1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/wait.h> 14 #include <linux/mm.h> 15 #include <linux/delay.h> 16 #include <linux/io.h> 17 #include <linux/slab.h> 18 #include <linux/netdevice.h> 19 #include <linux/if_ether.h> 20 #include <linux/vmalloc.h> 21 #include <linux/rtnetlink.h> 22 #include <linux/prefetch.h> 23 #include <linux/filter.h> 24 25 #include <asm/sync_bitops.h> 26 #include <asm/mshyperv.h> 27 28 #include "hyperv_net.h" 29 #include "netvsc_trace.h" 30 31 /* 32 * Switch the data path from the synthetic interface to the VF 33 * interface. 34 */ 35 int netvsc_switch_datapath(struct net_device *ndev, bool vf) 36 { 37 struct net_device_context *net_device_ctx = netdev_priv(ndev); 38 struct hv_device *dev = net_device_ctx->device_ctx; 39 struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev); 40 struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt; 41 int ret, retry = 0; 42 43 /* Block sending traffic to VF if it's about to be gone */ 44 if (!vf) 45 net_device_ctx->data_path_is_vf = vf; 46 47 memset(init_pkt, 0, sizeof(struct nvsp_message)); 48 init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH; 49 if (vf) 50 init_pkt->msg.v4_msg.active_dp.active_datapath = 51 NVSP_DATAPATH_VF; 52 else 53 init_pkt->msg.v4_msg.active_dp.active_datapath = 54 NVSP_DATAPATH_SYNTHETIC; 55 56 again: 57 trace_nvsp_send(ndev, init_pkt); 58 59 ret = vmbus_sendpacket(dev->channel, init_pkt, 60 sizeof(struct nvsp_message), 61 (unsigned long)init_pkt, VM_PKT_DATA_INBAND, 62 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 63 64 /* If failed to switch to/from VF, let data_path_is_vf stay false, 65 * so we use synthetic path to send data. 66 */ 67 if (ret) { 68 if (ret != -EAGAIN) { 69 netdev_err(ndev, 70 "Unable to send sw datapath msg, err: %d\n", 71 ret); 72 return ret; 73 } 74 75 if (retry++ < RETRY_MAX) { 76 usleep_range(RETRY_US_LO, RETRY_US_HI); 77 goto again; 78 } else { 79 netdev_err( 80 ndev, 81 "Retry failed to send sw datapath msg, err: %d\n", 82 ret); 83 return ret; 84 } 85 } 86 87 wait_for_completion(&nv_dev->channel_init_wait); 88 net_device_ctx->data_path_is_vf = vf; 89 90 return 0; 91 } 92 93 /* Worker to setup sub channels on initial setup 94 * Initial hotplug event occurs in softirq context 95 * and can't wait for channels. 96 */ 97 static void netvsc_subchan_work(struct work_struct *w) 98 { 99 struct netvsc_device *nvdev = 100 container_of(w, struct netvsc_device, subchan_work); 101 struct rndis_device *rdev; 102 int i, ret; 103 104 /* Avoid deadlock with device removal already under RTNL */ 105 if (!rtnl_trylock()) { 106 schedule_work(w); 107 return; 108 } 109 110 rdev = nvdev->extension; 111 if (rdev) { 112 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL); 113 if (ret == 0) { 114 netif_device_attach(rdev->ndev); 115 } else { 116 /* fallback to only primary channel */ 117 for (i = 1; i < nvdev->num_chn; i++) 118 netif_napi_del(&nvdev->chan_table[i].napi); 119 120 nvdev->max_chn = 1; 121 nvdev->num_chn = 1; 122 } 123 } 124 125 rtnl_unlock(); 126 } 127 128 static struct netvsc_device *alloc_net_device(void) 129 { 130 struct netvsc_device *net_device; 131 132 net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL); 133 if (!net_device) 134 return NULL; 135 136 init_waitqueue_head(&net_device->wait_drain); 137 net_device->destroy = false; 138 net_device->tx_disable = true; 139 140 net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT; 141 net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT; 142 143 init_completion(&net_device->channel_init_wait); 144 init_waitqueue_head(&net_device->subchan_open); 145 INIT_WORK(&net_device->subchan_work, netvsc_subchan_work); 146 147 return net_device; 148 } 149 150 static void free_netvsc_device(struct rcu_head *head) 151 { 152 struct netvsc_device *nvdev 153 = container_of(head, struct netvsc_device, rcu); 154 int i; 155 156 kfree(nvdev->extension); 157 158 if (!nvdev->recv_buf_gpadl_handle.decrypted) 159 vfree(nvdev->recv_buf); 160 if (!nvdev->send_buf_gpadl_handle.decrypted) 161 vfree(nvdev->send_buf); 162 bitmap_free(nvdev->send_section_map); 163 164 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 165 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq); 166 kfree(nvdev->chan_table[i].recv_buf); 167 vfree(nvdev->chan_table[i].mrc.slots); 168 } 169 170 kfree(nvdev); 171 } 172 173 static void free_netvsc_device_rcu(struct netvsc_device *nvdev) 174 { 175 call_rcu(&nvdev->rcu, free_netvsc_device); 176 } 177 178 static void netvsc_revoke_recv_buf(struct hv_device *device, 179 struct netvsc_device *net_device, 180 struct net_device *ndev) 181 { 182 struct nvsp_message *revoke_packet; 183 int ret; 184 185 /* 186 * If we got a section count, it means we received a 187 * SendReceiveBufferComplete msg (ie sent 188 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need 189 * to send a revoke msg here 190 */ 191 if (net_device->recv_section_cnt) { 192 /* Send the revoke receive buffer */ 193 revoke_packet = &net_device->revoke_packet; 194 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 195 196 revoke_packet->hdr.msg_type = 197 NVSP_MSG1_TYPE_REVOKE_RECV_BUF; 198 revoke_packet->msg.v1_msg. 199 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 200 201 trace_nvsp_send(ndev, revoke_packet); 202 203 ret = vmbus_sendpacket(device->channel, 204 revoke_packet, 205 sizeof(struct nvsp_message), 206 VMBUS_RQST_ID_NO_RESPONSE, 207 VM_PKT_DATA_INBAND, 0); 208 /* If the failure is because the channel is rescinded; 209 * ignore the failure since we cannot send on a rescinded 210 * channel. This would allow us to properly cleanup 211 * even when the channel is rescinded. 212 */ 213 if (device->channel->rescind) 214 ret = 0; 215 /* 216 * If we failed here, we might as well return and 217 * have a leak rather than continue and a bugchk 218 */ 219 if (ret != 0) { 220 netdev_err(ndev, "unable to send " 221 "revoke receive buffer to netvsp\n"); 222 return; 223 } 224 net_device->recv_section_cnt = 0; 225 } 226 } 227 228 static void netvsc_revoke_send_buf(struct hv_device *device, 229 struct netvsc_device *net_device, 230 struct net_device *ndev) 231 { 232 struct nvsp_message *revoke_packet; 233 int ret; 234 235 /* Deal with the send buffer we may have setup. 236 * If we got a send section size, it means we received a 237 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent 238 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need 239 * to send a revoke msg here 240 */ 241 if (net_device->send_section_cnt) { 242 /* Send the revoke receive buffer */ 243 revoke_packet = &net_device->revoke_packet; 244 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 245 246 revoke_packet->hdr.msg_type = 247 NVSP_MSG1_TYPE_REVOKE_SEND_BUF; 248 revoke_packet->msg.v1_msg.revoke_send_buf.id = 249 NETVSC_SEND_BUFFER_ID; 250 251 trace_nvsp_send(ndev, revoke_packet); 252 253 ret = vmbus_sendpacket(device->channel, 254 revoke_packet, 255 sizeof(struct nvsp_message), 256 VMBUS_RQST_ID_NO_RESPONSE, 257 VM_PKT_DATA_INBAND, 0); 258 259 /* If the failure is because the channel is rescinded; 260 * ignore the failure since we cannot send on a rescinded 261 * channel. This would allow us to properly cleanup 262 * even when the channel is rescinded. 263 */ 264 if (device->channel->rescind) 265 ret = 0; 266 267 /* If we failed here, we might as well return and 268 * have a leak rather than continue and a bugchk 269 */ 270 if (ret != 0) { 271 netdev_err(ndev, "unable to send " 272 "revoke send buffer to netvsp\n"); 273 return; 274 } 275 net_device->send_section_cnt = 0; 276 } 277 } 278 279 static void netvsc_teardown_recv_gpadl(struct hv_device *device, 280 struct netvsc_device *net_device, 281 struct net_device *ndev) 282 { 283 int ret; 284 285 if (net_device->recv_buf_gpadl_handle.gpadl_handle) { 286 ret = vmbus_teardown_gpadl(device->channel, 287 &net_device->recv_buf_gpadl_handle); 288 289 /* If we failed here, we might as well return and have a leak 290 * rather than continue and a bugchk 291 */ 292 if (ret != 0) { 293 netdev_err(ndev, 294 "unable to teardown receive buffer's gpadl\n"); 295 return; 296 } 297 } 298 } 299 300 static void netvsc_teardown_send_gpadl(struct hv_device *device, 301 struct netvsc_device *net_device, 302 struct net_device *ndev) 303 { 304 int ret; 305 306 if (net_device->send_buf_gpadl_handle.gpadl_handle) { 307 ret = vmbus_teardown_gpadl(device->channel, 308 &net_device->send_buf_gpadl_handle); 309 310 /* If we failed here, we might as well return and have a leak 311 * rather than continue and a bugchk 312 */ 313 if (ret != 0) { 314 netdev_err(ndev, 315 "unable to teardown send buffer's gpadl\n"); 316 return; 317 } 318 } 319 } 320 321 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx) 322 { 323 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 324 int node = cpu_to_node(nvchan->channel->target_cpu); 325 size_t size; 326 327 size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data); 328 nvchan->mrc.slots = vzalloc_node(size, node); 329 if (!nvchan->mrc.slots) 330 nvchan->mrc.slots = vzalloc(size); 331 332 return nvchan->mrc.slots ? 0 : -ENOMEM; 333 } 334 335 static int netvsc_init_buf(struct hv_device *device, 336 struct netvsc_device *net_device, 337 const struct netvsc_device_info *device_info) 338 { 339 struct nvsp_1_message_send_receive_buffer_complete *resp; 340 struct net_device *ndev = hv_get_drvdata(device); 341 struct nvsp_message *init_packet; 342 unsigned int buf_size; 343 int i, ret = 0; 344 345 /* Get receive buffer area. */ 346 buf_size = device_info->recv_sections * device_info->recv_section_size; 347 buf_size = roundup(buf_size, PAGE_SIZE); 348 349 /* Legacy hosts only allow smaller receive buffer */ 350 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 351 buf_size = min_t(unsigned int, buf_size, 352 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY); 353 354 net_device->recv_buf = vzalloc(buf_size); 355 if (!net_device->recv_buf) { 356 netdev_err(ndev, 357 "unable to allocate receive buffer of size %u\n", 358 buf_size); 359 ret = -ENOMEM; 360 goto cleanup; 361 } 362 363 net_device->recv_buf_size = buf_size; 364 365 /* 366 * Establish the gpadl handle for this buffer on this 367 * channel. Note: This call uses the vmbus connection rather 368 * than the channel to establish the gpadl handle. 369 */ 370 ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf, 371 buf_size, 372 &net_device->recv_buf_gpadl_handle); 373 if (ret != 0) { 374 netdev_err(ndev, 375 "unable to establish receive buffer's gpadl\n"); 376 goto cleanup; 377 } 378 379 /* Notify the NetVsp of the gpadl handle */ 380 init_packet = &net_device->channel_init_pkt; 381 memset(init_packet, 0, sizeof(struct nvsp_message)); 382 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF; 383 init_packet->msg.v1_msg.send_recv_buf. 384 gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle; 385 init_packet->msg.v1_msg. 386 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 387 388 trace_nvsp_send(ndev, init_packet); 389 390 /* Send the gpadl notification request */ 391 ret = vmbus_sendpacket(device->channel, init_packet, 392 sizeof(struct nvsp_message), 393 (unsigned long)init_packet, 394 VM_PKT_DATA_INBAND, 395 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 396 if (ret != 0) { 397 netdev_err(ndev, 398 "unable to send receive buffer's gpadl to netvsp\n"); 399 goto cleanup; 400 } 401 402 wait_for_completion(&net_device->channel_init_wait); 403 404 /* Check the response */ 405 resp = &init_packet->msg.v1_msg.send_recv_buf_complete; 406 if (resp->status != NVSP_STAT_SUCCESS) { 407 netdev_err(ndev, 408 "Unable to complete receive buffer initialization with NetVsp - status %d\n", 409 resp->status); 410 ret = -EINVAL; 411 goto cleanup; 412 } 413 414 /* Parse the response */ 415 netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n", 416 resp->num_sections, resp->sections[0].sub_alloc_size, 417 resp->sections[0].num_sub_allocs); 418 419 /* There should only be one section for the entire receive buffer */ 420 if (resp->num_sections != 1 || resp->sections[0].offset != 0) { 421 ret = -EINVAL; 422 goto cleanup; 423 } 424 425 net_device->recv_section_size = resp->sections[0].sub_alloc_size; 426 net_device->recv_section_cnt = resp->sections[0].num_sub_allocs; 427 428 /* Ensure buffer will not overflow */ 429 if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size * 430 (u64)net_device->recv_section_cnt > (u64)buf_size) { 431 netdev_err(ndev, "invalid recv_section_size %u\n", 432 net_device->recv_section_size); 433 ret = -EINVAL; 434 goto cleanup; 435 } 436 437 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 438 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 439 440 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL); 441 if (nvchan->recv_buf == NULL) { 442 ret = -ENOMEM; 443 goto cleanup; 444 } 445 } 446 447 /* Setup receive completion ring. 448 * Add 1 to the recv_section_cnt because at least one entry in a 449 * ring buffer has to be empty. 450 */ 451 net_device->recv_completion_cnt = net_device->recv_section_cnt + 1; 452 ret = netvsc_alloc_recv_comp_ring(net_device, 0); 453 if (ret) 454 goto cleanup; 455 456 /* Now setup the send buffer. */ 457 buf_size = device_info->send_sections * device_info->send_section_size; 458 buf_size = round_up(buf_size, PAGE_SIZE); 459 460 net_device->send_buf = vzalloc(buf_size); 461 if (!net_device->send_buf) { 462 netdev_err(ndev, "unable to allocate send buffer of size %u\n", 463 buf_size); 464 ret = -ENOMEM; 465 goto cleanup; 466 } 467 net_device->send_buf_size = buf_size; 468 469 /* Establish the gpadl handle for this buffer on this 470 * channel. Note: This call uses the vmbus connection rather 471 * than the channel to establish the gpadl handle. 472 */ 473 ret = vmbus_establish_gpadl(device->channel, net_device->send_buf, 474 buf_size, 475 &net_device->send_buf_gpadl_handle); 476 if (ret != 0) { 477 netdev_err(ndev, 478 "unable to establish send buffer's gpadl\n"); 479 goto cleanup; 480 } 481 482 /* Notify the NetVsp of the gpadl handle */ 483 init_packet = &net_device->channel_init_pkt; 484 memset(init_packet, 0, sizeof(struct nvsp_message)); 485 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF; 486 init_packet->msg.v1_msg.send_send_buf.gpadl_handle = 487 net_device->send_buf_gpadl_handle.gpadl_handle; 488 init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID; 489 490 trace_nvsp_send(ndev, init_packet); 491 492 /* Send the gpadl notification request */ 493 ret = vmbus_sendpacket(device->channel, init_packet, 494 sizeof(struct nvsp_message), 495 (unsigned long)init_packet, 496 VM_PKT_DATA_INBAND, 497 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 498 if (ret != 0) { 499 netdev_err(ndev, 500 "unable to send send buffer's gpadl to netvsp\n"); 501 goto cleanup; 502 } 503 504 wait_for_completion(&net_device->channel_init_wait); 505 506 /* Check the response */ 507 if (init_packet->msg.v1_msg. 508 send_send_buf_complete.status != NVSP_STAT_SUCCESS) { 509 netdev_err(ndev, "Unable to complete send buffer " 510 "initialization with NetVsp - status %d\n", 511 init_packet->msg.v1_msg. 512 send_send_buf_complete.status); 513 ret = -EINVAL; 514 goto cleanup; 515 } 516 517 /* Parse the response */ 518 net_device->send_section_size = init_packet->msg. 519 v1_msg.send_send_buf_complete.section_size; 520 if (net_device->send_section_size < NETVSC_MTU_MIN) { 521 netdev_err(ndev, "invalid send_section_size %u\n", 522 net_device->send_section_size); 523 ret = -EINVAL; 524 goto cleanup; 525 } 526 527 /* Section count is simply the size divided by the section size. */ 528 net_device->send_section_cnt = buf_size / net_device->send_section_size; 529 530 netdev_dbg(ndev, "Send section size: %d, Section count:%d\n", 531 net_device->send_section_size, net_device->send_section_cnt); 532 533 /* Setup state for managing the send buffer. */ 534 net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt, 535 GFP_KERNEL); 536 if (!net_device->send_section_map) { 537 ret = -ENOMEM; 538 goto cleanup; 539 } 540 541 goto exit; 542 543 cleanup: 544 netvsc_revoke_recv_buf(device, net_device, ndev); 545 netvsc_revoke_send_buf(device, net_device, ndev); 546 netvsc_teardown_recv_gpadl(device, net_device, ndev); 547 netvsc_teardown_send_gpadl(device, net_device, ndev); 548 549 exit: 550 return ret; 551 } 552 553 /* Negotiate NVSP protocol version */ 554 static int negotiate_nvsp_ver(struct hv_device *device, 555 struct netvsc_device *net_device, 556 struct nvsp_message *init_packet, 557 u32 nvsp_ver) 558 { 559 struct net_device *ndev = hv_get_drvdata(device); 560 int ret; 561 562 memset(init_packet, 0, sizeof(struct nvsp_message)); 563 init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT; 564 init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver; 565 init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver; 566 trace_nvsp_send(ndev, init_packet); 567 568 /* Send the init request */ 569 ret = vmbus_sendpacket(device->channel, init_packet, 570 sizeof(struct nvsp_message), 571 (unsigned long)init_packet, 572 VM_PKT_DATA_INBAND, 573 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 574 575 if (ret != 0) 576 return ret; 577 578 wait_for_completion(&net_device->channel_init_wait); 579 580 if (init_packet->msg.init_msg.init_complete.status != 581 NVSP_STAT_SUCCESS) 582 return -EINVAL; 583 584 if (nvsp_ver == NVSP_PROTOCOL_VERSION_1) 585 return 0; 586 587 /* NVSPv2 or later: Send NDIS config */ 588 memset(init_packet, 0, sizeof(struct nvsp_message)); 589 init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG; 590 init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN; 591 init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1; 592 593 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) { 594 if (hv_is_isolation_supported()) 595 netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n"); 596 else 597 init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1; 598 599 /* Teaming bit is needed to receive link speed updates */ 600 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1; 601 } 602 603 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61) 604 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1; 605 606 trace_nvsp_send(ndev, init_packet); 607 608 ret = vmbus_sendpacket(device->channel, init_packet, 609 sizeof(struct nvsp_message), 610 VMBUS_RQST_ID_NO_RESPONSE, 611 VM_PKT_DATA_INBAND, 0); 612 613 return ret; 614 } 615 616 static int netvsc_connect_vsp(struct hv_device *device, 617 struct netvsc_device *net_device, 618 const struct netvsc_device_info *device_info) 619 { 620 struct net_device *ndev = hv_get_drvdata(device); 621 static const u32 ver_list[] = { 622 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2, 623 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5, 624 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61 625 }; 626 struct nvsp_message *init_packet; 627 int ndis_version, i, ret; 628 629 init_packet = &net_device->channel_init_pkt; 630 631 /* Negotiate the latest NVSP protocol supported */ 632 for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--) 633 if (negotiate_nvsp_ver(device, net_device, init_packet, 634 ver_list[i]) == 0) { 635 net_device->nvsp_version = ver_list[i]; 636 break; 637 } 638 639 if (i < 0) { 640 ret = -EPROTO; 641 goto cleanup; 642 } 643 644 if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) { 645 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n", 646 net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61); 647 ret = -EPROTO; 648 goto cleanup; 649 } 650 651 pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version); 652 653 /* Send the ndis version */ 654 memset(init_packet, 0, sizeof(struct nvsp_message)); 655 656 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4) 657 ndis_version = 0x00060001; 658 else 659 ndis_version = 0x0006001e; 660 661 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER; 662 init_packet->msg.v1_msg. 663 send_ndis_ver.ndis_major_ver = 664 (ndis_version & 0xFFFF0000) >> 16; 665 init_packet->msg.v1_msg. 666 send_ndis_ver.ndis_minor_ver = 667 ndis_version & 0xFFFF; 668 669 trace_nvsp_send(ndev, init_packet); 670 671 /* Send the init request */ 672 ret = vmbus_sendpacket(device->channel, init_packet, 673 sizeof(struct nvsp_message), 674 VMBUS_RQST_ID_NO_RESPONSE, 675 VM_PKT_DATA_INBAND, 0); 676 if (ret != 0) 677 goto cleanup; 678 679 680 ret = netvsc_init_buf(device, net_device, device_info); 681 682 cleanup: 683 return ret; 684 } 685 686 /* 687 * netvsc_device_remove - Callback when the root bus device is removed 688 */ 689 void netvsc_device_remove(struct hv_device *device) 690 { 691 struct net_device *ndev = hv_get_drvdata(device); 692 struct net_device_context *net_device_ctx = netdev_priv(ndev); 693 struct netvsc_device *net_device 694 = rtnl_dereference(net_device_ctx->nvdev); 695 int i; 696 697 /* 698 * Revoke receive buffer. If host is pre-Win2016 then tear down 699 * receive buffer GPADL. Do the same for send buffer. 700 */ 701 netvsc_revoke_recv_buf(device, net_device, ndev); 702 if (vmbus_proto_version < VERSION_WIN10) 703 netvsc_teardown_recv_gpadl(device, net_device, ndev); 704 705 netvsc_revoke_send_buf(device, net_device, ndev); 706 if (vmbus_proto_version < VERSION_WIN10) 707 netvsc_teardown_send_gpadl(device, net_device, ndev); 708 709 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 710 711 /* Disable NAPI and disassociate its context from the device. */ 712 for (i = 0; i < net_device->num_chn; i++) { 713 /* See also vmbus_reset_channel_cb(). */ 714 /* only disable enabled NAPI channel */ 715 if (i < ndev->real_num_rx_queues) { 716 netif_queue_set_napi(ndev, i, NETDEV_QUEUE_TYPE_TX, 717 NULL); 718 netif_queue_set_napi(ndev, i, NETDEV_QUEUE_TYPE_RX, 719 NULL); 720 napi_disable(&net_device->chan_table[i].napi); 721 } 722 723 netif_napi_del(&net_device->chan_table[i].napi); 724 } 725 726 /* 727 * At this point, no one should be accessing net_device 728 * except in here 729 */ 730 netdev_dbg(ndev, "net device safe to remove\n"); 731 732 /* Now, we can close the channel safely */ 733 vmbus_close(device->channel); 734 735 /* 736 * If host is Win2016 or higher then we do the GPADL tear down 737 * here after VMBus is closed. 738 */ 739 if (vmbus_proto_version >= VERSION_WIN10) { 740 netvsc_teardown_recv_gpadl(device, net_device, ndev); 741 netvsc_teardown_send_gpadl(device, net_device, ndev); 742 } 743 744 /* Release all resources */ 745 free_netvsc_device_rcu(net_device); 746 } 747 748 #define RING_AVAIL_PERCENT_HIWATER 20 749 #define RING_AVAIL_PERCENT_LOWATER 10 750 751 static inline void netvsc_free_send_slot(struct netvsc_device *net_device, 752 u32 index) 753 { 754 sync_change_bit(index, net_device->send_section_map); 755 } 756 757 static void netvsc_send_tx_complete(struct net_device *ndev, 758 struct netvsc_device *net_device, 759 struct vmbus_channel *channel, 760 const struct vmpacket_descriptor *desc, 761 int budget) 762 { 763 struct net_device_context *ndev_ctx = netdev_priv(ndev); 764 struct sk_buff *skb; 765 u16 q_idx = 0; 766 int queue_sends; 767 u64 cmd_rqst; 768 769 cmd_rqst = channel->request_addr_callback(channel, desc->trans_id); 770 if (cmd_rqst == VMBUS_RQST_ERROR) { 771 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); 772 return; 773 } 774 775 skb = (struct sk_buff *)(unsigned long)cmd_rqst; 776 777 /* Notify the layer above us */ 778 if (likely(skb)) { 779 struct hv_netvsc_packet *packet 780 = (struct hv_netvsc_packet *)skb->cb; 781 u32 send_index = packet->send_buf_index; 782 struct netvsc_stats_tx *tx_stats; 783 784 if (send_index != NETVSC_INVALID_INDEX) 785 netvsc_free_send_slot(net_device, send_index); 786 q_idx = packet->q_idx; 787 788 tx_stats = &net_device->chan_table[q_idx].tx_stats; 789 790 u64_stats_update_begin(&tx_stats->syncp); 791 tx_stats->packets += packet->total_packets; 792 tx_stats->bytes += packet->total_bytes; 793 u64_stats_update_end(&tx_stats->syncp); 794 795 netvsc_dma_unmap(ndev_ctx->device_ctx, packet); 796 napi_consume_skb(skb, budget); 797 } 798 799 queue_sends = 800 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends); 801 802 if (unlikely(net_device->destroy)) { 803 if (queue_sends == 0) 804 wake_up(&net_device->wait_drain); 805 } else { 806 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx); 807 808 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable && 809 (hv_get_avail_to_write_percent(&channel->outbound) > 810 RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) { 811 netif_tx_wake_queue(txq); 812 ndev_ctx->eth_stats.wake_queue++; 813 } 814 } 815 } 816 817 static void netvsc_send_completion(struct net_device *ndev, 818 struct netvsc_device *net_device, 819 struct vmbus_channel *incoming_channel, 820 const struct vmpacket_descriptor *desc, 821 int budget) 822 { 823 const struct nvsp_message *nvsp_packet; 824 u32 msglen = hv_pkt_datalen(desc); 825 struct nvsp_message *pkt_rqst; 826 u64 cmd_rqst; 827 u32 status; 828 829 /* First check if this is a VMBUS completion without data payload */ 830 if (!msglen) { 831 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel, 832 desc->trans_id); 833 if (cmd_rqst == VMBUS_RQST_ERROR) { 834 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); 835 return; 836 } 837 838 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst; 839 switch (pkt_rqst->hdr.msg_type) { 840 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH: 841 complete(&net_device->channel_init_wait); 842 break; 843 844 default: 845 netdev_err(ndev, "Unexpected VMBUS completion!!\n"); 846 } 847 return; 848 } 849 850 /* Ensure packet is big enough to read header fields */ 851 if (msglen < sizeof(struct nvsp_message_header)) { 852 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen); 853 return; 854 } 855 856 nvsp_packet = hv_pkt_data(desc); 857 switch (nvsp_packet->hdr.msg_type) { 858 case NVSP_MSG_TYPE_INIT_COMPLETE: 859 if (msglen < sizeof(struct nvsp_message_header) + 860 sizeof(struct nvsp_message_init_complete)) { 861 netdev_err(ndev, "nvsp_msg length too small: %u\n", 862 msglen); 863 return; 864 } 865 break; 866 867 case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE: 868 if (msglen < sizeof(struct nvsp_message_header) + 869 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) { 870 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 871 msglen); 872 return; 873 } 874 break; 875 876 case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE: 877 if (msglen < sizeof(struct nvsp_message_header) + 878 sizeof(struct nvsp_1_message_send_send_buffer_complete)) { 879 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 880 msglen); 881 return; 882 } 883 break; 884 885 case NVSP_MSG5_TYPE_SUBCHANNEL: 886 if (msglen < sizeof(struct nvsp_message_header) + 887 sizeof(struct nvsp_5_subchannel_complete)) { 888 netdev_err(ndev, "nvsp_msg5 length too small: %u\n", 889 msglen); 890 return; 891 } 892 break; 893 894 case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE: 895 if (msglen < sizeof(struct nvsp_message_header) + 896 sizeof(struct nvsp_1_message_send_rndis_packet_complete)) { 897 if (net_ratelimit()) 898 netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n", 899 msglen); 900 return; 901 } 902 903 /* If status indicates an error, output a message so we know 904 * there's a problem. But process the completion anyway so the 905 * resources are released. 906 */ 907 status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status; 908 if (status != NVSP_STAT_SUCCESS && net_ratelimit()) 909 netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n", 910 status); 911 912 netvsc_send_tx_complete(ndev, net_device, incoming_channel, 913 desc, budget); 914 return; 915 916 default: 917 netdev_err(ndev, 918 "Unknown send completion type %d received!!\n", 919 nvsp_packet->hdr.msg_type); 920 return; 921 } 922 923 /* Copy the response back */ 924 memcpy(&net_device->channel_init_pkt, nvsp_packet, 925 sizeof(struct nvsp_message)); 926 complete(&net_device->channel_init_wait); 927 } 928 929 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device) 930 { 931 unsigned long *map_addr = net_device->send_section_map; 932 unsigned int i; 933 934 for_each_clear_bit(i, map_addr, net_device->send_section_cnt) { 935 if (sync_test_and_set_bit(i, map_addr) == 0) 936 return i; 937 } 938 939 return NETVSC_INVALID_INDEX; 940 } 941 942 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device, 943 unsigned int section_index, 944 u32 pend_size, 945 struct hv_netvsc_packet *packet, 946 struct rndis_message *rndis_msg, 947 struct hv_page_buffer *pb, 948 bool xmit_more) 949 { 950 char *start = net_device->send_buf; 951 char *dest = start + (section_index * net_device->send_section_size) 952 + pend_size; 953 int i; 954 u32 padding = 0; 955 u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt : 956 packet->page_buf_cnt; 957 u32 remain; 958 959 /* Add padding */ 960 remain = packet->total_data_buflen & (net_device->pkt_align - 1); 961 if (xmit_more && remain) { 962 padding = net_device->pkt_align - remain; 963 rndis_msg->msg_len += padding; 964 packet->total_data_buflen += padding; 965 } 966 967 for (i = 0; i < page_count; i++) { 968 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT); 969 u32 offset = pb[i].offset; 970 u32 len = pb[i].len; 971 972 memcpy(dest, (src + offset), len); 973 dest += len; 974 } 975 976 if (padding) 977 memset(dest, 0, padding); 978 } 979 980 void netvsc_dma_unmap(struct hv_device *hv_dev, 981 struct hv_netvsc_packet *packet) 982 { 983 int i; 984 985 if (!hv_is_isolation_supported()) 986 return; 987 988 if (!packet->dma_range) 989 return; 990 991 for (i = 0; i < packet->page_buf_cnt; i++) 992 dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma, 993 packet->dma_range[i].mapping_size, 994 DMA_TO_DEVICE); 995 996 kfree(packet->dma_range); 997 } 998 999 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of 1000 * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation 1001 * VM. 1002 * 1003 * In isolation VM, netvsc send buffer has been marked visible to 1004 * host and so the data copied to send buffer doesn't need to use 1005 * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer() 1006 * may not be copied to send buffer and so these pages need to be 1007 * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do 1008 * that. The pfns in the struct hv_page_buffer need to be converted 1009 * to bounce buffer's pfn. The loop here is necessary because the 1010 * entries in the page buffer array are not necessarily full 1011 * pages of data. Each entry in the array has a separate offset and 1012 * len that may be non-zero, even for entries in the middle of the 1013 * array. And the entries are not physically contiguous. So each 1014 * entry must be individually mapped rather than as a contiguous unit. 1015 * So not use dma_map_sg() here. 1016 */ 1017 static int netvsc_dma_map(struct hv_device *hv_dev, 1018 struct hv_netvsc_packet *packet, 1019 struct hv_page_buffer *pb) 1020 { 1021 u32 page_count = packet->page_buf_cnt; 1022 dma_addr_t dma; 1023 int i; 1024 1025 if (!hv_is_isolation_supported()) 1026 return 0; 1027 1028 packet->dma_range = kcalloc(page_count, 1029 sizeof(*packet->dma_range), 1030 GFP_ATOMIC); 1031 if (!packet->dma_range) 1032 return -ENOMEM; 1033 1034 for (i = 0; i < page_count; i++) { 1035 char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT) 1036 + pb[i].offset); 1037 u32 len = pb[i].len; 1038 1039 dma = dma_map_single(&hv_dev->device, src, len, 1040 DMA_TO_DEVICE); 1041 if (dma_mapping_error(&hv_dev->device, dma)) { 1042 kfree(packet->dma_range); 1043 return -ENOMEM; 1044 } 1045 1046 /* pb[].offset and pb[].len are not changed during dma mapping 1047 * and so not reassign. 1048 */ 1049 packet->dma_range[i].dma = dma; 1050 packet->dma_range[i].mapping_size = len; 1051 pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT; 1052 } 1053 1054 return 0; 1055 } 1056 1057 static inline int netvsc_send_pkt( 1058 struct hv_device *device, 1059 struct hv_netvsc_packet *packet, 1060 struct netvsc_device *net_device, 1061 struct hv_page_buffer *pb, 1062 struct sk_buff *skb) 1063 { 1064 struct nvsp_message nvmsg; 1065 struct nvsp_1_message_send_rndis_packet *rpkt = 1066 &nvmsg.msg.v1_msg.send_rndis_pkt; 1067 struct netvsc_channel * const nvchan = 1068 &net_device->chan_table[packet->q_idx]; 1069 struct vmbus_channel *out_channel = nvchan->channel; 1070 struct net_device *ndev = hv_get_drvdata(device); 1071 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1072 struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx); 1073 u64 req_id; 1074 int ret; 1075 u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound); 1076 1077 memset(&nvmsg, 0, sizeof(struct nvsp_message)); 1078 nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT; 1079 if (skb) 1080 rpkt->channel_type = 0; /* 0 is RMC_DATA */ 1081 else 1082 rpkt->channel_type = 1; /* 1 is RMC_CONTROL */ 1083 1084 rpkt->send_buf_section_index = packet->send_buf_index; 1085 if (packet->send_buf_index == NETVSC_INVALID_INDEX) 1086 rpkt->send_buf_section_size = 0; 1087 else 1088 rpkt->send_buf_section_size = packet->total_data_buflen; 1089 1090 req_id = (ulong)skb; 1091 1092 if (out_channel->rescind) 1093 return -ENODEV; 1094 1095 trace_nvsp_send_pkt(ndev, out_channel, rpkt); 1096 1097 packet->dma_range = NULL; 1098 if (packet->page_buf_cnt) { 1099 if (packet->cp_partial) 1100 pb += packet->rmsg_pgcnt; 1101 1102 ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb); 1103 if (ret) { 1104 ret = -EAGAIN; 1105 goto exit; 1106 } 1107 1108 ret = vmbus_sendpacket_pagebuffer(out_channel, 1109 pb, packet->page_buf_cnt, 1110 &nvmsg, sizeof(nvmsg), 1111 req_id); 1112 1113 if (ret) 1114 netvsc_dma_unmap(ndev_ctx->device_ctx, packet); 1115 } else { 1116 ret = vmbus_sendpacket(out_channel, 1117 &nvmsg, sizeof(nvmsg), 1118 req_id, VM_PKT_DATA_INBAND, 1119 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1120 } 1121 1122 exit: 1123 if (ret == 0) { 1124 atomic_inc_return(&nvchan->queue_sends); 1125 1126 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) { 1127 netif_tx_stop_queue(txq); 1128 ndev_ctx->eth_stats.stop_queue++; 1129 } 1130 } else if (ret == -EAGAIN) { 1131 netif_tx_stop_queue(txq); 1132 ndev_ctx->eth_stats.stop_queue++; 1133 } else { 1134 netdev_err(ndev, 1135 "Unable to send packet pages %u len %u, ret %d\n", 1136 packet->page_buf_cnt, packet->total_data_buflen, 1137 ret); 1138 } 1139 1140 if (netif_tx_queue_stopped(txq) && 1141 atomic_read(&nvchan->queue_sends) < 1 && 1142 !net_device->tx_disable) { 1143 netif_tx_wake_queue(txq); 1144 ndev_ctx->eth_stats.wake_queue++; 1145 if (ret == -EAGAIN) 1146 ret = -ENOSPC; 1147 } 1148 1149 return ret; 1150 } 1151 1152 /* Move packet out of multi send data (msd), and clear msd */ 1153 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send, 1154 struct sk_buff **msd_skb, 1155 struct multi_send_data *msdp) 1156 { 1157 *msd_skb = msdp->skb; 1158 *msd_send = msdp->pkt; 1159 msdp->skb = NULL; 1160 msdp->pkt = NULL; 1161 msdp->count = 0; 1162 } 1163 1164 /* RCU already held by caller */ 1165 /* Batching/bouncing logic is designed to attempt to optimize 1166 * performance. 1167 * 1168 * For small, non-LSO packets we copy the packet to a send buffer 1169 * which is pre-registered with the Hyper-V side. This enables the 1170 * hypervisor to avoid remapping the aperture to access the packet 1171 * descriptor and data. 1172 * 1173 * If we already started using a buffer and the netdev is transmitting 1174 * a burst of packets, keep on copying into the buffer until it is 1175 * full or we are done collecting a burst. If there is an existing 1176 * buffer with space for the RNDIS descriptor but not the packet, copy 1177 * the RNDIS descriptor to the buffer, keeping the packet in place. 1178 * 1179 * If we do batching and send more than one packet using a single 1180 * NetVSC message, free the SKBs of the packets copied, except for the 1181 * last packet. This is done to streamline the handling of the case 1182 * where the last packet only had the RNDIS descriptor copied to the 1183 * send buffer, with the data pointers included in the NetVSC message. 1184 */ 1185 int netvsc_send(struct net_device *ndev, 1186 struct hv_netvsc_packet *packet, 1187 struct rndis_message *rndis_msg, 1188 struct hv_page_buffer *pb, 1189 struct sk_buff *skb, 1190 bool xdp_tx) 1191 { 1192 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1193 struct netvsc_device *net_device 1194 = rcu_dereference_bh(ndev_ctx->nvdev); 1195 struct hv_device *device = ndev_ctx->device_ctx; 1196 int ret = 0; 1197 struct netvsc_channel *nvchan; 1198 u32 pktlen = packet->total_data_buflen, msd_len = 0; 1199 unsigned int section_index = NETVSC_INVALID_INDEX; 1200 struct multi_send_data *msdp; 1201 struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL; 1202 struct sk_buff *msd_skb = NULL; 1203 bool try_batch, xmit_more; 1204 1205 /* If device is rescinded, return error and packet will get dropped. */ 1206 if (unlikely(!net_device || net_device->destroy)) 1207 return -ENODEV; 1208 1209 nvchan = &net_device->chan_table[packet->q_idx]; 1210 packet->send_buf_index = NETVSC_INVALID_INDEX; 1211 packet->cp_partial = false; 1212 1213 /* Send a control message or XDP packet directly without accessing 1214 * msd (Multi-Send Data) field which may be changed during data packet 1215 * processing. 1216 */ 1217 if (!skb || xdp_tx) 1218 return netvsc_send_pkt(device, packet, net_device, pb, skb); 1219 1220 /* batch packets in send buffer if possible */ 1221 msdp = &nvchan->msd; 1222 if (msdp->pkt) 1223 msd_len = msdp->pkt->total_data_buflen; 1224 1225 try_batch = msd_len > 0 && msdp->count < net_device->max_pkt; 1226 if (try_batch && msd_len + pktlen + net_device->pkt_align < 1227 net_device->send_section_size) { 1228 section_index = msdp->pkt->send_buf_index; 1229 1230 } else if (try_batch && msd_len + packet->rmsg_size < 1231 net_device->send_section_size) { 1232 section_index = msdp->pkt->send_buf_index; 1233 packet->cp_partial = true; 1234 1235 } else if (pktlen + net_device->pkt_align < 1236 net_device->send_section_size) { 1237 section_index = netvsc_get_next_send_section(net_device); 1238 if (unlikely(section_index == NETVSC_INVALID_INDEX)) { 1239 ++ndev_ctx->eth_stats.tx_send_full; 1240 } else { 1241 move_pkt_msd(&msd_send, &msd_skb, msdp); 1242 msd_len = 0; 1243 } 1244 } 1245 1246 /* Keep aggregating only if stack says more data is coming 1247 * and not doing mixed modes send and not flow blocked 1248 */ 1249 xmit_more = netdev_xmit_more() && 1250 !packet->cp_partial && 1251 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx)); 1252 1253 if (section_index != NETVSC_INVALID_INDEX) { 1254 netvsc_copy_to_send_buf(net_device, 1255 section_index, msd_len, 1256 packet, rndis_msg, pb, xmit_more); 1257 1258 packet->send_buf_index = section_index; 1259 1260 if (packet->cp_partial) { 1261 packet->page_buf_cnt -= packet->rmsg_pgcnt; 1262 packet->total_data_buflen = msd_len + packet->rmsg_size; 1263 } else { 1264 packet->page_buf_cnt = 0; 1265 packet->total_data_buflen += msd_len; 1266 } 1267 1268 if (msdp->pkt) { 1269 packet->total_packets += msdp->pkt->total_packets; 1270 packet->total_bytes += msdp->pkt->total_bytes; 1271 } 1272 1273 if (msdp->skb) 1274 dev_consume_skb_any(msdp->skb); 1275 1276 if (xmit_more) { 1277 msdp->skb = skb; 1278 msdp->pkt = packet; 1279 msdp->count++; 1280 } else { 1281 cur_send = packet; 1282 msdp->skb = NULL; 1283 msdp->pkt = NULL; 1284 msdp->count = 0; 1285 } 1286 } else { 1287 move_pkt_msd(&msd_send, &msd_skb, msdp); 1288 cur_send = packet; 1289 } 1290 1291 if (msd_send) { 1292 int m_ret = netvsc_send_pkt(device, msd_send, net_device, 1293 NULL, msd_skb); 1294 1295 if (m_ret != 0) { 1296 netvsc_free_send_slot(net_device, 1297 msd_send->send_buf_index); 1298 dev_kfree_skb_any(msd_skb); 1299 } 1300 } 1301 1302 if (cur_send) 1303 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb); 1304 1305 if (ret != 0 && section_index != NETVSC_INVALID_INDEX) 1306 netvsc_free_send_slot(net_device, section_index); 1307 1308 return ret; 1309 } 1310 1311 /* Send pending recv completions */ 1312 static int send_recv_completions(struct net_device *ndev, 1313 struct netvsc_device *nvdev, 1314 struct netvsc_channel *nvchan) 1315 { 1316 struct multi_recv_comp *mrc = &nvchan->mrc; 1317 struct recv_comp_msg { 1318 struct nvsp_message_header hdr; 1319 u32 status; 1320 } __packed; 1321 struct recv_comp_msg msg = { 1322 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE, 1323 }; 1324 int ret; 1325 1326 while (mrc->first != mrc->next) { 1327 const struct recv_comp_data *rcd 1328 = mrc->slots + mrc->first; 1329 1330 msg.status = rcd->status; 1331 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg), 1332 rcd->tid, VM_PKT_COMP, 0); 1333 if (unlikely(ret)) { 1334 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1335 1336 ++ndev_ctx->eth_stats.rx_comp_busy; 1337 return ret; 1338 } 1339 1340 if (++mrc->first == nvdev->recv_completion_cnt) 1341 mrc->first = 0; 1342 } 1343 1344 /* receive completion ring has been emptied */ 1345 if (unlikely(nvdev->destroy)) 1346 wake_up(&nvdev->wait_drain); 1347 1348 return 0; 1349 } 1350 1351 /* Count how many receive completions are outstanding */ 1352 static void recv_comp_slot_avail(const struct netvsc_device *nvdev, 1353 const struct multi_recv_comp *mrc, 1354 u32 *filled, u32 *avail) 1355 { 1356 u32 count = nvdev->recv_completion_cnt; 1357 1358 if (mrc->next >= mrc->first) 1359 *filled = mrc->next - mrc->first; 1360 else 1361 *filled = (count - mrc->first) + mrc->next; 1362 1363 *avail = count - *filled - 1; 1364 } 1365 1366 /* Add receive complete to ring to send to host. */ 1367 static void enq_receive_complete(struct net_device *ndev, 1368 struct netvsc_device *nvdev, u16 q_idx, 1369 u64 tid, u32 status) 1370 { 1371 struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx]; 1372 struct multi_recv_comp *mrc = &nvchan->mrc; 1373 struct recv_comp_data *rcd; 1374 u32 filled, avail; 1375 1376 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1377 1378 if (unlikely(filled > NAPI_POLL_WEIGHT)) { 1379 send_recv_completions(ndev, nvdev, nvchan); 1380 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1381 } 1382 1383 if (unlikely(!avail)) { 1384 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n", 1385 q_idx, tid); 1386 return; 1387 } 1388 1389 rcd = mrc->slots + mrc->next; 1390 rcd->tid = tid; 1391 rcd->status = status; 1392 1393 if (++mrc->next == nvdev->recv_completion_cnt) 1394 mrc->next = 0; 1395 } 1396 1397 static int netvsc_receive(struct net_device *ndev, 1398 struct netvsc_device *net_device, 1399 struct netvsc_channel *nvchan, 1400 const struct vmpacket_descriptor *desc) 1401 { 1402 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1403 struct vmbus_channel *channel = nvchan->channel; 1404 const struct vmtransfer_page_packet_header *vmxferpage_packet 1405 = container_of(desc, const struct vmtransfer_page_packet_header, d); 1406 const struct nvsp_message *nvsp = hv_pkt_data(desc); 1407 u32 msglen = hv_pkt_datalen(desc); 1408 u16 q_idx = channel->offermsg.offer.sub_channel_index; 1409 char *recv_buf = net_device->recv_buf; 1410 u32 status = NVSP_STAT_SUCCESS; 1411 int i; 1412 int count = 0; 1413 1414 /* Ensure packet is big enough to read header fields */ 1415 if (msglen < sizeof(struct nvsp_message_header)) { 1416 netif_err(net_device_ctx, rx_err, ndev, 1417 "invalid nvsp header, length too small: %u\n", 1418 msglen); 1419 return 0; 1420 } 1421 1422 /* Make sure this is a valid nvsp packet */ 1423 if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) { 1424 netif_err(net_device_ctx, rx_err, ndev, 1425 "Unknown nvsp packet type received %u\n", 1426 nvsp->hdr.msg_type); 1427 return 0; 1428 } 1429 1430 /* Validate xfer page pkt header */ 1431 if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) { 1432 netif_err(net_device_ctx, rx_err, ndev, 1433 "Invalid xfer page pkt, offset too small: %u\n", 1434 desc->offset8 << 3); 1435 return 0; 1436 } 1437 1438 if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) { 1439 netif_err(net_device_ctx, rx_err, ndev, 1440 "Invalid xfer page set id - expecting %x got %x\n", 1441 NETVSC_RECEIVE_BUFFER_ID, 1442 vmxferpage_packet->xfer_pageset_id); 1443 return 0; 1444 } 1445 1446 count = vmxferpage_packet->range_cnt; 1447 1448 /* Check count for a valid value */ 1449 if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) { 1450 netif_err(net_device_ctx, rx_err, ndev, 1451 "Range count is not valid: %d\n", 1452 count); 1453 return 0; 1454 } 1455 1456 /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */ 1457 for (i = 0; i < count; i++) { 1458 u32 offset = vmxferpage_packet->ranges[i].byte_offset; 1459 u32 buflen = vmxferpage_packet->ranges[i].byte_count; 1460 void *data; 1461 int ret; 1462 1463 if (unlikely(offset > net_device->recv_buf_size || 1464 buflen > net_device->recv_buf_size - offset)) { 1465 nvchan->rsc.cnt = 0; 1466 status = NVSP_STAT_FAIL; 1467 netif_err(net_device_ctx, rx_err, ndev, 1468 "Packet offset:%u + len:%u too big\n", 1469 offset, buflen); 1470 1471 continue; 1472 } 1473 1474 /* We're going to copy (sections of) the packet into nvchan->recv_buf; 1475 * make sure that nvchan->recv_buf is large enough to hold the packet. 1476 */ 1477 if (unlikely(buflen > net_device->recv_section_size)) { 1478 nvchan->rsc.cnt = 0; 1479 status = NVSP_STAT_FAIL; 1480 netif_err(net_device_ctx, rx_err, ndev, 1481 "Packet too big: buflen=%u recv_section_size=%u\n", 1482 buflen, net_device->recv_section_size); 1483 1484 continue; 1485 } 1486 1487 data = recv_buf + offset; 1488 1489 nvchan->rsc.is_last = (i == count - 1); 1490 1491 trace_rndis_recv(ndev, q_idx, data); 1492 1493 /* Pass it to the upper layer */ 1494 ret = rndis_filter_receive(ndev, net_device, 1495 nvchan, data, buflen); 1496 1497 if (unlikely(ret != NVSP_STAT_SUCCESS)) { 1498 /* Drop incomplete packet */ 1499 nvchan->rsc.cnt = 0; 1500 status = NVSP_STAT_FAIL; 1501 } 1502 } 1503 1504 enq_receive_complete(ndev, net_device, q_idx, 1505 vmxferpage_packet->d.trans_id, status); 1506 1507 return count; 1508 } 1509 1510 static void netvsc_send_table(struct net_device *ndev, 1511 struct netvsc_device *nvscdev, 1512 const struct nvsp_message *nvmsg, 1513 u32 msglen) 1514 { 1515 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1516 u32 count, offset, *tab; 1517 int i; 1518 1519 /* Ensure packet is big enough to read send_table fields */ 1520 if (msglen < sizeof(struct nvsp_message_header) + 1521 sizeof(struct nvsp_5_send_indirect_table)) { 1522 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen); 1523 return; 1524 } 1525 1526 count = nvmsg->msg.v5_msg.send_table.count; 1527 offset = nvmsg->msg.v5_msg.send_table.offset; 1528 1529 if (count != VRSS_SEND_TAB_SIZE) { 1530 netdev_err(ndev, "Received wrong send-table size:%u\n", count); 1531 return; 1532 } 1533 1534 /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be 1535 * wrong due to a host bug. So fix the offset here. 1536 */ 1537 if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 && 1538 msglen >= sizeof(struct nvsp_message_header) + 1539 sizeof(union nvsp_6_message_uber) + count * sizeof(u32)) 1540 offset = sizeof(struct nvsp_message_header) + 1541 sizeof(union nvsp_6_message_uber); 1542 1543 /* Boundary check for all versions */ 1544 if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) { 1545 netdev_err(ndev, "Received send-table offset too big:%u\n", 1546 offset); 1547 return; 1548 } 1549 1550 tab = (void *)nvmsg + offset; 1551 1552 for (i = 0; i < count; i++) 1553 net_device_ctx->tx_table[i] = tab[i]; 1554 } 1555 1556 static void netvsc_send_vf(struct net_device *ndev, 1557 const struct nvsp_message *nvmsg, 1558 u32 msglen) 1559 { 1560 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1561 1562 /* Ensure packet is big enough to read its fields */ 1563 if (msglen < sizeof(struct nvsp_message_header) + 1564 sizeof(struct nvsp_4_send_vf_association)) { 1565 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen); 1566 return; 1567 } 1568 1569 net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated; 1570 net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial; 1571 1572 if (net_device_ctx->vf_alloc) 1573 complete(&net_device_ctx->vf_add); 1574 1575 netdev_info(ndev, "VF slot %u %s\n", 1576 net_device_ctx->vf_serial, 1577 net_device_ctx->vf_alloc ? "added" : "removed"); 1578 } 1579 1580 static void netvsc_receive_inband(struct net_device *ndev, 1581 struct netvsc_device *nvscdev, 1582 const struct vmpacket_descriptor *desc) 1583 { 1584 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1585 u32 msglen = hv_pkt_datalen(desc); 1586 1587 /* Ensure packet is big enough to read header fields */ 1588 if (msglen < sizeof(struct nvsp_message_header)) { 1589 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen); 1590 return; 1591 } 1592 1593 switch (nvmsg->hdr.msg_type) { 1594 case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE: 1595 netvsc_send_table(ndev, nvscdev, nvmsg, msglen); 1596 break; 1597 1598 case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION: 1599 if (hv_is_isolation_supported()) 1600 netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n"); 1601 else 1602 netvsc_send_vf(ndev, nvmsg, msglen); 1603 break; 1604 } 1605 } 1606 1607 static int netvsc_process_raw_pkt(struct hv_device *device, 1608 struct netvsc_channel *nvchan, 1609 struct netvsc_device *net_device, 1610 struct net_device *ndev, 1611 const struct vmpacket_descriptor *desc, 1612 int budget) 1613 { 1614 struct vmbus_channel *channel = nvchan->channel; 1615 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1616 1617 trace_nvsp_recv(ndev, channel, nvmsg); 1618 1619 switch (desc->type) { 1620 case VM_PKT_COMP: 1621 netvsc_send_completion(ndev, net_device, channel, desc, budget); 1622 break; 1623 1624 case VM_PKT_DATA_USING_XFER_PAGES: 1625 return netvsc_receive(ndev, net_device, nvchan, desc); 1626 1627 case VM_PKT_DATA_INBAND: 1628 netvsc_receive_inband(ndev, net_device, desc); 1629 break; 1630 1631 default: 1632 netdev_err(ndev, "unhandled packet type %d, tid %llx\n", 1633 desc->type, desc->trans_id); 1634 break; 1635 } 1636 1637 return 0; 1638 } 1639 1640 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel) 1641 { 1642 struct vmbus_channel *primary = channel->primary_channel; 1643 1644 return primary ? primary->device_obj : channel->device_obj; 1645 } 1646 1647 /* Network processing softirq 1648 * Process data in incoming ring buffer from host 1649 * Stops when ring is empty or budget is met or exceeded. 1650 */ 1651 int netvsc_poll(struct napi_struct *napi, int budget) 1652 { 1653 struct netvsc_channel *nvchan 1654 = container_of(napi, struct netvsc_channel, napi); 1655 struct netvsc_device *net_device = nvchan->net_device; 1656 struct vmbus_channel *channel = nvchan->channel; 1657 struct hv_device *device = netvsc_channel_to_device(channel); 1658 struct net_device *ndev = hv_get_drvdata(device); 1659 int work_done = 0; 1660 int ret; 1661 1662 /* If starting a new interval */ 1663 if (!nvchan->desc) 1664 nvchan->desc = hv_pkt_iter_first(channel); 1665 1666 nvchan->xdp_flush = false; 1667 1668 while (nvchan->desc && work_done < budget) { 1669 work_done += netvsc_process_raw_pkt(device, nvchan, net_device, 1670 ndev, nvchan->desc, budget); 1671 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc); 1672 } 1673 1674 if (nvchan->xdp_flush) 1675 xdp_do_flush(); 1676 1677 /* Send any pending receive completions */ 1678 ret = send_recv_completions(ndev, net_device, nvchan); 1679 1680 /* If it did not exhaust NAPI budget this time 1681 * and not doing busy poll 1682 * then re-enable host interrupts 1683 * and reschedule if ring is not empty 1684 * or sending receive completion failed. 1685 */ 1686 if (work_done < budget && 1687 napi_complete_done(napi, work_done) && 1688 (ret || hv_end_read(&channel->inbound)) && 1689 napi_schedule_prep(napi)) { 1690 hv_begin_read(&channel->inbound); 1691 __napi_schedule(napi); 1692 } 1693 1694 /* Driver may overshoot since multiple packets per descriptor */ 1695 return min(work_done, budget); 1696 } 1697 1698 /* Call back when data is available in host ring buffer. 1699 * Processing is deferred until network softirq (NAPI) 1700 */ 1701 void netvsc_channel_cb(void *context) 1702 { 1703 struct netvsc_channel *nvchan = context; 1704 struct vmbus_channel *channel = nvchan->channel; 1705 struct hv_ring_buffer_info *rbi = &channel->inbound; 1706 1707 /* preload first vmpacket descriptor */ 1708 prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 1709 1710 if (napi_schedule_prep(&nvchan->napi)) { 1711 /* disable interrupts from host */ 1712 hv_begin_read(rbi); 1713 1714 __napi_schedule_irqoff(&nvchan->napi); 1715 } 1716 } 1717 1718 /* 1719 * netvsc_device_add - Callback when the device belonging to this 1720 * driver is added 1721 */ 1722 struct netvsc_device *netvsc_device_add(struct hv_device *device, 1723 const struct netvsc_device_info *device_info) 1724 { 1725 int i, ret = 0; 1726 struct netvsc_device *net_device; 1727 struct net_device *ndev = hv_get_drvdata(device); 1728 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1729 1730 net_device = alloc_net_device(); 1731 if (!net_device) 1732 return ERR_PTR(-ENOMEM); 1733 1734 for (i = 0; i < VRSS_SEND_TAB_SIZE; i++) 1735 net_device_ctx->tx_table[i] = 0; 1736 1737 /* Because the device uses NAPI, all the interrupt batching and 1738 * control is done via Net softirq, not the channel handling 1739 */ 1740 set_channel_read_mode(device->channel, HV_CALL_ISR); 1741 1742 /* If we're reopening the device we may have multiple queues, fill the 1743 * chn_table with the default channel to use it before subchannels are 1744 * opened. 1745 * Initialize the channel state before we open; 1746 * we can be interrupted as soon as we open the channel. 1747 */ 1748 1749 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 1750 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 1751 1752 nvchan->channel = device->channel; 1753 nvchan->net_device = net_device; 1754 u64_stats_init(&nvchan->tx_stats.syncp); 1755 u64_stats_init(&nvchan->rx_stats.syncp); 1756 1757 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0); 1758 1759 if (ret) { 1760 netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret); 1761 goto cleanup2; 1762 } 1763 1764 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq, 1765 MEM_TYPE_PAGE_SHARED, NULL); 1766 1767 if (ret) { 1768 netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret); 1769 goto cleanup2; 1770 } 1771 } 1772 1773 /* Enable NAPI handler before init callbacks */ 1774 netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll); 1775 1776 /* Open the channel */ 1777 device->channel->next_request_id_callback = vmbus_next_request_id; 1778 device->channel->request_addr_callback = vmbus_request_addr; 1779 device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes); 1780 device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE; 1781 1782 ret = vmbus_open(device->channel, netvsc_ring_bytes, 1783 netvsc_ring_bytes, NULL, 0, 1784 netvsc_channel_cb, net_device->chan_table); 1785 1786 if (ret != 0) { 1787 netdev_err(ndev, "unable to open channel: %d\n", ret); 1788 goto cleanup; 1789 } 1790 1791 /* Channel is opened */ 1792 netdev_dbg(ndev, "hv_netvsc channel opened successfully\n"); 1793 1794 napi_enable(&net_device->chan_table[0].napi); 1795 netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_RX, 1796 &net_device->chan_table[0].napi); 1797 netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_TX, 1798 &net_device->chan_table[0].napi); 1799 1800 /* Connect with the NetVsp */ 1801 ret = netvsc_connect_vsp(device, net_device, device_info); 1802 if (ret != 0) { 1803 netdev_err(ndev, 1804 "unable to connect to NetVSP - %d\n", ret); 1805 goto close; 1806 } 1807 1808 /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is 1809 * populated. 1810 */ 1811 rcu_assign_pointer(net_device_ctx->nvdev, net_device); 1812 1813 return net_device; 1814 1815 close: 1816 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 1817 netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_TX, NULL); 1818 netif_queue_set_napi(ndev, 0, NETDEV_QUEUE_TYPE_RX, NULL); 1819 napi_disable(&net_device->chan_table[0].napi); 1820 1821 /* Now, we can close the channel safely */ 1822 vmbus_close(device->channel); 1823 1824 cleanup: 1825 netif_napi_del(&net_device->chan_table[0].napi); 1826 1827 cleanup2: 1828 free_netvsc_device(&net_device->rcu); 1829 1830 return ERR_PTR(ret); 1831 } 1832