xref: /linux/drivers/net/hyperv/netvsc.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/wait.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/slab.h>
18 #include <linux/netdevice.h>
19 #include <linux/if_ether.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/prefetch.h>
23 #include <linux/filter.h>
24 
25 #include <asm/sync_bitops.h>
26 #include <asm/mshyperv.h>
27 
28 #include "hyperv_net.h"
29 #include "netvsc_trace.h"
30 
31 /*
32  * Switch the data path from the synthetic interface to the VF
33  * interface.
34  */
35 int netvsc_switch_datapath(struct net_device *ndev, bool vf)
36 {
37 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
38 	struct hv_device *dev = net_device_ctx->device_ctx;
39 	struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
40 	struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
41 	int ret, retry = 0;
42 
43 	/* Block sending traffic to VF if it's about to be gone */
44 	if (!vf)
45 		net_device_ctx->data_path_is_vf = vf;
46 
47 	memset(init_pkt, 0, sizeof(struct nvsp_message));
48 	init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
49 	if (vf)
50 		init_pkt->msg.v4_msg.active_dp.active_datapath =
51 			NVSP_DATAPATH_VF;
52 	else
53 		init_pkt->msg.v4_msg.active_dp.active_datapath =
54 			NVSP_DATAPATH_SYNTHETIC;
55 
56 again:
57 	trace_nvsp_send(ndev, init_pkt);
58 
59 	ret = vmbus_sendpacket(dev->channel, init_pkt,
60 			       sizeof(struct nvsp_message),
61 			       (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
62 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
63 
64 	/* If failed to switch to/from VF, let data_path_is_vf stay false,
65 	 * so we use synthetic path to send data.
66 	 */
67 	if (ret) {
68 		if (ret != -EAGAIN) {
69 			netdev_err(ndev,
70 				   "Unable to send sw datapath msg, err: %d\n",
71 				   ret);
72 			return ret;
73 		}
74 
75 		if (retry++ < RETRY_MAX) {
76 			usleep_range(RETRY_US_LO, RETRY_US_HI);
77 			goto again;
78 		} else {
79 			netdev_err(
80 				ndev,
81 				"Retry failed to send sw datapath msg, err: %d\n",
82 				ret);
83 			return ret;
84 		}
85 	}
86 
87 	wait_for_completion(&nv_dev->channel_init_wait);
88 	net_device_ctx->data_path_is_vf = vf;
89 
90 	return 0;
91 }
92 
93 /* Worker to setup sub channels on initial setup
94  * Initial hotplug event occurs in softirq context
95  * and can't wait for channels.
96  */
97 static void netvsc_subchan_work(struct work_struct *w)
98 {
99 	struct netvsc_device *nvdev =
100 		container_of(w, struct netvsc_device, subchan_work);
101 	struct rndis_device *rdev;
102 	int i, ret;
103 
104 	/* Avoid deadlock with device removal already under RTNL */
105 	if (!rtnl_trylock()) {
106 		schedule_work(w);
107 		return;
108 	}
109 
110 	rdev = nvdev->extension;
111 	if (rdev) {
112 		ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
113 		if (ret == 0) {
114 			netif_device_attach(rdev->ndev);
115 		} else {
116 			/* fallback to only primary channel */
117 			for (i = 1; i < nvdev->num_chn; i++)
118 				netif_napi_del(&nvdev->chan_table[i].napi);
119 
120 			nvdev->max_chn = 1;
121 			nvdev->num_chn = 1;
122 		}
123 	}
124 
125 	rtnl_unlock();
126 }
127 
128 static struct netvsc_device *alloc_net_device(void)
129 {
130 	struct netvsc_device *net_device;
131 
132 	net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
133 	if (!net_device)
134 		return NULL;
135 
136 	init_waitqueue_head(&net_device->wait_drain);
137 	net_device->destroy = false;
138 	net_device->tx_disable = true;
139 
140 	net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
141 	net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
142 
143 	init_completion(&net_device->channel_init_wait);
144 	init_waitqueue_head(&net_device->subchan_open);
145 	INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
146 
147 	return net_device;
148 }
149 
150 static void free_netvsc_device(struct rcu_head *head)
151 {
152 	struct netvsc_device *nvdev
153 		= container_of(head, struct netvsc_device, rcu);
154 	int i;
155 
156 	kfree(nvdev->extension);
157 
158 	if (!nvdev->recv_buf_gpadl_handle.decrypted)
159 		vfree(nvdev->recv_buf);
160 	if (!nvdev->send_buf_gpadl_handle.decrypted)
161 		vfree(nvdev->send_buf);
162 	bitmap_free(nvdev->send_section_map);
163 
164 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
165 		xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
166 		kfree(nvdev->chan_table[i].recv_buf);
167 		vfree(nvdev->chan_table[i].mrc.slots);
168 	}
169 
170 	kfree(nvdev);
171 }
172 
173 static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
174 {
175 	call_rcu(&nvdev->rcu, free_netvsc_device);
176 }
177 
178 static void netvsc_revoke_recv_buf(struct hv_device *device,
179 				   struct netvsc_device *net_device,
180 				   struct net_device *ndev)
181 {
182 	struct nvsp_message *revoke_packet;
183 	int ret;
184 
185 	/*
186 	 * If we got a section count, it means we received a
187 	 * SendReceiveBufferComplete msg (ie sent
188 	 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
189 	 * to send a revoke msg here
190 	 */
191 	if (net_device->recv_section_cnt) {
192 		/* Send the revoke receive buffer */
193 		revoke_packet = &net_device->revoke_packet;
194 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
195 
196 		revoke_packet->hdr.msg_type =
197 			NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
198 		revoke_packet->msg.v1_msg.
199 		revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
200 
201 		trace_nvsp_send(ndev, revoke_packet);
202 
203 		ret = vmbus_sendpacket(device->channel,
204 				       revoke_packet,
205 				       sizeof(struct nvsp_message),
206 				       VMBUS_RQST_ID_NO_RESPONSE,
207 				       VM_PKT_DATA_INBAND, 0);
208 		/* If the failure is because the channel is rescinded;
209 		 * ignore the failure since we cannot send on a rescinded
210 		 * channel. This would allow us to properly cleanup
211 		 * even when the channel is rescinded.
212 		 */
213 		if (device->channel->rescind)
214 			ret = 0;
215 		/*
216 		 * If we failed here, we might as well return and
217 		 * have a leak rather than continue and a bugchk
218 		 */
219 		if (ret != 0) {
220 			netdev_err(ndev, "unable to send "
221 				"revoke receive buffer to netvsp\n");
222 			return;
223 		}
224 		net_device->recv_section_cnt = 0;
225 	}
226 }
227 
228 static void netvsc_revoke_send_buf(struct hv_device *device,
229 				   struct netvsc_device *net_device,
230 				   struct net_device *ndev)
231 {
232 	struct nvsp_message *revoke_packet;
233 	int ret;
234 
235 	/* Deal with the send buffer we may have setup.
236 	 * If we got a  send section size, it means we received a
237 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
238 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
239 	 * to send a revoke msg here
240 	 */
241 	if (net_device->send_section_cnt) {
242 		/* Send the revoke receive buffer */
243 		revoke_packet = &net_device->revoke_packet;
244 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
245 
246 		revoke_packet->hdr.msg_type =
247 			NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
248 		revoke_packet->msg.v1_msg.revoke_send_buf.id =
249 			NETVSC_SEND_BUFFER_ID;
250 
251 		trace_nvsp_send(ndev, revoke_packet);
252 
253 		ret = vmbus_sendpacket(device->channel,
254 				       revoke_packet,
255 				       sizeof(struct nvsp_message),
256 				       VMBUS_RQST_ID_NO_RESPONSE,
257 				       VM_PKT_DATA_INBAND, 0);
258 
259 		/* If the failure is because the channel is rescinded;
260 		 * ignore the failure since we cannot send on a rescinded
261 		 * channel. This would allow us to properly cleanup
262 		 * even when the channel is rescinded.
263 		 */
264 		if (device->channel->rescind)
265 			ret = 0;
266 
267 		/* If we failed here, we might as well return and
268 		 * have a leak rather than continue and a bugchk
269 		 */
270 		if (ret != 0) {
271 			netdev_err(ndev, "unable to send "
272 				   "revoke send buffer to netvsp\n");
273 			return;
274 		}
275 		net_device->send_section_cnt = 0;
276 	}
277 }
278 
279 static void netvsc_teardown_recv_gpadl(struct hv_device *device,
280 				       struct netvsc_device *net_device,
281 				       struct net_device *ndev)
282 {
283 	int ret;
284 
285 	if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
286 		ret = vmbus_teardown_gpadl(device->channel,
287 					   &net_device->recv_buf_gpadl_handle);
288 
289 		/* If we failed here, we might as well return and have a leak
290 		 * rather than continue and a bugchk
291 		 */
292 		if (ret != 0) {
293 			netdev_err(ndev,
294 				   "unable to teardown receive buffer's gpadl\n");
295 			return;
296 		}
297 	}
298 }
299 
300 static void netvsc_teardown_send_gpadl(struct hv_device *device,
301 				       struct netvsc_device *net_device,
302 				       struct net_device *ndev)
303 {
304 	int ret;
305 
306 	if (net_device->send_buf_gpadl_handle.gpadl_handle) {
307 		ret = vmbus_teardown_gpadl(device->channel,
308 					   &net_device->send_buf_gpadl_handle);
309 
310 		/* If we failed here, we might as well return and have a leak
311 		 * rather than continue and a bugchk
312 		 */
313 		if (ret != 0) {
314 			netdev_err(ndev,
315 				   "unable to teardown send buffer's gpadl\n");
316 			return;
317 		}
318 	}
319 }
320 
321 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
322 {
323 	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
324 	int node = cpu_to_node(nvchan->channel->target_cpu);
325 	size_t size;
326 
327 	size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
328 	nvchan->mrc.slots = vzalloc_node(size, node);
329 	if (!nvchan->mrc.slots)
330 		nvchan->mrc.slots = vzalloc(size);
331 
332 	return nvchan->mrc.slots ? 0 : -ENOMEM;
333 }
334 
335 static int netvsc_init_buf(struct hv_device *device,
336 			   struct netvsc_device *net_device,
337 			   const struct netvsc_device_info *device_info)
338 {
339 	struct nvsp_1_message_send_receive_buffer_complete *resp;
340 	struct net_device *ndev = hv_get_drvdata(device);
341 	struct nvsp_message *init_packet;
342 	unsigned int buf_size;
343 	int i, ret = 0;
344 
345 	/* Get receive buffer area. */
346 	buf_size = device_info->recv_sections * device_info->recv_section_size;
347 	buf_size = roundup(buf_size, PAGE_SIZE);
348 
349 	/* Legacy hosts only allow smaller receive buffer */
350 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
351 		buf_size = min_t(unsigned int, buf_size,
352 				 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
353 
354 	net_device->recv_buf = vzalloc(buf_size);
355 	if (!net_device->recv_buf) {
356 		netdev_err(ndev,
357 			   "unable to allocate receive buffer of size %u\n",
358 			   buf_size);
359 		ret = -ENOMEM;
360 		goto cleanup;
361 	}
362 
363 	net_device->recv_buf_size = buf_size;
364 
365 	/*
366 	 * Establish the gpadl handle for this buffer on this
367 	 * channel.  Note: This call uses the vmbus connection rather
368 	 * than the channel to establish the gpadl handle.
369 	 */
370 	ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
371 				    buf_size,
372 				    &net_device->recv_buf_gpadl_handle);
373 	if (ret != 0) {
374 		netdev_err(ndev,
375 			"unable to establish receive buffer's gpadl\n");
376 		goto cleanup;
377 	}
378 
379 	/* Notify the NetVsp of the gpadl handle */
380 	init_packet = &net_device->channel_init_pkt;
381 	memset(init_packet, 0, sizeof(struct nvsp_message));
382 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
383 	init_packet->msg.v1_msg.send_recv_buf.
384 		gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
385 	init_packet->msg.v1_msg.
386 		send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
387 
388 	trace_nvsp_send(ndev, init_packet);
389 
390 	/* Send the gpadl notification request */
391 	ret = vmbus_sendpacket(device->channel, init_packet,
392 			       sizeof(struct nvsp_message),
393 			       (unsigned long)init_packet,
394 			       VM_PKT_DATA_INBAND,
395 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
396 	if (ret != 0) {
397 		netdev_err(ndev,
398 			"unable to send receive buffer's gpadl to netvsp\n");
399 		goto cleanup;
400 	}
401 
402 	wait_for_completion(&net_device->channel_init_wait);
403 
404 	/* Check the response */
405 	resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
406 	if (resp->status != NVSP_STAT_SUCCESS) {
407 		netdev_err(ndev,
408 			   "Unable to complete receive buffer initialization with NetVsp - status %d\n",
409 			   resp->status);
410 		ret = -EINVAL;
411 		goto cleanup;
412 	}
413 
414 	/* Parse the response */
415 	netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
416 		   resp->num_sections, resp->sections[0].sub_alloc_size,
417 		   resp->sections[0].num_sub_allocs);
418 
419 	/* There should only be one section for the entire receive buffer */
420 	if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
421 		ret = -EINVAL;
422 		goto cleanup;
423 	}
424 
425 	net_device->recv_section_size = resp->sections[0].sub_alloc_size;
426 	net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
427 
428 	/* Ensure buffer will not overflow */
429 	if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
430 	    (u64)net_device->recv_section_cnt > (u64)buf_size) {
431 		netdev_err(ndev, "invalid recv_section_size %u\n",
432 			   net_device->recv_section_size);
433 		ret = -EINVAL;
434 		goto cleanup;
435 	}
436 
437 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
438 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
439 
440 		nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
441 		if (nvchan->recv_buf == NULL) {
442 			ret = -ENOMEM;
443 			goto cleanup;
444 		}
445 	}
446 
447 	/* Setup receive completion ring.
448 	 * Add 1 to the recv_section_cnt because at least one entry in a
449 	 * ring buffer has to be empty.
450 	 */
451 	net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
452 	ret = netvsc_alloc_recv_comp_ring(net_device, 0);
453 	if (ret)
454 		goto cleanup;
455 
456 	/* Now setup the send buffer. */
457 	buf_size = device_info->send_sections * device_info->send_section_size;
458 	buf_size = round_up(buf_size, PAGE_SIZE);
459 
460 	net_device->send_buf = vzalloc(buf_size);
461 	if (!net_device->send_buf) {
462 		netdev_err(ndev, "unable to allocate send buffer of size %u\n",
463 			   buf_size);
464 		ret = -ENOMEM;
465 		goto cleanup;
466 	}
467 	net_device->send_buf_size = buf_size;
468 
469 	/* Establish the gpadl handle for this buffer on this
470 	 * channel.  Note: This call uses the vmbus connection rather
471 	 * than the channel to establish the gpadl handle.
472 	 */
473 	ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
474 				    buf_size,
475 				    &net_device->send_buf_gpadl_handle);
476 	if (ret != 0) {
477 		netdev_err(ndev,
478 			   "unable to establish send buffer's gpadl\n");
479 		goto cleanup;
480 	}
481 
482 	/* Notify the NetVsp of the gpadl handle */
483 	init_packet = &net_device->channel_init_pkt;
484 	memset(init_packet, 0, sizeof(struct nvsp_message));
485 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
486 	init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
487 		net_device->send_buf_gpadl_handle.gpadl_handle;
488 	init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
489 
490 	trace_nvsp_send(ndev, init_packet);
491 
492 	/* Send the gpadl notification request */
493 	ret = vmbus_sendpacket(device->channel, init_packet,
494 			       sizeof(struct nvsp_message),
495 			       (unsigned long)init_packet,
496 			       VM_PKT_DATA_INBAND,
497 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
498 	if (ret != 0) {
499 		netdev_err(ndev,
500 			   "unable to send send buffer's gpadl to netvsp\n");
501 		goto cleanup;
502 	}
503 
504 	wait_for_completion(&net_device->channel_init_wait);
505 
506 	/* Check the response */
507 	if (init_packet->msg.v1_msg.
508 	    send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
509 		netdev_err(ndev, "Unable to complete send buffer "
510 			   "initialization with NetVsp - status %d\n",
511 			   init_packet->msg.v1_msg.
512 			   send_send_buf_complete.status);
513 		ret = -EINVAL;
514 		goto cleanup;
515 	}
516 
517 	/* Parse the response */
518 	net_device->send_section_size = init_packet->msg.
519 				v1_msg.send_send_buf_complete.section_size;
520 	if (net_device->send_section_size < NETVSC_MTU_MIN) {
521 		netdev_err(ndev, "invalid send_section_size %u\n",
522 			   net_device->send_section_size);
523 		ret = -EINVAL;
524 		goto cleanup;
525 	}
526 
527 	/* Section count is simply the size divided by the section size. */
528 	net_device->send_section_cnt = buf_size / net_device->send_section_size;
529 
530 	netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
531 		   net_device->send_section_size, net_device->send_section_cnt);
532 
533 	/* Setup state for managing the send buffer. */
534 	net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
535 						     GFP_KERNEL);
536 	if (!net_device->send_section_map) {
537 		ret = -ENOMEM;
538 		goto cleanup;
539 	}
540 
541 	goto exit;
542 
543 cleanup:
544 	netvsc_revoke_recv_buf(device, net_device, ndev);
545 	netvsc_revoke_send_buf(device, net_device, ndev);
546 	netvsc_teardown_recv_gpadl(device, net_device, ndev);
547 	netvsc_teardown_send_gpadl(device, net_device, ndev);
548 
549 exit:
550 	return ret;
551 }
552 
553 /* Negotiate NVSP protocol version */
554 static int negotiate_nvsp_ver(struct hv_device *device,
555 			      struct netvsc_device *net_device,
556 			      struct nvsp_message *init_packet,
557 			      u32 nvsp_ver)
558 {
559 	struct net_device *ndev = hv_get_drvdata(device);
560 	int ret;
561 
562 	memset(init_packet, 0, sizeof(struct nvsp_message));
563 	init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
564 	init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
565 	init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
566 	trace_nvsp_send(ndev, init_packet);
567 
568 	/* Send the init request */
569 	ret = vmbus_sendpacket(device->channel, init_packet,
570 			       sizeof(struct nvsp_message),
571 			       (unsigned long)init_packet,
572 			       VM_PKT_DATA_INBAND,
573 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
574 
575 	if (ret != 0)
576 		return ret;
577 
578 	wait_for_completion(&net_device->channel_init_wait);
579 
580 	if (init_packet->msg.init_msg.init_complete.status !=
581 	    NVSP_STAT_SUCCESS)
582 		return -EINVAL;
583 
584 	if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
585 		return 0;
586 
587 	/* NVSPv2 or later: Send NDIS config */
588 	memset(init_packet, 0, sizeof(struct nvsp_message));
589 	init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
590 	init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
591 	init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
592 
593 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
594 		if (hv_is_isolation_supported())
595 			netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
596 		else
597 			init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
598 
599 		/* Teaming bit is needed to receive link speed updates */
600 		init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
601 	}
602 
603 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
604 		init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
605 
606 	trace_nvsp_send(ndev, init_packet);
607 
608 	ret = vmbus_sendpacket(device->channel, init_packet,
609 				sizeof(struct nvsp_message),
610 				VMBUS_RQST_ID_NO_RESPONSE,
611 				VM_PKT_DATA_INBAND, 0);
612 
613 	return ret;
614 }
615 
616 static int netvsc_connect_vsp(struct hv_device *device,
617 			      struct netvsc_device *net_device,
618 			      const struct netvsc_device_info *device_info)
619 {
620 	struct net_device *ndev = hv_get_drvdata(device);
621 	static const u32 ver_list[] = {
622 		NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
623 		NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
624 		NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
625 	};
626 	struct nvsp_message *init_packet;
627 	int ndis_version, i, ret;
628 
629 	init_packet = &net_device->channel_init_pkt;
630 
631 	/* Negotiate the latest NVSP protocol supported */
632 	for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
633 		if (negotiate_nvsp_ver(device, net_device, init_packet,
634 				       ver_list[i])  == 0) {
635 			net_device->nvsp_version = ver_list[i];
636 			break;
637 		}
638 
639 	if (i < 0) {
640 		ret = -EPROTO;
641 		goto cleanup;
642 	}
643 
644 	if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
645 		netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
646 			   net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
647 		ret = -EPROTO;
648 		goto cleanup;
649 	}
650 
651 	pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
652 
653 	/* Send the ndis version */
654 	memset(init_packet, 0, sizeof(struct nvsp_message));
655 
656 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
657 		ndis_version = 0x00060001;
658 	else
659 		ndis_version = 0x0006001e;
660 
661 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
662 	init_packet->msg.v1_msg.
663 		send_ndis_ver.ndis_major_ver =
664 				(ndis_version & 0xFFFF0000) >> 16;
665 	init_packet->msg.v1_msg.
666 		send_ndis_ver.ndis_minor_ver =
667 				ndis_version & 0xFFFF;
668 
669 	trace_nvsp_send(ndev, init_packet);
670 
671 	/* Send the init request */
672 	ret = vmbus_sendpacket(device->channel, init_packet,
673 				sizeof(struct nvsp_message),
674 				VMBUS_RQST_ID_NO_RESPONSE,
675 				VM_PKT_DATA_INBAND, 0);
676 	if (ret != 0)
677 		goto cleanup;
678 
679 
680 	ret = netvsc_init_buf(device, net_device, device_info);
681 
682 cleanup:
683 	return ret;
684 }
685 
686 /*
687  * netvsc_device_remove - Callback when the root bus device is removed
688  */
689 void netvsc_device_remove(struct hv_device *device)
690 {
691 	struct net_device *ndev = hv_get_drvdata(device);
692 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
693 	struct netvsc_device *net_device
694 		= rtnl_dereference(net_device_ctx->nvdev);
695 	int i;
696 
697 	/*
698 	 * Revoke receive buffer. If host is pre-Win2016 then tear down
699 	 * receive buffer GPADL. Do the same for send buffer.
700 	 */
701 	netvsc_revoke_recv_buf(device, net_device, ndev);
702 	if (vmbus_proto_version < VERSION_WIN10)
703 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
704 
705 	netvsc_revoke_send_buf(device, net_device, ndev);
706 	if (vmbus_proto_version < VERSION_WIN10)
707 		netvsc_teardown_send_gpadl(device, net_device, ndev);
708 
709 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
710 
711 	/* Disable NAPI and disassociate its context from the device. */
712 	for (i = 0; i < net_device->num_chn; i++) {
713 		/* See also vmbus_reset_channel_cb(). */
714 		/* only disable enabled NAPI channel */
715 		if (i < ndev->real_num_rx_queues) {
716 			netif_queue_set_napi(ndev, i, NETDEV_QUEUE_TYPE_TX,
717 					     NULL);
718 			netif_queue_set_napi(ndev, i, NETDEV_QUEUE_TYPE_RX,
719 					     NULL);
720 			napi_disable(&net_device->chan_table[i].napi);
721 		}
722 
723 		netif_napi_del(&net_device->chan_table[i].napi);
724 	}
725 
726 	/*
727 	 * At this point, no one should be accessing net_device
728 	 * except in here
729 	 */
730 	netdev_dbg(ndev, "net device safe to remove\n");
731 
732 	/* Now, we can close the channel safely */
733 	vmbus_close(device->channel);
734 
735 	/*
736 	 * If host is Win2016 or higher then we do the GPADL tear down
737 	 * here after VMBus is closed.
738 	*/
739 	if (vmbus_proto_version >= VERSION_WIN10) {
740 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
741 		netvsc_teardown_send_gpadl(device, net_device, ndev);
742 	}
743 
744 	/* Release all resources */
745 	free_netvsc_device_rcu(net_device);
746 }
747 
748 #define RING_AVAIL_PERCENT_HIWATER 20
749 #define RING_AVAIL_PERCENT_LOWATER 10
750 
751 static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
752 					 u32 index)
753 {
754 	sync_change_bit(index, net_device->send_section_map);
755 }
756 
757 static void netvsc_send_tx_complete(struct net_device *ndev,
758 				    struct netvsc_device *net_device,
759 				    struct vmbus_channel *channel,
760 				    const struct vmpacket_descriptor *desc,
761 				    int budget)
762 {
763 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
764 	struct sk_buff *skb;
765 	u16 q_idx = 0;
766 	int queue_sends;
767 	u64 cmd_rqst;
768 
769 	cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
770 	if (cmd_rqst == VMBUS_RQST_ERROR) {
771 		netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
772 		return;
773 	}
774 
775 	skb = (struct sk_buff *)(unsigned long)cmd_rqst;
776 
777 	/* Notify the layer above us */
778 	if (likely(skb)) {
779 		struct hv_netvsc_packet *packet
780 			= (struct hv_netvsc_packet *)skb->cb;
781 		u32 send_index = packet->send_buf_index;
782 		struct netvsc_stats_tx *tx_stats;
783 
784 		if (send_index != NETVSC_INVALID_INDEX)
785 			netvsc_free_send_slot(net_device, send_index);
786 		q_idx = packet->q_idx;
787 
788 		tx_stats = &net_device->chan_table[q_idx].tx_stats;
789 
790 		u64_stats_update_begin(&tx_stats->syncp);
791 		tx_stats->packets += packet->total_packets;
792 		tx_stats->bytes += packet->total_bytes;
793 		u64_stats_update_end(&tx_stats->syncp);
794 
795 		netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
796 		napi_consume_skb(skb, budget);
797 	}
798 
799 	queue_sends =
800 		atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
801 
802 	if (unlikely(net_device->destroy)) {
803 		if (queue_sends == 0)
804 			wake_up(&net_device->wait_drain);
805 	} else {
806 		struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
807 
808 		if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
809 		    (hv_get_avail_to_write_percent(&channel->outbound) >
810 		     RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
811 			netif_tx_wake_queue(txq);
812 			ndev_ctx->eth_stats.wake_queue++;
813 		}
814 	}
815 }
816 
817 static void netvsc_send_completion(struct net_device *ndev,
818 				   struct netvsc_device *net_device,
819 				   struct vmbus_channel *incoming_channel,
820 				   const struct vmpacket_descriptor *desc,
821 				   int budget)
822 {
823 	const struct nvsp_message *nvsp_packet;
824 	u32 msglen = hv_pkt_datalen(desc);
825 	struct nvsp_message *pkt_rqst;
826 	u64 cmd_rqst;
827 	u32 status;
828 
829 	/* First check if this is a VMBUS completion without data payload */
830 	if (!msglen) {
831 		cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
832 								   desc->trans_id);
833 		if (cmd_rqst == VMBUS_RQST_ERROR) {
834 			netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
835 			return;
836 		}
837 
838 		pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
839 		switch (pkt_rqst->hdr.msg_type) {
840 		case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
841 			complete(&net_device->channel_init_wait);
842 			break;
843 
844 		default:
845 			netdev_err(ndev, "Unexpected VMBUS completion!!\n");
846 		}
847 		return;
848 	}
849 
850 	/* Ensure packet is big enough to read header fields */
851 	if (msglen < sizeof(struct nvsp_message_header)) {
852 		netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
853 		return;
854 	}
855 
856 	nvsp_packet = hv_pkt_data(desc);
857 	switch (nvsp_packet->hdr.msg_type) {
858 	case NVSP_MSG_TYPE_INIT_COMPLETE:
859 		if (msglen < sizeof(struct nvsp_message_header) +
860 				sizeof(struct nvsp_message_init_complete)) {
861 			netdev_err(ndev, "nvsp_msg length too small: %u\n",
862 				   msglen);
863 			return;
864 		}
865 		break;
866 
867 	case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
868 		if (msglen < sizeof(struct nvsp_message_header) +
869 				sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
870 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
871 				   msglen);
872 			return;
873 		}
874 		break;
875 
876 	case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
877 		if (msglen < sizeof(struct nvsp_message_header) +
878 				sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
879 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
880 				   msglen);
881 			return;
882 		}
883 		break;
884 
885 	case NVSP_MSG5_TYPE_SUBCHANNEL:
886 		if (msglen < sizeof(struct nvsp_message_header) +
887 				sizeof(struct nvsp_5_subchannel_complete)) {
888 			netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
889 				   msglen);
890 			return;
891 		}
892 		break;
893 
894 	case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
895 		if (msglen < sizeof(struct nvsp_message_header) +
896 		    sizeof(struct nvsp_1_message_send_rndis_packet_complete)) {
897 			if (net_ratelimit())
898 				netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n",
899 					   msglen);
900 			return;
901 		}
902 
903 		/* If status indicates an error, output a message so we know
904 		 * there's a problem. But process the completion anyway so the
905 		 * resources are released.
906 		 */
907 		status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status;
908 		if (status != NVSP_STAT_SUCCESS && net_ratelimit())
909 			netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n",
910 				   status);
911 
912 		netvsc_send_tx_complete(ndev, net_device, incoming_channel,
913 					desc, budget);
914 		return;
915 
916 	default:
917 		netdev_err(ndev,
918 			   "Unknown send completion type %d received!!\n",
919 			   nvsp_packet->hdr.msg_type);
920 		return;
921 	}
922 
923 	/* Copy the response back */
924 	memcpy(&net_device->channel_init_pkt, nvsp_packet,
925 	       sizeof(struct nvsp_message));
926 	complete(&net_device->channel_init_wait);
927 }
928 
929 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
930 {
931 	unsigned long *map_addr = net_device->send_section_map;
932 	unsigned int i;
933 
934 	for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
935 		if (sync_test_and_set_bit(i, map_addr) == 0)
936 			return i;
937 	}
938 
939 	return NETVSC_INVALID_INDEX;
940 }
941 
942 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
943 				    unsigned int section_index,
944 				    u32 pend_size,
945 				    struct hv_netvsc_packet *packet,
946 				    struct rndis_message *rndis_msg,
947 				    struct hv_page_buffer *pb,
948 				    bool xmit_more)
949 {
950 	char *start = net_device->send_buf;
951 	char *dest = start + (section_index * net_device->send_section_size)
952 		     + pend_size;
953 	int i;
954 	u32 padding = 0;
955 	u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
956 		packet->page_buf_cnt;
957 	u32 remain;
958 
959 	/* Add padding */
960 	remain = packet->total_data_buflen & (net_device->pkt_align - 1);
961 	if (xmit_more && remain) {
962 		padding = net_device->pkt_align - remain;
963 		rndis_msg->msg_len += padding;
964 		packet->total_data_buflen += padding;
965 	}
966 
967 	for (i = 0; i < page_count; i++) {
968 		char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
969 		u32 offset = pb[i].offset;
970 		u32 len = pb[i].len;
971 
972 		memcpy(dest, (src + offset), len);
973 		dest += len;
974 	}
975 
976 	if (padding)
977 		memset(dest, 0, padding);
978 }
979 
980 void netvsc_dma_unmap(struct hv_device *hv_dev,
981 		      struct hv_netvsc_packet *packet)
982 {
983 	int i;
984 
985 	if (!hv_is_isolation_supported())
986 		return;
987 
988 	if (!packet->dma_range)
989 		return;
990 
991 	for (i = 0; i < packet->page_buf_cnt; i++)
992 		dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
993 				 packet->dma_range[i].mapping_size,
994 				 DMA_TO_DEVICE);
995 
996 	kfree(packet->dma_range);
997 }
998 
999 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of
1000  * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
1001  * VM.
1002  *
1003  * In isolation VM, netvsc send buffer has been marked visible to
1004  * host and so the data copied to send buffer doesn't need to use
1005  * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
1006  * may not be copied to send buffer and so these pages need to be
1007  * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1008  * that. The pfns in the struct hv_page_buffer need to be converted
1009  * to bounce buffer's pfn. The loop here is necessary because the
1010  * entries in the page buffer array are not necessarily full
1011  * pages of data.  Each entry in the array has a separate offset and
1012  * len that may be non-zero, even for entries in the middle of the
1013  * array.  And the entries are not physically contiguous.  So each
1014  * entry must be individually mapped rather than as a contiguous unit.
1015  * So not use dma_map_sg() here.
1016  */
1017 static int netvsc_dma_map(struct hv_device *hv_dev,
1018 			  struct hv_netvsc_packet *packet,
1019 			  struct hv_page_buffer *pb)
1020 {
1021 	u32 page_count = packet->page_buf_cnt;
1022 	dma_addr_t dma;
1023 	int i;
1024 
1025 	if (!hv_is_isolation_supported())
1026 		return 0;
1027 
1028 	packet->dma_range = kcalloc(page_count,
1029 				    sizeof(*packet->dma_range),
1030 				    GFP_ATOMIC);
1031 	if (!packet->dma_range)
1032 		return -ENOMEM;
1033 
1034 	for (i = 0; i < page_count; i++) {
1035 		char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1036 					 + pb[i].offset);
1037 		u32 len = pb[i].len;
1038 
1039 		dma = dma_map_single(&hv_dev->device, src, len,
1040 				     DMA_TO_DEVICE);
1041 		if (dma_mapping_error(&hv_dev->device, dma)) {
1042 			kfree(packet->dma_range);
1043 			return -ENOMEM;
1044 		}
1045 
1046 		/* pb[].offset and pb[].len are not changed during dma mapping
1047 		 * and so not reassign.
1048 		 */
1049 		packet->dma_range[i].dma = dma;
1050 		packet->dma_range[i].mapping_size = len;
1051 		pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 static inline int netvsc_send_pkt(
1058 	struct hv_device *device,
1059 	struct hv_netvsc_packet *packet,
1060 	struct netvsc_device *net_device,
1061 	struct hv_page_buffer *pb,
1062 	struct sk_buff *skb)
1063 {
1064 	struct nvsp_message nvmsg;
1065 	struct nvsp_1_message_send_rndis_packet *rpkt =
1066 		&nvmsg.msg.v1_msg.send_rndis_pkt;
1067 	struct netvsc_channel * const nvchan =
1068 		&net_device->chan_table[packet->q_idx];
1069 	struct vmbus_channel *out_channel = nvchan->channel;
1070 	struct net_device *ndev = hv_get_drvdata(device);
1071 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1072 	struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1073 	u64 req_id;
1074 	int ret;
1075 	u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1076 
1077 	memset(&nvmsg, 0, sizeof(struct nvsp_message));
1078 	nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1079 	if (skb)
1080 		rpkt->channel_type = 0;		/* 0 is RMC_DATA */
1081 	else
1082 		rpkt->channel_type = 1;		/* 1 is RMC_CONTROL */
1083 
1084 	rpkt->send_buf_section_index = packet->send_buf_index;
1085 	if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1086 		rpkt->send_buf_section_size = 0;
1087 	else
1088 		rpkt->send_buf_section_size = packet->total_data_buflen;
1089 
1090 	req_id = (ulong)skb;
1091 
1092 	if (out_channel->rescind)
1093 		return -ENODEV;
1094 
1095 	trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1096 
1097 	packet->dma_range = NULL;
1098 	if (packet->page_buf_cnt) {
1099 		if (packet->cp_partial)
1100 			pb += packet->rmsg_pgcnt;
1101 
1102 		ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1103 		if (ret) {
1104 			ret = -EAGAIN;
1105 			goto exit;
1106 		}
1107 
1108 		ret = vmbus_sendpacket_pagebuffer(out_channel,
1109 						  pb, packet->page_buf_cnt,
1110 						  &nvmsg, sizeof(nvmsg),
1111 						  req_id);
1112 
1113 		if (ret)
1114 			netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1115 	} else {
1116 		ret = vmbus_sendpacket(out_channel,
1117 				       &nvmsg, sizeof(nvmsg),
1118 				       req_id, VM_PKT_DATA_INBAND,
1119 				       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1120 	}
1121 
1122 exit:
1123 	if (ret == 0) {
1124 		atomic_inc_return(&nvchan->queue_sends);
1125 
1126 		if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1127 			netif_tx_stop_queue(txq);
1128 			ndev_ctx->eth_stats.stop_queue++;
1129 		}
1130 	} else if (ret == -EAGAIN) {
1131 		netif_tx_stop_queue(txq);
1132 		ndev_ctx->eth_stats.stop_queue++;
1133 	} else {
1134 		netdev_err(ndev,
1135 			   "Unable to send packet pages %u len %u, ret %d\n",
1136 			   packet->page_buf_cnt, packet->total_data_buflen,
1137 			   ret);
1138 	}
1139 
1140 	if (netif_tx_queue_stopped(txq) &&
1141 	    atomic_read(&nvchan->queue_sends) < 1 &&
1142 	    !net_device->tx_disable) {
1143 		netif_tx_wake_queue(txq);
1144 		ndev_ctx->eth_stats.wake_queue++;
1145 		if (ret == -EAGAIN)
1146 			ret = -ENOSPC;
1147 	}
1148 
1149 	return ret;
1150 }
1151 
1152 /* Move packet out of multi send data (msd), and clear msd */
1153 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1154 				struct sk_buff **msd_skb,
1155 				struct multi_send_data *msdp)
1156 {
1157 	*msd_skb = msdp->skb;
1158 	*msd_send = msdp->pkt;
1159 	msdp->skb = NULL;
1160 	msdp->pkt = NULL;
1161 	msdp->count = 0;
1162 }
1163 
1164 /* RCU already held by caller */
1165 /* Batching/bouncing logic is designed to attempt to optimize
1166  * performance.
1167  *
1168  * For small, non-LSO packets we copy the packet to a send buffer
1169  * which is pre-registered with the Hyper-V side. This enables the
1170  * hypervisor to avoid remapping the aperture to access the packet
1171  * descriptor and data.
1172  *
1173  * If we already started using a buffer and the netdev is transmitting
1174  * a burst of packets, keep on copying into the buffer until it is
1175  * full or we are done collecting a burst. If there is an existing
1176  * buffer with space for the RNDIS descriptor but not the packet, copy
1177  * the RNDIS descriptor to the buffer, keeping the packet in place.
1178  *
1179  * If we do batching and send more than one packet using a single
1180  * NetVSC message, free the SKBs of the packets copied, except for the
1181  * last packet. This is done to streamline the handling of the case
1182  * where the last packet only had the RNDIS descriptor copied to the
1183  * send buffer, with the data pointers included in the NetVSC message.
1184  */
1185 int netvsc_send(struct net_device *ndev,
1186 		struct hv_netvsc_packet *packet,
1187 		struct rndis_message *rndis_msg,
1188 		struct hv_page_buffer *pb,
1189 		struct sk_buff *skb,
1190 		bool xdp_tx)
1191 {
1192 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1193 	struct netvsc_device *net_device
1194 		= rcu_dereference_bh(ndev_ctx->nvdev);
1195 	struct hv_device *device = ndev_ctx->device_ctx;
1196 	int ret = 0;
1197 	struct netvsc_channel *nvchan;
1198 	u32 pktlen = packet->total_data_buflen, msd_len = 0;
1199 	unsigned int section_index = NETVSC_INVALID_INDEX;
1200 	struct multi_send_data *msdp;
1201 	struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1202 	struct sk_buff *msd_skb = NULL;
1203 	bool try_batch, xmit_more;
1204 
1205 	/* If device is rescinded, return error and packet will get dropped. */
1206 	if (unlikely(!net_device || net_device->destroy))
1207 		return -ENODEV;
1208 
1209 	nvchan = &net_device->chan_table[packet->q_idx];
1210 	packet->send_buf_index = NETVSC_INVALID_INDEX;
1211 	packet->cp_partial = false;
1212 
1213 	/* Send a control message or XDP packet directly without accessing
1214 	 * msd (Multi-Send Data) field which may be changed during data packet
1215 	 * processing.
1216 	 */
1217 	if (!skb || xdp_tx)
1218 		return netvsc_send_pkt(device, packet, net_device, pb, skb);
1219 
1220 	/* batch packets in send buffer if possible */
1221 	msdp = &nvchan->msd;
1222 	if (msdp->pkt)
1223 		msd_len = msdp->pkt->total_data_buflen;
1224 
1225 	try_batch =  msd_len > 0 && msdp->count < net_device->max_pkt;
1226 	if (try_batch && msd_len + pktlen + net_device->pkt_align <
1227 	    net_device->send_section_size) {
1228 		section_index = msdp->pkt->send_buf_index;
1229 
1230 	} else if (try_batch && msd_len + packet->rmsg_size <
1231 		   net_device->send_section_size) {
1232 		section_index = msdp->pkt->send_buf_index;
1233 		packet->cp_partial = true;
1234 
1235 	} else if (pktlen + net_device->pkt_align <
1236 		   net_device->send_section_size) {
1237 		section_index = netvsc_get_next_send_section(net_device);
1238 		if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1239 			++ndev_ctx->eth_stats.tx_send_full;
1240 		} else {
1241 			move_pkt_msd(&msd_send, &msd_skb, msdp);
1242 			msd_len = 0;
1243 		}
1244 	}
1245 
1246 	/* Keep aggregating only if stack says more data is coming
1247 	 * and not doing mixed modes send and not flow blocked
1248 	 */
1249 	xmit_more = netdev_xmit_more() &&
1250 		!packet->cp_partial &&
1251 		!netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1252 
1253 	if (section_index != NETVSC_INVALID_INDEX) {
1254 		netvsc_copy_to_send_buf(net_device,
1255 					section_index, msd_len,
1256 					packet, rndis_msg, pb, xmit_more);
1257 
1258 		packet->send_buf_index = section_index;
1259 
1260 		if (packet->cp_partial) {
1261 			packet->page_buf_cnt -= packet->rmsg_pgcnt;
1262 			packet->total_data_buflen = msd_len + packet->rmsg_size;
1263 		} else {
1264 			packet->page_buf_cnt = 0;
1265 			packet->total_data_buflen += msd_len;
1266 		}
1267 
1268 		if (msdp->pkt) {
1269 			packet->total_packets += msdp->pkt->total_packets;
1270 			packet->total_bytes += msdp->pkt->total_bytes;
1271 		}
1272 
1273 		if (msdp->skb)
1274 			dev_consume_skb_any(msdp->skb);
1275 
1276 		if (xmit_more) {
1277 			msdp->skb = skb;
1278 			msdp->pkt = packet;
1279 			msdp->count++;
1280 		} else {
1281 			cur_send = packet;
1282 			msdp->skb = NULL;
1283 			msdp->pkt = NULL;
1284 			msdp->count = 0;
1285 		}
1286 	} else {
1287 		move_pkt_msd(&msd_send, &msd_skb, msdp);
1288 		cur_send = packet;
1289 	}
1290 
1291 	if (msd_send) {
1292 		int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1293 					    NULL, msd_skb);
1294 
1295 		if (m_ret != 0) {
1296 			netvsc_free_send_slot(net_device,
1297 					      msd_send->send_buf_index);
1298 			dev_kfree_skb_any(msd_skb);
1299 		}
1300 	}
1301 
1302 	if (cur_send)
1303 		ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1304 
1305 	if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1306 		netvsc_free_send_slot(net_device, section_index);
1307 
1308 	return ret;
1309 }
1310 
1311 /* Send pending recv completions */
1312 static int send_recv_completions(struct net_device *ndev,
1313 				 struct netvsc_device *nvdev,
1314 				 struct netvsc_channel *nvchan)
1315 {
1316 	struct multi_recv_comp *mrc = &nvchan->mrc;
1317 	struct recv_comp_msg {
1318 		struct nvsp_message_header hdr;
1319 		u32 status;
1320 	}  __packed;
1321 	struct recv_comp_msg msg = {
1322 		.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1323 	};
1324 	int ret;
1325 
1326 	while (mrc->first != mrc->next) {
1327 		const struct recv_comp_data *rcd
1328 			= mrc->slots + mrc->first;
1329 
1330 		msg.status = rcd->status;
1331 		ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1332 				       rcd->tid, VM_PKT_COMP, 0);
1333 		if (unlikely(ret)) {
1334 			struct net_device_context *ndev_ctx = netdev_priv(ndev);
1335 
1336 			++ndev_ctx->eth_stats.rx_comp_busy;
1337 			return ret;
1338 		}
1339 
1340 		if (++mrc->first == nvdev->recv_completion_cnt)
1341 			mrc->first = 0;
1342 	}
1343 
1344 	/* receive completion ring has been emptied */
1345 	if (unlikely(nvdev->destroy))
1346 		wake_up(&nvdev->wait_drain);
1347 
1348 	return 0;
1349 }
1350 
1351 /* Count how many receive completions are outstanding */
1352 static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1353 				 const struct multi_recv_comp *mrc,
1354 				 u32 *filled, u32 *avail)
1355 {
1356 	u32 count = nvdev->recv_completion_cnt;
1357 
1358 	if (mrc->next >= mrc->first)
1359 		*filled = mrc->next - mrc->first;
1360 	else
1361 		*filled = (count - mrc->first) + mrc->next;
1362 
1363 	*avail = count - *filled - 1;
1364 }
1365 
1366 /* Add receive complete to ring to send to host. */
1367 static void enq_receive_complete(struct net_device *ndev,
1368 				 struct netvsc_device *nvdev, u16 q_idx,
1369 				 u64 tid, u32 status)
1370 {
1371 	struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1372 	struct multi_recv_comp *mrc = &nvchan->mrc;
1373 	struct recv_comp_data *rcd;
1374 	u32 filled, avail;
1375 
1376 	recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1377 
1378 	if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1379 		send_recv_completions(ndev, nvdev, nvchan);
1380 		recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1381 	}
1382 
1383 	if (unlikely(!avail)) {
1384 		netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1385 			   q_idx, tid);
1386 		return;
1387 	}
1388 
1389 	rcd = mrc->slots + mrc->next;
1390 	rcd->tid = tid;
1391 	rcd->status = status;
1392 
1393 	if (++mrc->next == nvdev->recv_completion_cnt)
1394 		mrc->next = 0;
1395 }
1396 
1397 static int netvsc_receive(struct net_device *ndev,
1398 			  struct netvsc_device *net_device,
1399 			  struct netvsc_channel *nvchan,
1400 			  const struct vmpacket_descriptor *desc)
1401 {
1402 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1403 	struct vmbus_channel *channel = nvchan->channel;
1404 	const struct vmtransfer_page_packet_header *vmxferpage_packet
1405 		= container_of(desc, const struct vmtransfer_page_packet_header, d);
1406 	const struct nvsp_message *nvsp = hv_pkt_data(desc);
1407 	u32 msglen = hv_pkt_datalen(desc);
1408 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
1409 	char *recv_buf = net_device->recv_buf;
1410 	u32 status = NVSP_STAT_SUCCESS;
1411 	int i;
1412 	int count = 0;
1413 
1414 	/* Ensure packet is big enough to read header fields */
1415 	if (msglen < sizeof(struct nvsp_message_header)) {
1416 		netif_err(net_device_ctx, rx_err, ndev,
1417 			  "invalid nvsp header, length too small: %u\n",
1418 			  msglen);
1419 		return 0;
1420 	}
1421 
1422 	/* Make sure this is a valid nvsp packet */
1423 	if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1424 		netif_err(net_device_ctx, rx_err, ndev,
1425 			  "Unknown nvsp packet type received %u\n",
1426 			  nvsp->hdr.msg_type);
1427 		return 0;
1428 	}
1429 
1430 	/* Validate xfer page pkt header */
1431 	if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1432 		netif_err(net_device_ctx, rx_err, ndev,
1433 			  "Invalid xfer page pkt, offset too small: %u\n",
1434 			  desc->offset8 << 3);
1435 		return 0;
1436 	}
1437 
1438 	if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1439 		netif_err(net_device_ctx, rx_err, ndev,
1440 			  "Invalid xfer page set id - expecting %x got %x\n",
1441 			  NETVSC_RECEIVE_BUFFER_ID,
1442 			  vmxferpage_packet->xfer_pageset_id);
1443 		return 0;
1444 	}
1445 
1446 	count = vmxferpage_packet->range_cnt;
1447 
1448 	/* Check count for a valid value */
1449 	if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1450 		netif_err(net_device_ctx, rx_err, ndev,
1451 			  "Range count is not valid: %d\n",
1452 			  count);
1453 		return 0;
1454 	}
1455 
1456 	/* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1457 	for (i = 0; i < count; i++) {
1458 		u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1459 		u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1460 		void *data;
1461 		int ret;
1462 
1463 		if (unlikely(offset > net_device->recv_buf_size ||
1464 			     buflen > net_device->recv_buf_size - offset)) {
1465 			nvchan->rsc.cnt = 0;
1466 			status = NVSP_STAT_FAIL;
1467 			netif_err(net_device_ctx, rx_err, ndev,
1468 				  "Packet offset:%u + len:%u too big\n",
1469 				  offset, buflen);
1470 
1471 			continue;
1472 		}
1473 
1474 		/* We're going to copy (sections of) the packet into nvchan->recv_buf;
1475 		 * make sure that nvchan->recv_buf is large enough to hold the packet.
1476 		 */
1477 		if (unlikely(buflen > net_device->recv_section_size)) {
1478 			nvchan->rsc.cnt = 0;
1479 			status = NVSP_STAT_FAIL;
1480 			netif_err(net_device_ctx, rx_err, ndev,
1481 				  "Packet too big: buflen=%u recv_section_size=%u\n",
1482 				  buflen, net_device->recv_section_size);
1483 
1484 			continue;
1485 		}
1486 
1487 		data = recv_buf + offset;
1488 
1489 		nvchan->rsc.is_last = (i == count - 1);
1490 
1491 		trace_rndis_recv(ndev, q_idx, data);
1492 
1493 		/* Pass it to the upper layer */
1494 		ret = rndis_filter_receive(ndev, net_device,
1495 					   nvchan, data, buflen);
1496 
1497 		if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1498 			/* Drop incomplete packet */
1499 			nvchan->rsc.cnt = 0;
1500 			status = NVSP_STAT_FAIL;
1501 		}
1502 	}
1503 
1504 	enq_receive_complete(ndev, net_device, q_idx,
1505 			     vmxferpage_packet->d.trans_id, status);
1506 
1507 	return count;
1508 }
1509 
1510 static void netvsc_send_table(struct net_device *ndev,
1511 			      struct netvsc_device *nvscdev,
1512 			      const struct nvsp_message *nvmsg,
1513 			      u32 msglen)
1514 {
1515 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1516 	u32 count, offset, *tab;
1517 	int i;
1518 
1519 	/* Ensure packet is big enough to read send_table fields */
1520 	if (msglen < sizeof(struct nvsp_message_header) +
1521 		     sizeof(struct nvsp_5_send_indirect_table)) {
1522 		netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1523 		return;
1524 	}
1525 
1526 	count = nvmsg->msg.v5_msg.send_table.count;
1527 	offset = nvmsg->msg.v5_msg.send_table.offset;
1528 
1529 	if (count != VRSS_SEND_TAB_SIZE) {
1530 		netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1531 		return;
1532 	}
1533 
1534 	/* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1535 	 * wrong due to a host bug. So fix the offset here.
1536 	 */
1537 	if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1538 	    msglen >= sizeof(struct nvsp_message_header) +
1539 	    sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1540 		offset = sizeof(struct nvsp_message_header) +
1541 			 sizeof(union nvsp_6_message_uber);
1542 
1543 	/* Boundary check for all versions */
1544 	if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1545 		netdev_err(ndev, "Received send-table offset too big:%u\n",
1546 			   offset);
1547 		return;
1548 	}
1549 
1550 	tab = (void *)nvmsg + offset;
1551 
1552 	for (i = 0; i < count; i++)
1553 		net_device_ctx->tx_table[i] = tab[i];
1554 }
1555 
1556 static void netvsc_send_vf(struct net_device *ndev,
1557 			   const struct nvsp_message *nvmsg,
1558 			   u32 msglen)
1559 {
1560 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1561 
1562 	/* Ensure packet is big enough to read its fields */
1563 	if (msglen < sizeof(struct nvsp_message_header) +
1564 		     sizeof(struct nvsp_4_send_vf_association)) {
1565 		netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1566 		return;
1567 	}
1568 
1569 	net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1570 	net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1571 
1572 	if (net_device_ctx->vf_alloc)
1573 		complete(&net_device_ctx->vf_add);
1574 
1575 	netdev_info(ndev, "VF slot %u %s\n",
1576 		    net_device_ctx->vf_serial,
1577 		    net_device_ctx->vf_alloc ? "added" : "removed");
1578 }
1579 
1580 static void netvsc_receive_inband(struct net_device *ndev,
1581 				  struct netvsc_device *nvscdev,
1582 				  const struct vmpacket_descriptor *desc)
1583 {
1584 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1585 	u32 msglen = hv_pkt_datalen(desc);
1586 
1587 	/* Ensure packet is big enough to read header fields */
1588 	if (msglen < sizeof(struct nvsp_message_header)) {
1589 		netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1590 		return;
1591 	}
1592 
1593 	switch (nvmsg->hdr.msg_type) {
1594 	case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1595 		netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1596 		break;
1597 
1598 	case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1599 		if (hv_is_isolation_supported())
1600 			netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1601 		else
1602 			netvsc_send_vf(ndev, nvmsg, msglen);
1603 		break;
1604 	}
1605 }
1606 
1607 static int netvsc_process_raw_pkt(struct hv_device *device,
1608 				  struct netvsc_channel *nvchan,
1609 				  struct netvsc_device *net_device,
1610 				  struct net_device *ndev,
1611 				  const struct vmpacket_descriptor *desc,
1612 				  int budget)
1613 {
1614 	struct vmbus_channel *channel = nvchan->channel;
1615 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1616 
1617 	trace_nvsp_recv(ndev, channel, nvmsg);
1618 
1619 	switch (desc->type) {
1620 	case VM_PKT_COMP:
1621 		netvsc_send_completion(ndev, net_device, channel, desc, budget);
1622 		break;
1623 
1624 	case VM_PKT_DATA_USING_XFER_PAGES:
1625 		return netvsc_receive(ndev, net_device, nvchan, desc);
1626 
1627 	case VM_PKT_DATA_INBAND:
1628 		netvsc_receive_inband(ndev, net_device, desc);
1629 		break;
1630 
1631 	default:
1632 		netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1633 			   desc->type, desc->trans_id);
1634 		break;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1641 {
1642 	struct vmbus_channel *primary = channel->primary_channel;
1643 
1644 	return primary ? primary->device_obj : channel->device_obj;
1645 }
1646 
1647 /* Network processing softirq
1648  * Process data in incoming ring buffer from host
1649  * Stops when ring is empty or budget is met or exceeded.
1650  */
1651 int netvsc_poll(struct napi_struct *napi, int budget)
1652 {
1653 	struct netvsc_channel *nvchan
1654 		= container_of(napi, struct netvsc_channel, napi);
1655 	struct netvsc_device *net_device = nvchan->net_device;
1656 	struct vmbus_channel *channel = nvchan->channel;
1657 	struct hv_device *device = netvsc_channel_to_device(channel);
1658 	struct net_device *ndev = hv_get_drvdata(device);
1659 	int work_done = 0;
1660 	int ret;
1661 
1662 	/* If starting a new interval */
1663 	if (!nvchan->desc)
1664 		nvchan->desc = hv_pkt_iter_first(channel);
1665 
1666 	nvchan->xdp_flush = false;
1667 
1668 	while (nvchan->desc && work_done < budget) {
1669 		work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1670 						    ndev, nvchan->desc, budget);
1671 		nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1672 	}
1673 
1674 	if (nvchan->xdp_flush)
1675 		xdp_do_flush();
1676 
1677 	/* Send any pending receive completions */
1678 	ret = send_recv_completions(ndev, net_device, nvchan);
1679 
1680 	/* If it did not exhaust NAPI budget this time
1681 	 *  and not doing busy poll
1682 	 * then re-enable host interrupts
1683 	 *  and reschedule if ring is not empty
1684 	 *   or sending receive completion failed.
1685 	 */
1686 	if (work_done < budget &&
1687 	    napi_complete_done(napi, work_done) &&
1688 	    (ret || hv_end_read(&channel->inbound)) &&
1689 	    napi_schedule_prep(napi)) {
1690 		hv_begin_read(&channel->inbound);
1691 		__napi_schedule(napi);
1692 	}
1693 
1694 	/* Driver may overshoot since multiple packets per descriptor */
1695 	return min(work_done, budget);
1696 }
1697 
1698 /* Call back when data is available in host ring buffer.
1699  * Processing is deferred until network softirq (NAPI)
1700  */
1701 void netvsc_channel_cb(void *context)
1702 {
1703 	struct netvsc_channel *nvchan = context;
1704 	struct vmbus_channel *channel = nvchan->channel;
1705 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1706 
1707 	/* preload first vmpacket descriptor */
1708 	prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1709 
1710 	if (napi_schedule_prep(&nvchan->napi)) {
1711 		/* disable interrupts from host */
1712 		hv_begin_read(rbi);
1713 
1714 		__napi_schedule_irqoff(&nvchan->napi);
1715 	}
1716 }
1717 
1718 /*
1719  * netvsc_device_add - Callback when the device belonging to this
1720  * driver is added
1721  */
1722 struct netvsc_device *netvsc_device_add(struct hv_device *device,
1723 				const struct netvsc_device_info *device_info)
1724 {
1725 	int i, ret = 0;
1726 	struct netvsc_device *net_device;
1727 	struct net_device *ndev = hv_get_drvdata(device);
1728 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1729 
1730 	net_device = alloc_net_device();
1731 	if (!net_device)
1732 		return ERR_PTR(-ENOMEM);
1733 
1734 	for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1735 		net_device_ctx->tx_table[i] = 0;
1736 
1737 	/* Because the device uses NAPI, all the interrupt batching and
1738 	 * control is done via Net softirq, not the channel handling
1739 	 */
1740 	set_channel_read_mode(device->channel, HV_CALL_ISR);
1741 
1742 	/* If we're reopening the device we may have multiple queues, fill the
1743 	 * chn_table with the default channel to use it before subchannels are
1744 	 * opened.
1745 	 * Initialize the channel state before we open;
1746 	 * we can be interrupted as soon as we open the channel.
1747 	 */
1748 
1749 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1750 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
1751 
1752 		nvchan->channel = device->channel;
1753 		nvchan->net_device = net_device;
1754 		u64_stats_init(&nvchan->tx_stats.syncp);
1755 		u64_stats_init(&nvchan->rx_stats.syncp);
1756 
1757 		ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1758 
1759 		if (ret) {
1760 			netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1761 			goto cleanup2;
1762 		}
1763 
1764 		ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1765 						 MEM_TYPE_PAGE_SHARED, NULL);
1766 
1767 		if (ret) {
1768 			netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1769 			goto cleanup2;
1770 		}
1771 	}
1772 
1773 	/* Enable NAPI handler before init callbacks */
1774 	netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
1775 
1776 	/* Open the channel */
1777 	device->channel->next_request_id_callback = vmbus_next_request_id;
1778 	device->channel->request_addr_callback = vmbus_request_addr;
1779 	device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1780 	device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1781 
1782 	ret = vmbus_open(device->channel, netvsc_ring_bytes,
1783 			 netvsc_ring_bytes,  NULL, 0,
1784 			 netvsc_channel_cb, net_device->chan_table);
1785 
1786 	if (ret != 0) {
1787 		netdev_err(ndev, "unable to open channel: %d\n", ret);
1788 		goto cleanup;
1789 	}
1790 
1791 	/* Channel is opened */
1792 	netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1793 
1794 	napi_enable(&net_device->chan_table[0].napi);
1795 	netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_RX,
1796 			     &net_device->chan_table[0].napi);
1797 	netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_TX,
1798 			     &net_device->chan_table[0].napi);
1799 
1800 	/* Connect with the NetVsp */
1801 	ret = netvsc_connect_vsp(device, net_device, device_info);
1802 	if (ret != 0) {
1803 		netdev_err(ndev,
1804 			"unable to connect to NetVSP - %d\n", ret);
1805 		goto close;
1806 	}
1807 
1808 	/* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1809 	 * populated.
1810 	 */
1811 	rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1812 
1813 	return net_device;
1814 
1815 close:
1816 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1817 	netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
1818 	netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
1819 	napi_disable(&net_device->chan_table[0].napi);
1820 
1821 	/* Now, we can close the channel safely */
1822 	vmbus_close(device->channel);
1823 
1824 cleanup:
1825 	netif_napi_del(&net_device->chan_table[0].napi);
1826 
1827 cleanup2:
1828 	free_netvsc_device(&net_device->rcu);
1829 
1830 	return ERR_PTR(ret);
1831 }
1832