1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * Authors: 17 * Haiyang Zhang <haiyangz@microsoft.com> 18 * Hank Janssen <hjanssen@microsoft.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/init.h> 23 #include <linux/atomic.h> 24 #include <linux/module.h> 25 #include <linux/highmem.h> 26 #include <linux/device.h> 27 #include <linux/io.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/pci.h> 33 #include <linux/skbuff.h> 34 #include <linux/if_vlan.h> 35 #include <linux/in.h> 36 #include <linux/slab.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/netpoll.h> 39 40 #include <net/arp.h> 41 #include <net/route.h> 42 #include <net/sock.h> 43 #include <net/pkt_sched.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 47 #include "hyperv_net.h" 48 49 #define RING_SIZE_MIN 64 50 #define RETRY_US_LO 5000 51 #define RETRY_US_HI 10000 52 #define RETRY_MAX 2000 /* >10 sec */ 53 54 #define LINKCHANGE_INT (2 * HZ) 55 #define VF_TAKEOVER_INT (HZ / 10) 56 57 static unsigned int ring_size __ro_after_init = 128; 58 module_param(ring_size, uint, 0444); 59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 60 unsigned int netvsc_ring_bytes __ro_after_init; 61 62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 65 NETIF_MSG_TX_ERR; 66 67 static int debug = -1; 68 module_param(debug, int, 0444); 69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 70 71 static LIST_HEAD(netvsc_dev_list); 72 73 static void netvsc_change_rx_flags(struct net_device *net, int change) 74 { 75 struct net_device_context *ndev_ctx = netdev_priv(net); 76 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 77 int inc; 78 79 if (!vf_netdev) 80 return; 81 82 if (change & IFF_PROMISC) { 83 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 84 dev_set_promiscuity(vf_netdev, inc); 85 } 86 87 if (change & IFF_ALLMULTI) { 88 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 89 dev_set_allmulti(vf_netdev, inc); 90 } 91 } 92 93 static void netvsc_set_rx_mode(struct net_device *net) 94 { 95 struct net_device_context *ndev_ctx = netdev_priv(net); 96 struct net_device *vf_netdev; 97 struct netvsc_device *nvdev; 98 99 rcu_read_lock(); 100 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 101 if (vf_netdev) { 102 dev_uc_sync(vf_netdev, net); 103 dev_mc_sync(vf_netdev, net); 104 } 105 106 nvdev = rcu_dereference(ndev_ctx->nvdev); 107 if (nvdev) 108 rndis_filter_update(nvdev); 109 rcu_read_unlock(); 110 } 111 112 static int netvsc_open(struct net_device *net) 113 { 114 struct net_device_context *ndev_ctx = netdev_priv(net); 115 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 116 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 117 struct rndis_device *rdev; 118 int ret = 0; 119 120 netif_carrier_off(net); 121 122 /* Open up the device */ 123 ret = rndis_filter_open(nvdev); 124 if (ret != 0) { 125 netdev_err(net, "unable to open device (ret %d).\n", ret); 126 return ret; 127 } 128 129 rdev = nvdev->extension; 130 if (!rdev->link_state) { 131 netif_carrier_on(net); 132 netif_tx_wake_all_queues(net); 133 } 134 135 if (vf_netdev) { 136 /* Setting synthetic device up transparently sets 137 * slave as up. If open fails, then slave will be 138 * still be offline (and not used). 139 */ 140 ret = dev_open(vf_netdev, NULL); 141 if (ret) 142 netdev_warn(net, 143 "unable to open slave: %s: %d\n", 144 vf_netdev->name, ret); 145 } 146 return 0; 147 } 148 149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 150 { 151 unsigned int retry = 0; 152 int i; 153 154 /* Ensure pending bytes in ring are read */ 155 for (;;) { 156 u32 aread = 0; 157 158 for (i = 0; i < nvdev->num_chn; i++) { 159 struct vmbus_channel *chn 160 = nvdev->chan_table[i].channel; 161 162 if (!chn) 163 continue; 164 165 /* make sure receive not running now */ 166 napi_synchronize(&nvdev->chan_table[i].napi); 167 168 aread = hv_get_bytes_to_read(&chn->inbound); 169 if (aread) 170 break; 171 172 aread = hv_get_bytes_to_read(&chn->outbound); 173 if (aread) 174 break; 175 } 176 177 if (aread == 0) 178 return 0; 179 180 if (++retry > RETRY_MAX) 181 return -ETIMEDOUT; 182 183 usleep_range(RETRY_US_LO, RETRY_US_HI); 184 } 185 } 186 187 static int netvsc_close(struct net_device *net) 188 { 189 struct net_device_context *net_device_ctx = netdev_priv(net); 190 struct net_device *vf_netdev 191 = rtnl_dereference(net_device_ctx->vf_netdev); 192 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 193 int ret; 194 195 netif_tx_disable(net); 196 197 /* No need to close rndis filter if it is removed already */ 198 if (!nvdev) 199 return 0; 200 201 ret = rndis_filter_close(nvdev); 202 if (ret != 0) { 203 netdev_err(net, "unable to close device (ret %d).\n", ret); 204 return ret; 205 } 206 207 ret = netvsc_wait_until_empty(nvdev); 208 if (ret) 209 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 210 211 if (vf_netdev) 212 dev_close(vf_netdev); 213 214 return ret; 215 } 216 217 static inline void *init_ppi_data(struct rndis_message *msg, 218 u32 ppi_size, u32 pkt_type) 219 { 220 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 221 struct rndis_per_packet_info *ppi; 222 223 rndis_pkt->data_offset += ppi_size; 224 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 225 + rndis_pkt->per_pkt_info_len; 226 227 ppi->size = ppi_size; 228 ppi->type = pkt_type; 229 ppi->internal = 0; 230 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 231 232 rndis_pkt->per_pkt_info_len += ppi_size; 233 234 return ppi + 1; 235 } 236 237 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 238 * packets. We can use ethtool to change UDP hash level when necessary. 239 */ 240 static inline u32 netvsc_get_hash( 241 struct sk_buff *skb, 242 const struct net_device_context *ndc) 243 { 244 struct flow_keys flow; 245 u32 hash, pkt_proto = 0; 246 static u32 hashrnd __read_mostly; 247 248 net_get_random_once(&hashrnd, sizeof(hashrnd)); 249 250 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 251 return 0; 252 253 switch (flow.basic.ip_proto) { 254 case IPPROTO_TCP: 255 if (flow.basic.n_proto == htons(ETH_P_IP)) 256 pkt_proto = HV_TCP4_L4HASH; 257 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 258 pkt_proto = HV_TCP6_L4HASH; 259 260 break; 261 262 case IPPROTO_UDP: 263 if (flow.basic.n_proto == htons(ETH_P_IP)) 264 pkt_proto = HV_UDP4_L4HASH; 265 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 266 pkt_proto = HV_UDP6_L4HASH; 267 268 break; 269 } 270 271 if (pkt_proto & ndc->l4_hash) { 272 return skb_get_hash(skb); 273 } else { 274 if (flow.basic.n_proto == htons(ETH_P_IP)) 275 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 276 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 277 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 278 else 279 hash = 0; 280 281 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); 282 } 283 284 return hash; 285 } 286 287 static inline int netvsc_get_tx_queue(struct net_device *ndev, 288 struct sk_buff *skb, int old_idx) 289 { 290 const struct net_device_context *ndc = netdev_priv(ndev); 291 struct sock *sk = skb->sk; 292 int q_idx; 293 294 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 295 (VRSS_SEND_TAB_SIZE - 1)]; 296 297 /* If queue index changed record the new value */ 298 if (q_idx != old_idx && 299 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 300 sk_tx_queue_set(sk, q_idx); 301 302 return q_idx; 303 } 304 305 /* 306 * Select queue for transmit. 307 * 308 * If a valid queue has already been assigned, then use that. 309 * Otherwise compute tx queue based on hash and the send table. 310 * 311 * This is basically similar to default (__netdev_pick_tx) with the added step 312 * of using the host send_table when no other queue has been assigned. 313 * 314 * TODO support XPS - but get_xps_queue not exported 315 */ 316 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 317 { 318 int q_idx = sk_tx_queue_get(skb->sk); 319 320 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 321 /* If forwarding a packet, we use the recorded queue when 322 * available for better cache locality. 323 */ 324 if (skb_rx_queue_recorded(skb)) 325 q_idx = skb_get_rx_queue(skb); 326 else 327 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 328 } 329 330 return q_idx; 331 } 332 333 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 334 struct net_device *sb_dev, 335 select_queue_fallback_t fallback) 336 { 337 struct net_device_context *ndc = netdev_priv(ndev); 338 struct net_device *vf_netdev; 339 u16 txq; 340 341 rcu_read_lock(); 342 vf_netdev = rcu_dereference(ndc->vf_netdev); 343 if (vf_netdev) { 344 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 345 346 if (vf_ops->ndo_select_queue) 347 txq = vf_ops->ndo_select_queue(vf_netdev, skb, 348 sb_dev, fallback); 349 else 350 txq = fallback(vf_netdev, skb, NULL); 351 352 /* Record the queue selected by VF so that it can be 353 * used for common case where VF has more queues than 354 * the synthetic device. 355 */ 356 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 357 } else { 358 txq = netvsc_pick_tx(ndev, skb); 359 } 360 rcu_read_unlock(); 361 362 while (unlikely(txq >= ndev->real_num_tx_queues)) 363 txq -= ndev->real_num_tx_queues; 364 365 return txq; 366 } 367 368 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 369 struct hv_page_buffer *pb) 370 { 371 int j = 0; 372 373 /* Deal with compound pages by ignoring unused part 374 * of the page. 375 */ 376 page += (offset >> PAGE_SHIFT); 377 offset &= ~PAGE_MASK; 378 379 while (len > 0) { 380 unsigned long bytes; 381 382 bytes = PAGE_SIZE - offset; 383 if (bytes > len) 384 bytes = len; 385 pb[j].pfn = page_to_pfn(page); 386 pb[j].offset = offset; 387 pb[j].len = bytes; 388 389 offset += bytes; 390 len -= bytes; 391 392 if (offset == PAGE_SIZE && len) { 393 page++; 394 offset = 0; 395 j++; 396 } 397 } 398 399 return j + 1; 400 } 401 402 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 403 struct hv_netvsc_packet *packet, 404 struct hv_page_buffer *pb) 405 { 406 u32 slots_used = 0; 407 char *data = skb->data; 408 int frags = skb_shinfo(skb)->nr_frags; 409 int i; 410 411 /* The packet is laid out thus: 412 * 1. hdr: RNDIS header and PPI 413 * 2. skb linear data 414 * 3. skb fragment data 415 */ 416 slots_used += fill_pg_buf(virt_to_page(hdr), 417 offset_in_page(hdr), 418 len, &pb[slots_used]); 419 420 packet->rmsg_size = len; 421 packet->rmsg_pgcnt = slots_used; 422 423 slots_used += fill_pg_buf(virt_to_page(data), 424 offset_in_page(data), 425 skb_headlen(skb), &pb[slots_used]); 426 427 for (i = 0; i < frags; i++) { 428 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 429 430 slots_used += fill_pg_buf(skb_frag_page(frag), 431 frag->page_offset, 432 skb_frag_size(frag), &pb[slots_used]); 433 } 434 return slots_used; 435 } 436 437 static int count_skb_frag_slots(struct sk_buff *skb) 438 { 439 int i, frags = skb_shinfo(skb)->nr_frags; 440 int pages = 0; 441 442 for (i = 0; i < frags; i++) { 443 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 444 unsigned long size = skb_frag_size(frag); 445 unsigned long offset = frag->page_offset; 446 447 /* Skip unused frames from start of page */ 448 offset &= ~PAGE_MASK; 449 pages += PFN_UP(offset + size); 450 } 451 return pages; 452 } 453 454 static int netvsc_get_slots(struct sk_buff *skb) 455 { 456 char *data = skb->data; 457 unsigned int offset = offset_in_page(data); 458 unsigned int len = skb_headlen(skb); 459 int slots; 460 int frag_slots; 461 462 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 463 frag_slots = count_skb_frag_slots(skb); 464 return slots + frag_slots; 465 } 466 467 static u32 net_checksum_info(struct sk_buff *skb) 468 { 469 if (skb->protocol == htons(ETH_P_IP)) { 470 struct iphdr *ip = ip_hdr(skb); 471 472 if (ip->protocol == IPPROTO_TCP) 473 return TRANSPORT_INFO_IPV4_TCP; 474 else if (ip->protocol == IPPROTO_UDP) 475 return TRANSPORT_INFO_IPV4_UDP; 476 } else { 477 struct ipv6hdr *ip6 = ipv6_hdr(skb); 478 479 if (ip6->nexthdr == IPPROTO_TCP) 480 return TRANSPORT_INFO_IPV6_TCP; 481 else if (ip6->nexthdr == IPPROTO_UDP) 482 return TRANSPORT_INFO_IPV6_UDP; 483 } 484 485 return TRANSPORT_INFO_NOT_IP; 486 } 487 488 /* Send skb on the slave VF device. */ 489 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 490 struct sk_buff *skb) 491 { 492 struct net_device_context *ndev_ctx = netdev_priv(net); 493 unsigned int len = skb->len; 494 int rc; 495 496 skb->dev = vf_netdev; 497 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 498 499 rc = dev_queue_xmit(skb); 500 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 501 struct netvsc_vf_pcpu_stats *pcpu_stats 502 = this_cpu_ptr(ndev_ctx->vf_stats); 503 504 u64_stats_update_begin(&pcpu_stats->syncp); 505 pcpu_stats->tx_packets++; 506 pcpu_stats->tx_bytes += len; 507 u64_stats_update_end(&pcpu_stats->syncp); 508 } else { 509 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 510 } 511 512 return rc; 513 } 514 515 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) 516 { 517 struct net_device_context *net_device_ctx = netdev_priv(net); 518 struct hv_netvsc_packet *packet = NULL; 519 int ret; 520 unsigned int num_data_pgs; 521 struct rndis_message *rndis_msg; 522 struct net_device *vf_netdev; 523 u32 rndis_msg_size; 524 u32 hash; 525 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 526 527 /* if VF is present and up then redirect packets 528 * already called with rcu_read_lock_bh 529 */ 530 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 531 if (vf_netdev && netif_running(vf_netdev) && 532 !netpoll_tx_running(net)) 533 return netvsc_vf_xmit(net, vf_netdev, skb); 534 535 /* We will atmost need two pages to describe the rndis 536 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 537 * of pages in a single packet. If skb is scattered around 538 * more pages we try linearizing it. 539 */ 540 541 num_data_pgs = netvsc_get_slots(skb) + 2; 542 543 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 544 ++net_device_ctx->eth_stats.tx_scattered; 545 546 if (skb_linearize(skb)) 547 goto no_memory; 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 551 ++net_device_ctx->eth_stats.tx_too_big; 552 goto drop; 553 } 554 } 555 556 /* 557 * Place the rndis header in the skb head room and 558 * the skb->cb will be used for hv_netvsc_packet 559 * structure. 560 */ 561 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 562 if (ret) 563 goto no_memory; 564 565 /* Use the skb control buffer for building up the packet */ 566 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 567 FIELD_SIZEOF(struct sk_buff, cb)); 568 packet = (struct hv_netvsc_packet *)skb->cb; 569 570 packet->q_idx = skb_get_queue_mapping(skb); 571 572 packet->total_data_buflen = skb->len; 573 packet->total_bytes = skb->len; 574 packet->total_packets = 1; 575 576 rndis_msg = (struct rndis_message *)skb->head; 577 578 /* Add the rndis header */ 579 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 580 rndis_msg->msg_len = packet->total_data_buflen; 581 582 rndis_msg->msg.pkt = (struct rndis_packet) { 583 .data_offset = sizeof(struct rndis_packet), 584 .data_len = packet->total_data_buflen, 585 .per_pkt_info_offset = sizeof(struct rndis_packet), 586 }; 587 588 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 589 590 hash = skb_get_hash_raw(skb); 591 if (hash != 0 && net->real_num_tx_queues > 1) { 592 u32 *hash_info; 593 594 rndis_msg_size += NDIS_HASH_PPI_SIZE; 595 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 596 NBL_HASH_VALUE); 597 *hash_info = hash; 598 } 599 600 if (skb_vlan_tag_present(skb)) { 601 struct ndis_pkt_8021q_info *vlan; 602 603 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 604 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 605 IEEE_8021Q_INFO); 606 607 vlan->value = 0; 608 vlan->vlanid = skb_vlan_tag_get_id(skb); 609 vlan->cfi = skb_vlan_tag_get_cfi(skb); 610 vlan->pri = skb_vlan_tag_get_prio(skb); 611 } 612 613 if (skb_is_gso(skb)) { 614 struct ndis_tcp_lso_info *lso_info; 615 616 rndis_msg_size += NDIS_LSO_PPI_SIZE; 617 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 618 TCP_LARGESEND_PKTINFO); 619 620 lso_info->value = 0; 621 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 622 if (skb->protocol == htons(ETH_P_IP)) { 623 lso_info->lso_v2_transmit.ip_version = 624 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 625 ip_hdr(skb)->tot_len = 0; 626 ip_hdr(skb)->check = 0; 627 tcp_hdr(skb)->check = 628 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 629 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 630 } else { 631 lso_info->lso_v2_transmit.ip_version = 632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 633 ipv6_hdr(skb)->payload_len = 0; 634 tcp_hdr(skb)->check = 635 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 636 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 637 } 638 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 639 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 640 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 641 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 642 struct ndis_tcp_ip_checksum_info *csum_info; 643 644 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 645 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 646 TCPIP_CHKSUM_PKTINFO); 647 648 csum_info->value = 0; 649 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 650 651 if (skb->protocol == htons(ETH_P_IP)) { 652 csum_info->transmit.is_ipv4 = 1; 653 654 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 655 csum_info->transmit.tcp_checksum = 1; 656 else 657 csum_info->transmit.udp_checksum = 1; 658 } else { 659 csum_info->transmit.is_ipv6 = 1; 660 661 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 662 csum_info->transmit.tcp_checksum = 1; 663 else 664 csum_info->transmit.udp_checksum = 1; 665 } 666 } else { 667 /* Can't do offload of this type of checksum */ 668 if (skb_checksum_help(skb)) 669 goto drop; 670 } 671 } 672 673 /* Start filling in the page buffers with the rndis hdr */ 674 rndis_msg->msg_len += rndis_msg_size; 675 packet->total_data_buflen = rndis_msg->msg_len; 676 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 677 skb, packet, pb); 678 679 /* timestamp packet in software */ 680 skb_tx_timestamp(skb); 681 682 ret = netvsc_send(net, packet, rndis_msg, pb, skb); 683 if (likely(ret == 0)) 684 return NETDEV_TX_OK; 685 686 if (ret == -EAGAIN) { 687 ++net_device_ctx->eth_stats.tx_busy; 688 return NETDEV_TX_BUSY; 689 } 690 691 if (ret == -ENOSPC) 692 ++net_device_ctx->eth_stats.tx_no_space; 693 694 drop: 695 dev_kfree_skb_any(skb); 696 net->stats.tx_dropped++; 697 698 return NETDEV_TX_OK; 699 700 no_memory: 701 ++net_device_ctx->eth_stats.tx_no_memory; 702 goto drop; 703 } 704 705 /* 706 * netvsc_linkstatus_callback - Link up/down notification 707 */ 708 void netvsc_linkstatus_callback(struct net_device *net, 709 struct rndis_message *resp) 710 { 711 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 712 struct net_device_context *ndev_ctx = netdev_priv(net); 713 struct netvsc_reconfig *event; 714 unsigned long flags; 715 716 /* Update the physical link speed when changing to another vSwitch */ 717 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 718 u32 speed; 719 720 speed = *(u32 *)((void *)indicate 721 + indicate->status_buf_offset) / 10000; 722 ndev_ctx->speed = speed; 723 return; 724 } 725 726 /* Handle these link change statuses below */ 727 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 728 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 729 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 730 return; 731 732 if (net->reg_state != NETREG_REGISTERED) 733 return; 734 735 event = kzalloc(sizeof(*event), GFP_ATOMIC); 736 if (!event) 737 return; 738 event->event = indicate->status; 739 740 spin_lock_irqsave(&ndev_ctx->lock, flags); 741 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 742 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 743 744 schedule_delayed_work(&ndev_ctx->dwork, 0); 745 } 746 747 static void netvsc_comp_ipcsum(struct sk_buff *skb) 748 { 749 struct iphdr *iph = (struct iphdr *)skb->data; 750 751 iph->check = 0; 752 iph->check = ip_fast_csum(iph, iph->ihl); 753 } 754 755 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 756 struct netvsc_channel *nvchan) 757 { 758 struct napi_struct *napi = &nvchan->napi; 759 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 760 const struct ndis_tcp_ip_checksum_info *csum_info = 761 nvchan->rsc.csum_info; 762 struct sk_buff *skb; 763 int i; 764 765 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 766 if (!skb) 767 return skb; 768 769 /* 770 * Copy to skb. This copy is needed here since the memory pointed by 771 * hv_netvsc_packet cannot be deallocated 772 */ 773 for (i = 0; i < nvchan->rsc.cnt; i++) 774 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); 775 776 skb->protocol = eth_type_trans(skb, net); 777 778 /* skb is already created with CHECKSUM_NONE */ 779 skb_checksum_none_assert(skb); 780 781 /* Incoming packets may have IP header checksum verified by the host. 782 * They may not have IP header checksum computed after coalescing. 783 * We compute it here if the flags are set, because on Linux, the IP 784 * checksum is always checked. 785 */ 786 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 787 csum_info->receive.ip_checksum_succeeded && 788 skb->protocol == htons(ETH_P_IP)) 789 netvsc_comp_ipcsum(skb); 790 791 /* Do L4 checksum offload if enabled and present. 792 */ 793 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 794 if (csum_info->receive.tcp_checksum_succeeded || 795 csum_info->receive.udp_checksum_succeeded) 796 skb->ip_summed = CHECKSUM_UNNECESSARY; 797 } 798 799 if (vlan) { 800 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 801 (vlan->cfi ? VLAN_CFI_MASK : 0); 802 803 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 804 vlan_tci); 805 } 806 807 return skb; 808 } 809 810 /* 811 * netvsc_recv_callback - Callback when we receive a packet from the 812 * "wire" on the specified device. 813 */ 814 int netvsc_recv_callback(struct net_device *net, 815 struct netvsc_device *net_device, 816 struct netvsc_channel *nvchan) 817 { 818 struct net_device_context *net_device_ctx = netdev_priv(net); 819 struct vmbus_channel *channel = nvchan->channel; 820 u16 q_idx = channel->offermsg.offer.sub_channel_index; 821 struct sk_buff *skb; 822 struct netvsc_stats *rx_stats; 823 824 if (net->reg_state != NETREG_REGISTERED) 825 return NVSP_STAT_FAIL; 826 827 /* Allocate a skb - TODO direct I/O to pages? */ 828 skb = netvsc_alloc_recv_skb(net, nvchan); 829 830 if (unlikely(!skb)) { 831 ++net_device_ctx->eth_stats.rx_no_memory; 832 rcu_read_unlock(); 833 return NVSP_STAT_FAIL; 834 } 835 836 skb_record_rx_queue(skb, q_idx); 837 838 /* 839 * Even if injecting the packet, record the statistics 840 * on the synthetic device because modifying the VF device 841 * statistics will not work correctly. 842 */ 843 rx_stats = &nvchan->rx_stats; 844 u64_stats_update_begin(&rx_stats->syncp); 845 rx_stats->packets++; 846 rx_stats->bytes += nvchan->rsc.pktlen; 847 848 if (skb->pkt_type == PACKET_BROADCAST) 849 ++rx_stats->broadcast; 850 else if (skb->pkt_type == PACKET_MULTICAST) 851 ++rx_stats->multicast; 852 u64_stats_update_end(&rx_stats->syncp); 853 854 napi_gro_receive(&nvchan->napi, skb); 855 return NVSP_STAT_SUCCESS; 856 } 857 858 static void netvsc_get_drvinfo(struct net_device *net, 859 struct ethtool_drvinfo *info) 860 { 861 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 862 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 863 } 864 865 static void netvsc_get_channels(struct net_device *net, 866 struct ethtool_channels *channel) 867 { 868 struct net_device_context *net_device_ctx = netdev_priv(net); 869 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 870 871 if (nvdev) { 872 channel->max_combined = nvdev->max_chn; 873 channel->combined_count = nvdev->num_chn; 874 } 875 } 876 877 /* Alloc struct netvsc_device_info, and initialize it from either existing 878 * struct netvsc_device, or from default values. 879 */ 880 static struct netvsc_device_info *netvsc_devinfo_get 881 (struct netvsc_device *nvdev) 882 { 883 struct netvsc_device_info *dev_info; 884 885 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 886 887 if (!dev_info) 888 return NULL; 889 890 if (nvdev) { 891 dev_info->num_chn = nvdev->num_chn; 892 dev_info->send_sections = nvdev->send_section_cnt; 893 dev_info->send_section_size = nvdev->send_section_size; 894 dev_info->recv_sections = nvdev->recv_section_cnt; 895 dev_info->recv_section_size = nvdev->recv_section_size; 896 897 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 898 NETVSC_HASH_KEYLEN); 899 } else { 900 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 901 dev_info->send_sections = NETVSC_DEFAULT_TX; 902 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 903 dev_info->recv_sections = NETVSC_DEFAULT_RX; 904 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 905 } 906 907 return dev_info; 908 } 909 910 static int netvsc_detach(struct net_device *ndev, 911 struct netvsc_device *nvdev) 912 { 913 struct net_device_context *ndev_ctx = netdev_priv(ndev); 914 struct hv_device *hdev = ndev_ctx->device_ctx; 915 int ret; 916 917 /* Don't try continuing to try and setup sub channels */ 918 if (cancel_work_sync(&nvdev->subchan_work)) 919 nvdev->num_chn = 1; 920 921 /* If device was up (receiving) then shutdown */ 922 if (netif_running(ndev)) { 923 netif_tx_disable(ndev); 924 925 ret = rndis_filter_close(nvdev); 926 if (ret) { 927 netdev_err(ndev, 928 "unable to close device (ret %d).\n", ret); 929 return ret; 930 } 931 932 ret = netvsc_wait_until_empty(nvdev); 933 if (ret) { 934 netdev_err(ndev, 935 "Ring buffer not empty after closing rndis\n"); 936 return ret; 937 } 938 } 939 940 netif_device_detach(ndev); 941 942 rndis_filter_device_remove(hdev, nvdev); 943 944 return 0; 945 } 946 947 static int netvsc_attach(struct net_device *ndev, 948 struct netvsc_device_info *dev_info) 949 { 950 struct net_device_context *ndev_ctx = netdev_priv(ndev); 951 struct hv_device *hdev = ndev_ctx->device_ctx; 952 struct netvsc_device *nvdev; 953 struct rndis_device *rdev; 954 int ret; 955 956 nvdev = rndis_filter_device_add(hdev, dev_info); 957 if (IS_ERR(nvdev)) 958 return PTR_ERR(nvdev); 959 960 if (nvdev->num_chn > 1) { 961 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 962 963 /* if unavailable, just proceed with one queue */ 964 if (ret) { 965 nvdev->max_chn = 1; 966 nvdev->num_chn = 1; 967 } 968 } 969 970 /* In any case device is now ready */ 971 netif_device_attach(ndev); 972 973 /* Note: enable and attach happen when sub-channels setup */ 974 netif_carrier_off(ndev); 975 976 if (netif_running(ndev)) { 977 ret = rndis_filter_open(nvdev); 978 if (ret) 979 return ret; 980 981 rdev = nvdev->extension; 982 if (!rdev->link_state) 983 netif_carrier_on(ndev); 984 } 985 986 return 0; 987 } 988 989 static int netvsc_set_channels(struct net_device *net, 990 struct ethtool_channels *channels) 991 { 992 struct net_device_context *net_device_ctx = netdev_priv(net); 993 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 994 unsigned int orig, count = channels->combined_count; 995 struct netvsc_device_info *device_info; 996 int ret; 997 998 /* We do not support separate count for rx, tx, or other */ 999 if (count == 0 || 1000 channels->rx_count || channels->tx_count || channels->other_count) 1001 return -EINVAL; 1002 1003 if (!nvdev || nvdev->destroy) 1004 return -ENODEV; 1005 1006 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1007 return -EINVAL; 1008 1009 if (count > nvdev->max_chn) 1010 return -EINVAL; 1011 1012 orig = nvdev->num_chn; 1013 1014 device_info = netvsc_devinfo_get(nvdev); 1015 1016 if (!device_info) 1017 return -ENOMEM; 1018 1019 device_info->num_chn = count; 1020 1021 ret = netvsc_detach(net, nvdev); 1022 if (ret) 1023 goto out; 1024 1025 ret = netvsc_attach(net, device_info); 1026 if (ret) { 1027 device_info->num_chn = orig; 1028 if (netvsc_attach(net, device_info)) 1029 netdev_err(net, "restoring channel setting failed\n"); 1030 } 1031 1032 out: 1033 kfree(device_info); 1034 return ret; 1035 } 1036 1037 static bool 1038 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd) 1039 { 1040 struct ethtool_link_ksettings diff1 = *cmd; 1041 struct ethtool_link_ksettings diff2 = {}; 1042 1043 diff1.base.speed = 0; 1044 diff1.base.duplex = 0; 1045 /* advertising and cmd are usually set */ 1046 ethtool_link_ksettings_zero_link_mode(&diff1, advertising); 1047 diff1.base.cmd = 0; 1048 /* We set port to PORT_OTHER */ 1049 diff2.base.port = PORT_OTHER; 1050 1051 return !memcmp(&diff1, &diff2, sizeof(diff1)); 1052 } 1053 1054 static void netvsc_init_settings(struct net_device *dev) 1055 { 1056 struct net_device_context *ndc = netdev_priv(dev); 1057 1058 ndc->l4_hash = HV_DEFAULT_L4HASH; 1059 1060 ndc->speed = SPEED_UNKNOWN; 1061 ndc->duplex = DUPLEX_FULL; 1062 1063 dev->features = NETIF_F_LRO; 1064 } 1065 1066 static int netvsc_get_link_ksettings(struct net_device *dev, 1067 struct ethtool_link_ksettings *cmd) 1068 { 1069 struct net_device_context *ndc = netdev_priv(dev); 1070 1071 cmd->base.speed = ndc->speed; 1072 cmd->base.duplex = ndc->duplex; 1073 cmd->base.port = PORT_OTHER; 1074 1075 return 0; 1076 } 1077 1078 static int netvsc_set_link_ksettings(struct net_device *dev, 1079 const struct ethtool_link_ksettings *cmd) 1080 { 1081 struct net_device_context *ndc = netdev_priv(dev); 1082 u32 speed; 1083 1084 speed = cmd->base.speed; 1085 if (!ethtool_validate_speed(speed) || 1086 !ethtool_validate_duplex(cmd->base.duplex) || 1087 !netvsc_validate_ethtool_ss_cmd(cmd)) 1088 return -EINVAL; 1089 1090 ndc->speed = speed; 1091 ndc->duplex = cmd->base.duplex; 1092 1093 return 0; 1094 } 1095 1096 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1097 { 1098 struct net_device_context *ndevctx = netdev_priv(ndev); 1099 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1100 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1101 int orig_mtu = ndev->mtu; 1102 struct netvsc_device_info *device_info; 1103 int ret = 0; 1104 1105 if (!nvdev || nvdev->destroy) 1106 return -ENODEV; 1107 1108 device_info = netvsc_devinfo_get(nvdev); 1109 1110 if (!device_info) 1111 return -ENOMEM; 1112 1113 /* Change MTU of underlying VF netdev first. */ 1114 if (vf_netdev) { 1115 ret = dev_set_mtu(vf_netdev, mtu); 1116 if (ret) 1117 goto out; 1118 } 1119 1120 ret = netvsc_detach(ndev, nvdev); 1121 if (ret) 1122 goto rollback_vf; 1123 1124 ndev->mtu = mtu; 1125 1126 ret = netvsc_attach(ndev, device_info); 1127 if (!ret) 1128 goto out; 1129 1130 /* Attempt rollback to original MTU */ 1131 ndev->mtu = orig_mtu; 1132 1133 if (netvsc_attach(ndev, device_info)) 1134 netdev_err(ndev, "restoring mtu failed\n"); 1135 rollback_vf: 1136 if (vf_netdev) 1137 dev_set_mtu(vf_netdev, orig_mtu); 1138 1139 out: 1140 kfree(device_info); 1141 return ret; 1142 } 1143 1144 static void netvsc_get_vf_stats(struct net_device *net, 1145 struct netvsc_vf_pcpu_stats *tot) 1146 { 1147 struct net_device_context *ndev_ctx = netdev_priv(net); 1148 int i; 1149 1150 memset(tot, 0, sizeof(*tot)); 1151 1152 for_each_possible_cpu(i) { 1153 const struct netvsc_vf_pcpu_stats *stats 1154 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1155 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1156 unsigned int start; 1157 1158 do { 1159 start = u64_stats_fetch_begin_irq(&stats->syncp); 1160 rx_packets = stats->rx_packets; 1161 tx_packets = stats->tx_packets; 1162 rx_bytes = stats->rx_bytes; 1163 tx_bytes = stats->tx_bytes; 1164 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1165 1166 tot->rx_packets += rx_packets; 1167 tot->tx_packets += tx_packets; 1168 tot->rx_bytes += rx_bytes; 1169 tot->tx_bytes += tx_bytes; 1170 tot->tx_dropped += stats->tx_dropped; 1171 } 1172 } 1173 1174 static void netvsc_get_pcpu_stats(struct net_device *net, 1175 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1176 { 1177 struct net_device_context *ndev_ctx = netdev_priv(net); 1178 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1179 int i; 1180 1181 /* fetch percpu stats of vf */ 1182 for_each_possible_cpu(i) { 1183 const struct netvsc_vf_pcpu_stats *stats = 1184 per_cpu_ptr(ndev_ctx->vf_stats, i); 1185 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1186 unsigned int start; 1187 1188 do { 1189 start = u64_stats_fetch_begin_irq(&stats->syncp); 1190 this_tot->vf_rx_packets = stats->rx_packets; 1191 this_tot->vf_tx_packets = stats->tx_packets; 1192 this_tot->vf_rx_bytes = stats->rx_bytes; 1193 this_tot->vf_tx_bytes = stats->tx_bytes; 1194 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1195 this_tot->rx_packets = this_tot->vf_rx_packets; 1196 this_tot->tx_packets = this_tot->vf_tx_packets; 1197 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1198 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1199 } 1200 1201 /* fetch percpu stats of netvsc */ 1202 for (i = 0; i < nvdev->num_chn; i++) { 1203 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1204 const struct netvsc_stats *stats; 1205 struct netvsc_ethtool_pcpu_stats *this_tot = 1206 &pcpu_tot[nvchan->channel->target_cpu]; 1207 u64 packets, bytes; 1208 unsigned int start; 1209 1210 stats = &nvchan->tx_stats; 1211 do { 1212 start = u64_stats_fetch_begin_irq(&stats->syncp); 1213 packets = stats->packets; 1214 bytes = stats->bytes; 1215 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1216 1217 this_tot->tx_bytes += bytes; 1218 this_tot->tx_packets += packets; 1219 1220 stats = &nvchan->rx_stats; 1221 do { 1222 start = u64_stats_fetch_begin_irq(&stats->syncp); 1223 packets = stats->packets; 1224 bytes = stats->bytes; 1225 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1226 1227 this_tot->rx_bytes += bytes; 1228 this_tot->rx_packets += packets; 1229 } 1230 } 1231 1232 static void netvsc_get_stats64(struct net_device *net, 1233 struct rtnl_link_stats64 *t) 1234 { 1235 struct net_device_context *ndev_ctx = netdev_priv(net); 1236 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1237 struct netvsc_vf_pcpu_stats vf_tot; 1238 int i; 1239 1240 if (!nvdev) 1241 return; 1242 1243 netdev_stats_to_stats64(t, &net->stats); 1244 1245 netvsc_get_vf_stats(net, &vf_tot); 1246 t->rx_packets += vf_tot.rx_packets; 1247 t->tx_packets += vf_tot.tx_packets; 1248 t->rx_bytes += vf_tot.rx_bytes; 1249 t->tx_bytes += vf_tot.tx_bytes; 1250 t->tx_dropped += vf_tot.tx_dropped; 1251 1252 for (i = 0; i < nvdev->num_chn; i++) { 1253 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1254 const struct netvsc_stats *stats; 1255 u64 packets, bytes, multicast; 1256 unsigned int start; 1257 1258 stats = &nvchan->tx_stats; 1259 do { 1260 start = u64_stats_fetch_begin_irq(&stats->syncp); 1261 packets = stats->packets; 1262 bytes = stats->bytes; 1263 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1264 1265 t->tx_bytes += bytes; 1266 t->tx_packets += packets; 1267 1268 stats = &nvchan->rx_stats; 1269 do { 1270 start = u64_stats_fetch_begin_irq(&stats->syncp); 1271 packets = stats->packets; 1272 bytes = stats->bytes; 1273 multicast = stats->multicast + stats->broadcast; 1274 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1275 1276 t->rx_bytes += bytes; 1277 t->rx_packets += packets; 1278 t->multicast += multicast; 1279 } 1280 } 1281 1282 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1283 { 1284 struct net_device_context *ndc = netdev_priv(ndev); 1285 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1286 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1287 struct sockaddr *addr = p; 1288 int err; 1289 1290 err = eth_prepare_mac_addr_change(ndev, p); 1291 if (err) 1292 return err; 1293 1294 if (!nvdev) 1295 return -ENODEV; 1296 1297 if (vf_netdev) { 1298 err = dev_set_mac_address(vf_netdev, addr, NULL); 1299 if (err) 1300 return err; 1301 } 1302 1303 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1304 if (!err) { 1305 eth_commit_mac_addr_change(ndev, p); 1306 } else if (vf_netdev) { 1307 /* rollback change on VF */ 1308 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1309 dev_set_mac_address(vf_netdev, addr, NULL); 1310 } 1311 1312 return err; 1313 } 1314 1315 static const struct { 1316 char name[ETH_GSTRING_LEN]; 1317 u16 offset; 1318 } netvsc_stats[] = { 1319 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1320 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1321 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1322 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1323 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1324 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1325 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1326 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1327 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1328 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1329 }, pcpu_stats[] = { 1330 { "cpu%u_rx_packets", 1331 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1332 { "cpu%u_rx_bytes", 1333 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1334 { "cpu%u_tx_packets", 1335 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1336 { "cpu%u_tx_bytes", 1337 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1338 { "cpu%u_vf_rx_packets", 1339 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1340 { "cpu%u_vf_rx_bytes", 1341 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1342 { "cpu%u_vf_tx_packets", 1343 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1344 { "cpu%u_vf_tx_bytes", 1345 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1346 }, vf_stats[] = { 1347 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1348 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1349 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1350 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1351 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1352 }; 1353 1354 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1355 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1356 1357 /* statistics per queue (rx/tx packets/bytes) */ 1358 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1359 1360 /* 4 statistics per queue (rx/tx packets/bytes) */ 1361 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4) 1362 1363 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1364 { 1365 struct net_device_context *ndc = netdev_priv(dev); 1366 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1367 1368 if (!nvdev) 1369 return -ENODEV; 1370 1371 switch (string_set) { 1372 case ETH_SS_STATS: 1373 return NETVSC_GLOBAL_STATS_LEN 1374 + NETVSC_VF_STATS_LEN 1375 + NETVSC_QUEUE_STATS_LEN(nvdev) 1376 + NETVSC_PCPU_STATS_LEN; 1377 default: 1378 return -EINVAL; 1379 } 1380 } 1381 1382 static void netvsc_get_ethtool_stats(struct net_device *dev, 1383 struct ethtool_stats *stats, u64 *data) 1384 { 1385 struct net_device_context *ndc = netdev_priv(dev); 1386 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1387 const void *nds = &ndc->eth_stats; 1388 const struct netvsc_stats *qstats; 1389 struct netvsc_vf_pcpu_stats sum; 1390 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1391 unsigned int start; 1392 u64 packets, bytes; 1393 int i, j, cpu; 1394 1395 if (!nvdev) 1396 return; 1397 1398 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1399 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1400 1401 netvsc_get_vf_stats(dev, &sum); 1402 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1403 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1404 1405 for (j = 0; j < nvdev->num_chn; j++) { 1406 qstats = &nvdev->chan_table[j].tx_stats; 1407 1408 do { 1409 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1410 packets = qstats->packets; 1411 bytes = qstats->bytes; 1412 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1413 data[i++] = packets; 1414 data[i++] = bytes; 1415 1416 qstats = &nvdev->chan_table[j].rx_stats; 1417 do { 1418 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1419 packets = qstats->packets; 1420 bytes = qstats->bytes; 1421 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1422 data[i++] = packets; 1423 data[i++] = bytes; 1424 } 1425 1426 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1427 sizeof(struct netvsc_ethtool_pcpu_stats), 1428 GFP_KERNEL); 1429 netvsc_get_pcpu_stats(dev, pcpu_sum); 1430 for_each_present_cpu(cpu) { 1431 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1432 1433 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1434 data[i++] = *(u64 *)((void *)this_sum 1435 + pcpu_stats[j].offset); 1436 } 1437 kvfree(pcpu_sum); 1438 } 1439 1440 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1441 { 1442 struct net_device_context *ndc = netdev_priv(dev); 1443 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1444 u8 *p = data; 1445 int i, cpu; 1446 1447 if (!nvdev) 1448 return; 1449 1450 switch (stringset) { 1451 case ETH_SS_STATS: 1452 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1453 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1454 p += ETH_GSTRING_LEN; 1455 } 1456 1457 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1458 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1459 p += ETH_GSTRING_LEN; 1460 } 1461 1462 for (i = 0; i < nvdev->num_chn; i++) { 1463 sprintf(p, "tx_queue_%u_packets", i); 1464 p += ETH_GSTRING_LEN; 1465 sprintf(p, "tx_queue_%u_bytes", i); 1466 p += ETH_GSTRING_LEN; 1467 sprintf(p, "rx_queue_%u_packets", i); 1468 p += ETH_GSTRING_LEN; 1469 sprintf(p, "rx_queue_%u_bytes", i); 1470 p += ETH_GSTRING_LEN; 1471 } 1472 1473 for_each_present_cpu(cpu) { 1474 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1475 sprintf(p, pcpu_stats[i].name, cpu); 1476 p += ETH_GSTRING_LEN; 1477 } 1478 } 1479 1480 break; 1481 } 1482 } 1483 1484 static int 1485 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1486 struct ethtool_rxnfc *info) 1487 { 1488 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1489 1490 info->data = RXH_IP_SRC | RXH_IP_DST; 1491 1492 switch (info->flow_type) { 1493 case TCP_V4_FLOW: 1494 if (ndc->l4_hash & HV_TCP4_L4HASH) 1495 info->data |= l4_flag; 1496 1497 break; 1498 1499 case TCP_V6_FLOW: 1500 if (ndc->l4_hash & HV_TCP6_L4HASH) 1501 info->data |= l4_flag; 1502 1503 break; 1504 1505 case UDP_V4_FLOW: 1506 if (ndc->l4_hash & HV_UDP4_L4HASH) 1507 info->data |= l4_flag; 1508 1509 break; 1510 1511 case UDP_V6_FLOW: 1512 if (ndc->l4_hash & HV_UDP6_L4HASH) 1513 info->data |= l4_flag; 1514 1515 break; 1516 1517 case IPV4_FLOW: 1518 case IPV6_FLOW: 1519 break; 1520 default: 1521 info->data = 0; 1522 break; 1523 } 1524 1525 return 0; 1526 } 1527 1528 static int 1529 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1530 u32 *rules) 1531 { 1532 struct net_device_context *ndc = netdev_priv(dev); 1533 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1534 1535 if (!nvdev) 1536 return -ENODEV; 1537 1538 switch (info->cmd) { 1539 case ETHTOOL_GRXRINGS: 1540 info->data = nvdev->num_chn; 1541 return 0; 1542 1543 case ETHTOOL_GRXFH: 1544 return netvsc_get_rss_hash_opts(ndc, info); 1545 } 1546 return -EOPNOTSUPP; 1547 } 1548 1549 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1550 struct ethtool_rxnfc *info) 1551 { 1552 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1553 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1554 switch (info->flow_type) { 1555 case TCP_V4_FLOW: 1556 ndc->l4_hash |= HV_TCP4_L4HASH; 1557 break; 1558 1559 case TCP_V6_FLOW: 1560 ndc->l4_hash |= HV_TCP6_L4HASH; 1561 break; 1562 1563 case UDP_V4_FLOW: 1564 ndc->l4_hash |= HV_UDP4_L4HASH; 1565 break; 1566 1567 case UDP_V6_FLOW: 1568 ndc->l4_hash |= HV_UDP6_L4HASH; 1569 break; 1570 1571 default: 1572 return -EOPNOTSUPP; 1573 } 1574 1575 return 0; 1576 } 1577 1578 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1579 switch (info->flow_type) { 1580 case TCP_V4_FLOW: 1581 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1582 break; 1583 1584 case TCP_V6_FLOW: 1585 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1586 break; 1587 1588 case UDP_V4_FLOW: 1589 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1590 break; 1591 1592 case UDP_V6_FLOW: 1593 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1594 break; 1595 1596 default: 1597 return -EOPNOTSUPP; 1598 } 1599 1600 return 0; 1601 } 1602 1603 return -EOPNOTSUPP; 1604 } 1605 1606 static int 1607 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1608 { 1609 struct net_device_context *ndc = netdev_priv(ndev); 1610 1611 if (info->cmd == ETHTOOL_SRXFH) 1612 return netvsc_set_rss_hash_opts(ndc, info); 1613 1614 return -EOPNOTSUPP; 1615 } 1616 1617 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1618 { 1619 return NETVSC_HASH_KEYLEN; 1620 } 1621 1622 static u32 netvsc_rss_indir_size(struct net_device *dev) 1623 { 1624 return ITAB_NUM; 1625 } 1626 1627 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1628 u8 *hfunc) 1629 { 1630 struct net_device_context *ndc = netdev_priv(dev); 1631 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1632 struct rndis_device *rndis_dev; 1633 int i; 1634 1635 if (!ndev) 1636 return -ENODEV; 1637 1638 if (hfunc) 1639 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1640 1641 rndis_dev = ndev->extension; 1642 if (indir) { 1643 for (i = 0; i < ITAB_NUM; i++) 1644 indir[i] = rndis_dev->rx_table[i]; 1645 } 1646 1647 if (key) 1648 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1649 1650 return 0; 1651 } 1652 1653 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1654 const u8 *key, const u8 hfunc) 1655 { 1656 struct net_device_context *ndc = netdev_priv(dev); 1657 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1658 struct rndis_device *rndis_dev; 1659 int i; 1660 1661 if (!ndev) 1662 return -ENODEV; 1663 1664 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1665 return -EOPNOTSUPP; 1666 1667 rndis_dev = ndev->extension; 1668 if (indir) { 1669 for (i = 0; i < ITAB_NUM; i++) 1670 if (indir[i] >= ndev->num_chn) 1671 return -EINVAL; 1672 1673 for (i = 0; i < ITAB_NUM; i++) 1674 rndis_dev->rx_table[i] = indir[i]; 1675 } 1676 1677 if (!key) { 1678 if (!indir) 1679 return 0; 1680 1681 key = rndis_dev->rss_key; 1682 } 1683 1684 return rndis_filter_set_rss_param(rndis_dev, key); 1685 } 1686 1687 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1688 * It does have pre-allocated receive area which is divided into sections. 1689 */ 1690 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1691 struct ethtool_ringparam *ring) 1692 { 1693 u32 max_buf_size; 1694 1695 ring->rx_pending = nvdev->recv_section_cnt; 1696 ring->tx_pending = nvdev->send_section_cnt; 1697 1698 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1699 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1700 else 1701 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1702 1703 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1704 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1705 / nvdev->send_section_size; 1706 } 1707 1708 static void netvsc_get_ringparam(struct net_device *ndev, 1709 struct ethtool_ringparam *ring) 1710 { 1711 struct net_device_context *ndevctx = netdev_priv(ndev); 1712 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1713 1714 if (!nvdev) 1715 return; 1716 1717 __netvsc_get_ringparam(nvdev, ring); 1718 } 1719 1720 static int netvsc_set_ringparam(struct net_device *ndev, 1721 struct ethtool_ringparam *ring) 1722 { 1723 struct net_device_context *ndevctx = netdev_priv(ndev); 1724 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1725 struct netvsc_device_info *device_info; 1726 struct ethtool_ringparam orig; 1727 u32 new_tx, new_rx; 1728 int ret = 0; 1729 1730 if (!nvdev || nvdev->destroy) 1731 return -ENODEV; 1732 1733 memset(&orig, 0, sizeof(orig)); 1734 __netvsc_get_ringparam(nvdev, &orig); 1735 1736 new_tx = clamp_t(u32, ring->tx_pending, 1737 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1738 new_rx = clamp_t(u32, ring->rx_pending, 1739 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1740 1741 if (new_tx == orig.tx_pending && 1742 new_rx == orig.rx_pending) 1743 return 0; /* no change */ 1744 1745 device_info = netvsc_devinfo_get(nvdev); 1746 1747 if (!device_info) 1748 return -ENOMEM; 1749 1750 device_info->send_sections = new_tx; 1751 device_info->recv_sections = new_rx; 1752 1753 ret = netvsc_detach(ndev, nvdev); 1754 if (ret) 1755 goto out; 1756 1757 ret = netvsc_attach(ndev, device_info); 1758 if (ret) { 1759 device_info->send_sections = orig.tx_pending; 1760 device_info->recv_sections = orig.rx_pending; 1761 1762 if (netvsc_attach(ndev, device_info)) 1763 netdev_err(ndev, "restoring ringparam failed"); 1764 } 1765 1766 out: 1767 kfree(device_info); 1768 return ret; 1769 } 1770 1771 static int netvsc_set_features(struct net_device *ndev, 1772 netdev_features_t features) 1773 { 1774 netdev_features_t change = features ^ ndev->features; 1775 struct net_device_context *ndevctx = netdev_priv(ndev); 1776 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1777 struct ndis_offload_params offloads; 1778 1779 if (!nvdev || nvdev->destroy) 1780 return -ENODEV; 1781 1782 if (!(change & NETIF_F_LRO)) 1783 return 0; 1784 1785 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1786 1787 if (features & NETIF_F_LRO) { 1788 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1789 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1790 } else { 1791 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1792 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1793 } 1794 1795 return rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1796 } 1797 1798 static u32 netvsc_get_msglevel(struct net_device *ndev) 1799 { 1800 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1801 1802 return ndev_ctx->msg_enable; 1803 } 1804 1805 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1806 { 1807 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1808 1809 ndev_ctx->msg_enable = val; 1810 } 1811 1812 static const struct ethtool_ops ethtool_ops = { 1813 .get_drvinfo = netvsc_get_drvinfo, 1814 .get_msglevel = netvsc_get_msglevel, 1815 .set_msglevel = netvsc_set_msglevel, 1816 .get_link = ethtool_op_get_link, 1817 .get_ethtool_stats = netvsc_get_ethtool_stats, 1818 .get_sset_count = netvsc_get_sset_count, 1819 .get_strings = netvsc_get_strings, 1820 .get_channels = netvsc_get_channels, 1821 .set_channels = netvsc_set_channels, 1822 .get_ts_info = ethtool_op_get_ts_info, 1823 .get_rxnfc = netvsc_get_rxnfc, 1824 .set_rxnfc = netvsc_set_rxnfc, 1825 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1826 .get_rxfh_indir_size = netvsc_rss_indir_size, 1827 .get_rxfh = netvsc_get_rxfh, 1828 .set_rxfh = netvsc_set_rxfh, 1829 .get_link_ksettings = netvsc_get_link_ksettings, 1830 .set_link_ksettings = netvsc_set_link_ksettings, 1831 .get_ringparam = netvsc_get_ringparam, 1832 .set_ringparam = netvsc_set_ringparam, 1833 }; 1834 1835 static const struct net_device_ops device_ops = { 1836 .ndo_open = netvsc_open, 1837 .ndo_stop = netvsc_close, 1838 .ndo_start_xmit = netvsc_start_xmit, 1839 .ndo_change_rx_flags = netvsc_change_rx_flags, 1840 .ndo_set_rx_mode = netvsc_set_rx_mode, 1841 .ndo_set_features = netvsc_set_features, 1842 .ndo_change_mtu = netvsc_change_mtu, 1843 .ndo_validate_addr = eth_validate_addr, 1844 .ndo_set_mac_address = netvsc_set_mac_addr, 1845 .ndo_select_queue = netvsc_select_queue, 1846 .ndo_get_stats64 = netvsc_get_stats64, 1847 }; 1848 1849 /* 1850 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1851 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1852 * present send GARP packet to network peers with netif_notify_peers(). 1853 */ 1854 static void netvsc_link_change(struct work_struct *w) 1855 { 1856 struct net_device_context *ndev_ctx = 1857 container_of(w, struct net_device_context, dwork.work); 1858 struct hv_device *device_obj = ndev_ctx->device_ctx; 1859 struct net_device *net = hv_get_drvdata(device_obj); 1860 struct netvsc_device *net_device; 1861 struct rndis_device *rdev; 1862 struct netvsc_reconfig *event = NULL; 1863 bool notify = false, reschedule = false; 1864 unsigned long flags, next_reconfig, delay; 1865 1866 /* if changes are happening, comeback later */ 1867 if (!rtnl_trylock()) { 1868 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1869 return; 1870 } 1871 1872 net_device = rtnl_dereference(ndev_ctx->nvdev); 1873 if (!net_device) 1874 goto out_unlock; 1875 1876 rdev = net_device->extension; 1877 1878 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 1879 if (time_is_after_jiffies(next_reconfig)) { 1880 /* link_watch only sends one notification with current state 1881 * per second, avoid doing reconfig more frequently. Handle 1882 * wrap around. 1883 */ 1884 delay = next_reconfig - jiffies; 1885 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 1886 schedule_delayed_work(&ndev_ctx->dwork, delay); 1887 goto out_unlock; 1888 } 1889 ndev_ctx->last_reconfig = jiffies; 1890 1891 spin_lock_irqsave(&ndev_ctx->lock, flags); 1892 if (!list_empty(&ndev_ctx->reconfig_events)) { 1893 event = list_first_entry(&ndev_ctx->reconfig_events, 1894 struct netvsc_reconfig, list); 1895 list_del(&event->list); 1896 reschedule = !list_empty(&ndev_ctx->reconfig_events); 1897 } 1898 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1899 1900 if (!event) 1901 goto out_unlock; 1902 1903 switch (event->event) { 1904 /* Only the following events are possible due to the check in 1905 * netvsc_linkstatus_callback() 1906 */ 1907 case RNDIS_STATUS_MEDIA_CONNECT: 1908 if (rdev->link_state) { 1909 rdev->link_state = false; 1910 netif_carrier_on(net); 1911 netif_tx_wake_all_queues(net); 1912 } else { 1913 notify = true; 1914 } 1915 kfree(event); 1916 break; 1917 case RNDIS_STATUS_MEDIA_DISCONNECT: 1918 if (!rdev->link_state) { 1919 rdev->link_state = true; 1920 netif_carrier_off(net); 1921 netif_tx_stop_all_queues(net); 1922 } 1923 kfree(event); 1924 break; 1925 case RNDIS_STATUS_NETWORK_CHANGE: 1926 /* Only makes sense if carrier is present */ 1927 if (!rdev->link_state) { 1928 rdev->link_state = true; 1929 netif_carrier_off(net); 1930 netif_tx_stop_all_queues(net); 1931 event->event = RNDIS_STATUS_MEDIA_CONNECT; 1932 spin_lock_irqsave(&ndev_ctx->lock, flags); 1933 list_add(&event->list, &ndev_ctx->reconfig_events); 1934 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 1935 reschedule = true; 1936 } 1937 break; 1938 } 1939 1940 rtnl_unlock(); 1941 1942 if (notify) 1943 netdev_notify_peers(net); 1944 1945 /* link_watch only sends one notification with current state per 1946 * second, handle next reconfig event in 2 seconds. 1947 */ 1948 if (reschedule) 1949 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 1950 1951 return; 1952 1953 out_unlock: 1954 rtnl_unlock(); 1955 } 1956 1957 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 1958 { 1959 struct net_device_context *net_device_ctx; 1960 struct net_device *dev; 1961 1962 dev = netdev_master_upper_dev_get(vf_netdev); 1963 if (!dev || dev->netdev_ops != &device_ops) 1964 return NULL; /* not a netvsc device */ 1965 1966 net_device_ctx = netdev_priv(dev); 1967 if (!rtnl_dereference(net_device_ctx->nvdev)) 1968 return NULL; /* device is removed */ 1969 1970 return dev; 1971 } 1972 1973 /* Called when VF is injecting data into network stack. 1974 * Change the associated network device from VF to netvsc. 1975 * note: already called with rcu_read_lock 1976 */ 1977 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 1978 { 1979 struct sk_buff *skb = *pskb; 1980 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 1981 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1982 struct netvsc_vf_pcpu_stats *pcpu_stats 1983 = this_cpu_ptr(ndev_ctx->vf_stats); 1984 1985 skb->dev = ndev; 1986 1987 u64_stats_update_begin(&pcpu_stats->syncp); 1988 pcpu_stats->rx_packets++; 1989 pcpu_stats->rx_bytes += skb->len; 1990 u64_stats_update_end(&pcpu_stats->syncp); 1991 1992 return RX_HANDLER_ANOTHER; 1993 } 1994 1995 static int netvsc_vf_join(struct net_device *vf_netdev, 1996 struct net_device *ndev) 1997 { 1998 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1999 int ret; 2000 2001 ret = netdev_rx_handler_register(vf_netdev, 2002 netvsc_vf_handle_frame, ndev); 2003 if (ret != 0) { 2004 netdev_err(vf_netdev, 2005 "can not register netvsc VF receive handler (err = %d)\n", 2006 ret); 2007 goto rx_handler_failed; 2008 } 2009 2010 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2011 NULL, NULL, NULL); 2012 if (ret != 0) { 2013 netdev_err(vf_netdev, 2014 "can not set master device %s (err = %d)\n", 2015 ndev->name, ret); 2016 goto upper_link_failed; 2017 } 2018 2019 /* set slave flag before open to prevent IPv6 addrconf */ 2020 vf_netdev->flags |= IFF_SLAVE; 2021 2022 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2023 2024 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2025 2026 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2027 return 0; 2028 2029 upper_link_failed: 2030 netdev_rx_handler_unregister(vf_netdev); 2031 rx_handler_failed: 2032 return ret; 2033 } 2034 2035 static void __netvsc_vf_setup(struct net_device *ndev, 2036 struct net_device *vf_netdev) 2037 { 2038 int ret; 2039 2040 /* Align MTU of VF with master */ 2041 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2042 if (ret) 2043 netdev_warn(vf_netdev, 2044 "unable to change mtu to %u\n", ndev->mtu); 2045 2046 /* set multicast etc flags on VF */ 2047 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2048 2049 /* sync address list from ndev to VF */ 2050 netif_addr_lock_bh(ndev); 2051 dev_uc_sync(vf_netdev, ndev); 2052 dev_mc_sync(vf_netdev, ndev); 2053 netif_addr_unlock_bh(ndev); 2054 2055 if (netif_running(ndev)) { 2056 ret = dev_open(vf_netdev, NULL); 2057 if (ret) 2058 netdev_warn(vf_netdev, 2059 "unable to open: %d\n", ret); 2060 } 2061 } 2062 2063 /* Setup VF as slave of the synthetic device. 2064 * Runs in workqueue to avoid recursion in netlink callbacks. 2065 */ 2066 static void netvsc_vf_setup(struct work_struct *w) 2067 { 2068 struct net_device_context *ndev_ctx 2069 = container_of(w, struct net_device_context, vf_takeover.work); 2070 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2071 struct net_device *vf_netdev; 2072 2073 if (!rtnl_trylock()) { 2074 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2075 return; 2076 } 2077 2078 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2079 if (vf_netdev) 2080 __netvsc_vf_setup(ndev, vf_netdev); 2081 2082 rtnl_unlock(); 2083 } 2084 2085 /* Find netvsc by VF serial number. 2086 * The PCI hyperv controller records the serial number as the slot kobj name. 2087 */ 2088 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2089 { 2090 struct device *parent = vf_netdev->dev.parent; 2091 struct net_device_context *ndev_ctx; 2092 struct pci_dev *pdev; 2093 u32 serial; 2094 2095 if (!parent || !dev_is_pci(parent)) 2096 return NULL; /* not a PCI device */ 2097 2098 pdev = to_pci_dev(parent); 2099 if (!pdev->slot) { 2100 netdev_notice(vf_netdev, "no PCI slot information\n"); 2101 return NULL; 2102 } 2103 2104 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2105 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2106 pci_slot_name(pdev->slot)); 2107 return NULL; 2108 } 2109 2110 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2111 if (!ndev_ctx->vf_alloc) 2112 continue; 2113 2114 if (ndev_ctx->vf_serial == serial) 2115 return hv_get_drvdata(ndev_ctx->device_ctx); 2116 } 2117 2118 netdev_notice(vf_netdev, 2119 "no netdev found for vf serial:%u\n", serial); 2120 return NULL; 2121 } 2122 2123 static int netvsc_register_vf(struct net_device *vf_netdev) 2124 { 2125 struct net_device_context *net_device_ctx; 2126 struct netvsc_device *netvsc_dev; 2127 struct net_device *ndev; 2128 int ret; 2129 2130 if (vf_netdev->addr_len != ETH_ALEN) 2131 return NOTIFY_DONE; 2132 2133 ndev = get_netvsc_byslot(vf_netdev); 2134 if (!ndev) 2135 return NOTIFY_DONE; 2136 2137 net_device_ctx = netdev_priv(ndev); 2138 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2139 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2140 return NOTIFY_DONE; 2141 2142 /* if synthetic interface is a different namespace, 2143 * then move the VF to that namespace; join will be 2144 * done again in that context. 2145 */ 2146 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2147 ret = dev_change_net_namespace(vf_netdev, 2148 dev_net(ndev), "eth%d"); 2149 if (ret) 2150 netdev_err(vf_netdev, 2151 "could not move to same namespace as %s: %d\n", 2152 ndev->name, ret); 2153 else 2154 netdev_info(vf_netdev, 2155 "VF moved to namespace with: %s\n", 2156 ndev->name); 2157 return NOTIFY_DONE; 2158 } 2159 2160 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2161 2162 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2163 return NOTIFY_DONE; 2164 2165 dev_hold(vf_netdev); 2166 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2167 return NOTIFY_OK; 2168 } 2169 2170 /* VF up/down change detected, schedule to change data path */ 2171 static int netvsc_vf_changed(struct net_device *vf_netdev) 2172 { 2173 struct net_device_context *net_device_ctx; 2174 struct netvsc_device *netvsc_dev; 2175 struct net_device *ndev; 2176 bool vf_is_up = netif_running(vf_netdev); 2177 2178 ndev = get_netvsc_byref(vf_netdev); 2179 if (!ndev) 2180 return NOTIFY_DONE; 2181 2182 net_device_ctx = netdev_priv(ndev); 2183 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2184 if (!netvsc_dev) 2185 return NOTIFY_DONE; 2186 2187 netvsc_switch_datapath(ndev, vf_is_up); 2188 netdev_info(ndev, "Data path switched %s VF: %s\n", 2189 vf_is_up ? "to" : "from", vf_netdev->name); 2190 2191 return NOTIFY_OK; 2192 } 2193 2194 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2195 { 2196 struct net_device *ndev; 2197 struct net_device_context *net_device_ctx; 2198 2199 ndev = get_netvsc_byref(vf_netdev); 2200 if (!ndev) 2201 return NOTIFY_DONE; 2202 2203 net_device_ctx = netdev_priv(ndev); 2204 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2205 2206 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2207 2208 netdev_rx_handler_unregister(vf_netdev); 2209 netdev_upper_dev_unlink(vf_netdev, ndev); 2210 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2211 dev_put(vf_netdev); 2212 2213 return NOTIFY_OK; 2214 } 2215 2216 static int netvsc_probe(struct hv_device *dev, 2217 const struct hv_vmbus_device_id *dev_id) 2218 { 2219 struct net_device *net = NULL; 2220 struct net_device_context *net_device_ctx; 2221 struct netvsc_device_info *device_info = NULL; 2222 struct netvsc_device *nvdev; 2223 int ret = -ENOMEM; 2224 2225 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2226 VRSS_CHANNEL_MAX); 2227 if (!net) 2228 goto no_net; 2229 2230 netif_carrier_off(net); 2231 2232 netvsc_init_settings(net); 2233 2234 net_device_ctx = netdev_priv(net); 2235 net_device_ctx->device_ctx = dev; 2236 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2237 if (netif_msg_probe(net_device_ctx)) 2238 netdev_dbg(net, "netvsc msg_enable: %d\n", 2239 net_device_ctx->msg_enable); 2240 2241 hv_set_drvdata(dev, net); 2242 2243 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2244 2245 spin_lock_init(&net_device_ctx->lock); 2246 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2247 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2248 2249 net_device_ctx->vf_stats 2250 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2251 if (!net_device_ctx->vf_stats) 2252 goto no_stats; 2253 2254 net->netdev_ops = &device_ops; 2255 net->ethtool_ops = ðtool_ops; 2256 SET_NETDEV_DEV(net, &dev->device); 2257 2258 /* We always need headroom for rndis header */ 2259 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2260 2261 /* Initialize the number of queues to be 1, we may change it if more 2262 * channels are offered later. 2263 */ 2264 netif_set_real_num_tx_queues(net, 1); 2265 netif_set_real_num_rx_queues(net, 1); 2266 2267 /* Notify the netvsc driver of the new device */ 2268 device_info = netvsc_devinfo_get(NULL); 2269 2270 if (!device_info) { 2271 ret = -ENOMEM; 2272 goto devinfo_failed; 2273 } 2274 2275 nvdev = rndis_filter_device_add(dev, device_info); 2276 if (IS_ERR(nvdev)) { 2277 ret = PTR_ERR(nvdev); 2278 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2279 goto rndis_failed; 2280 } 2281 2282 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2283 2284 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2285 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2286 * all subchannels to show up, but that may not happen because 2287 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2288 * -> ... -> device_add() -> ... -> __device_attach() can't get 2289 * the device lock, so all the subchannels can't be processed -- 2290 * finally netvsc_subchan_work() hangs forever. 2291 */ 2292 rtnl_lock(); 2293 2294 if (nvdev->num_chn > 1) 2295 schedule_work(&nvdev->subchan_work); 2296 2297 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2298 net->features = net->hw_features | 2299 NETIF_F_HIGHDMA | NETIF_F_SG | 2300 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2301 net->vlan_features = net->features; 2302 2303 netdev_lockdep_set_classes(net); 2304 2305 /* MTU range: 68 - 1500 or 65521 */ 2306 net->min_mtu = NETVSC_MTU_MIN; 2307 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2308 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2309 else 2310 net->max_mtu = ETH_DATA_LEN; 2311 2312 ret = register_netdevice(net); 2313 if (ret != 0) { 2314 pr_err("Unable to register netdev.\n"); 2315 goto register_failed; 2316 } 2317 2318 list_add(&net_device_ctx->list, &netvsc_dev_list); 2319 rtnl_unlock(); 2320 2321 kfree(device_info); 2322 return 0; 2323 2324 register_failed: 2325 rtnl_unlock(); 2326 rndis_filter_device_remove(dev, nvdev); 2327 rndis_failed: 2328 kfree(device_info); 2329 devinfo_failed: 2330 free_percpu(net_device_ctx->vf_stats); 2331 no_stats: 2332 hv_set_drvdata(dev, NULL); 2333 free_netdev(net); 2334 no_net: 2335 return ret; 2336 } 2337 2338 static int netvsc_remove(struct hv_device *dev) 2339 { 2340 struct net_device_context *ndev_ctx; 2341 struct net_device *vf_netdev, *net; 2342 struct netvsc_device *nvdev; 2343 2344 net = hv_get_drvdata(dev); 2345 if (net == NULL) { 2346 dev_err(&dev->device, "No net device to remove\n"); 2347 return 0; 2348 } 2349 2350 ndev_ctx = netdev_priv(net); 2351 2352 cancel_delayed_work_sync(&ndev_ctx->dwork); 2353 2354 rtnl_lock(); 2355 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2356 if (nvdev) 2357 cancel_work_sync(&nvdev->subchan_work); 2358 2359 /* 2360 * Call to the vsc driver to let it know that the device is being 2361 * removed. Also blocks mtu and channel changes. 2362 */ 2363 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2364 if (vf_netdev) 2365 netvsc_unregister_vf(vf_netdev); 2366 2367 if (nvdev) 2368 rndis_filter_device_remove(dev, nvdev); 2369 2370 unregister_netdevice(net); 2371 list_del(&ndev_ctx->list); 2372 2373 rtnl_unlock(); 2374 2375 hv_set_drvdata(dev, NULL); 2376 2377 free_percpu(ndev_ctx->vf_stats); 2378 free_netdev(net); 2379 return 0; 2380 } 2381 2382 static const struct hv_vmbus_device_id id_table[] = { 2383 /* Network guid */ 2384 { HV_NIC_GUID, }, 2385 { }, 2386 }; 2387 2388 MODULE_DEVICE_TABLE(vmbus, id_table); 2389 2390 /* The one and only one */ 2391 static struct hv_driver netvsc_drv = { 2392 .name = KBUILD_MODNAME, 2393 .id_table = id_table, 2394 .probe = netvsc_probe, 2395 .remove = netvsc_remove, 2396 .driver = { 2397 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2398 }, 2399 }; 2400 2401 /* 2402 * On Hyper-V, every VF interface is matched with a corresponding 2403 * synthetic interface. The synthetic interface is presented first 2404 * to the guest. When the corresponding VF instance is registered, 2405 * we will take care of switching the data path. 2406 */ 2407 static int netvsc_netdev_event(struct notifier_block *this, 2408 unsigned long event, void *ptr) 2409 { 2410 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2411 2412 /* Skip our own events */ 2413 if (event_dev->netdev_ops == &device_ops) 2414 return NOTIFY_DONE; 2415 2416 /* Avoid non-Ethernet type devices */ 2417 if (event_dev->type != ARPHRD_ETHER) 2418 return NOTIFY_DONE; 2419 2420 /* Avoid Vlan dev with same MAC registering as VF */ 2421 if (is_vlan_dev(event_dev)) 2422 return NOTIFY_DONE; 2423 2424 /* Avoid Bonding master dev with same MAC registering as VF */ 2425 if ((event_dev->priv_flags & IFF_BONDING) && 2426 (event_dev->flags & IFF_MASTER)) 2427 return NOTIFY_DONE; 2428 2429 switch (event) { 2430 case NETDEV_REGISTER: 2431 return netvsc_register_vf(event_dev); 2432 case NETDEV_UNREGISTER: 2433 return netvsc_unregister_vf(event_dev); 2434 case NETDEV_UP: 2435 case NETDEV_DOWN: 2436 return netvsc_vf_changed(event_dev); 2437 default: 2438 return NOTIFY_DONE; 2439 } 2440 } 2441 2442 static struct notifier_block netvsc_netdev_notifier = { 2443 .notifier_call = netvsc_netdev_event, 2444 }; 2445 2446 static void __exit netvsc_drv_exit(void) 2447 { 2448 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2449 vmbus_driver_unregister(&netvsc_drv); 2450 } 2451 2452 static int __init netvsc_drv_init(void) 2453 { 2454 int ret; 2455 2456 if (ring_size < RING_SIZE_MIN) { 2457 ring_size = RING_SIZE_MIN; 2458 pr_info("Increased ring_size to %u (min allowed)\n", 2459 ring_size); 2460 } 2461 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2462 2463 ret = vmbus_driver_register(&netvsc_drv); 2464 if (ret) 2465 return ret; 2466 2467 register_netdevice_notifier(&netvsc_netdev_notifier); 2468 return 0; 2469 } 2470 2471 MODULE_LICENSE("GPL"); 2472 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2473 2474 module_init(netvsc_drv_init); 2475 module_exit(netvsc_drv_exit); 2476