xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 
41 #include "hyperv_net.h"
42 
43 
44 #define RING_SIZE_MIN 64
45 #define LINKCHANGE_INT (2 * HZ)
46 #define NETVSC_HW_FEATURES	(NETIF_F_RXCSUM | \
47 				 NETIF_F_SG | \
48 				 NETIF_F_TSO | \
49 				 NETIF_F_TSO6 | \
50 				 NETIF_F_HW_CSUM)
51 static int ring_size = 128;
52 module_param(ring_size, int, S_IRUGO);
53 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54 
55 static int max_num_vrss_chns = 8;
56 
57 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
58 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
59 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
60 				NETIF_MSG_TX_ERR;
61 
62 static int debug = -1;
63 module_param(debug, int, S_IRUGO);
64 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
65 
66 static void do_set_multicast(struct work_struct *w)
67 {
68 	struct net_device_context *ndevctx =
69 		container_of(w, struct net_device_context, work);
70 	struct hv_device *device_obj = ndevctx->device_ctx;
71 	struct net_device *ndev = hv_get_drvdata(device_obj);
72 	struct netvsc_device *nvdev = ndevctx->nvdev;
73 	struct rndis_device *rdev;
74 
75 	if (!nvdev)
76 		return;
77 
78 	rdev = nvdev->extension;
79 	if (rdev == NULL)
80 		return;
81 
82 	if (ndev->flags & IFF_PROMISC)
83 		rndis_filter_set_packet_filter(rdev,
84 			NDIS_PACKET_TYPE_PROMISCUOUS);
85 	else
86 		rndis_filter_set_packet_filter(rdev,
87 			NDIS_PACKET_TYPE_BROADCAST |
88 			NDIS_PACKET_TYPE_ALL_MULTICAST |
89 			NDIS_PACKET_TYPE_DIRECTED);
90 }
91 
92 static void netvsc_set_multicast_list(struct net_device *net)
93 {
94 	struct net_device_context *net_device_ctx = netdev_priv(net);
95 
96 	schedule_work(&net_device_ctx->work);
97 }
98 
99 static int netvsc_open(struct net_device *net)
100 {
101 	struct net_device_context *net_device_ctx = netdev_priv(net);
102 	struct hv_device *device_obj = net_device_ctx->device_ctx;
103 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
104 	struct rndis_device *rdev;
105 	int ret = 0;
106 
107 	netif_carrier_off(net);
108 
109 	/* Open up the device */
110 	ret = rndis_filter_open(device_obj);
111 	if (ret != 0) {
112 		netdev_err(net, "unable to open device (ret %d).\n", ret);
113 		return ret;
114 	}
115 
116 	netif_tx_wake_all_queues(net);
117 
118 	rdev = nvdev->extension;
119 	if (!rdev->link_state)
120 		netif_carrier_on(net);
121 
122 	return ret;
123 }
124 
125 static int netvsc_close(struct net_device *net)
126 {
127 	struct net_device_context *net_device_ctx = netdev_priv(net);
128 	struct hv_device *device_obj = net_device_ctx->device_ctx;
129 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
130 	int ret;
131 	u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
132 	struct vmbus_channel *chn;
133 
134 	netif_tx_disable(net);
135 
136 	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
137 	cancel_work_sync(&net_device_ctx->work);
138 	ret = rndis_filter_close(device_obj);
139 	if (ret != 0) {
140 		netdev_err(net, "unable to close device (ret %d).\n", ret);
141 		return ret;
142 	}
143 
144 	/* Ensure pending bytes in ring are read */
145 	while (true) {
146 		aread = 0;
147 		for (i = 0; i < nvdev->num_chn; i++) {
148 			chn = nvdev->chn_table[i];
149 			if (!chn)
150 				continue;
151 
152 			hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
153 						     &awrite);
154 
155 			if (aread)
156 				break;
157 
158 			hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
159 						     &awrite);
160 
161 			if (aread)
162 				break;
163 		}
164 
165 		retry++;
166 		if (retry > retry_max || aread == 0)
167 			break;
168 
169 		msleep(msec);
170 
171 		if (msec < 1000)
172 			msec *= 2;
173 	}
174 
175 	if (aread) {
176 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
177 		ret = -ETIMEDOUT;
178 	}
179 
180 	return ret;
181 }
182 
183 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
184 				int pkt_type)
185 {
186 	struct rndis_packet *rndis_pkt;
187 	struct rndis_per_packet_info *ppi;
188 
189 	rndis_pkt = &msg->msg.pkt;
190 	rndis_pkt->data_offset += ppi_size;
191 
192 	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
193 		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
194 
195 	ppi->size = ppi_size;
196 	ppi->type = pkt_type;
197 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
198 
199 	rndis_pkt->per_pkt_info_len += ppi_size;
200 
201 	return ppi;
202 }
203 
204 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
205 			void *accel_priv, select_queue_fallback_t fallback)
206 {
207 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
208 	struct netvsc_device *nvsc_dev = net_device_ctx->nvdev;
209 	u32 hash;
210 	u16 q_idx = 0;
211 
212 	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
213 		return 0;
214 
215 	hash = skb_get_hash(skb);
216 	q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
217 		ndev->real_num_tx_queues;
218 
219 	if (!nvsc_dev->chn_table[q_idx])
220 		q_idx = 0;
221 
222 	return q_idx;
223 }
224 
225 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
226 			struct hv_page_buffer *pb)
227 {
228 	int j = 0;
229 
230 	/* Deal with compund pages by ignoring unused part
231 	 * of the page.
232 	 */
233 	page += (offset >> PAGE_SHIFT);
234 	offset &= ~PAGE_MASK;
235 
236 	while (len > 0) {
237 		unsigned long bytes;
238 
239 		bytes = PAGE_SIZE - offset;
240 		if (bytes > len)
241 			bytes = len;
242 		pb[j].pfn = page_to_pfn(page);
243 		pb[j].offset = offset;
244 		pb[j].len = bytes;
245 
246 		offset += bytes;
247 		len -= bytes;
248 
249 		if (offset == PAGE_SIZE && len) {
250 			page++;
251 			offset = 0;
252 			j++;
253 		}
254 	}
255 
256 	return j + 1;
257 }
258 
259 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
260 			   struct hv_netvsc_packet *packet,
261 			   struct hv_page_buffer **page_buf)
262 {
263 	struct hv_page_buffer *pb = *page_buf;
264 	u32 slots_used = 0;
265 	char *data = skb->data;
266 	int frags = skb_shinfo(skb)->nr_frags;
267 	int i;
268 
269 	/* The packet is laid out thus:
270 	 * 1. hdr: RNDIS header and PPI
271 	 * 2. skb linear data
272 	 * 3. skb fragment data
273 	 */
274 	if (hdr != NULL)
275 		slots_used += fill_pg_buf(virt_to_page(hdr),
276 					offset_in_page(hdr),
277 					len, &pb[slots_used]);
278 
279 	packet->rmsg_size = len;
280 	packet->rmsg_pgcnt = slots_used;
281 
282 	slots_used += fill_pg_buf(virt_to_page(data),
283 				offset_in_page(data),
284 				skb_headlen(skb), &pb[slots_used]);
285 
286 	for (i = 0; i < frags; i++) {
287 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
288 
289 		slots_used += fill_pg_buf(skb_frag_page(frag),
290 					frag->page_offset,
291 					skb_frag_size(frag), &pb[slots_used]);
292 	}
293 	return slots_used;
294 }
295 
296 static int count_skb_frag_slots(struct sk_buff *skb)
297 {
298 	int i, frags = skb_shinfo(skb)->nr_frags;
299 	int pages = 0;
300 
301 	for (i = 0; i < frags; i++) {
302 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
303 		unsigned long size = skb_frag_size(frag);
304 		unsigned long offset = frag->page_offset;
305 
306 		/* Skip unused frames from start of page */
307 		offset &= ~PAGE_MASK;
308 		pages += PFN_UP(offset + size);
309 	}
310 	return pages;
311 }
312 
313 static int netvsc_get_slots(struct sk_buff *skb)
314 {
315 	char *data = skb->data;
316 	unsigned int offset = offset_in_page(data);
317 	unsigned int len = skb_headlen(skb);
318 	int slots;
319 	int frag_slots;
320 
321 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
322 	frag_slots = count_skb_frag_slots(skb);
323 	return slots + frag_slots;
324 }
325 
326 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
327 {
328 	u32 ret_val = TRANSPORT_INFO_NOT_IP;
329 
330 	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
331 		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
332 		goto not_ip;
333 	}
334 
335 	*trans_off = skb_transport_offset(skb);
336 
337 	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
338 		struct iphdr *iphdr = ip_hdr(skb);
339 
340 		if (iphdr->protocol == IPPROTO_TCP)
341 			ret_val = TRANSPORT_INFO_IPV4_TCP;
342 		else if (iphdr->protocol == IPPROTO_UDP)
343 			ret_val = TRANSPORT_INFO_IPV4_UDP;
344 	} else {
345 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
346 			ret_val = TRANSPORT_INFO_IPV6_TCP;
347 		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
348 			ret_val = TRANSPORT_INFO_IPV6_UDP;
349 	}
350 
351 not_ip:
352 	return ret_val;
353 }
354 
355 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
356 {
357 	struct net_device_context *net_device_ctx = netdev_priv(net);
358 	struct hv_netvsc_packet *packet = NULL;
359 	int ret;
360 	unsigned int num_data_pgs;
361 	struct rndis_message *rndis_msg;
362 	struct rndis_packet *rndis_pkt;
363 	u32 rndis_msg_size;
364 	bool isvlan;
365 	bool linear = false;
366 	struct rndis_per_packet_info *ppi;
367 	struct ndis_tcp_ip_checksum_info *csum_info;
368 	struct ndis_tcp_lso_info *lso_info;
369 	int  hdr_offset;
370 	u32 net_trans_info;
371 	u32 hash;
372 	u32 skb_length;
373 	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
374 	struct hv_page_buffer *pb = page_buf;
375 	struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
376 
377 	/* We will atmost need two pages to describe the rndis
378 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
379 	 * of pages in a single packet. If skb is scattered around
380 	 * more pages we try linearizing it.
381 	 */
382 
383 check_size:
384 	skb_length = skb->len;
385 	num_data_pgs = netvsc_get_slots(skb) + 2;
386 	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
387 		net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
388 				      num_data_pgs, skb->len);
389 		ret = -EFAULT;
390 		goto drop;
391 	} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
392 		if (skb_linearize(skb)) {
393 			net_alert_ratelimited("failed to linearize skb\n");
394 			ret = -ENOMEM;
395 			goto drop;
396 		}
397 		linear = true;
398 		goto check_size;
399 	}
400 
401 	/*
402 	 * Place the rndis header in the skb head room and
403 	 * the skb->cb will be used for hv_netvsc_packet
404 	 * structure.
405 	 */
406 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
407 	if (ret) {
408 		netdev_err(net, "unable to alloc hv_netvsc_packet\n");
409 		ret = -ENOMEM;
410 		goto drop;
411 	}
412 	/* Use the skb control buffer for building up the packet */
413 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
414 			FIELD_SIZEOF(struct sk_buff, cb));
415 	packet = (struct hv_netvsc_packet *)skb->cb;
416 
417 
418 	packet->q_idx = skb_get_queue_mapping(skb);
419 
420 	packet->total_data_buflen = skb->len;
421 
422 	rndis_msg = (struct rndis_message *)skb->head;
423 
424 	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
425 
426 	isvlan = skb->vlan_tci & VLAN_TAG_PRESENT;
427 
428 	/* Add the rndis header */
429 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
430 	rndis_msg->msg_len = packet->total_data_buflen;
431 	rndis_pkt = &rndis_msg->msg.pkt;
432 	rndis_pkt->data_offset = sizeof(struct rndis_packet);
433 	rndis_pkt->data_len = packet->total_data_buflen;
434 	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
435 
436 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
437 
438 	hash = skb_get_hash_raw(skb);
439 	if (hash != 0 && net->real_num_tx_queues > 1) {
440 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
441 		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
442 				    NBL_HASH_VALUE);
443 		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
444 	}
445 
446 	if (isvlan) {
447 		struct ndis_pkt_8021q_info *vlan;
448 
449 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
450 		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
451 					IEEE_8021Q_INFO);
452 		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
453 						ppi->ppi_offset);
454 		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
455 		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
456 				VLAN_PRIO_SHIFT;
457 	}
458 
459 	net_trans_info = get_net_transport_info(skb, &hdr_offset);
460 	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
461 		goto do_send;
462 
463 	/*
464 	 * Setup the sendside checksum offload only if this is not a
465 	 * GSO packet.
466 	 */
467 	if (skb_is_gso(skb))
468 		goto do_lso;
469 
470 	if ((skb->ip_summed == CHECKSUM_NONE) ||
471 	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
472 		goto do_send;
473 
474 	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
475 	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
476 			    TCPIP_CHKSUM_PKTINFO);
477 
478 	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
479 			ppi->ppi_offset);
480 
481 	if (net_trans_info & (INFO_IPV4 << 16))
482 		csum_info->transmit.is_ipv4 = 1;
483 	else
484 		csum_info->transmit.is_ipv6 = 1;
485 
486 	if (net_trans_info & INFO_TCP) {
487 		csum_info->transmit.tcp_checksum = 1;
488 		csum_info->transmit.tcp_header_offset = hdr_offset;
489 	} else if (net_trans_info & INFO_UDP) {
490 		/* UDP checksum offload is not supported on ws2008r2.
491 		 * Furthermore, on ws2012 and ws2012r2, there are some
492 		 * issues with udp checksum offload from Linux guests.
493 		 * (these are host issues).
494 		 * For now compute the checksum here.
495 		 */
496 		struct udphdr *uh;
497 		u16 udp_len;
498 
499 		ret = skb_cow_head(skb, 0);
500 		if (ret)
501 			goto drop;
502 
503 		uh = udp_hdr(skb);
504 		udp_len = ntohs(uh->len);
505 		uh->check = 0;
506 		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
507 					      ip_hdr(skb)->daddr,
508 					      udp_len, IPPROTO_UDP,
509 					      csum_partial(uh, udp_len, 0));
510 		if (uh->check == 0)
511 			uh->check = CSUM_MANGLED_0;
512 
513 		csum_info->transmit.udp_checksum = 0;
514 	}
515 	goto do_send;
516 
517 do_lso:
518 	rndis_msg_size += NDIS_LSO_PPI_SIZE;
519 	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
520 			    TCP_LARGESEND_PKTINFO);
521 
522 	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
523 			ppi->ppi_offset);
524 
525 	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
526 	if (net_trans_info & (INFO_IPV4 << 16)) {
527 		lso_info->lso_v2_transmit.ip_version =
528 			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
529 		ip_hdr(skb)->tot_len = 0;
530 		ip_hdr(skb)->check = 0;
531 		tcp_hdr(skb)->check =
532 		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
533 				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
534 	} else {
535 		lso_info->lso_v2_transmit.ip_version =
536 			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
537 		ipv6_hdr(skb)->payload_len = 0;
538 		tcp_hdr(skb)->check =
539 		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
540 				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
541 	}
542 	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
543 	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
544 
545 do_send:
546 	/* Start filling in the page buffers with the rndis hdr */
547 	rndis_msg->msg_len += rndis_msg_size;
548 	packet->total_data_buflen = rndis_msg->msg_len;
549 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
550 					       skb, packet, &pb);
551 
552 	/* timestamp packet in software */
553 	skb_tx_timestamp(skb);
554 	ret = netvsc_send(net_device_ctx->device_ctx, packet,
555 			  rndis_msg, &pb, skb);
556 
557 drop:
558 	if (ret == 0) {
559 		u64_stats_update_begin(&tx_stats->syncp);
560 		tx_stats->packets++;
561 		tx_stats->bytes += skb_length;
562 		u64_stats_update_end(&tx_stats->syncp);
563 	} else {
564 		if (ret != -EAGAIN) {
565 			dev_kfree_skb_any(skb);
566 			net->stats.tx_dropped++;
567 		}
568 	}
569 
570 	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
571 }
572 
573 /*
574  * netvsc_linkstatus_callback - Link up/down notification
575  */
576 void netvsc_linkstatus_callback(struct hv_device *device_obj,
577 				struct rndis_message *resp)
578 {
579 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
580 	struct net_device *net;
581 	struct net_device_context *ndev_ctx;
582 	struct netvsc_reconfig *event;
583 	unsigned long flags;
584 
585 	/* Handle link change statuses only */
586 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
587 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
588 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
589 		return;
590 
591 	net = hv_get_drvdata(device_obj);
592 
593 	if (!net || net->reg_state != NETREG_REGISTERED)
594 		return;
595 
596 	ndev_ctx = netdev_priv(net);
597 
598 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
599 	if (!event)
600 		return;
601 	event->event = indicate->status;
602 
603 	spin_lock_irqsave(&ndev_ctx->lock, flags);
604 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
605 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
606 
607 	schedule_delayed_work(&ndev_ctx->dwork, 0);
608 }
609 
610 
611 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
612 				struct hv_netvsc_packet *packet,
613 				struct ndis_tcp_ip_checksum_info *csum_info,
614 				void *data, u16 vlan_tci)
615 {
616 	struct sk_buff *skb;
617 
618 	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
619 	if (!skb)
620 		return skb;
621 
622 	/*
623 	 * Copy to skb. This copy is needed here since the memory pointed by
624 	 * hv_netvsc_packet cannot be deallocated
625 	 */
626 	memcpy(skb_put(skb, packet->total_data_buflen), data,
627 	       packet->total_data_buflen);
628 
629 	skb->protocol = eth_type_trans(skb, net);
630 	if (csum_info) {
631 		/* We only look at the IP checksum here.
632 		 * Should we be dropping the packet if checksum
633 		 * failed? How do we deal with other checksums - TCP/UDP?
634 		 */
635 		if (csum_info->receive.ip_checksum_succeeded)
636 			skb->ip_summed = CHECKSUM_UNNECESSARY;
637 		else
638 			skb->ip_summed = CHECKSUM_NONE;
639 	}
640 
641 	if (vlan_tci & VLAN_TAG_PRESENT)
642 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
643 				       vlan_tci);
644 
645 	return skb;
646 }
647 
648 /*
649  * netvsc_recv_callback -  Callback when we receive a packet from the
650  * "wire" on the specified device.
651  */
652 int netvsc_recv_callback(struct hv_device *device_obj,
653 				struct hv_netvsc_packet *packet,
654 				void **data,
655 				struct ndis_tcp_ip_checksum_info *csum_info,
656 				struct vmbus_channel *channel,
657 				u16 vlan_tci)
658 {
659 	struct net_device *net = hv_get_drvdata(device_obj);
660 	struct net_device_context *net_device_ctx = netdev_priv(net);
661 	struct sk_buff *skb;
662 	struct sk_buff *vf_skb;
663 	struct netvsc_stats *rx_stats;
664 	struct netvsc_device *netvsc_dev = net_device_ctx->nvdev;
665 	u32 bytes_recvd = packet->total_data_buflen;
666 	int ret = 0;
667 
668 	if (!net || net->reg_state != NETREG_REGISTERED)
669 		return NVSP_STAT_FAIL;
670 
671 	if (READ_ONCE(netvsc_dev->vf_inject)) {
672 		atomic_inc(&netvsc_dev->vf_use_cnt);
673 		if (!READ_ONCE(netvsc_dev->vf_inject)) {
674 			/*
675 			 * We raced; just move on.
676 			 */
677 			atomic_dec(&netvsc_dev->vf_use_cnt);
678 			goto vf_injection_done;
679 		}
680 
681 		/*
682 		 * Inject this packet into the VF inerface.
683 		 * On Hyper-V, multicast and brodcast packets
684 		 * are only delivered on the synthetic interface
685 		 * (after subjecting these to policy filters on
686 		 * the host). Deliver these via the VF interface
687 		 * in the guest.
688 		 */
689 		vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet,
690 					       csum_info, *data, vlan_tci);
691 		if (vf_skb != NULL) {
692 			++netvsc_dev->vf_netdev->stats.rx_packets;
693 			netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd;
694 			netif_receive_skb(vf_skb);
695 		} else {
696 			++net->stats.rx_dropped;
697 			ret = NVSP_STAT_FAIL;
698 		}
699 		atomic_dec(&netvsc_dev->vf_use_cnt);
700 		return ret;
701 	}
702 
703 vf_injection_done:
704 	net_device_ctx = netdev_priv(net);
705 	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
706 
707 	/* Allocate a skb - TODO direct I/O to pages? */
708 	skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
709 	if (unlikely(!skb)) {
710 		++net->stats.rx_dropped;
711 		return NVSP_STAT_FAIL;
712 	}
713 	skb_record_rx_queue(skb, channel->
714 			    offermsg.offer.sub_channel_index);
715 
716 	u64_stats_update_begin(&rx_stats->syncp);
717 	rx_stats->packets++;
718 	rx_stats->bytes += packet->total_data_buflen;
719 	u64_stats_update_end(&rx_stats->syncp);
720 
721 	/*
722 	 * Pass the skb back up. Network stack will deallocate the skb when it
723 	 * is done.
724 	 * TODO - use NAPI?
725 	 */
726 	netif_rx(skb);
727 
728 	return 0;
729 }
730 
731 static void netvsc_get_drvinfo(struct net_device *net,
732 			       struct ethtool_drvinfo *info)
733 {
734 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
735 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
736 }
737 
738 static void netvsc_get_channels(struct net_device *net,
739 				struct ethtool_channels *channel)
740 {
741 	struct net_device_context *net_device_ctx = netdev_priv(net);
742 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
743 
744 	if (nvdev) {
745 		channel->max_combined	= nvdev->max_chn;
746 		channel->combined_count = nvdev->num_chn;
747 	}
748 }
749 
750 static int netvsc_set_channels(struct net_device *net,
751 			       struct ethtool_channels *channels)
752 {
753 	struct net_device_context *net_device_ctx = netdev_priv(net);
754 	struct hv_device *dev = net_device_ctx->device_ctx;
755 	struct netvsc_device *nvdev = net_device_ctx->nvdev;
756 	struct netvsc_device_info device_info;
757 	u32 num_chn;
758 	u32 max_chn;
759 	int ret = 0;
760 	bool recovering = false;
761 
762 	if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
763 		return -ENODEV;
764 
765 	num_chn = nvdev->num_chn;
766 	max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());
767 
768 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
769 		pr_info("vRSS unsupported before NVSP Version 5\n");
770 		return -EINVAL;
771 	}
772 
773 	/* We do not support rx, tx, or other */
774 	if (!channels ||
775 	    channels->rx_count ||
776 	    channels->tx_count ||
777 	    channels->other_count ||
778 	    (channels->combined_count < 1))
779 		return -EINVAL;
780 
781 	if (channels->combined_count > max_chn) {
782 		pr_info("combined channels too high, using %d\n", max_chn);
783 		channels->combined_count = max_chn;
784 	}
785 
786 	ret = netvsc_close(net);
787 	if (ret)
788 		goto out;
789 
790  do_set:
791 	net_device_ctx->start_remove = true;
792 	rndis_filter_device_remove(dev);
793 
794 	nvdev->num_chn = channels->combined_count;
795 
796 	memset(&device_info, 0, sizeof(device_info));
797 	device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
798 	device_info.ring_size = ring_size;
799 	device_info.max_num_vrss_chns = max_num_vrss_chns;
800 
801 	ret = rndis_filter_device_add(dev, &device_info);
802 	if (ret) {
803 		if (recovering) {
804 			netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
805 			return ret;
806 		}
807 		goto recover;
808 	}
809 
810 	nvdev = net_device_ctx->nvdev;
811 
812 	ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
813 	if (ret) {
814 		if (recovering) {
815 			netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
816 			return ret;
817 		}
818 		goto recover;
819 	}
820 
821 	ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
822 	if (ret) {
823 		if (recovering) {
824 			netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
825 			return ret;
826 		}
827 		goto recover;
828 	}
829 
830  out:
831 	netvsc_open(net);
832 	net_device_ctx->start_remove = false;
833 	/* We may have missed link change notifications */
834 	schedule_delayed_work(&net_device_ctx->dwork, 0);
835 
836 	return ret;
837 
838  recover:
839 	/* If the above failed, we attempt to recover through the same
840 	 * process but with the original number of channels.
841 	 */
842 	netdev_err(net, "could not set channels, recovering\n");
843 	recovering = true;
844 	channels->combined_count = num_chn;
845 	goto do_set;
846 }
847 
848 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
849 {
850 	struct ethtool_cmd diff1 = *cmd;
851 	struct ethtool_cmd diff2 = {};
852 
853 	ethtool_cmd_speed_set(&diff1, 0);
854 	diff1.duplex = 0;
855 	/* advertising and cmd are usually set */
856 	diff1.advertising = 0;
857 	diff1.cmd = 0;
858 	/* We set port to PORT_OTHER */
859 	diff2.port = PORT_OTHER;
860 
861 	return !memcmp(&diff1, &diff2, sizeof(diff1));
862 }
863 
864 static void netvsc_init_settings(struct net_device *dev)
865 {
866 	struct net_device_context *ndc = netdev_priv(dev);
867 
868 	ndc->speed = SPEED_UNKNOWN;
869 	ndc->duplex = DUPLEX_UNKNOWN;
870 }
871 
872 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
873 {
874 	struct net_device_context *ndc = netdev_priv(dev);
875 
876 	ethtool_cmd_speed_set(cmd, ndc->speed);
877 	cmd->duplex = ndc->duplex;
878 	cmd->port = PORT_OTHER;
879 
880 	return 0;
881 }
882 
883 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
884 {
885 	struct net_device_context *ndc = netdev_priv(dev);
886 	u32 speed;
887 
888 	speed = ethtool_cmd_speed(cmd);
889 	if (!ethtool_validate_speed(speed) ||
890 	    !ethtool_validate_duplex(cmd->duplex) ||
891 	    !netvsc_validate_ethtool_ss_cmd(cmd))
892 		return -EINVAL;
893 
894 	ndc->speed = speed;
895 	ndc->duplex = cmd->duplex;
896 
897 	return 0;
898 }
899 
900 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
901 {
902 	struct net_device_context *ndevctx = netdev_priv(ndev);
903 	struct netvsc_device *nvdev = ndevctx->nvdev;
904 	struct hv_device *hdev = ndevctx->device_ctx;
905 	struct netvsc_device_info device_info;
906 	int limit = ETH_DATA_LEN;
907 	u32 num_chn;
908 	int ret = 0;
909 
910 	if (ndevctx->start_remove || !nvdev || nvdev->destroy)
911 		return -ENODEV;
912 
913 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
914 		limit = NETVSC_MTU - ETH_HLEN;
915 
916 	if (mtu < NETVSC_MTU_MIN || mtu > limit)
917 		return -EINVAL;
918 
919 	ret = netvsc_close(ndev);
920 	if (ret)
921 		goto out;
922 
923 	num_chn = nvdev->num_chn;
924 
925 	ndevctx->start_remove = true;
926 	rndis_filter_device_remove(hdev);
927 
928 	ndev->mtu = mtu;
929 
930 	memset(&device_info, 0, sizeof(device_info));
931 	device_info.ring_size = ring_size;
932 	device_info.num_chn = num_chn;
933 	device_info.max_num_vrss_chns = max_num_vrss_chns;
934 	rndis_filter_device_add(hdev, &device_info);
935 
936 out:
937 	netvsc_open(ndev);
938 	ndevctx->start_remove = false;
939 
940 	/* We may have missed link change notifications */
941 	schedule_delayed_work(&ndevctx->dwork, 0);
942 
943 	return ret;
944 }
945 
946 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
947 						    struct rtnl_link_stats64 *t)
948 {
949 	struct net_device_context *ndev_ctx = netdev_priv(net);
950 	int cpu;
951 
952 	for_each_possible_cpu(cpu) {
953 		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
954 							    cpu);
955 		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
956 							    cpu);
957 		u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
958 		unsigned int start;
959 
960 		do {
961 			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
962 			tx_packets = tx_stats->packets;
963 			tx_bytes = tx_stats->bytes;
964 		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
965 
966 		do {
967 			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
968 			rx_packets = rx_stats->packets;
969 			rx_bytes = rx_stats->bytes;
970 		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
971 
972 		t->tx_bytes	+= tx_bytes;
973 		t->tx_packets	+= tx_packets;
974 		t->rx_bytes	+= rx_bytes;
975 		t->rx_packets	+= rx_packets;
976 	}
977 
978 	t->tx_dropped	= net->stats.tx_dropped;
979 	t->tx_errors	= net->stats.tx_dropped;
980 
981 	t->rx_dropped	= net->stats.rx_dropped;
982 	t->rx_errors	= net->stats.rx_errors;
983 
984 	return t;
985 }
986 
987 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
988 {
989 	struct net_device_context *ndevctx = netdev_priv(ndev);
990 	struct hv_device *hdev =  ndevctx->device_ctx;
991 	struct sockaddr *addr = p;
992 	char save_adr[ETH_ALEN];
993 	unsigned char save_aatype;
994 	int err;
995 
996 	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
997 	save_aatype = ndev->addr_assign_type;
998 
999 	err = eth_mac_addr(ndev, p);
1000 	if (err != 0)
1001 		return err;
1002 
1003 	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
1004 	if (err != 0) {
1005 		/* roll back to saved MAC */
1006 		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
1007 		ndev->addr_assign_type = save_aatype;
1008 	}
1009 
1010 	return err;
1011 }
1012 
1013 #ifdef CONFIG_NET_POLL_CONTROLLER
1014 static void netvsc_poll_controller(struct net_device *net)
1015 {
1016 	/* As netvsc_start_xmit() works synchronous we don't have to
1017 	 * trigger anything here.
1018 	 */
1019 }
1020 #endif
1021 
1022 static const struct ethtool_ops ethtool_ops = {
1023 	.get_drvinfo	= netvsc_get_drvinfo,
1024 	.get_link	= ethtool_op_get_link,
1025 	.get_channels   = netvsc_get_channels,
1026 	.set_channels   = netvsc_set_channels,
1027 	.get_ts_info	= ethtool_op_get_ts_info,
1028 	.get_settings	= netvsc_get_settings,
1029 	.set_settings	= netvsc_set_settings,
1030 };
1031 
1032 static const struct net_device_ops device_ops = {
1033 	.ndo_open =			netvsc_open,
1034 	.ndo_stop =			netvsc_close,
1035 	.ndo_start_xmit =		netvsc_start_xmit,
1036 	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1037 	.ndo_change_mtu =		netvsc_change_mtu,
1038 	.ndo_validate_addr =		eth_validate_addr,
1039 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1040 	.ndo_select_queue =		netvsc_select_queue,
1041 	.ndo_get_stats64 =		netvsc_get_stats64,
1042 #ifdef CONFIG_NET_POLL_CONTROLLER
1043 	.ndo_poll_controller =		netvsc_poll_controller,
1044 #endif
1045 };
1046 
1047 /*
1048  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1049  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1050  * present send GARP packet to network peers with netif_notify_peers().
1051  */
1052 static void netvsc_link_change(struct work_struct *w)
1053 {
1054 	struct net_device_context *ndev_ctx =
1055 		container_of(w, struct net_device_context, dwork.work);
1056 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1057 	struct net_device *net = hv_get_drvdata(device_obj);
1058 	struct netvsc_device *net_device;
1059 	struct rndis_device *rdev;
1060 	struct netvsc_reconfig *event = NULL;
1061 	bool notify = false, reschedule = false;
1062 	unsigned long flags, next_reconfig, delay;
1063 
1064 	rtnl_lock();
1065 	if (ndev_ctx->start_remove)
1066 		goto out_unlock;
1067 
1068 	net_device = ndev_ctx->nvdev;
1069 	rdev = net_device->extension;
1070 
1071 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1072 	if (time_is_after_jiffies(next_reconfig)) {
1073 		/* link_watch only sends one notification with current state
1074 		 * per second, avoid doing reconfig more frequently. Handle
1075 		 * wrap around.
1076 		 */
1077 		delay = next_reconfig - jiffies;
1078 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1079 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1080 		goto out_unlock;
1081 	}
1082 	ndev_ctx->last_reconfig = jiffies;
1083 
1084 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1085 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1086 		event = list_first_entry(&ndev_ctx->reconfig_events,
1087 					 struct netvsc_reconfig, list);
1088 		list_del(&event->list);
1089 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1090 	}
1091 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1092 
1093 	if (!event)
1094 		goto out_unlock;
1095 
1096 	switch (event->event) {
1097 		/* Only the following events are possible due to the check in
1098 		 * netvsc_linkstatus_callback()
1099 		 */
1100 	case RNDIS_STATUS_MEDIA_CONNECT:
1101 		if (rdev->link_state) {
1102 			rdev->link_state = false;
1103 			netif_carrier_on(net);
1104 			netif_tx_wake_all_queues(net);
1105 		} else {
1106 			notify = true;
1107 		}
1108 		kfree(event);
1109 		break;
1110 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1111 		if (!rdev->link_state) {
1112 			rdev->link_state = true;
1113 			netif_carrier_off(net);
1114 			netif_tx_stop_all_queues(net);
1115 		}
1116 		kfree(event);
1117 		break;
1118 	case RNDIS_STATUS_NETWORK_CHANGE:
1119 		/* Only makes sense if carrier is present */
1120 		if (!rdev->link_state) {
1121 			rdev->link_state = true;
1122 			netif_carrier_off(net);
1123 			netif_tx_stop_all_queues(net);
1124 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1125 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1126 			list_add(&event->list, &ndev_ctx->reconfig_events);
1127 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1128 			reschedule = true;
1129 		}
1130 		break;
1131 	}
1132 
1133 	rtnl_unlock();
1134 
1135 	if (notify)
1136 		netdev_notify_peers(net);
1137 
1138 	/* link_watch only sends one notification with current state per
1139 	 * second, handle next reconfig event in 2 seconds.
1140 	 */
1141 	if (reschedule)
1142 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1143 
1144 	return;
1145 
1146 out_unlock:
1147 	rtnl_unlock();
1148 }
1149 
1150 static void netvsc_free_netdev(struct net_device *netdev)
1151 {
1152 	struct net_device_context *net_device_ctx = netdev_priv(netdev);
1153 
1154 	free_percpu(net_device_ctx->tx_stats);
1155 	free_percpu(net_device_ctx->rx_stats);
1156 	free_netdev(netdev);
1157 }
1158 
1159 static void netvsc_notify_peers(struct work_struct *wrk)
1160 {
1161 	struct garp_wrk *gwrk;
1162 
1163 	gwrk = container_of(wrk, struct garp_wrk, dwrk);
1164 
1165 	netdev_notify_peers(gwrk->netdev);
1166 
1167 	atomic_dec(&gwrk->netvsc_dev->vf_use_cnt);
1168 }
1169 
1170 static struct net_device *get_netvsc_net_device(char *mac)
1171 {
1172 	struct net_device *dev, *found = NULL;
1173 	int rtnl_locked;
1174 
1175 	rtnl_locked = rtnl_trylock();
1176 
1177 	for_each_netdev(&init_net, dev) {
1178 		if (memcmp(dev->dev_addr, mac, ETH_ALEN) == 0) {
1179 			if (dev->netdev_ops != &device_ops)
1180 				continue;
1181 			found = dev;
1182 			break;
1183 		}
1184 	}
1185 	if (rtnl_locked)
1186 		rtnl_unlock();
1187 
1188 	return found;
1189 }
1190 
1191 static int netvsc_register_vf(struct net_device *vf_netdev)
1192 {
1193 	struct net_device *ndev;
1194 	struct net_device_context *net_device_ctx;
1195 	struct netvsc_device *netvsc_dev;
1196 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1197 
1198 	if (eth_ops == NULL || eth_ops == &ethtool_ops)
1199 		return NOTIFY_DONE;
1200 
1201 	/*
1202 	 * We will use the MAC address to locate the synthetic interface to
1203 	 * associate with the VF interface. If we don't find a matching
1204 	 * synthetic interface, move on.
1205 	 */
1206 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1207 	if (!ndev)
1208 		return NOTIFY_DONE;
1209 
1210 	net_device_ctx = netdev_priv(ndev);
1211 	netvsc_dev = net_device_ctx->nvdev;
1212 	if (netvsc_dev == NULL)
1213 		return NOTIFY_DONE;
1214 
1215 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1216 	/*
1217 	 * Take a reference on the module.
1218 	 */
1219 	try_module_get(THIS_MODULE);
1220 	netvsc_dev->vf_netdev = vf_netdev;
1221 	return NOTIFY_OK;
1222 }
1223 
1224 
1225 static int netvsc_vf_up(struct net_device *vf_netdev)
1226 {
1227 	struct net_device *ndev;
1228 	struct netvsc_device *netvsc_dev;
1229 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1230 	struct net_device_context *net_device_ctx;
1231 
1232 	if (eth_ops == &ethtool_ops)
1233 		return NOTIFY_DONE;
1234 
1235 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1236 	if (!ndev)
1237 		return NOTIFY_DONE;
1238 
1239 	net_device_ctx = netdev_priv(ndev);
1240 	netvsc_dev = net_device_ctx->nvdev;
1241 
1242 	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1243 		return NOTIFY_DONE;
1244 
1245 	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1246 	netvsc_dev->vf_inject = true;
1247 
1248 	/*
1249 	 * Open the device before switching data path.
1250 	 */
1251 	rndis_filter_open(net_device_ctx->device_ctx);
1252 
1253 	/*
1254 	 * notify the host to switch the data path.
1255 	 */
1256 	netvsc_switch_datapath(ndev, true);
1257 	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1258 
1259 	netif_carrier_off(ndev);
1260 
1261 	/*
1262 	 * Now notify peers. We are scheduling work to
1263 	 * notify peers; take a reference to prevent
1264 	 * the VF interface from vanishing.
1265 	 */
1266 	atomic_inc(&netvsc_dev->vf_use_cnt);
1267 	net_device_ctx->gwrk.netdev = vf_netdev;
1268 	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1269 	schedule_work(&net_device_ctx->gwrk.dwrk);
1270 
1271 	return NOTIFY_OK;
1272 }
1273 
1274 
1275 static int netvsc_vf_down(struct net_device *vf_netdev)
1276 {
1277 	struct net_device *ndev;
1278 	struct netvsc_device *netvsc_dev;
1279 	struct net_device_context *net_device_ctx;
1280 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1281 
1282 	if (eth_ops == &ethtool_ops)
1283 		return NOTIFY_DONE;
1284 
1285 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1286 	if (!ndev)
1287 		return NOTIFY_DONE;
1288 
1289 	net_device_ctx = netdev_priv(ndev);
1290 	netvsc_dev = net_device_ctx->nvdev;
1291 
1292 	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1293 		return NOTIFY_DONE;
1294 
1295 	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1296 	netvsc_dev->vf_inject = false;
1297 	/*
1298 	 * Wait for currently active users to
1299 	 * drain out.
1300 	 */
1301 
1302 	while (atomic_read(&netvsc_dev->vf_use_cnt) != 0)
1303 		udelay(50);
1304 	netvsc_switch_datapath(ndev, false);
1305 	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1306 	rndis_filter_close(net_device_ctx->device_ctx);
1307 	netif_carrier_on(ndev);
1308 	/*
1309 	 * Notify peers.
1310 	 */
1311 	atomic_inc(&netvsc_dev->vf_use_cnt);
1312 	net_device_ctx->gwrk.netdev = ndev;
1313 	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1314 	schedule_work(&net_device_ctx->gwrk.dwrk);
1315 
1316 	return NOTIFY_OK;
1317 }
1318 
1319 
1320 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1321 {
1322 	struct net_device *ndev;
1323 	struct netvsc_device *netvsc_dev;
1324 	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1325 	struct net_device_context *net_device_ctx;
1326 
1327 	if (eth_ops == &ethtool_ops)
1328 		return NOTIFY_DONE;
1329 
1330 	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
1331 	if (!ndev)
1332 		return NOTIFY_DONE;
1333 
1334 	net_device_ctx = netdev_priv(ndev);
1335 	netvsc_dev = net_device_ctx->nvdev;
1336 	if (netvsc_dev == NULL)
1337 		return NOTIFY_DONE;
1338 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1339 
1340 	netvsc_dev->vf_netdev = NULL;
1341 	module_put(THIS_MODULE);
1342 	return NOTIFY_OK;
1343 }
1344 
1345 static int netvsc_probe(struct hv_device *dev,
1346 			const struct hv_vmbus_device_id *dev_id)
1347 {
1348 	struct net_device *net = NULL;
1349 	struct net_device_context *net_device_ctx;
1350 	struct netvsc_device_info device_info;
1351 	struct netvsc_device *nvdev;
1352 	int ret;
1353 
1354 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1355 				num_online_cpus());
1356 	if (!net)
1357 		return -ENOMEM;
1358 
1359 	netif_carrier_off(net);
1360 
1361 	net_device_ctx = netdev_priv(net);
1362 	net_device_ctx->device_ctx = dev;
1363 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1364 	if (netif_msg_probe(net_device_ctx))
1365 		netdev_dbg(net, "netvsc msg_enable: %d\n",
1366 			   net_device_ctx->msg_enable);
1367 
1368 	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1369 	if (!net_device_ctx->tx_stats) {
1370 		free_netdev(net);
1371 		return -ENOMEM;
1372 	}
1373 	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1374 	if (!net_device_ctx->rx_stats) {
1375 		free_percpu(net_device_ctx->tx_stats);
1376 		free_netdev(net);
1377 		return -ENOMEM;
1378 	}
1379 
1380 	hv_set_drvdata(dev, net);
1381 
1382 	net_device_ctx->start_remove = false;
1383 
1384 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1385 	INIT_WORK(&net_device_ctx->work, do_set_multicast);
1386 	INIT_WORK(&net_device_ctx->gwrk.dwrk, netvsc_notify_peers);
1387 
1388 	spin_lock_init(&net_device_ctx->lock);
1389 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1390 
1391 	net->netdev_ops = &device_ops;
1392 
1393 	net->hw_features = NETVSC_HW_FEATURES;
1394 	net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1395 
1396 	net->ethtool_ops = &ethtool_ops;
1397 	SET_NETDEV_DEV(net, &dev->device);
1398 
1399 	/* We always need headroom for rndis header */
1400 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1401 
1402 	/* Notify the netvsc driver of the new device */
1403 	memset(&device_info, 0, sizeof(device_info));
1404 	device_info.ring_size = ring_size;
1405 	device_info.max_num_vrss_chns = max_num_vrss_chns;
1406 	ret = rndis_filter_device_add(dev, &device_info);
1407 	if (ret != 0) {
1408 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1409 		netvsc_free_netdev(net);
1410 		hv_set_drvdata(dev, NULL);
1411 		return ret;
1412 	}
1413 	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1414 
1415 	nvdev = net_device_ctx->nvdev;
1416 	netif_set_real_num_tx_queues(net, nvdev->num_chn);
1417 	netif_set_real_num_rx_queues(net, nvdev->num_chn);
1418 
1419 	netvsc_init_settings(net);
1420 
1421 	ret = register_netdev(net);
1422 	if (ret != 0) {
1423 		pr_err("Unable to register netdev.\n");
1424 		rndis_filter_device_remove(dev);
1425 		netvsc_free_netdev(net);
1426 	}
1427 
1428 	return ret;
1429 }
1430 
1431 static int netvsc_remove(struct hv_device *dev)
1432 {
1433 	struct net_device *net;
1434 	struct net_device_context *ndev_ctx;
1435 	struct netvsc_device *net_device;
1436 
1437 	net = hv_get_drvdata(dev);
1438 
1439 	if (net == NULL) {
1440 		dev_err(&dev->device, "No net device to remove\n");
1441 		return 0;
1442 	}
1443 
1444 
1445 	ndev_ctx = netdev_priv(net);
1446 	net_device = ndev_ctx->nvdev;
1447 
1448 	/* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
1449 	 * removing the device.
1450 	 */
1451 	rtnl_lock();
1452 	ndev_ctx->start_remove = true;
1453 	rtnl_unlock();
1454 
1455 	cancel_delayed_work_sync(&ndev_ctx->dwork);
1456 	cancel_work_sync(&ndev_ctx->work);
1457 
1458 	/* Stop outbound asap */
1459 	netif_tx_disable(net);
1460 
1461 	unregister_netdev(net);
1462 
1463 	/*
1464 	 * Call to the vsc driver to let it know that the device is being
1465 	 * removed
1466 	 */
1467 	rndis_filter_device_remove(dev);
1468 
1469 	hv_set_drvdata(dev, NULL);
1470 
1471 	netvsc_free_netdev(net);
1472 	return 0;
1473 }
1474 
1475 static const struct hv_vmbus_device_id id_table[] = {
1476 	/* Network guid */
1477 	{ HV_NIC_GUID, },
1478 	{ },
1479 };
1480 
1481 MODULE_DEVICE_TABLE(vmbus, id_table);
1482 
1483 /* The one and only one */
1484 static struct  hv_driver netvsc_drv = {
1485 	.name = KBUILD_MODNAME,
1486 	.id_table = id_table,
1487 	.probe = netvsc_probe,
1488 	.remove = netvsc_remove,
1489 };
1490 
1491 
1492 /*
1493  * On Hyper-V, every VF interface is matched with a corresponding
1494  * synthetic interface. The synthetic interface is presented first
1495  * to the guest. When the corresponding VF instance is registered,
1496  * we will take care of switching the data path.
1497  */
1498 static int netvsc_netdev_event(struct notifier_block *this,
1499 			       unsigned long event, void *ptr)
1500 {
1501 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1502 
1503 	switch (event) {
1504 	case NETDEV_REGISTER:
1505 		return netvsc_register_vf(event_dev);
1506 	case NETDEV_UNREGISTER:
1507 		return netvsc_unregister_vf(event_dev);
1508 	case NETDEV_UP:
1509 		return netvsc_vf_up(event_dev);
1510 	case NETDEV_DOWN:
1511 		return netvsc_vf_down(event_dev);
1512 	default:
1513 		return NOTIFY_DONE;
1514 	}
1515 }
1516 
1517 static struct notifier_block netvsc_netdev_notifier = {
1518 	.notifier_call = netvsc_netdev_event,
1519 };
1520 
1521 static void __exit netvsc_drv_exit(void)
1522 {
1523 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1524 	vmbus_driver_unregister(&netvsc_drv);
1525 }
1526 
1527 static int __init netvsc_drv_init(void)
1528 {
1529 	int ret;
1530 
1531 	if (ring_size < RING_SIZE_MIN) {
1532 		ring_size = RING_SIZE_MIN;
1533 		pr_info("Increased ring_size to %d (min allowed)\n",
1534 			ring_size);
1535 	}
1536 	ret = vmbus_driver_register(&netvsc_drv);
1537 
1538 	if (ret)
1539 		return ret;
1540 
1541 	register_netdevice_notifier(&netvsc_netdev_notifier);
1542 	return 0;
1543 }
1544 
1545 MODULE_LICENSE("GPL");
1546 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1547 
1548 module_init(netvsc_drv_init);
1549 module_exit(netvsc_drv_exit);
1550