #endif
1151 
1152 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1153 {
1154 	return NETVSC_HASH_KEYLEN;
1155 }
1156 
1157 static u32 netvsc_rss_indir_size(struct net_device *dev)
1158 {
1159 	return ITAB_NUM;
1160 }
1161 
1162 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1163 			   u8 *hfunc)
1164 {
1165 	struct net_device_context *ndc = netdev_priv(dev);
1166 	struct netvsc_device *ndev = rcu_dereference(ndc->nvdev);
1167 	struct rndis_device *rndis_dev;
1168 	int i;
1169 
1170 	if (!ndev)
1171 		return -ENODEV;
1172 
1173 	if (hfunc)
1174 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1175 
1176 	rndis_dev = ndev->extension;
1177 	if (indir) {
1178 		for (i = 0; i < ITAB_NUM; i++)
1179 			indir[i] = rndis_dev->ind_table[i];
1180 	}
1181 
1182 	if (key)
1183 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1184 
1185 	return 0;
1186 }
1187 
1188 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1189 			   const u8 *key, const u8 hfunc)
1190 {
1191 	struct net_device_context *ndc = netdev_priv(dev);
1192 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1193 	struct rndis_device *rndis_dev;
1194 	int i;
1195 
1196 	if (!ndev)
1197 		return -ENODEV;
1198 
1199 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1200 		return -EOPNOTSUPP;
1201 
1202 	rndis_dev = ndev->extension;
1203 	if (indir) {
1204 		for (i = 0; i < ITAB_NUM; i++)
1205 			if (indir[i] >= VRSS_CHANNEL_MAX)
1206 				return -EINVAL;
1207 
1208 		for (i = 0; i < ITAB_NUM; i++)
1209 			rndis_dev->ind_table[i] = indir[i];
1210 	}
1211 
1212 	if (!key) {
1213 		if (!indir)
1214 			return 0;
1215 
1216 		key = rndis_dev->rss_key;
1217 	}
1218 
1219 	return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
1220 }
1221 
1222 static const struct ethtool_ops ethtool_ops = {
1223 	.get_drvinfo	= netvsc_get_drvinfo,
1224 	.get_link	= ethtool_op_get_link,
1225 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1226 	.get_sset_count = netvsc_get_sset_count,
1227 	.get_strings	= netvsc_get_strings,
1228 	.get_channels   = netvsc_get_channels,
1229 	.set_channels   = netvsc_set_channels,
1230 	.get_ts_info	= ethtool_op_get_ts_info,
1231 	.get_rxnfc	= netvsc_get_rxnfc,
1232 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1233 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1234 	.get_rxfh	= netvsc_get_rxfh,
1235 	.set_rxfh	= netvsc_set_rxfh,
1236 	.get_link_ksettings = netvsc_get_link_ksettings,
1237 	.set_link_ksettings = netvsc_set_link_ksettings,
1238 };
1239 
1240 static const struct net_device_ops device_ops = {
1241 	.ndo_open =			netvsc_open,
1242 	.ndo_stop =			netvsc_close,
1243 	.ndo_start_xmit =		netvsc_start_xmit,
1244 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1245 	.ndo_change_mtu =		netvsc_change_mtu,
1246 	.ndo_validate_addr =		eth_validate_addr,
1247 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1248 	.ndo_select_queue =		netvsc_select_queue,
1249 	.ndo_get_stats64 =		netvsc_get_stats64,
1250 #ifdef CONFIG_NET_POLL_CONTROLLER
1251 	.ndo_poll_controller =		netvsc_poll_controller,
1252 #endif
1253 };
1254 
1255 /*
1256  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1257  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1258  * present send GARP packet to network peers with netif_notify_peers().
1259  */
1260 static void netvsc_link_change(struct work_struct *w)
1261 {
1262 	struct net_device_context *ndev_ctx =
1263 		container_of(w, struct net_device_context, dwork.work);
1264 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1265 	struct net_device *net = hv_get_drvdata(device_obj);
1266 	struct netvsc_device *net_device;
1267 	struct rndis_device *rdev;
1268 	struct netvsc_reconfig *event = NULL;
1269 	bool notify = false, reschedule = false;
1270 	unsigned long flags, next_reconfig, delay;
1271 
1272 	/* if changes are happening, comeback later */
1273 	if (!rtnl_trylock()) {
1274 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1275 		return;
1276 	}
1277 
1278 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1279 	if (!net_device)
1280 		goto out_unlock;
1281 
1282 	rdev = net_device->extension;
1283 
1284 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1285 	if (time_is_after_jiffies(next_reconfig)) {
1286 		/* link_watch only sends one notification with current state
1287 		 * per second, avoid doing reconfig more frequently. Handle
1288 		 * wrap around.
1289 		 */
1290 		delay = next_reconfig - jiffies;
1291 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1292 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1293 		goto out_unlock;
1294 	}
1295 	ndev_ctx->last_reconfig = jiffies;
1296 
1297 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1298 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1299 		event = list_first_entry(&ndev_ctx->reconfig_events,
1300 					 struct netvsc_reconfig, list);
1301 		list_del(&event->list);
1302 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1303 	}
1304 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1305 
1306 	if (!event)
1307 		goto out_unlock;
1308 
1309 	switch (event->event) {
1310 		/* Only the following events are possible due to the check in
1311 		 * netvsc_linkstatus_callback()
1312 		 */
1313 	case RNDIS_STATUS_MEDIA_CONNECT:
1314 		if (rdev->link_state) {
1315 			rdev->link_state = false;
1316 			if (!ndev_ctx->datapath)
1317 				netif_carrier_on(net);
1318 			netif_tx_wake_all_queues(net);
1319 		} else {
1320 			notify = true;
1321 		}
1322 		kfree(event);
1323 		break;
1324 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1325 		if (!rdev->link_state) {
1326 			rdev->link_state = true;
1327 			netif_carrier_off(net);
1328 			netif_tx_stop_all_queues(net);
1329 		}
1330 		kfree(event);
1331 		break;
1332 	case RNDIS_STATUS_NETWORK_CHANGE:
1333 		/* Only makes sense if carrier is present */
1334 		if (!rdev->link_state) {
1335 			rdev->link_state = true;
1336 			netif_carrier_off(net);
1337 			netif_tx_stop_all_queues(net);
1338 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1339 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1340 			list_add(&event->list, &ndev_ctx->reconfig_events);
1341 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1342 			reschedule = true;
1343 		}
1344 		break;
1345 	}
1346 
1347 	rtnl_unlock();
1348 
1349 	if (notify)
1350 		netdev_notify_peers(net);
1351 
1352 	/* link_watch only sends one notification with current state per
1353 	 * second, handle next reconfig event in 2 seconds.
1354 	 */
1355 	if (reschedule)
1356 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1357 
1358 	return;
1359 
1360 out_unlock:
1361 	rtnl_unlock();
1362 }
1363 
1364 static struct net_device *get_netvsc_bymac(const u8 *mac)
1365 {
1366 	struct net_device *dev;
1367 
1368 	ASSERT_RTNL();
1369 
1370 	for_each_netdev(&init_net, dev) {
1371 		if (dev->netdev_ops != &device_ops)
1372 			continue;	/* not a netvsc device */
1373 
1374 		if (ether_addr_equal(mac, dev->perm_addr))
1375 			return dev;
1376 	}
1377 
1378 	return NULL;
1379 }
1380 
1381 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1382 {
1383 	struct net_device *dev;
1384 
1385 	ASSERT_RTNL();
1386 
1387 	for_each_netdev(&init_net, dev) {
1388 		struct net_device_context *net_device_ctx;
1389 
1390 		if (dev->netdev_ops != &device_ops)
1391 			continue;	/* not a netvsc device */
1392 
1393 		net_device_ctx = netdev_priv(dev);
1394 		if (net_device_ctx->nvdev == NULL)
1395 			continue;	/* device is removed */
1396 
1397 		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1398 			return dev;	/* a match */
1399 	}
1400 
1401 	return NULL;
1402 }
1403 
1404 static int netvsc_register_vf(struct net_device *vf_netdev)
1405 {
1406 	struct net_device *ndev;
1407 	struct net_device_context *net_device_ctx;
1408 	struct netvsc_device *netvsc_dev;
1409 
1410 	if (vf_netdev->addr_len != ETH_ALEN)
1411 		return NOTIFY_DONE;
1412 
1413 	/*
1414 	 * We will use the MAC address to locate the synthetic interface to
1415 	 * associate with the VF interface. If we don't find a matching
1416 	 * synthetic interface, move on.
1417 	 */
1418 	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1419 	if (!ndev)
1420 		return NOTIFY_DONE;
1421 
1422 	net_device_ctx = netdev_priv(ndev);
1423 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1424 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1425 		return NOTIFY_DONE;
1426 
1427 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1428 	/*
1429 	 * Take a reference on the module.
1430 	 */
1431 	try_module_get(THIS_MODULE);
1432 
1433 	dev_hold(vf_netdev);
1434 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1435 	return NOTIFY_OK;
1436 }
1437 
1438 static int netvsc_vf_up(struct net_device *vf_netdev)
1439 {
1440 	struct net_device *ndev;
1441 	struct netvsc_device *netvsc_dev;
1442 	struct net_device_context *net_device_ctx;
1443 
1444 	ndev = get_netvsc_byref(vf_netdev);
1445 	if (!ndev)
1446 		return NOTIFY_DONE;
1447 
1448 	net_device_ctx = netdev_priv(ndev);
1449 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1450 
1451 	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1452 
1453 	/*
1454 	 * Open the device before switching data path.
1455 	 */
1456 	rndis_filter_open(netvsc_dev);
1457 
1458 	/*
1459 	 * notify the host to switch the data path.
1460 	 */
1461 	netvsc_switch_datapath(ndev, true);
1462 	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1463 
1464 	netif_carrier_off(ndev);
1465 
1466 	/* Now notify peers through VF device. */
1467 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1468 
1469 	return NOTIFY_OK;
1470 }
1471 
1472 static int netvsc_vf_down(struct net_device *vf_netdev)
1473 {
1474 	struct net_device *ndev;
1475 	struct netvsc_device *netvsc_dev;
1476 	struct net_device_context *net_device_ctx;
1477 
1478 	ndev = get_netvsc_byref(vf_netdev);
1479 	if (!ndev)
1480 		return NOTIFY_DONE;
1481 
1482 	net_device_ctx = netdev_priv(ndev);
1483 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1484 
1485 	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1486 	netvsc_switch_datapath(ndev, false);
1487 	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1488 	rndis_filter_close(netvsc_dev);
1489 	netif_carrier_on(ndev);
1490 
1491 	/* Now notify peers through netvsc device. */
1492 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1493 
1494 	return NOTIFY_OK;
1495 }
1496 
1497 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1498 {
1499 	struct net_device *ndev;
1500 	struct net_device_context *net_device_ctx;
1501 
1502 	ndev = get_netvsc_byref(vf_netdev);
1503 	if (!ndev)
1504 		return NOTIFY_DONE;
1505 
1506 	net_device_ctx = netdev_priv(ndev);
1507 
1508 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1509 
1510 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1511 	dev_put(vf_netdev);
1512 	module_put(THIS_MODULE);
1513 	return NOTIFY_OK;
1514 }
1515 
1516 static int netvsc_probe(struct hv_device *dev,
1517 			const struct hv_vmbus_device_id *dev_id)
1518 {
1519 	struct net_device *net = NULL;
1520 	struct net_device_context *net_device_ctx;
1521 	struct netvsc_device_info device_info;
1522 	struct netvsc_device *nvdev;
1523 	int ret;
1524 
1525 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1526 				VRSS_CHANNEL_MAX);
1527 	if (!net)
1528 		return -ENOMEM;
1529 
1530 	netif_carrier_off(net);
1531 
1532 	netvsc_init_settings(net);
1533 
1534 	net_device_ctx = netdev_priv(net);
1535 	net_device_ctx->device_ctx = dev;
1536 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1537 	if (netif_msg_probe(net_device_ctx))
1538 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1539 			   net_device_ctx->msg_enable);
1540 
1541 	hv_set_drvdata(dev, net);
1542 
1543 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1544 
1545 	spin_lock_init(&net_device_ctx->lock);
1546 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1547 
1548 	net->netdev_ops = &device_ops;
1549 	net->ethtool_ops = &ethtool_ops;
1550 	SET_NETDEV_DEV(net, &dev->device);
1551 
1552 	/* We always need headroom for rndis header */
1553 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1554 
1555 	/* Notify the netvsc driver of the new device */
1556 	memset(&device_info, 0, sizeof(device_info));
1557 	device_info.ring_size = ring_size;
1558 	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1559 	ret = rndis_filter_device_add(dev, &device_info);
1560 	if (ret != 0) {
1561 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1562 		free_netdev(net);
1563 		hv_set_drvdata(dev, NULL);
1564 		return ret;
1565 	}
1566 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1567 
1568 	/* hw_features computed in rndis_filter_device_add */
1569 	net->features = net->hw_features |
1570 		NETIF_F_HIGHDMA | NETIF_F_SG |
1571 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1572 	net->vlan_features = net->features;
1573 
1574 	/* RCU not necessary here, device not registered */
1575 	nvdev = net_device_ctx->nvdev;
1576 	netif_set_real_num_tx_queues(net, nvdev->num_chn);
1577 	netif_set_real_num_rx_queues(net, nvdev->num_chn);
1578 
1579 	/* MTU range: 68 - 1500 or 65521 */
1580 	net->min_mtu = NETVSC_MTU_MIN;
1581 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1582 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
1583 	else
1584 		net->max_mtu = ETH_DATA_LEN;
1585 
1586 	ret = register_netdev(net);
1587 	if (ret != 0) {
1588 		pr_err("Unable to register netdev.\n");
1589 		rndis_filter_device_remove(dev, nvdev);
1590 		free_netdev(net);
1591 	}
1592 
1593 	return ret;
1594 }
1595 
1596 static int netvsc_remove(struct hv_device *dev)
1597 {
1598 	struct net_device *net;
1599 	struct net_device_context *ndev_ctx;
1600 
1601 	net = hv_get_drvdata(dev);
1602 
1603 	if (net == NULL) {
1604 		dev_err(&dev->device, "No net device to remove\n");
1605 		return 0;
1606 	}
1607 
1608 	ndev_ctx = netdev_priv(net);
1609 
1610 	netif_device_detach(net);
1611 
1612 	cancel_delayed_work_sync(&ndev_ctx->dwork);
1613 
1614 	/*
1615 	 * Call to the vsc driver to let it know that the device is being
1616 	 * removed. Also blocks mtu and channel changes.
1617 	 */
1618 	rtnl_lock();
1619 	rndis_filter_device_remove(dev, ndev_ctx->nvdev);
1620 	rtnl_unlock();
1621 
1622 	unregister_netdev(net);
1623 
1624 	hv_set_drvdata(dev, NULL);
1625 
1626 	free_netdev(net);
1627 	return 0;
1628 }
1629 
1630 static const struct hv_vmbus_device_id id_table[] = {
1631 	/* Network guid */
1632 	{ HV_NIC_GUID, },
1633 	{ },
1634 };
1635 
1636 MODULE_DEVICE_TABLE(vmbus, id_table);
1637 
1638 /* The one and only one */
1639 static struct  hv_driver netvsc_drv = {
1640 	.name = KBUILD_MODNAME,
1641 	.id_table = id_table,
1642 	.probe = netvsc_probe,
1643 	.remove = netvsc_remove,
1644 };
1645 
1646 /*
1647  * On Hyper-V, every VF interface is matched with a corresponding
1648  * synthetic interface. The synthetic interface is presented first
1649  * to the guest. When the corresponding VF instance is registered,
1650  * we will take care of switching the data path.
1651  */
1652 static int netvsc_netdev_event(struct notifier_block *this,
1653 			       unsigned long event, void *ptr)
1654 {
1655 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1656 
1657 	/* Skip our own events */
1658 	if (event_dev->netdev_ops == &device_ops)
1659 		return NOTIFY_DONE;
1660 
1661 	/* Avoid non-Ethernet type devices */
1662 	if (event_dev->type != ARPHRD_ETHER)
1663 		return NOTIFY_DONE;
1664 
1665 	/* Avoid Vlan dev with same MAC registering as VF */
1666 	if (is_vlan_dev(event_dev))
1667 		return NOTIFY_DONE;
1668 
1669 	/* Avoid Bonding master dev with same MAC registering as VF */
1670 	if ((event_dev->priv_flags & IFF_BONDING) &&
1671 	    (event_dev->flags & IFF_MASTER))
1672 		return NOTIFY_DONE;
1673 
1674 	switch (event) {
1675 	case NETDEV_REGISTER:
1676 		return netvsc_register_vf(event_dev);
1677 	case NETDEV_UNREGISTER:
1678 		return netvsc_unregister_vf(event_dev);
1679 	case NETDEV_UP:
1680 		return netvsc_vf_up(event_dev);
1681 	case NETDEV_DOWN:
1682 		return netvsc_vf_down(event_dev);
1683 	default:
1684 		return NOTIFY_DONE;
1685 	}
1686 }
1687 
1688 static struct notifier_block netvsc_netdev_notifier = {
1689 	.notifier_call = netvsc_netdev_event,
1690 };
1691 
1692 static void __exit netvsc_drv_exit(void)
1693 {
1694 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1695 	vmbus_driver_unregister(&netvsc_drv);
1696 }
1697 
1698 static int __init netvsc_drv_init(void)
1699 {
1700 	int ret;
1701 
1702 	if (ring_size < RING_SIZE_MIN) {
1703 		ring_size = RING_SIZE_MIN;
1704 		pr_info("Increased ring_size to %d (min allowed)\n",
1705 			ring_size);
1706 	}
1707 	ret = vmbus_driver_register(&netvsc_drv);
1708 
1709 	if (ret)
1710 		return ret;
1711 
1712 	register_netdevice_notifier(&netvsc_netdev_notifier);
1713 	return 0;
1714 }
1715 
1716 MODULE_LICENSE("GPL");
1717 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1718 
1719 module_init(netvsc_drv_init);
1720 module_exit(netvsc_drv_exit);
1721