1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/skbuff.h> 33 #include <linux/if_vlan.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <net/arp.h> 37 #include <net/route.h> 38 #include <net/sock.h> 39 #include <net/pkt_sched.h> 40 41 #include "hyperv_net.h" 42 43 #define RING_SIZE_MIN 64 44 #define LINKCHANGE_INT (2 * HZ) 45 #define NETVSC_HW_FEATURES (NETIF_F_RXCSUM | \ 46 NETIF_F_SG | \ 47 NETIF_F_TSO | \ 48 NETIF_F_TSO6 | \ 49 NETIF_F_HW_CSUM) 50 static int ring_size = 128; 51 module_param(ring_size, int, S_IRUGO); 52 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 53 54 static int max_num_vrss_chns = 8; 55 56 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 57 NETIF_MSG_LINK | NETIF_MSG_IFUP | 58 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 59 NETIF_MSG_TX_ERR; 60 61 static int debug = -1; 62 module_param(debug, int, S_IRUGO); 63 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 64 65 static void do_set_multicast(struct work_struct *w) 66 { 67 struct net_device_context *ndevctx = 68 container_of(w, struct net_device_context, work); 69 struct hv_device *device_obj = ndevctx->device_ctx; 70 struct net_device *ndev = hv_get_drvdata(device_obj); 71 struct netvsc_device *nvdev = ndevctx->nvdev; 72 struct rndis_device *rdev; 73 74 if (!nvdev) 75 return; 76 77 rdev = nvdev->extension; 78 if (rdev == NULL) 79 return; 80 81 if (ndev->flags & IFF_PROMISC) 82 rndis_filter_set_packet_filter(rdev, 83 NDIS_PACKET_TYPE_PROMISCUOUS); 84 else 85 rndis_filter_set_packet_filter(rdev, 86 NDIS_PACKET_TYPE_BROADCAST | 87 NDIS_PACKET_TYPE_ALL_MULTICAST | 88 NDIS_PACKET_TYPE_DIRECTED); 89 } 90 91 static void netvsc_set_multicast_list(struct net_device *net) 92 { 93 struct net_device_context *net_device_ctx = netdev_priv(net); 94 95 schedule_work(&net_device_ctx->work); 96 } 97 98 static int netvsc_open(struct net_device *net) 99 { 100 struct netvsc_device *nvdev = net_device_to_netvsc_device(net); 101 struct rndis_device *rdev; 102 int ret = 0; 103 104 netif_carrier_off(net); 105 106 /* Open up the device */ 107 ret = rndis_filter_open(nvdev); 108 if (ret != 0) { 109 netdev_err(net, "unable to open device (ret %d).\n", ret); 110 return ret; 111 } 112 113 netif_tx_wake_all_queues(net); 114 115 rdev = nvdev->extension; 116 if (!rdev->link_state) 117 netif_carrier_on(net); 118 119 return ret; 120 } 121 122 static int netvsc_close(struct net_device *net) 123 { 124 struct net_device_context *net_device_ctx = netdev_priv(net); 125 struct netvsc_device *nvdev = net_device_ctx->nvdev; 126 int ret; 127 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20; 128 struct vmbus_channel *chn; 129 130 netif_tx_disable(net); 131 132 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ 133 cancel_work_sync(&net_device_ctx->work); 134 ret = rndis_filter_close(nvdev); 135 if (ret != 0) { 136 netdev_err(net, "unable to close device (ret %d).\n", ret); 137 return ret; 138 } 139 140 /* Ensure pending bytes in ring are read */ 141 while (true) { 142 aread = 0; 143 for (i = 0; i < nvdev->num_chn; i++) { 144 chn = nvdev->chn_table[i]; 145 if (!chn) 146 continue; 147 148 hv_get_ringbuffer_availbytes(&chn->inbound, &aread, 149 &awrite); 150 151 if (aread) 152 break; 153 154 hv_get_ringbuffer_availbytes(&chn->outbound, &aread, 155 &awrite); 156 157 if (aread) 158 break; 159 } 160 161 retry++; 162 if (retry > retry_max || aread == 0) 163 break; 164 165 msleep(msec); 166 167 if (msec < 1000) 168 msec *= 2; 169 } 170 171 if (aread) { 172 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 173 ret = -ETIMEDOUT; 174 } 175 176 return ret; 177 } 178 179 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, 180 int pkt_type) 181 { 182 struct rndis_packet *rndis_pkt; 183 struct rndis_per_packet_info *ppi; 184 185 rndis_pkt = &msg->msg.pkt; 186 rndis_pkt->data_offset += ppi_size; 187 188 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + 189 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); 190 191 ppi->size = ppi_size; 192 ppi->type = pkt_type; 193 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 194 195 rndis_pkt->per_pkt_info_len += ppi_size; 196 197 return ppi; 198 } 199 200 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 201 void *accel_priv, select_queue_fallback_t fallback) 202 { 203 struct net_device_context *net_device_ctx = netdev_priv(ndev); 204 struct netvsc_device *nvsc_dev = net_device_ctx->nvdev; 205 u32 hash; 206 u16 q_idx = 0; 207 208 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1) 209 return 0; 210 211 hash = skb_get_hash(skb); 212 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] % 213 ndev->real_num_tx_queues; 214 215 if (!nvsc_dev->chn_table[q_idx]) 216 q_idx = 0; 217 218 return q_idx; 219 } 220 221 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 222 struct hv_page_buffer *pb) 223 { 224 int j = 0; 225 226 /* Deal with compund pages by ignoring unused part 227 * of the page. 228 */ 229 page += (offset >> PAGE_SHIFT); 230 offset &= ~PAGE_MASK; 231 232 while (len > 0) { 233 unsigned long bytes; 234 235 bytes = PAGE_SIZE - offset; 236 if (bytes > len) 237 bytes = len; 238 pb[j].pfn = page_to_pfn(page); 239 pb[j].offset = offset; 240 pb[j].len = bytes; 241 242 offset += bytes; 243 len -= bytes; 244 245 if (offset == PAGE_SIZE && len) { 246 page++; 247 offset = 0; 248 j++; 249 } 250 } 251 252 return j + 1; 253 } 254 255 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 256 struct hv_netvsc_packet *packet, 257 struct hv_page_buffer **page_buf) 258 { 259 struct hv_page_buffer *pb = *page_buf; 260 u32 slots_used = 0; 261 char *data = skb->data; 262 int frags = skb_shinfo(skb)->nr_frags; 263 int i; 264 265 /* The packet is laid out thus: 266 * 1. hdr: RNDIS header and PPI 267 * 2. skb linear data 268 * 3. skb fragment data 269 */ 270 if (hdr != NULL) 271 slots_used += fill_pg_buf(virt_to_page(hdr), 272 offset_in_page(hdr), 273 len, &pb[slots_used]); 274 275 packet->rmsg_size = len; 276 packet->rmsg_pgcnt = slots_used; 277 278 slots_used += fill_pg_buf(virt_to_page(data), 279 offset_in_page(data), 280 skb_headlen(skb), &pb[slots_used]); 281 282 for (i = 0; i < frags; i++) { 283 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 284 285 slots_used += fill_pg_buf(skb_frag_page(frag), 286 frag->page_offset, 287 skb_frag_size(frag), &pb[slots_used]); 288 } 289 return slots_used; 290 } 291 292 static int count_skb_frag_slots(struct sk_buff *skb) 293 { 294 int i, frags = skb_shinfo(skb)->nr_frags; 295 int pages = 0; 296 297 for (i = 0; i < frags; i++) { 298 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 299 unsigned long size = skb_frag_size(frag); 300 unsigned long offset = frag->page_offset; 301 302 /* Skip unused frames from start of page */ 303 offset &= ~PAGE_MASK; 304 pages += PFN_UP(offset + size); 305 } 306 return pages; 307 } 308 309 static int netvsc_get_slots(struct sk_buff *skb) 310 { 311 char *data = skb->data; 312 unsigned int offset = offset_in_page(data); 313 unsigned int len = skb_headlen(skb); 314 int slots; 315 int frag_slots; 316 317 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 318 frag_slots = count_skb_frag_slots(skb); 319 return slots + frag_slots; 320 } 321 322 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off) 323 { 324 u32 ret_val = TRANSPORT_INFO_NOT_IP; 325 326 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) && 327 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) { 328 goto not_ip; 329 } 330 331 *trans_off = skb_transport_offset(skb); 332 333 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) { 334 struct iphdr *iphdr = ip_hdr(skb); 335 336 if (iphdr->protocol == IPPROTO_TCP) 337 ret_val = TRANSPORT_INFO_IPV4_TCP; 338 else if (iphdr->protocol == IPPROTO_UDP) 339 ret_val = TRANSPORT_INFO_IPV4_UDP; 340 } else { 341 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 342 ret_val = TRANSPORT_INFO_IPV6_TCP; 343 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) 344 ret_val = TRANSPORT_INFO_IPV6_UDP; 345 } 346 347 not_ip: 348 return ret_val; 349 } 350 351 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 352 { 353 struct net_device_context *net_device_ctx = netdev_priv(net); 354 struct hv_netvsc_packet *packet = NULL; 355 int ret; 356 unsigned int num_data_pgs; 357 struct rndis_message *rndis_msg; 358 struct rndis_packet *rndis_pkt; 359 u32 rndis_msg_size; 360 struct rndis_per_packet_info *ppi; 361 struct ndis_tcp_ip_checksum_info *csum_info; 362 int hdr_offset; 363 u32 net_trans_info; 364 u32 hash; 365 u32 skb_length; 366 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; 367 struct hv_page_buffer *pb = page_buf; 368 369 /* We will atmost need two pages to describe the rndis 370 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 371 * of pages in a single packet. If skb is scattered around 372 * more pages we try linearizing it. 373 */ 374 375 skb_length = skb->len; 376 num_data_pgs = netvsc_get_slots(skb) + 2; 377 378 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 379 ++net_device_ctx->eth_stats.tx_scattered; 380 381 if (skb_linearize(skb)) 382 goto no_memory; 383 384 num_data_pgs = netvsc_get_slots(skb) + 2; 385 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 386 ++net_device_ctx->eth_stats.tx_too_big; 387 goto drop; 388 } 389 } 390 391 /* 392 * Place the rndis header in the skb head room and 393 * the skb->cb will be used for hv_netvsc_packet 394 * structure. 395 */ 396 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 397 if (ret) 398 goto no_memory; 399 400 /* Use the skb control buffer for building up the packet */ 401 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 402 FIELD_SIZEOF(struct sk_buff, cb)); 403 packet = (struct hv_netvsc_packet *)skb->cb; 404 405 packet->q_idx = skb_get_queue_mapping(skb); 406 407 packet->total_data_buflen = skb->len; 408 409 rndis_msg = (struct rndis_message *)skb->head; 410 411 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE); 412 413 /* Add the rndis header */ 414 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 415 rndis_msg->msg_len = packet->total_data_buflen; 416 rndis_pkt = &rndis_msg->msg.pkt; 417 rndis_pkt->data_offset = sizeof(struct rndis_packet); 418 rndis_pkt->data_len = packet->total_data_buflen; 419 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); 420 421 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 422 423 hash = skb_get_hash_raw(skb); 424 if (hash != 0 && net->real_num_tx_queues > 1) { 425 rndis_msg_size += NDIS_HASH_PPI_SIZE; 426 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 427 NBL_HASH_VALUE); 428 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; 429 } 430 431 if (skb_vlan_tag_present(skb)) { 432 struct ndis_pkt_8021q_info *vlan; 433 434 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 435 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 436 IEEE_8021Q_INFO); 437 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + 438 ppi->ppi_offset); 439 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK; 440 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >> 441 VLAN_PRIO_SHIFT; 442 } 443 444 net_trans_info = get_net_transport_info(skb, &hdr_offset); 445 446 /* 447 * Setup the sendside checksum offload only if this is not a 448 * GSO packet. 449 */ 450 if ((net_trans_info & (INFO_TCP | INFO_UDP)) && skb_is_gso(skb)) { 451 struct ndis_tcp_lso_info *lso_info; 452 453 rndis_msg_size += NDIS_LSO_PPI_SIZE; 454 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 455 TCP_LARGESEND_PKTINFO); 456 457 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + 458 ppi->ppi_offset); 459 460 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 461 if (net_trans_info & (INFO_IPV4 << 16)) { 462 lso_info->lso_v2_transmit.ip_version = 463 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 464 ip_hdr(skb)->tot_len = 0; 465 ip_hdr(skb)->check = 0; 466 tcp_hdr(skb)->check = 467 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 468 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 469 } else { 470 lso_info->lso_v2_transmit.ip_version = 471 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 472 ipv6_hdr(skb)->payload_len = 0; 473 tcp_hdr(skb)->check = 474 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 475 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 476 } 477 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset; 478 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 479 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 480 if (net_trans_info & INFO_TCP) { 481 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 482 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 483 TCPIP_CHKSUM_PKTINFO); 484 485 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + 486 ppi->ppi_offset); 487 488 if (net_trans_info & (INFO_IPV4 << 16)) 489 csum_info->transmit.is_ipv4 = 1; 490 else 491 csum_info->transmit.is_ipv6 = 1; 492 493 csum_info->transmit.tcp_checksum = 1; 494 csum_info->transmit.tcp_header_offset = hdr_offset; 495 } else { 496 /* UDP checksum (and other) offload is not supported. */ 497 if (skb_checksum_help(skb)) 498 goto drop; 499 } 500 } 501 502 /* Start filling in the page buffers with the rndis hdr */ 503 rndis_msg->msg_len += rndis_msg_size; 504 packet->total_data_buflen = rndis_msg->msg_len; 505 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 506 skb, packet, &pb); 507 508 /* timestamp packet in software */ 509 skb_tx_timestamp(skb); 510 ret = netvsc_send(net_device_ctx->device_ctx, packet, 511 rndis_msg, &pb, skb); 512 if (likely(ret == 0)) { 513 struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats); 514 515 u64_stats_update_begin(&tx_stats->syncp); 516 tx_stats->packets++; 517 tx_stats->bytes += skb_length; 518 u64_stats_update_end(&tx_stats->syncp); 519 return NETDEV_TX_OK; 520 } 521 522 if (ret == -EAGAIN) { 523 ++net_device_ctx->eth_stats.tx_busy; 524 return NETDEV_TX_BUSY; 525 } 526 527 if (ret == -ENOSPC) 528 ++net_device_ctx->eth_stats.tx_no_space; 529 530 drop: 531 dev_kfree_skb_any(skb); 532 net->stats.tx_dropped++; 533 534 return NETDEV_TX_OK; 535 536 no_memory: 537 ++net_device_ctx->eth_stats.tx_no_memory; 538 goto drop; 539 } 540 541 /* 542 * netvsc_linkstatus_callback - Link up/down notification 543 */ 544 void netvsc_linkstatus_callback(struct hv_device *device_obj, 545 struct rndis_message *resp) 546 { 547 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 548 struct net_device *net; 549 struct net_device_context *ndev_ctx; 550 struct netvsc_reconfig *event; 551 unsigned long flags; 552 553 net = hv_get_drvdata(device_obj); 554 555 if (!net) 556 return; 557 558 ndev_ctx = netdev_priv(net); 559 560 /* Update the physical link speed when changing to another vSwitch */ 561 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 562 u32 speed; 563 564 speed = *(u32 *)((void *)indicate + indicate-> 565 status_buf_offset) / 10000; 566 ndev_ctx->speed = speed; 567 return; 568 } 569 570 /* Handle these link change statuses below */ 571 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 572 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 573 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 574 return; 575 576 if (net->reg_state != NETREG_REGISTERED) 577 return; 578 579 event = kzalloc(sizeof(*event), GFP_ATOMIC); 580 if (!event) 581 return; 582 event->event = indicate->status; 583 584 spin_lock_irqsave(&ndev_ctx->lock, flags); 585 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 586 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 587 588 schedule_delayed_work(&ndev_ctx->dwork, 0); 589 } 590 591 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 592 struct hv_netvsc_packet *packet, 593 struct ndis_tcp_ip_checksum_info *csum_info, 594 void *data, u16 vlan_tci) 595 { 596 struct sk_buff *skb; 597 598 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen); 599 if (!skb) 600 return skb; 601 602 /* 603 * Copy to skb. This copy is needed here since the memory pointed by 604 * hv_netvsc_packet cannot be deallocated 605 */ 606 memcpy(skb_put(skb, packet->total_data_buflen), data, 607 packet->total_data_buflen); 608 609 skb->protocol = eth_type_trans(skb, net); 610 611 /* skb is already created with CHECKSUM_NONE */ 612 skb_checksum_none_assert(skb); 613 614 /* 615 * In Linux, the IP checksum is always checked. 616 * Do L4 checksum offload if enabled and present. 617 */ 618 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 619 if (csum_info->receive.tcp_checksum_succeeded || 620 csum_info->receive.udp_checksum_succeeded) 621 skb->ip_summed = CHECKSUM_UNNECESSARY; 622 } 623 624 if (vlan_tci & VLAN_TAG_PRESENT) 625 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 626 vlan_tci); 627 628 return skb; 629 } 630 631 /* 632 * netvsc_recv_callback - Callback when we receive a packet from the 633 * "wire" on the specified device. 634 */ 635 int netvsc_recv_callback(struct hv_device *device_obj, 636 struct hv_netvsc_packet *packet, 637 void **data, 638 struct ndis_tcp_ip_checksum_info *csum_info, 639 struct vmbus_channel *channel, 640 u16 vlan_tci) 641 { 642 struct net_device *net = hv_get_drvdata(device_obj); 643 struct net_device_context *net_device_ctx = netdev_priv(net); 644 struct net_device *vf_netdev; 645 struct sk_buff *skb; 646 struct netvsc_stats *rx_stats; 647 648 if (net->reg_state != NETREG_REGISTERED) 649 return NVSP_STAT_FAIL; 650 651 /* 652 * If necessary, inject this packet into the VF interface. 653 * On Hyper-V, multicast and brodcast packets are only delivered 654 * to the synthetic interface (after subjecting these to 655 * policy filters on the host). Deliver these via the VF 656 * interface in the guest. 657 */ 658 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev); 659 if (vf_netdev && (vf_netdev->flags & IFF_UP)) 660 net = vf_netdev; 661 662 /* Allocate a skb - TODO direct I/O to pages? */ 663 skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci); 664 if (unlikely(!skb)) { 665 ++net->stats.rx_dropped; 666 return NVSP_STAT_FAIL; 667 } 668 669 if (net != vf_netdev) 670 skb_record_rx_queue(skb, 671 channel->offermsg.offer.sub_channel_index); 672 673 /* 674 * Even if injecting the packet, record the statistics 675 * on the synthetic device because modifying the VF device 676 * statistics will not work correctly. 677 */ 678 rx_stats = this_cpu_ptr(net_device_ctx->rx_stats); 679 u64_stats_update_begin(&rx_stats->syncp); 680 rx_stats->packets++; 681 rx_stats->bytes += packet->total_data_buflen; 682 683 if (skb->pkt_type == PACKET_BROADCAST) 684 ++rx_stats->broadcast; 685 else if (skb->pkt_type == PACKET_MULTICAST) 686 ++rx_stats->multicast; 687 u64_stats_update_end(&rx_stats->syncp); 688 689 /* 690 * Pass the skb back up. Network stack will deallocate the skb when it 691 * is done. 692 * TODO - use NAPI? 693 */ 694 netif_rx(skb); 695 696 return 0; 697 } 698 699 static void netvsc_get_drvinfo(struct net_device *net, 700 struct ethtool_drvinfo *info) 701 { 702 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 703 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 704 } 705 706 static void netvsc_get_channels(struct net_device *net, 707 struct ethtool_channels *channel) 708 { 709 struct net_device_context *net_device_ctx = netdev_priv(net); 710 struct netvsc_device *nvdev = net_device_ctx->nvdev; 711 712 if (nvdev) { 713 channel->max_combined = nvdev->max_chn; 714 channel->combined_count = nvdev->num_chn; 715 } 716 } 717 718 static int netvsc_set_channels(struct net_device *net, 719 struct ethtool_channels *channels) 720 { 721 struct net_device_context *net_device_ctx = netdev_priv(net); 722 struct hv_device *dev = net_device_ctx->device_ctx; 723 struct netvsc_device *nvdev = net_device_ctx->nvdev; 724 struct netvsc_device_info device_info; 725 u32 num_chn; 726 u32 max_chn; 727 int ret = 0; 728 bool recovering = false; 729 730 if (net_device_ctx->start_remove || !nvdev || nvdev->destroy) 731 return -ENODEV; 732 733 num_chn = nvdev->num_chn; 734 max_chn = min_t(u32, nvdev->max_chn, num_online_cpus()); 735 736 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) { 737 pr_info("vRSS unsupported before NVSP Version 5\n"); 738 return -EINVAL; 739 } 740 741 /* We do not support rx, tx, or other */ 742 if (!channels || 743 channels->rx_count || 744 channels->tx_count || 745 channels->other_count || 746 (channels->combined_count < 1)) 747 return -EINVAL; 748 749 if (channels->combined_count > max_chn) { 750 pr_info("combined channels too high, using %d\n", max_chn); 751 channels->combined_count = max_chn; 752 } 753 754 ret = netvsc_close(net); 755 if (ret) 756 goto out; 757 758 do_set: 759 net_device_ctx->start_remove = true; 760 rndis_filter_device_remove(dev); 761 762 nvdev->num_chn = channels->combined_count; 763 764 memset(&device_info, 0, sizeof(device_info)); 765 device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */ 766 device_info.ring_size = ring_size; 767 device_info.max_num_vrss_chns = max_num_vrss_chns; 768 769 ret = rndis_filter_device_add(dev, &device_info); 770 if (ret) { 771 if (recovering) { 772 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 773 return ret; 774 } 775 goto recover; 776 } 777 778 nvdev = net_device_ctx->nvdev; 779 780 ret = netif_set_real_num_tx_queues(net, nvdev->num_chn); 781 if (ret) { 782 if (recovering) { 783 netdev_err(net, "could not set tx queue count (ret %d)\n", ret); 784 return ret; 785 } 786 goto recover; 787 } 788 789 ret = netif_set_real_num_rx_queues(net, nvdev->num_chn); 790 if (ret) { 791 if (recovering) { 792 netdev_err(net, "could not set rx queue count (ret %d)\n", ret); 793 return ret; 794 } 795 goto recover; 796 } 797 798 out: 799 netvsc_open(net); 800 net_device_ctx->start_remove = false; 801 /* We may have missed link change notifications */ 802 schedule_delayed_work(&net_device_ctx->dwork, 0); 803 804 return ret; 805 806 recover: 807 /* If the above failed, we attempt to recover through the same 808 * process but with the original number of channels. 809 */ 810 netdev_err(net, "could not set channels, recovering\n"); 811 recovering = true; 812 channels->combined_count = num_chn; 813 goto do_set; 814 } 815 816 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd) 817 { 818 struct ethtool_cmd diff1 = *cmd; 819 struct ethtool_cmd diff2 = {}; 820 821 ethtool_cmd_speed_set(&diff1, 0); 822 diff1.duplex = 0; 823 /* advertising and cmd are usually set */ 824 diff1.advertising = 0; 825 diff1.cmd = 0; 826 /* We set port to PORT_OTHER */ 827 diff2.port = PORT_OTHER; 828 829 return !memcmp(&diff1, &diff2, sizeof(diff1)); 830 } 831 832 static void netvsc_init_settings(struct net_device *dev) 833 { 834 struct net_device_context *ndc = netdev_priv(dev); 835 836 ndc->speed = SPEED_UNKNOWN; 837 ndc->duplex = DUPLEX_UNKNOWN; 838 } 839 840 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 841 { 842 struct net_device_context *ndc = netdev_priv(dev); 843 844 ethtool_cmd_speed_set(cmd, ndc->speed); 845 cmd->duplex = ndc->duplex; 846 cmd->port = PORT_OTHER; 847 848 return 0; 849 } 850 851 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 852 { 853 struct net_device_context *ndc = netdev_priv(dev); 854 u32 speed; 855 856 speed = ethtool_cmd_speed(cmd); 857 if (!ethtool_validate_speed(speed) || 858 !ethtool_validate_duplex(cmd->duplex) || 859 !netvsc_validate_ethtool_ss_cmd(cmd)) 860 return -EINVAL; 861 862 ndc->speed = speed; 863 ndc->duplex = cmd->duplex; 864 865 return 0; 866 } 867 868 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 869 { 870 struct net_device_context *ndevctx = netdev_priv(ndev); 871 struct netvsc_device *nvdev = ndevctx->nvdev; 872 struct hv_device *hdev = ndevctx->device_ctx; 873 struct netvsc_device_info device_info; 874 int limit = ETH_DATA_LEN; 875 u32 num_chn; 876 int ret = 0; 877 878 if (ndevctx->start_remove || !nvdev || nvdev->destroy) 879 return -ENODEV; 880 881 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 882 limit = NETVSC_MTU - ETH_HLEN; 883 884 if (mtu < NETVSC_MTU_MIN || mtu > limit) 885 return -EINVAL; 886 887 ret = netvsc_close(ndev); 888 if (ret) 889 goto out; 890 891 num_chn = nvdev->num_chn; 892 893 ndevctx->start_remove = true; 894 rndis_filter_device_remove(hdev); 895 896 ndev->mtu = mtu; 897 898 memset(&device_info, 0, sizeof(device_info)); 899 device_info.ring_size = ring_size; 900 device_info.num_chn = num_chn; 901 device_info.max_num_vrss_chns = max_num_vrss_chns; 902 rndis_filter_device_add(hdev, &device_info); 903 904 out: 905 netvsc_open(ndev); 906 ndevctx->start_remove = false; 907 908 /* We may have missed link change notifications */ 909 schedule_delayed_work(&ndevctx->dwork, 0); 910 911 return ret; 912 } 913 914 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net, 915 struct rtnl_link_stats64 *t) 916 { 917 struct net_device_context *ndev_ctx = netdev_priv(net); 918 int cpu; 919 920 for_each_possible_cpu(cpu) { 921 struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats, 922 cpu); 923 struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats, 924 cpu); 925 u64 tx_packets, tx_bytes, rx_packets, rx_bytes, rx_multicast; 926 unsigned int start; 927 928 do { 929 start = u64_stats_fetch_begin_irq(&tx_stats->syncp); 930 tx_packets = tx_stats->packets; 931 tx_bytes = tx_stats->bytes; 932 } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start)); 933 934 do { 935 start = u64_stats_fetch_begin_irq(&rx_stats->syncp); 936 rx_packets = rx_stats->packets; 937 rx_bytes = rx_stats->bytes; 938 rx_multicast = rx_stats->multicast + rx_stats->broadcast; 939 } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start)); 940 941 t->tx_bytes += tx_bytes; 942 t->tx_packets += tx_packets; 943 t->rx_bytes += rx_bytes; 944 t->rx_packets += rx_packets; 945 t->multicast += rx_multicast; 946 } 947 948 t->tx_dropped = net->stats.tx_dropped; 949 t->tx_errors = net->stats.tx_dropped; 950 951 t->rx_dropped = net->stats.rx_dropped; 952 t->rx_errors = net->stats.rx_errors; 953 954 return t; 955 } 956 957 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 958 { 959 struct sockaddr *addr = p; 960 char save_adr[ETH_ALEN]; 961 unsigned char save_aatype; 962 int err; 963 964 memcpy(save_adr, ndev->dev_addr, ETH_ALEN); 965 save_aatype = ndev->addr_assign_type; 966 967 err = eth_mac_addr(ndev, p); 968 if (err != 0) 969 return err; 970 971 err = rndis_filter_set_device_mac(ndev, addr->sa_data); 972 if (err != 0) { 973 /* roll back to saved MAC */ 974 memcpy(ndev->dev_addr, save_adr, ETH_ALEN); 975 ndev->addr_assign_type = save_aatype; 976 } 977 978 return err; 979 } 980 981 static const struct { 982 char name[ETH_GSTRING_LEN]; 983 u16 offset; 984 } netvsc_stats[] = { 985 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 986 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 987 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 988 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 989 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 990 }; 991 992 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 993 { 994 switch (string_set) { 995 case ETH_SS_STATS: 996 return ARRAY_SIZE(netvsc_stats); 997 default: 998 return -EINVAL; 999 } 1000 } 1001 1002 static void netvsc_get_ethtool_stats(struct net_device *dev, 1003 struct ethtool_stats *stats, u64 *data) 1004 { 1005 struct net_device_context *ndc = netdev_priv(dev); 1006 const void *nds = &ndc->eth_stats; 1007 int i; 1008 1009 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1010 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1011 } 1012 1013 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1014 { 1015 int i; 1016 1017 switch (stringset) { 1018 case ETH_SS_STATS: 1019 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) 1020 memcpy(data + i * ETH_GSTRING_LEN, 1021 netvsc_stats[i].name, ETH_GSTRING_LEN); 1022 break; 1023 } 1024 } 1025 1026 #ifdef CONFIG_NET_POLL_CONTROLLER 1027 static void netvsc_poll_controller(struct net_device *net) 1028 { 1029 /* As netvsc_start_xmit() works synchronous we don't have to 1030 * trigger anything here. 1031 */ 1032 } 1033 #endif 1034 1035 static const struct ethtool_ops ethtool_ops = { 1036 .get_drvinfo = netvsc_get_drvinfo, 1037 .get_link = ethtool_op_get_link, 1038 .get_ethtool_stats = netvsc_get_ethtool_stats, 1039 .get_sset_count = netvsc_get_sset_count, 1040 .get_strings = netvsc_get_strings, 1041 .get_channels = netvsc_get_channels, 1042 .set_channels = netvsc_set_channels, 1043 .get_ts_info = ethtool_op_get_ts_info, 1044 .get_settings = netvsc_get_settings, 1045 .set_settings = netvsc_set_settings, 1046 }; 1047 1048 static const struct net_device_ops device_ops = { 1049 .ndo_open = netvsc_open, 1050 .ndo_stop = netvsc_close, 1051 .ndo_start_xmit = netvsc_start_xmit, 1052 .ndo_set_rx_mode = netvsc_set_multicast_list, 1053 .ndo_change_mtu = netvsc_change_mtu, 1054 .ndo_validate_addr = eth_validate_addr, 1055 .ndo_set_mac_address = netvsc_set_mac_addr, 1056 .ndo_select_queue = netvsc_select_queue, 1057 .ndo_get_stats64 = netvsc_get_stats64, 1058 #ifdef CONFIG_NET_POLL_CONTROLLER 1059 .ndo_poll_controller = netvsc_poll_controller, 1060 #endif 1061 }; 1062 1063 /* 1064 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1065 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1066 * present send GARP packet to network peers with netif_notify_peers(). 1067 */ 1068 static void netvsc_link_change(struct work_struct *w) 1069 { 1070 struct net_device_context *ndev_ctx = 1071 container_of(w, struct net_device_context, dwork.work); 1072 struct hv_device *device_obj = ndev_ctx->device_ctx; 1073 struct net_device *net = hv_get_drvdata(device_obj); 1074 struct netvsc_device *net_device; 1075 struct rndis_device *rdev; 1076 struct netvsc_reconfig *event = NULL; 1077 bool notify = false, reschedule = false; 1078 unsigned long flags, next_reconfig, delay; 1079 1080 rtnl_lock(); 1081 if (ndev_ctx->start_remove) 1082 goto out_unlock; 1083 1084 net_device = ndev_ctx->nvdev; 1085 rdev = net_device->extension; 1086 1087 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1088 if (time_is_after_jiffies(next_reconfig)) { 1089 /* link_watch only sends one notification with current state 1090 * per second, avoid doing reconfig more frequently. Handle 1091 * wrap around. 1092 */ 1093 delay = next_reconfig - jiffies; 1094 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1095 schedule_delayed_work(&ndev_ctx->dwork, delay); 1096 goto out_unlock; 1097 } 1098 ndev_ctx->last_reconfig = jiffies; 1099 1100 spin_lock_irqsave(&ndev_ctx->lock, flags); 1101 if (!list_empty(&ndev_ctx->reconfig_events)) { 1102 event = list_first_entry(&ndev_ctx->reconfig_events, 1103 struct netvsc_reconfig, list); 1104 list_del(&event->list); 1105 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1106 } 1107 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1108 1109 if (!event) 1110 goto out_unlock; 1111 1112 switch (event->event) { 1113 /* Only the following events are possible due to the check in 1114 * netvsc_linkstatus_callback() 1115 */ 1116 case RNDIS_STATUS_MEDIA_CONNECT: 1117 if (rdev->link_state) { 1118 rdev->link_state = false; 1119 netif_carrier_on(net); 1120 netif_tx_wake_all_queues(net); 1121 } else { 1122 notify = true; 1123 } 1124 kfree(event); 1125 break; 1126 case RNDIS_STATUS_MEDIA_DISCONNECT: 1127 if (!rdev->link_state) { 1128 rdev->link_state = true; 1129 netif_carrier_off(net); 1130 netif_tx_stop_all_queues(net); 1131 } 1132 kfree(event); 1133 break; 1134 case RNDIS_STATUS_NETWORK_CHANGE: 1135 /* Only makes sense if carrier is present */ 1136 if (!rdev->link_state) { 1137 rdev->link_state = true; 1138 netif_carrier_off(net); 1139 netif_tx_stop_all_queues(net); 1140 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1141 spin_lock_irqsave(&ndev_ctx->lock, flags); 1142 list_add(&event->list, &ndev_ctx->reconfig_events); 1143 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1144 reschedule = true; 1145 } 1146 break; 1147 } 1148 1149 rtnl_unlock(); 1150 1151 if (notify) 1152 netdev_notify_peers(net); 1153 1154 /* link_watch only sends one notification with current state per 1155 * second, handle next reconfig event in 2 seconds. 1156 */ 1157 if (reschedule) 1158 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1159 1160 return; 1161 1162 out_unlock: 1163 rtnl_unlock(); 1164 } 1165 1166 static void netvsc_free_netdev(struct net_device *netdev) 1167 { 1168 struct net_device_context *net_device_ctx = netdev_priv(netdev); 1169 1170 free_percpu(net_device_ctx->tx_stats); 1171 free_percpu(net_device_ctx->rx_stats); 1172 free_netdev(netdev); 1173 } 1174 1175 static struct net_device *get_netvsc_bymac(const u8 *mac) 1176 { 1177 struct net_device *dev; 1178 1179 ASSERT_RTNL(); 1180 1181 for_each_netdev(&init_net, dev) { 1182 if (dev->netdev_ops != &device_ops) 1183 continue; /* not a netvsc device */ 1184 1185 if (ether_addr_equal(mac, dev->perm_addr)) 1186 return dev; 1187 } 1188 1189 return NULL; 1190 } 1191 1192 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1193 { 1194 struct net_device *dev; 1195 1196 ASSERT_RTNL(); 1197 1198 for_each_netdev(&init_net, dev) { 1199 struct net_device_context *net_device_ctx; 1200 1201 if (dev->netdev_ops != &device_ops) 1202 continue; /* not a netvsc device */ 1203 1204 net_device_ctx = netdev_priv(dev); 1205 if (net_device_ctx->nvdev == NULL) 1206 continue; /* device is removed */ 1207 1208 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev) 1209 return dev; /* a match */ 1210 } 1211 1212 return NULL; 1213 } 1214 1215 static int netvsc_register_vf(struct net_device *vf_netdev) 1216 { 1217 struct net_device *ndev; 1218 struct net_device_context *net_device_ctx; 1219 struct netvsc_device *netvsc_dev; 1220 1221 if (vf_netdev->addr_len != ETH_ALEN) 1222 return NOTIFY_DONE; 1223 1224 /* 1225 * We will use the MAC address to locate the synthetic interface to 1226 * associate with the VF interface. If we don't find a matching 1227 * synthetic interface, move on. 1228 */ 1229 ndev = get_netvsc_bymac(vf_netdev->perm_addr); 1230 if (!ndev) 1231 return NOTIFY_DONE; 1232 1233 net_device_ctx = netdev_priv(ndev); 1234 netvsc_dev = net_device_ctx->nvdev; 1235 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 1236 return NOTIFY_DONE; 1237 1238 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 1239 /* 1240 * Take a reference on the module. 1241 */ 1242 try_module_get(THIS_MODULE); 1243 1244 dev_hold(vf_netdev); 1245 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 1246 return NOTIFY_OK; 1247 } 1248 1249 static int netvsc_vf_up(struct net_device *vf_netdev) 1250 { 1251 struct net_device *ndev; 1252 struct netvsc_device *netvsc_dev; 1253 struct net_device_context *net_device_ctx; 1254 1255 ndev = get_netvsc_byref(vf_netdev); 1256 if (!ndev) 1257 return NOTIFY_DONE; 1258 1259 net_device_ctx = netdev_priv(ndev); 1260 netvsc_dev = net_device_ctx->nvdev; 1261 1262 netdev_info(ndev, "VF up: %s\n", vf_netdev->name); 1263 1264 /* 1265 * Open the device before switching data path. 1266 */ 1267 rndis_filter_open(netvsc_dev); 1268 1269 /* 1270 * notify the host to switch the data path. 1271 */ 1272 netvsc_switch_datapath(ndev, true); 1273 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name); 1274 1275 netif_carrier_off(ndev); 1276 1277 /* Now notify peers through VF device. */ 1278 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev); 1279 1280 return NOTIFY_OK; 1281 } 1282 1283 static int netvsc_vf_down(struct net_device *vf_netdev) 1284 { 1285 struct net_device *ndev; 1286 struct netvsc_device *netvsc_dev; 1287 struct net_device_context *net_device_ctx; 1288 1289 ndev = get_netvsc_byref(vf_netdev); 1290 if (!ndev) 1291 return NOTIFY_DONE; 1292 1293 net_device_ctx = netdev_priv(ndev); 1294 netvsc_dev = net_device_ctx->nvdev; 1295 1296 netdev_info(ndev, "VF down: %s\n", vf_netdev->name); 1297 netvsc_switch_datapath(ndev, false); 1298 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name); 1299 rndis_filter_close(netvsc_dev); 1300 netif_carrier_on(ndev); 1301 1302 /* Now notify peers through netvsc device. */ 1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev); 1304 1305 return NOTIFY_OK; 1306 } 1307 1308 static int netvsc_unregister_vf(struct net_device *vf_netdev) 1309 { 1310 struct net_device *ndev; 1311 struct netvsc_device *netvsc_dev; 1312 struct net_device_context *net_device_ctx; 1313 1314 ndev = get_netvsc_byref(vf_netdev); 1315 if (!ndev) 1316 return NOTIFY_DONE; 1317 1318 net_device_ctx = netdev_priv(ndev); 1319 netvsc_dev = net_device_ctx->nvdev; 1320 1321 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 1322 1323 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 1324 dev_put(vf_netdev); 1325 module_put(THIS_MODULE); 1326 return NOTIFY_OK; 1327 } 1328 1329 static int netvsc_probe(struct hv_device *dev, 1330 const struct hv_vmbus_device_id *dev_id) 1331 { 1332 struct net_device *net = NULL; 1333 struct net_device_context *net_device_ctx; 1334 struct netvsc_device_info device_info; 1335 struct netvsc_device *nvdev; 1336 int ret; 1337 1338 net = alloc_etherdev_mq(sizeof(struct net_device_context), 1339 num_online_cpus()); 1340 if (!net) 1341 return -ENOMEM; 1342 1343 netif_carrier_off(net); 1344 1345 netvsc_init_settings(net); 1346 1347 net_device_ctx = netdev_priv(net); 1348 net_device_ctx->device_ctx = dev; 1349 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 1350 if (netif_msg_probe(net_device_ctx)) 1351 netdev_dbg(net, "netvsc msg_enable: %d\n", 1352 net_device_ctx->msg_enable); 1353 1354 net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats); 1355 if (!net_device_ctx->tx_stats) { 1356 free_netdev(net); 1357 return -ENOMEM; 1358 } 1359 net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats); 1360 if (!net_device_ctx->rx_stats) { 1361 free_percpu(net_device_ctx->tx_stats); 1362 free_netdev(net); 1363 return -ENOMEM; 1364 } 1365 1366 hv_set_drvdata(dev, net); 1367 1368 net_device_ctx->start_remove = false; 1369 1370 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 1371 INIT_WORK(&net_device_ctx->work, do_set_multicast); 1372 1373 spin_lock_init(&net_device_ctx->lock); 1374 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 1375 1376 net->netdev_ops = &device_ops; 1377 1378 net->hw_features = NETVSC_HW_FEATURES; 1379 net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX; 1380 1381 net->ethtool_ops = ðtool_ops; 1382 SET_NETDEV_DEV(net, &dev->device); 1383 1384 /* We always need headroom for rndis header */ 1385 net->needed_headroom = RNDIS_AND_PPI_SIZE; 1386 1387 /* Notify the netvsc driver of the new device */ 1388 memset(&device_info, 0, sizeof(device_info)); 1389 device_info.ring_size = ring_size; 1390 device_info.max_num_vrss_chns = max_num_vrss_chns; 1391 ret = rndis_filter_device_add(dev, &device_info); 1392 if (ret != 0) { 1393 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 1394 netvsc_free_netdev(net); 1395 hv_set_drvdata(dev, NULL); 1396 return ret; 1397 } 1398 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); 1399 1400 nvdev = net_device_ctx->nvdev; 1401 netif_set_real_num_tx_queues(net, nvdev->num_chn); 1402 netif_set_real_num_rx_queues(net, nvdev->num_chn); 1403 1404 ret = register_netdev(net); 1405 if (ret != 0) { 1406 pr_err("Unable to register netdev.\n"); 1407 rndis_filter_device_remove(dev); 1408 netvsc_free_netdev(net); 1409 } 1410 1411 return ret; 1412 } 1413 1414 static int netvsc_remove(struct hv_device *dev) 1415 { 1416 struct net_device *net; 1417 struct net_device_context *ndev_ctx; 1418 struct netvsc_device *net_device; 1419 1420 net = hv_get_drvdata(dev); 1421 1422 if (net == NULL) { 1423 dev_err(&dev->device, "No net device to remove\n"); 1424 return 0; 1425 } 1426 1427 ndev_ctx = netdev_priv(net); 1428 net_device = ndev_ctx->nvdev; 1429 1430 /* Avoid racing with netvsc_change_mtu()/netvsc_set_channels() 1431 * removing the device. 1432 */ 1433 rtnl_lock(); 1434 ndev_ctx->start_remove = true; 1435 rtnl_unlock(); 1436 1437 cancel_delayed_work_sync(&ndev_ctx->dwork); 1438 cancel_work_sync(&ndev_ctx->work); 1439 1440 /* Stop outbound asap */ 1441 netif_tx_disable(net); 1442 1443 unregister_netdev(net); 1444 1445 /* 1446 * Call to the vsc driver to let it know that the device is being 1447 * removed 1448 */ 1449 rndis_filter_device_remove(dev); 1450 1451 hv_set_drvdata(dev, NULL); 1452 1453 netvsc_free_netdev(net); 1454 return 0; 1455 } 1456 1457 static const struct hv_vmbus_device_id id_table[] = { 1458 /* Network guid */ 1459 { HV_NIC_GUID, }, 1460 { }, 1461 }; 1462 1463 MODULE_DEVICE_TABLE(vmbus, id_table); 1464 1465 /* The one and only one */ 1466 static struct hv_driver netvsc_drv = { 1467 .name = KBUILD_MODNAME, 1468 .id_table = id_table, 1469 .probe = netvsc_probe, 1470 .remove = netvsc_remove, 1471 }; 1472 1473 /* 1474 * On Hyper-V, every VF interface is matched with a corresponding 1475 * synthetic interface. The synthetic interface is presented first 1476 * to the guest. When the corresponding VF instance is registered, 1477 * we will take care of switching the data path. 1478 */ 1479 static int netvsc_netdev_event(struct notifier_block *this, 1480 unsigned long event, void *ptr) 1481 { 1482 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 1483 1484 /* Skip our own events */ 1485 if (event_dev->netdev_ops == &device_ops) 1486 return NOTIFY_DONE; 1487 1488 /* Avoid non-Ethernet type devices */ 1489 if (event_dev->type != ARPHRD_ETHER) 1490 return NOTIFY_DONE; 1491 1492 /* Avoid Vlan dev with same MAC registering as VF */ 1493 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 1494 return NOTIFY_DONE; 1495 1496 /* Avoid Bonding master dev with same MAC registering as VF */ 1497 if ((event_dev->priv_flags & IFF_BONDING) && 1498 (event_dev->flags & IFF_MASTER)) 1499 return NOTIFY_DONE; 1500 1501 switch (event) { 1502 case NETDEV_REGISTER: 1503 return netvsc_register_vf(event_dev); 1504 case NETDEV_UNREGISTER: 1505 return netvsc_unregister_vf(event_dev); 1506 case NETDEV_UP: 1507 return netvsc_vf_up(event_dev); 1508 case NETDEV_DOWN: 1509 return netvsc_vf_down(event_dev); 1510 default: 1511 return NOTIFY_DONE; 1512 } 1513 } 1514 1515 static struct notifier_block netvsc_netdev_notifier = { 1516 .notifier_call = netvsc_netdev_event, 1517 }; 1518 1519 static void __exit netvsc_drv_exit(void) 1520 { 1521 unregister_netdevice_notifier(&netvsc_netdev_notifier); 1522 vmbus_driver_unregister(&netvsc_drv); 1523 } 1524 1525 static int __init netvsc_drv_init(void) 1526 { 1527 int ret; 1528 1529 if (ring_size < RING_SIZE_MIN) { 1530 ring_size = RING_SIZE_MIN; 1531 pr_info("Increased ring_size to %d (min allowed)\n", 1532 ring_size); 1533 } 1534 ret = vmbus_driver_register(&netvsc_drv); 1535 1536 if (ret) 1537 return ret; 1538 1539 register_netdevice_notifier(&netvsc_netdev_notifier); 1540 return 0; 1541 } 1542 1543 MODULE_LICENSE("GPL"); 1544 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 1545 1546 module_init(netvsc_drv_init); 1547 module_exit(netvsc_drv_exit); 1548