1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/wait.h> 14 #include <linux/mm.h> 15 #include <linux/delay.h> 16 #include <linux/io.h> 17 #include <linux/slab.h> 18 #include <linux/netdevice.h> 19 #include <linux/if_ether.h> 20 #include <linux/vmalloc.h> 21 #include <linux/rtnetlink.h> 22 #include <linux/prefetch.h> 23 #include <linux/filter.h> 24 25 #include <asm/sync_bitops.h> 26 #include <asm/mshyperv.h> 27 28 #include "hyperv_net.h" 29 #include "netvsc_trace.h" 30 31 /* 32 * Switch the data path from the synthetic interface to the VF 33 * interface. 34 */ 35 int netvsc_switch_datapath(struct net_device *ndev, bool vf) 36 { 37 struct net_device_context *net_device_ctx = netdev_priv(ndev); 38 struct hv_device *dev = net_device_ctx->device_ctx; 39 struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev); 40 struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt; 41 int ret, retry = 0; 42 43 /* Block sending traffic to VF if it's about to be gone */ 44 if (!vf) 45 net_device_ctx->data_path_is_vf = vf; 46 47 memset(init_pkt, 0, sizeof(struct nvsp_message)); 48 init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH; 49 if (vf) 50 init_pkt->msg.v4_msg.active_dp.active_datapath = 51 NVSP_DATAPATH_VF; 52 else 53 init_pkt->msg.v4_msg.active_dp.active_datapath = 54 NVSP_DATAPATH_SYNTHETIC; 55 56 again: 57 trace_nvsp_send(ndev, init_pkt); 58 59 ret = vmbus_sendpacket(dev->channel, init_pkt, 60 sizeof(struct nvsp_message), 61 (unsigned long)init_pkt, VM_PKT_DATA_INBAND, 62 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 63 64 /* If failed to switch to/from VF, let data_path_is_vf stay false, 65 * so we use synthetic path to send data. 66 */ 67 if (ret) { 68 if (ret != -EAGAIN) { 69 netdev_err(ndev, 70 "Unable to send sw datapath msg, err: %d\n", 71 ret); 72 return ret; 73 } 74 75 if (retry++ < RETRY_MAX) { 76 usleep_range(RETRY_US_LO, RETRY_US_HI); 77 goto again; 78 } else { 79 netdev_err( 80 ndev, 81 "Retry failed to send sw datapath msg, err: %d\n", 82 ret); 83 return ret; 84 } 85 } 86 87 wait_for_completion(&nv_dev->channel_init_wait); 88 net_device_ctx->data_path_is_vf = vf; 89 90 return 0; 91 } 92 93 /* Worker to setup sub channels on initial setup 94 * Initial hotplug event occurs in softirq context 95 * and can't wait for channels. 96 */ 97 static void netvsc_subchan_work(struct work_struct *w) 98 { 99 struct netvsc_device *nvdev = 100 container_of(w, struct netvsc_device, subchan_work); 101 struct rndis_device *rdev; 102 int i, ret; 103 104 /* Avoid deadlock with device removal already under RTNL */ 105 if (!rtnl_trylock()) { 106 schedule_work(w); 107 return; 108 } 109 110 rdev = nvdev->extension; 111 if (rdev) { 112 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL); 113 if (ret == 0) { 114 netif_device_attach(rdev->ndev); 115 } else { 116 /* fallback to only primary channel */ 117 for (i = 1; i < nvdev->num_chn; i++) 118 netif_napi_del(&nvdev->chan_table[i].napi); 119 120 nvdev->max_chn = 1; 121 nvdev->num_chn = 1; 122 } 123 } 124 125 rtnl_unlock(); 126 } 127 128 static struct netvsc_device *alloc_net_device(void) 129 { 130 struct netvsc_device *net_device; 131 132 net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL); 133 if (!net_device) 134 return NULL; 135 136 init_waitqueue_head(&net_device->wait_drain); 137 net_device->destroy = false; 138 net_device->tx_disable = true; 139 140 net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT; 141 net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT; 142 143 init_completion(&net_device->channel_init_wait); 144 init_waitqueue_head(&net_device->subchan_open); 145 INIT_WORK(&net_device->subchan_work, netvsc_subchan_work); 146 147 return net_device; 148 } 149 150 static void free_netvsc_device(struct rcu_head *head) 151 { 152 struct netvsc_device *nvdev 153 = container_of(head, struct netvsc_device, rcu); 154 int i; 155 156 kfree(nvdev->extension); 157 vfree(nvdev->recv_buf); 158 vfree(nvdev->send_buf); 159 bitmap_free(nvdev->send_section_map); 160 161 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 162 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq); 163 kfree(nvdev->chan_table[i].recv_buf); 164 vfree(nvdev->chan_table[i].mrc.slots); 165 } 166 167 kfree(nvdev); 168 } 169 170 static void free_netvsc_device_rcu(struct netvsc_device *nvdev) 171 { 172 call_rcu(&nvdev->rcu, free_netvsc_device); 173 } 174 175 static void netvsc_revoke_recv_buf(struct hv_device *device, 176 struct netvsc_device *net_device, 177 struct net_device *ndev) 178 { 179 struct nvsp_message *revoke_packet; 180 int ret; 181 182 /* 183 * If we got a section count, it means we received a 184 * SendReceiveBufferComplete msg (ie sent 185 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need 186 * to send a revoke msg here 187 */ 188 if (net_device->recv_section_cnt) { 189 /* Send the revoke receive buffer */ 190 revoke_packet = &net_device->revoke_packet; 191 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 192 193 revoke_packet->hdr.msg_type = 194 NVSP_MSG1_TYPE_REVOKE_RECV_BUF; 195 revoke_packet->msg.v1_msg. 196 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 197 198 trace_nvsp_send(ndev, revoke_packet); 199 200 ret = vmbus_sendpacket(device->channel, 201 revoke_packet, 202 sizeof(struct nvsp_message), 203 VMBUS_RQST_ID_NO_RESPONSE, 204 VM_PKT_DATA_INBAND, 0); 205 /* If the failure is because the channel is rescinded; 206 * ignore the failure since we cannot send on a rescinded 207 * channel. This would allow us to properly cleanup 208 * even when the channel is rescinded. 209 */ 210 if (device->channel->rescind) 211 ret = 0; 212 /* 213 * If we failed here, we might as well return and 214 * have a leak rather than continue and a bugchk 215 */ 216 if (ret != 0) { 217 netdev_err(ndev, "unable to send " 218 "revoke receive buffer to netvsp\n"); 219 return; 220 } 221 net_device->recv_section_cnt = 0; 222 } 223 } 224 225 static void netvsc_revoke_send_buf(struct hv_device *device, 226 struct netvsc_device *net_device, 227 struct net_device *ndev) 228 { 229 struct nvsp_message *revoke_packet; 230 int ret; 231 232 /* Deal with the send buffer we may have setup. 233 * If we got a send section size, it means we received a 234 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent 235 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need 236 * to send a revoke msg here 237 */ 238 if (net_device->send_section_cnt) { 239 /* Send the revoke receive buffer */ 240 revoke_packet = &net_device->revoke_packet; 241 memset(revoke_packet, 0, sizeof(struct nvsp_message)); 242 243 revoke_packet->hdr.msg_type = 244 NVSP_MSG1_TYPE_REVOKE_SEND_BUF; 245 revoke_packet->msg.v1_msg.revoke_send_buf.id = 246 NETVSC_SEND_BUFFER_ID; 247 248 trace_nvsp_send(ndev, revoke_packet); 249 250 ret = vmbus_sendpacket(device->channel, 251 revoke_packet, 252 sizeof(struct nvsp_message), 253 VMBUS_RQST_ID_NO_RESPONSE, 254 VM_PKT_DATA_INBAND, 0); 255 256 /* If the failure is because the channel is rescinded; 257 * ignore the failure since we cannot send on a rescinded 258 * channel. This would allow us to properly cleanup 259 * even when the channel is rescinded. 260 */ 261 if (device->channel->rescind) 262 ret = 0; 263 264 /* If we failed here, we might as well return and 265 * have a leak rather than continue and a bugchk 266 */ 267 if (ret != 0) { 268 netdev_err(ndev, "unable to send " 269 "revoke send buffer to netvsp\n"); 270 return; 271 } 272 net_device->send_section_cnt = 0; 273 } 274 } 275 276 static void netvsc_teardown_recv_gpadl(struct hv_device *device, 277 struct netvsc_device *net_device, 278 struct net_device *ndev) 279 { 280 int ret; 281 282 if (net_device->recv_buf_gpadl_handle.gpadl_handle) { 283 ret = vmbus_teardown_gpadl(device->channel, 284 &net_device->recv_buf_gpadl_handle); 285 286 /* If we failed here, we might as well return and have a leak 287 * rather than continue and a bugchk 288 */ 289 if (ret != 0) { 290 netdev_err(ndev, 291 "unable to teardown receive buffer's gpadl\n"); 292 return; 293 } 294 } 295 } 296 297 static void netvsc_teardown_send_gpadl(struct hv_device *device, 298 struct netvsc_device *net_device, 299 struct net_device *ndev) 300 { 301 int ret; 302 303 if (net_device->send_buf_gpadl_handle.gpadl_handle) { 304 ret = vmbus_teardown_gpadl(device->channel, 305 &net_device->send_buf_gpadl_handle); 306 307 /* If we failed here, we might as well return and have a leak 308 * rather than continue and a bugchk 309 */ 310 if (ret != 0) { 311 netdev_err(ndev, 312 "unable to teardown send buffer's gpadl\n"); 313 return; 314 } 315 } 316 } 317 318 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx) 319 { 320 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; 321 int node = cpu_to_node(nvchan->channel->target_cpu); 322 size_t size; 323 324 size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data); 325 nvchan->mrc.slots = vzalloc_node(size, node); 326 if (!nvchan->mrc.slots) 327 nvchan->mrc.slots = vzalloc(size); 328 329 return nvchan->mrc.slots ? 0 : -ENOMEM; 330 } 331 332 static int netvsc_init_buf(struct hv_device *device, 333 struct netvsc_device *net_device, 334 const struct netvsc_device_info *device_info) 335 { 336 struct nvsp_1_message_send_receive_buffer_complete *resp; 337 struct net_device *ndev = hv_get_drvdata(device); 338 struct nvsp_message *init_packet; 339 unsigned int buf_size; 340 int i, ret = 0; 341 342 /* Get receive buffer area. */ 343 buf_size = device_info->recv_sections * device_info->recv_section_size; 344 buf_size = roundup(buf_size, PAGE_SIZE); 345 346 /* Legacy hosts only allow smaller receive buffer */ 347 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 348 buf_size = min_t(unsigned int, buf_size, 349 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY); 350 351 net_device->recv_buf = vzalloc(buf_size); 352 if (!net_device->recv_buf) { 353 netdev_err(ndev, 354 "unable to allocate receive buffer of size %u\n", 355 buf_size); 356 ret = -ENOMEM; 357 goto cleanup; 358 } 359 360 net_device->recv_buf_size = buf_size; 361 362 /* 363 * Establish the gpadl handle for this buffer on this 364 * channel. Note: This call uses the vmbus connection rather 365 * than the channel to establish the gpadl handle. 366 */ 367 ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf, 368 buf_size, 369 &net_device->recv_buf_gpadl_handle); 370 if (ret != 0) { 371 netdev_err(ndev, 372 "unable to establish receive buffer's gpadl\n"); 373 goto cleanup; 374 } 375 376 /* Notify the NetVsp of the gpadl handle */ 377 init_packet = &net_device->channel_init_pkt; 378 memset(init_packet, 0, sizeof(struct nvsp_message)); 379 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF; 380 init_packet->msg.v1_msg.send_recv_buf. 381 gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle; 382 init_packet->msg.v1_msg. 383 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; 384 385 trace_nvsp_send(ndev, init_packet); 386 387 /* Send the gpadl notification request */ 388 ret = vmbus_sendpacket(device->channel, init_packet, 389 sizeof(struct nvsp_message), 390 (unsigned long)init_packet, 391 VM_PKT_DATA_INBAND, 392 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 393 if (ret != 0) { 394 netdev_err(ndev, 395 "unable to send receive buffer's gpadl to netvsp\n"); 396 goto cleanup; 397 } 398 399 wait_for_completion(&net_device->channel_init_wait); 400 401 /* Check the response */ 402 resp = &init_packet->msg.v1_msg.send_recv_buf_complete; 403 if (resp->status != NVSP_STAT_SUCCESS) { 404 netdev_err(ndev, 405 "Unable to complete receive buffer initialization with NetVsp - status %d\n", 406 resp->status); 407 ret = -EINVAL; 408 goto cleanup; 409 } 410 411 /* Parse the response */ 412 netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n", 413 resp->num_sections, resp->sections[0].sub_alloc_size, 414 resp->sections[0].num_sub_allocs); 415 416 /* There should only be one section for the entire receive buffer */ 417 if (resp->num_sections != 1 || resp->sections[0].offset != 0) { 418 ret = -EINVAL; 419 goto cleanup; 420 } 421 422 net_device->recv_section_size = resp->sections[0].sub_alloc_size; 423 net_device->recv_section_cnt = resp->sections[0].num_sub_allocs; 424 425 /* Ensure buffer will not overflow */ 426 if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size * 427 (u64)net_device->recv_section_cnt > (u64)buf_size) { 428 netdev_err(ndev, "invalid recv_section_size %u\n", 429 net_device->recv_section_size); 430 ret = -EINVAL; 431 goto cleanup; 432 } 433 434 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 435 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 436 437 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL); 438 if (nvchan->recv_buf == NULL) { 439 ret = -ENOMEM; 440 goto cleanup; 441 } 442 } 443 444 /* Setup receive completion ring. 445 * Add 1 to the recv_section_cnt because at least one entry in a 446 * ring buffer has to be empty. 447 */ 448 net_device->recv_completion_cnt = net_device->recv_section_cnt + 1; 449 ret = netvsc_alloc_recv_comp_ring(net_device, 0); 450 if (ret) 451 goto cleanup; 452 453 /* Now setup the send buffer. */ 454 buf_size = device_info->send_sections * device_info->send_section_size; 455 buf_size = round_up(buf_size, PAGE_SIZE); 456 457 net_device->send_buf = vzalloc(buf_size); 458 if (!net_device->send_buf) { 459 netdev_err(ndev, "unable to allocate send buffer of size %u\n", 460 buf_size); 461 ret = -ENOMEM; 462 goto cleanup; 463 } 464 net_device->send_buf_size = buf_size; 465 466 /* Establish the gpadl handle for this buffer on this 467 * channel. Note: This call uses the vmbus connection rather 468 * than the channel to establish the gpadl handle. 469 */ 470 ret = vmbus_establish_gpadl(device->channel, net_device->send_buf, 471 buf_size, 472 &net_device->send_buf_gpadl_handle); 473 if (ret != 0) { 474 netdev_err(ndev, 475 "unable to establish send buffer's gpadl\n"); 476 goto cleanup; 477 } 478 479 /* Notify the NetVsp of the gpadl handle */ 480 init_packet = &net_device->channel_init_pkt; 481 memset(init_packet, 0, sizeof(struct nvsp_message)); 482 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF; 483 init_packet->msg.v1_msg.send_send_buf.gpadl_handle = 484 net_device->send_buf_gpadl_handle.gpadl_handle; 485 init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID; 486 487 trace_nvsp_send(ndev, init_packet); 488 489 /* Send the gpadl notification request */ 490 ret = vmbus_sendpacket(device->channel, init_packet, 491 sizeof(struct nvsp_message), 492 (unsigned long)init_packet, 493 VM_PKT_DATA_INBAND, 494 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 495 if (ret != 0) { 496 netdev_err(ndev, 497 "unable to send send buffer's gpadl to netvsp\n"); 498 goto cleanup; 499 } 500 501 wait_for_completion(&net_device->channel_init_wait); 502 503 /* Check the response */ 504 if (init_packet->msg.v1_msg. 505 send_send_buf_complete.status != NVSP_STAT_SUCCESS) { 506 netdev_err(ndev, "Unable to complete send buffer " 507 "initialization with NetVsp - status %d\n", 508 init_packet->msg.v1_msg. 509 send_send_buf_complete.status); 510 ret = -EINVAL; 511 goto cleanup; 512 } 513 514 /* Parse the response */ 515 net_device->send_section_size = init_packet->msg. 516 v1_msg.send_send_buf_complete.section_size; 517 if (net_device->send_section_size < NETVSC_MTU_MIN) { 518 netdev_err(ndev, "invalid send_section_size %u\n", 519 net_device->send_section_size); 520 ret = -EINVAL; 521 goto cleanup; 522 } 523 524 /* Section count is simply the size divided by the section size. */ 525 net_device->send_section_cnt = buf_size / net_device->send_section_size; 526 527 netdev_dbg(ndev, "Send section size: %d, Section count:%d\n", 528 net_device->send_section_size, net_device->send_section_cnt); 529 530 /* Setup state for managing the send buffer. */ 531 net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt, 532 GFP_KERNEL); 533 if (!net_device->send_section_map) { 534 ret = -ENOMEM; 535 goto cleanup; 536 } 537 538 goto exit; 539 540 cleanup: 541 netvsc_revoke_recv_buf(device, net_device, ndev); 542 netvsc_revoke_send_buf(device, net_device, ndev); 543 netvsc_teardown_recv_gpadl(device, net_device, ndev); 544 netvsc_teardown_send_gpadl(device, net_device, ndev); 545 546 exit: 547 return ret; 548 } 549 550 /* Negotiate NVSP protocol version */ 551 static int negotiate_nvsp_ver(struct hv_device *device, 552 struct netvsc_device *net_device, 553 struct nvsp_message *init_packet, 554 u32 nvsp_ver) 555 { 556 struct net_device *ndev = hv_get_drvdata(device); 557 int ret; 558 559 memset(init_packet, 0, sizeof(struct nvsp_message)); 560 init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT; 561 init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver; 562 init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver; 563 trace_nvsp_send(ndev, init_packet); 564 565 /* Send the init request */ 566 ret = vmbus_sendpacket(device->channel, init_packet, 567 sizeof(struct nvsp_message), 568 (unsigned long)init_packet, 569 VM_PKT_DATA_INBAND, 570 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 571 572 if (ret != 0) 573 return ret; 574 575 wait_for_completion(&net_device->channel_init_wait); 576 577 if (init_packet->msg.init_msg.init_complete.status != 578 NVSP_STAT_SUCCESS) 579 return -EINVAL; 580 581 if (nvsp_ver == NVSP_PROTOCOL_VERSION_1) 582 return 0; 583 584 /* NVSPv2 or later: Send NDIS config */ 585 memset(init_packet, 0, sizeof(struct nvsp_message)); 586 init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG; 587 init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN; 588 init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1; 589 590 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) { 591 if (hv_is_isolation_supported()) 592 netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n"); 593 else 594 init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1; 595 596 /* Teaming bit is needed to receive link speed updates */ 597 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1; 598 } 599 600 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61) 601 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1; 602 603 trace_nvsp_send(ndev, init_packet); 604 605 ret = vmbus_sendpacket(device->channel, init_packet, 606 sizeof(struct nvsp_message), 607 VMBUS_RQST_ID_NO_RESPONSE, 608 VM_PKT_DATA_INBAND, 0); 609 610 return ret; 611 } 612 613 static int netvsc_connect_vsp(struct hv_device *device, 614 struct netvsc_device *net_device, 615 const struct netvsc_device_info *device_info) 616 { 617 struct net_device *ndev = hv_get_drvdata(device); 618 static const u32 ver_list[] = { 619 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2, 620 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5, 621 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61 622 }; 623 struct nvsp_message *init_packet; 624 int ndis_version, i, ret; 625 626 init_packet = &net_device->channel_init_pkt; 627 628 /* Negotiate the latest NVSP protocol supported */ 629 for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--) 630 if (negotiate_nvsp_ver(device, net_device, init_packet, 631 ver_list[i]) == 0) { 632 net_device->nvsp_version = ver_list[i]; 633 break; 634 } 635 636 if (i < 0) { 637 ret = -EPROTO; 638 goto cleanup; 639 } 640 641 if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) { 642 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n", 643 net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61); 644 ret = -EPROTO; 645 goto cleanup; 646 } 647 648 pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version); 649 650 /* Send the ndis version */ 651 memset(init_packet, 0, sizeof(struct nvsp_message)); 652 653 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4) 654 ndis_version = 0x00060001; 655 else 656 ndis_version = 0x0006001e; 657 658 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER; 659 init_packet->msg.v1_msg. 660 send_ndis_ver.ndis_major_ver = 661 (ndis_version & 0xFFFF0000) >> 16; 662 init_packet->msg.v1_msg. 663 send_ndis_ver.ndis_minor_ver = 664 ndis_version & 0xFFFF; 665 666 trace_nvsp_send(ndev, init_packet); 667 668 /* Send the init request */ 669 ret = vmbus_sendpacket(device->channel, init_packet, 670 sizeof(struct nvsp_message), 671 VMBUS_RQST_ID_NO_RESPONSE, 672 VM_PKT_DATA_INBAND, 0); 673 if (ret != 0) 674 goto cleanup; 675 676 677 ret = netvsc_init_buf(device, net_device, device_info); 678 679 cleanup: 680 return ret; 681 } 682 683 /* 684 * netvsc_device_remove - Callback when the root bus device is removed 685 */ 686 void netvsc_device_remove(struct hv_device *device) 687 { 688 struct net_device *ndev = hv_get_drvdata(device); 689 struct net_device_context *net_device_ctx = netdev_priv(ndev); 690 struct netvsc_device *net_device 691 = rtnl_dereference(net_device_ctx->nvdev); 692 int i; 693 694 /* 695 * Revoke receive buffer. If host is pre-Win2016 then tear down 696 * receive buffer GPADL. Do the same for send buffer. 697 */ 698 netvsc_revoke_recv_buf(device, net_device, ndev); 699 if (vmbus_proto_version < VERSION_WIN10) 700 netvsc_teardown_recv_gpadl(device, net_device, ndev); 701 702 netvsc_revoke_send_buf(device, net_device, ndev); 703 if (vmbus_proto_version < VERSION_WIN10) 704 netvsc_teardown_send_gpadl(device, net_device, ndev); 705 706 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 707 708 /* Disable NAPI and disassociate its context from the device. */ 709 for (i = 0; i < net_device->num_chn; i++) { 710 /* See also vmbus_reset_channel_cb(). */ 711 napi_disable(&net_device->chan_table[i].napi); 712 netif_napi_del(&net_device->chan_table[i].napi); 713 } 714 715 /* 716 * At this point, no one should be accessing net_device 717 * except in here 718 */ 719 netdev_dbg(ndev, "net device safe to remove\n"); 720 721 /* Now, we can close the channel safely */ 722 vmbus_close(device->channel); 723 724 /* 725 * If host is Win2016 or higher then we do the GPADL tear down 726 * here after VMBus is closed. 727 */ 728 if (vmbus_proto_version >= VERSION_WIN10) { 729 netvsc_teardown_recv_gpadl(device, net_device, ndev); 730 netvsc_teardown_send_gpadl(device, net_device, ndev); 731 } 732 733 /* Release all resources */ 734 free_netvsc_device_rcu(net_device); 735 } 736 737 #define RING_AVAIL_PERCENT_HIWATER 20 738 #define RING_AVAIL_PERCENT_LOWATER 10 739 740 static inline void netvsc_free_send_slot(struct netvsc_device *net_device, 741 u32 index) 742 { 743 sync_change_bit(index, net_device->send_section_map); 744 } 745 746 static void netvsc_send_tx_complete(struct net_device *ndev, 747 struct netvsc_device *net_device, 748 struct vmbus_channel *channel, 749 const struct vmpacket_descriptor *desc, 750 int budget) 751 { 752 struct net_device_context *ndev_ctx = netdev_priv(ndev); 753 struct sk_buff *skb; 754 u16 q_idx = 0; 755 int queue_sends; 756 u64 cmd_rqst; 757 758 cmd_rqst = channel->request_addr_callback(channel, desc->trans_id); 759 if (cmd_rqst == VMBUS_RQST_ERROR) { 760 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); 761 return; 762 } 763 764 skb = (struct sk_buff *)(unsigned long)cmd_rqst; 765 766 /* Notify the layer above us */ 767 if (likely(skb)) { 768 struct hv_netvsc_packet *packet 769 = (struct hv_netvsc_packet *)skb->cb; 770 u32 send_index = packet->send_buf_index; 771 struct netvsc_stats_tx *tx_stats; 772 773 if (send_index != NETVSC_INVALID_INDEX) 774 netvsc_free_send_slot(net_device, send_index); 775 q_idx = packet->q_idx; 776 777 tx_stats = &net_device->chan_table[q_idx].tx_stats; 778 779 u64_stats_update_begin(&tx_stats->syncp); 780 tx_stats->packets += packet->total_packets; 781 tx_stats->bytes += packet->total_bytes; 782 u64_stats_update_end(&tx_stats->syncp); 783 784 netvsc_dma_unmap(ndev_ctx->device_ctx, packet); 785 napi_consume_skb(skb, budget); 786 } 787 788 queue_sends = 789 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends); 790 791 if (unlikely(net_device->destroy)) { 792 if (queue_sends == 0) 793 wake_up(&net_device->wait_drain); 794 } else { 795 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx); 796 797 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable && 798 (hv_get_avail_to_write_percent(&channel->outbound) > 799 RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) { 800 netif_tx_wake_queue(txq); 801 ndev_ctx->eth_stats.wake_queue++; 802 } 803 } 804 } 805 806 static void netvsc_send_completion(struct net_device *ndev, 807 struct netvsc_device *net_device, 808 struct vmbus_channel *incoming_channel, 809 const struct vmpacket_descriptor *desc, 810 int budget) 811 { 812 const struct nvsp_message *nvsp_packet; 813 u32 msglen = hv_pkt_datalen(desc); 814 struct nvsp_message *pkt_rqst; 815 u64 cmd_rqst; 816 u32 status; 817 818 /* First check if this is a VMBUS completion without data payload */ 819 if (!msglen) { 820 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel, 821 desc->trans_id); 822 if (cmd_rqst == VMBUS_RQST_ERROR) { 823 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); 824 return; 825 } 826 827 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst; 828 switch (pkt_rqst->hdr.msg_type) { 829 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH: 830 complete(&net_device->channel_init_wait); 831 break; 832 833 default: 834 netdev_err(ndev, "Unexpected VMBUS completion!!\n"); 835 } 836 return; 837 } 838 839 /* Ensure packet is big enough to read header fields */ 840 if (msglen < sizeof(struct nvsp_message_header)) { 841 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen); 842 return; 843 } 844 845 nvsp_packet = hv_pkt_data(desc); 846 switch (nvsp_packet->hdr.msg_type) { 847 case NVSP_MSG_TYPE_INIT_COMPLETE: 848 if (msglen < sizeof(struct nvsp_message_header) + 849 sizeof(struct nvsp_message_init_complete)) { 850 netdev_err(ndev, "nvsp_msg length too small: %u\n", 851 msglen); 852 return; 853 } 854 fallthrough; 855 856 case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE: 857 if (msglen < sizeof(struct nvsp_message_header) + 858 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) { 859 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 860 msglen); 861 return; 862 } 863 fallthrough; 864 865 case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE: 866 if (msglen < sizeof(struct nvsp_message_header) + 867 sizeof(struct nvsp_1_message_send_send_buffer_complete)) { 868 netdev_err(ndev, "nvsp_msg1 length too small: %u\n", 869 msglen); 870 return; 871 } 872 fallthrough; 873 874 case NVSP_MSG5_TYPE_SUBCHANNEL: 875 if (msglen < sizeof(struct nvsp_message_header) + 876 sizeof(struct nvsp_5_subchannel_complete)) { 877 netdev_err(ndev, "nvsp_msg5 length too small: %u\n", 878 msglen); 879 return; 880 } 881 /* Copy the response back */ 882 memcpy(&net_device->channel_init_pkt, nvsp_packet, 883 sizeof(struct nvsp_message)); 884 complete(&net_device->channel_init_wait); 885 break; 886 887 case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE: 888 if (msglen < sizeof(struct nvsp_message_header) + 889 sizeof(struct nvsp_1_message_send_rndis_packet_complete)) { 890 if (net_ratelimit()) 891 netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n", 892 msglen); 893 return; 894 } 895 896 /* If status indicates an error, output a message so we know 897 * there's a problem. But process the completion anyway so the 898 * resources are released. 899 */ 900 status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status; 901 if (status != NVSP_STAT_SUCCESS && net_ratelimit()) 902 netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n", 903 status); 904 905 netvsc_send_tx_complete(ndev, net_device, incoming_channel, 906 desc, budget); 907 break; 908 909 default: 910 netdev_err(ndev, 911 "Unknown send completion type %d received!!\n", 912 nvsp_packet->hdr.msg_type); 913 } 914 } 915 916 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device) 917 { 918 unsigned long *map_addr = net_device->send_section_map; 919 unsigned int i; 920 921 for_each_clear_bit(i, map_addr, net_device->send_section_cnt) { 922 if (sync_test_and_set_bit(i, map_addr) == 0) 923 return i; 924 } 925 926 return NETVSC_INVALID_INDEX; 927 } 928 929 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device, 930 unsigned int section_index, 931 u32 pend_size, 932 struct hv_netvsc_packet *packet, 933 struct rndis_message *rndis_msg, 934 struct hv_page_buffer *pb, 935 bool xmit_more) 936 { 937 char *start = net_device->send_buf; 938 char *dest = start + (section_index * net_device->send_section_size) 939 + pend_size; 940 int i; 941 u32 padding = 0; 942 u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt : 943 packet->page_buf_cnt; 944 u32 remain; 945 946 /* Add padding */ 947 remain = packet->total_data_buflen & (net_device->pkt_align - 1); 948 if (xmit_more && remain) { 949 padding = net_device->pkt_align - remain; 950 rndis_msg->msg_len += padding; 951 packet->total_data_buflen += padding; 952 } 953 954 for (i = 0; i < page_count; i++) { 955 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT); 956 u32 offset = pb[i].offset; 957 u32 len = pb[i].len; 958 959 memcpy(dest, (src + offset), len); 960 dest += len; 961 } 962 963 if (padding) 964 memset(dest, 0, padding); 965 } 966 967 void netvsc_dma_unmap(struct hv_device *hv_dev, 968 struct hv_netvsc_packet *packet) 969 { 970 int i; 971 972 if (!hv_is_isolation_supported()) 973 return; 974 975 if (!packet->dma_range) 976 return; 977 978 for (i = 0; i < packet->page_buf_cnt; i++) 979 dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma, 980 packet->dma_range[i].mapping_size, 981 DMA_TO_DEVICE); 982 983 kfree(packet->dma_range); 984 } 985 986 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of 987 * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation 988 * VM. 989 * 990 * In isolation VM, netvsc send buffer has been marked visible to 991 * host and so the data copied to send buffer doesn't need to use 992 * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer() 993 * may not be copied to send buffer and so these pages need to be 994 * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do 995 * that. The pfns in the struct hv_page_buffer need to be converted 996 * to bounce buffer's pfn. The loop here is necessary because the 997 * entries in the page buffer array are not necessarily full 998 * pages of data. Each entry in the array has a separate offset and 999 * len that may be non-zero, even for entries in the middle of the 1000 * array. And the entries are not physically contiguous. So each 1001 * entry must be individually mapped rather than as a contiguous unit. 1002 * So not use dma_map_sg() here. 1003 */ 1004 static int netvsc_dma_map(struct hv_device *hv_dev, 1005 struct hv_netvsc_packet *packet, 1006 struct hv_page_buffer *pb) 1007 { 1008 u32 page_count = packet->page_buf_cnt; 1009 dma_addr_t dma; 1010 int i; 1011 1012 if (!hv_is_isolation_supported()) 1013 return 0; 1014 1015 packet->dma_range = kcalloc(page_count, 1016 sizeof(*packet->dma_range), 1017 GFP_ATOMIC); 1018 if (!packet->dma_range) 1019 return -ENOMEM; 1020 1021 for (i = 0; i < page_count; i++) { 1022 char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT) 1023 + pb[i].offset); 1024 u32 len = pb[i].len; 1025 1026 dma = dma_map_single(&hv_dev->device, src, len, 1027 DMA_TO_DEVICE); 1028 if (dma_mapping_error(&hv_dev->device, dma)) { 1029 kfree(packet->dma_range); 1030 return -ENOMEM; 1031 } 1032 1033 /* pb[].offset and pb[].len are not changed during dma mapping 1034 * and so not reassign. 1035 */ 1036 packet->dma_range[i].dma = dma; 1037 packet->dma_range[i].mapping_size = len; 1038 pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT; 1039 } 1040 1041 return 0; 1042 } 1043 1044 static inline int netvsc_send_pkt( 1045 struct hv_device *device, 1046 struct hv_netvsc_packet *packet, 1047 struct netvsc_device *net_device, 1048 struct hv_page_buffer *pb, 1049 struct sk_buff *skb) 1050 { 1051 struct nvsp_message nvmsg; 1052 struct nvsp_1_message_send_rndis_packet *rpkt = 1053 &nvmsg.msg.v1_msg.send_rndis_pkt; 1054 struct netvsc_channel * const nvchan = 1055 &net_device->chan_table[packet->q_idx]; 1056 struct vmbus_channel *out_channel = nvchan->channel; 1057 struct net_device *ndev = hv_get_drvdata(device); 1058 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1059 struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx); 1060 u64 req_id; 1061 int ret; 1062 u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound); 1063 1064 memset(&nvmsg, 0, sizeof(struct nvsp_message)); 1065 nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT; 1066 if (skb) 1067 rpkt->channel_type = 0; /* 0 is RMC_DATA */ 1068 else 1069 rpkt->channel_type = 1; /* 1 is RMC_CONTROL */ 1070 1071 rpkt->send_buf_section_index = packet->send_buf_index; 1072 if (packet->send_buf_index == NETVSC_INVALID_INDEX) 1073 rpkt->send_buf_section_size = 0; 1074 else 1075 rpkt->send_buf_section_size = packet->total_data_buflen; 1076 1077 req_id = (ulong)skb; 1078 1079 if (out_channel->rescind) 1080 return -ENODEV; 1081 1082 trace_nvsp_send_pkt(ndev, out_channel, rpkt); 1083 1084 packet->dma_range = NULL; 1085 if (packet->page_buf_cnt) { 1086 if (packet->cp_partial) 1087 pb += packet->rmsg_pgcnt; 1088 1089 ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb); 1090 if (ret) { 1091 ret = -EAGAIN; 1092 goto exit; 1093 } 1094 1095 ret = vmbus_sendpacket_pagebuffer(out_channel, 1096 pb, packet->page_buf_cnt, 1097 &nvmsg, sizeof(nvmsg), 1098 req_id); 1099 1100 if (ret) 1101 netvsc_dma_unmap(ndev_ctx->device_ctx, packet); 1102 } else { 1103 ret = vmbus_sendpacket(out_channel, 1104 &nvmsg, sizeof(nvmsg), 1105 req_id, VM_PKT_DATA_INBAND, 1106 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1107 } 1108 1109 exit: 1110 if (ret == 0) { 1111 atomic_inc_return(&nvchan->queue_sends); 1112 1113 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) { 1114 netif_tx_stop_queue(txq); 1115 ndev_ctx->eth_stats.stop_queue++; 1116 } 1117 } else if (ret == -EAGAIN) { 1118 netif_tx_stop_queue(txq); 1119 ndev_ctx->eth_stats.stop_queue++; 1120 } else { 1121 netdev_err(ndev, 1122 "Unable to send packet pages %u len %u, ret %d\n", 1123 packet->page_buf_cnt, packet->total_data_buflen, 1124 ret); 1125 } 1126 1127 if (netif_tx_queue_stopped(txq) && 1128 atomic_read(&nvchan->queue_sends) < 1 && 1129 !net_device->tx_disable) { 1130 netif_tx_wake_queue(txq); 1131 ndev_ctx->eth_stats.wake_queue++; 1132 if (ret == -EAGAIN) 1133 ret = -ENOSPC; 1134 } 1135 1136 return ret; 1137 } 1138 1139 /* Move packet out of multi send data (msd), and clear msd */ 1140 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send, 1141 struct sk_buff **msd_skb, 1142 struct multi_send_data *msdp) 1143 { 1144 *msd_skb = msdp->skb; 1145 *msd_send = msdp->pkt; 1146 msdp->skb = NULL; 1147 msdp->pkt = NULL; 1148 msdp->count = 0; 1149 } 1150 1151 /* RCU already held by caller */ 1152 /* Batching/bouncing logic is designed to attempt to optimize 1153 * performance. 1154 * 1155 * For small, non-LSO packets we copy the packet to a send buffer 1156 * which is pre-registered with the Hyper-V side. This enables the 1157 * hypervisor to avoid remapping the aperture to access the packet 1158 * descriptor and data. 1159 * 1160 * If we already started using a buffer and the netdev is transmitting 1161 * a burst of packets, keep on copying into the buffer until it is 1162 * full or we are done collecting a burst. If there is an existing 1163 * buffer with space for the RNDIS descriptor but not the packet, copy 1164 * the RNDIS descriptor to the buffer, keeping the packet in place. 1165 * 1166 * If we do batching and send more than one packet using a single 1167 * NetVSC message, free the SKBs of the packets copied, except for the 1168 * last packet. This is done to streamline the handling of the case 1169 * where the last packet only had the RNDIS descriptor copied to the 1170 * send buffer, with the data pointers included in the NetVSC message. 1171 */ 1172 int netvsc_send(struct net_device *ndev, 1173 struct hv_netvsc_packet *packet, 1174 struct rndis_message *rndis_msg, 1175 struct hv_page_buffer *pb, 1176 struct sk_buff *skb, 1177 bool xdp_tx) 1178 { 1179 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1180 struct netvsc_device *net_device 1181 = rcu_dereference_bh(ndev_ctx->nvdev); 1182 struct hv_device *device = ndev_ctx->device_ctx; 1183 int ret = 0; 1184 struct netvsc_channel *nvchan; 1185 u32 pktlen = packet->total_data_buflen, msd_len = 0; 1186 unsigned int section_index = NETVSC_INVALID_INDEX; 1187 struct multi_send_data *msdp; 1188 struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL; 1189 struct sk_buff *msd_skb = NULL; 1190 bool try_batch, xmit_more; 1191 1192 /* If device is rescinded, return error and packet will get dropped. */ 1193 if (unlikely(!net_device || net_device->destroy)) 1194 return -ENODEV; 1195 1196 nvchan = &net_device->chan_table[packet->q_idx]; 1197 packet->send_buf_index = NETVSC_INVALID_INDEX; 1198 packet->cp_partial = false; 1199 1200 /* Send a control message or XDP packet directly without accessing 1201 * msd (Multi-Send Data) field which may be changed during data packet 1202 * processing. 1203 */ 1204 if (!skb || xdp_tx) 1205 return netvsc_send_pkt(device, packet, net_device, pb, skb); 1206 1207 /* batch packets in send buffer if possible */ 1208 msdp = &nvchan->msd; 1209 if (msdp->pkt) 1210 msd_len = msdp->pkt->total_data_buflen; 1211 1212 try_batch = msd_len > 0 && msdp->count < net_device->max_pkt; 1213 if (try_batch && msd_len + pktlen + net_device->pkt_align < 1214 net_device->send_section_size) { 1215 section_index = msdp->pkt->send_buf_index; 1216 1217 } else if (try_batch && msd_len + packet->rmsg_size < 1218 net_device->send_section_size) { 1219 section_index = msdp->pkt->send_buf_index; 1220 packet->cp_partial = true; 1221 1222 } else if (pktlen + net_device->pkt_align < 1223 net_device->send_section_size) { 1224 section_index = netvsc_get_next_send_section(net_device); 1225 if (unlikely(section_index == NETVSC_INVALID_INDEX)) { 1226 ++ndev_ctx->eth_stats.tx_send_full; 1227 } else { 1228 move_pkt_msd(&msd_send, &msd_skb, msdp); 1229 msd_len = 0; 1230 } 1231 } 1232 1233 /* Keep aggregating only if stack says more data is coming 1234 * and not doing mixed modes send and not flow blocked 1235 */ 1236 xmit_more = netdev_xmit_more() && 1237 !packet->cp_partial && 1238 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx)); 1239 1240 if (section_index != NETVSC_INVALID_INDEX) { 1241 netvsc_copy_to_send_buf(net_device, 1242 section_index, msd_len, 1243 packet, rndis_msg, pb, xmit_more); 1244 1245 packet->send_buf_index = section_index; 1246 1247 if (packet->cp_partial) { 1248 packet->page_buf_cnt -= packet->rmsg_pgcnt; 1249 packet->total_data_buflen = msd_len + packet->rmsg_size; 1250 } else { 1251 packet->page_buf_cnt = 0; 1252 packet->total_data_buflen += msd_len; 1253 } 1254 1255 if (msdp->pkt) { 1256 packet->total_packets += msdp->pkt->total_packets; 1257 packet->total_bytes += msdp->pkt->total_bytes; 1258 } 1259 1260 if (msdp->skb) 1261 dev_consume_skb_any(msdp->skb); 1262 1263 if (xmit_more) { 1264 msdp->skb = skb; 1265 msdp->pkt = packet; 1266 msdp->count++; 1267 } else { 1268 cur_send = packet; 1269 msdp->skb = NULL; 1270 msdp->pkt = NULL; 1271 msdp->count = 0; 1272 } 1273 } else { 1274 move_pkt_msd(&msd_send, &msd_skb, msdp); 1275 cur_send = packet; 1276 } 1277 1278 if (msd_send) { 1279 int m_ret = netvsc_send_pkt(device, msd_send, net_device, 1280 NULL, msd_skb); 1281 1282 if (m_ret != 0) { 1283 netvsc_free_send_slot(net_device, 1284 msd_send->send_buf_index); 1285 dev_kfree_skb_any(msd_skb); 1286 } 1287 } 1288 1289 if (cur_send) 1290 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb); 1291 1292 if (ret != 0 && section_index != NETVSC_INVALID_INDEX) 1293 netvsc_free_send_slot(net_device, section_index); 1294 1295 return ret; 1296 } 1297 1298 /* Send pending recv completions */ 1299 static int send_recv_completions(struct net_device *ndev, 1300 struct netvsc_device *nvdev, 1301 struct netvsc_channel *nvchan) 1302 { 1303 struct multi_recv_comp *mrc = &nvchan->mrc; 1304 struct recv_comp_msg { 1305 struct nvsp_message_header hdr; 1306 u32 status; 1307 } __packed; 1308 struct recv_comp_msg msg = { 1309 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE, 1310 }; 1311 int ret; 1312 1313 while (mrc->first != mrc->next) { 1314 const struct recv_comp_data *rcd 1315 = mrc->slots + mrc->first; 1316 1317 msg.status = rcd->status; 1318 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg), 1319 rcd->tid, VM_PKT_COMP, 0); 1320 if (unlikely(ret)) { 1321 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1322 1323 ++ndev_ctx->eth_stats.rx_comp_busy; 1324 return ret; 1325 } 1326 1327 if (++mrc->first == nvdev->recv_completion_cnt) 1328 mrc->first = 0; 1329 } 1330 1331 /* receive completion ring has been emptied */ 1332 if (unlikely(nvdev->destroy)) 1333 wake_up(&nvdev->wait_drain); 1334 1335 return 0; 1336 } 1337 1338 /* Count how many receive completions are outstanding */ 1339 static void recv_comp_slot_avail(const struct netvsc_device *nvdev, 1340 const struct multi_recv_comp *mrc, 1341 u32 *filled, u32 *avail) 1342 { 1343 u32 count = nvdev->recv_completion_cnt; 1344 1345 if (mrc->next >= mrc->first) 1346 *filled = mrc->next - mrc->first; 1347 else 1348 *filled = (count - mrc->first) + mrc->next; 1349 1350 *avail = count - *filled - 1; 1351 } 1352 1353 /* Add receive complete to ring to send to host. */ 1354 static void enq_receive_complete(struct net_device *ndev, 1355 struct netvsc_device *nvdev, u16 q_idx, 1356 u64 tid, u32 status) 1357 { 1358 struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx]; 1359 struct multi_recv_comp *mrc = &nvchan->mrc; 1360 struct recv_comp_data *rcd; 1361 u32 filled, avail; 1362 1363 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1364 1365 if (unlikely(filled > NAPI_POLL_WEIGHT)) { 1366 send_recv_completions(ndev, nvdev, nvchan); 1367 recv_comp_slot_avail(nvdev, mrc, &filled, &avail); 1368 } 1369 1370 if (unlikely(!avail)) { 1371 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n", 1372 q_idx, tid); 1373 return; 1374 } 1375 1376 rcd = mrc->slots + mrc->next; 1377 rcd->tid = tid; 1378 rcd->status = status; 1379 1380 if (++mrc->next == nvdev->recv_completion_cnt) 1381 mrc->next = 0; 1382 } 1383 1384 static int netvsc_receive(struct net_device *ndev, 1385 struct netvsc_device *net_device, 1386 struct netvsc_channel *nvchan, 1387 const struct vmpacket_descriptor *desc) 1388 { 1389 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1390 struct vmbus_channel *channel = nvchan->channel; 1391 const struct vmtransfer_page_packet_header *vmxferpage_packet 1392 = container_of(desc, const struct vmtransfer_page_packet_header, d); 1393 const struct nvsp_message *nvsp = hv_pkt_data(desc); 1394 u32 msglen = hv_pkt_datalen(desc); 1395 u16 q_idx = channel->offermsg.offer.sub_channel_index; 1396 char *recv_buf = net_device->recv_buf; 1397 u32 status = NVSP_STAT_SUCCESS; 1398 int i; 1399 int count = 0; 1400 1401 /* Ensure packet is big enough to read header fields */ 1402 if (msglen < sizeof(struct nvsp_message_header)) { 1403 netif_err(net_device_ctx, rx_err, ndev, 1404 "invalid nvsp header, length too small: %u\n", 1405 msglen); 1406 return 0; 1407 } 1408 1409 /* Make sure this is a valid nvsp packet */ 1410 if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) { 1411 netif_err(net_device_ctx, rx_err, ndev, 1412 "Unknown nvsp packet type received %u\n", 1413 nvsp->hdr.msg_type); 1414 return 0; 1415 } 1416 1417 /* Validate xfer page pkt header */ 1418 if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) { 1419 netif_err(net_device_ctx, rx_err, ndev, 1420 "Invalid xfer page pkt, offset too small: %u\n", 1421 desc->offset8 << 3); 1422 return 0; 1423 } 1424 1425 if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) { 1426 netif_err(net_device_ctx, rx_err, ndev, 1427 "Invalid xfer page set id - expecting %x got %x\n", 1428 NETVSC_RECEIVE_BUFFER_ID, 1429 vmxferpage_packet->xfer_pageset_id); 1430 return 0; 1431 } 1432 1433 count = vmxferpage_packet->range_cnt; 1434 1435 /* Check count for a valid value */ 1436 if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) { 1437 netif_err(net_device_ctx, rx_err, ndev, 1438 "Range count is not valid: %d\n", 1439 count); 1440 return 0; 1441 } 1442 1443 /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */ 1444 for (i = 0; i < count; i++) { 1445 u32 offset = vmxferpage_packet->ranges[i].byte_offset; 1446 u32 buflen = vmxferpage_packet->ranges[i].byte_count; 1447 void *data; 1448 int ret; 1449 1450 if (unlikely(offset > net_device->recv_buf_size || 1451 buflen > net_device->recv_buf_size - offset)) { 1452 nvchan->rsc.cnt = 0; 1453 status = NVSP_STAT_FAIL; 1454 netif_err(net_device_ctx, rx_err, ndev, 1455 "Packet offset:%u + len:%u too big\n", 1456 offset, buflen); 1457 1458 continue; 1459 } 1460 1461 /* We're going to copy (sections of) the packet into nvchan->recv_buf; 1462 * make sure that nvchan->recv_buf is large enough to hold the packet. 1463 */ 1464 if (unlikely(buflen > net_device->recv_section_size)) { 1465 nvchan->rsc.cnt = 0; 1466 status = NVSP_STAT_FAIL; 1467 netif_err(net_device_ctx, rx_err, ndev, 1468 "Packet too big: buflen=%u recv_section_size=%u\n", 1469 buflen, net_device->recv_section_size); 1470 1471 continue; 1472 } 1473 1474 data = recv_buf + offset; 1475 1476 nvchan->rsc.is_last = (i == count - 1); 1477 1478 trace_rndis_recv(ndev, q_idx, data); 1479 1480 /* Pass it to the upper layer */ 1481 ret = rndis_filter_receive(ndev, net_device, 1482 nvchan, data, buflen); 1483 1484 if (unlikely(ret != NVSP_STAT_SUCCESS)) { 1485 /* Drop incomplete packet */ 1486 nvchan->rsc.cnt = 0; 1487 status = NVSP_STAT_FAIL; 1488 } 1489 } 1490 1491 enq_receive_complete(ndev, net_device, q_idx, 1492 vmxferpage_packet->d.trans_id, status); 1493 1494 return count; 1495 } 1496 1497 static void netvsc_send_table(struct net_device *ndev, 1498 struct netvsc_device *nvscdev, 1499 const struct nvsp_message *nvmsg, 1500 u32 msglen) 1501 { 1502 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1503 u32 count, offset, *tab; 1504 int i; 1505 1506 /* Ensure packet is big enough to read send_table fields */ 1507 if (msglen < sizeof(struct nvsp_message_header) + 1508 sizeof(struct nvsp_5_send_indirect_table)) { 1509 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen); 1510 return; 1511 } 1512 1513 count = nvmsg->msg.v5_msg.send_table.count; 1514 offset = nvmsg->msg.v5_msg.send_table.offset; 1515 1516 if (count != VRSS_SEND_TAB_SIZE) { 1517 netdev_err(ndev, "Received wrong send-table size:%u\n", count); 1518 return; 1519 } 1520 1521 /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be 1522 * wrong due to a host bug. So fix the offset here. 1523 */ 1524 if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 && 1525 msglen >= sizeof(struct nvsp_message_header) + 1526 sizeof(union nvsp_6_message_uber) + count * sizeof(u32)) 1527 offset = sizeof(struct nvsp_message_header) + 1528 sizeof(union nvsp_6_message_uber); 1529 1530 /* Boundary check for all versions */ 1531 if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) { 1532 netdev_err(ndev, "Received send-table offset too big:%u\n", 1533 offset); 1534 return; 1535 } 1536 1537 tab = (void *)nvmsg + offset; 1538 1539 for (i = 0; i < count; i++) 1540 net_device_ctx->tx_table[i] = tab[i]; 1541 } 1542 1543 static void netvsc_send_vf(struct net_device *ndev, 1544 const struct nvsp_message *nvmsg, 1545 u32 msglen) 1546 { 1547 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1548 1549 /* Ensure packet is big enough to read its fields */ 1550 if (msglen < sizeof(struct nvsp_message_header) + 1551 sizeof(struct nvsp_4_send_vf_association)) { 1552 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen); 1553 return; 1554 } 1555 1556 net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated; 1557 net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial; 1558 1559 if (net_device_ctx->vf_alloc) 1560 complete(&net_device_ctx->vf_add); 1561 1562 netdev_info(ndev, "VF slot %u %s\n", 1563 net_device_ctx->vf_serial, 1564 net_device_ctx->vf_alloc ? "added" : "removed"); 1565 } 1566 1567 static void netvsc_receive_inband(struct net_device *ndev, 1568 struct netvsc_device *nvscdev, 1569 const struct vmpacket_descriptor *desc) 1570 { 1571 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1572 u32 msglen = hv_pkt_datalen(desc); 1573 1574 /* Ensure packet is big enough to read header fields */ 1575 if (msglen < sizeof(struct nvsp_message_header)) { 1576 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen); 1577 return; 1578 } 1579 1580 switch (nvmsg->hdr.msg_type) { 1581 case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE: 1582 netvsc_send_table(ndev, nvscdev, nvmsg, msglen); 1583 break; 1584 1585 case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION: 1586 if (hv_is_isolation_supported()) 1587 netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n"); 1588 else 1589 netvsc_send_vf(ndev, nvmsg, msglen); 1590 break; 1591 } 1592 } 1593 1594 static int netvsc_process_raw_pkt(struct hv_device *device, 1595 struct netvsc_channel *nvchan, 1596 struct netvsc_device *net_device, 1597 struct net_device *ndev, 1598 const struct vmpacket_descriptor *desc, 1599 int budget) 1600 { 1601 struct vmbus_channel *channel = nvchan->channel; 1602 const struct nvsp_message *nvmsg = hv_pkt_data(desc); 1603 1604 trace_nvsp_recv(ndev, channel, nvmsg); 1605 1606 switch (desc->type) { 1607 case VM_PKT_COMP: 1608 netvsc_send_completion(ndev, net_device, channel, desc, budget); 1609 break; 1610 1611 case VM_PKT_DATA_USING_XFER_PAGES: 1612 return netvsc_receive(ndev, net_device, nvchan, desc); 1613 1614 case VM_PKT_DATA_INBAND: 1615 netvsc_receive_inband(ndev, net_device, desc); 1616 break; 1617 1618 default: 1619 netdev_err(ndev, "unhandled packet type %d, tid %llx\n", 1620 desc->type, desc->trans_id); 1621 break; 1622 } 1623 1624 return 0; 1625 } 1626 1627 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel) 1628 { 1629 struct vmbus_channel *primary = channel->primary_channel; 1630 1631 return primary ? primary->device_obj : channel->device_obj; 1632 } 1633 1634 /* Network processing softirq 1635 * Process data in incoming ring buffer from host 1636 * Stops when ring is empty or budget is met or exceeded. 1637 */ 1638 int netvsc_poll(struct napi_struct *napi, int budget) 1639 { 1640 struct netvsc_channel *nvchan 1641 = container_of(napi, struct netvsc_channel, napi); 1642 struct netvsc_device *net_device = nvchan->net_device; 1643 struct vmbus_channel *channel = nvchan->channel; 1644 struct hv_device *device = netvsc_channel_to_device(channel); 1645 struct net_device *ndev = hv_get_drvdata(device); 1646 int work_done = 0; 1647 int ret; 1648 1649 /* If starting a new interval */ 1650 if (!nvchan->desc) 1651 nvchan->desc = hv_pkt_iter_first(channel); 1652 1653 nvchan->xdp_flush = false; 1654 1655 while (nvchan->desc && work_done < budget) { 1656 work_done += netvsc_process_raw_pkt(device, nvchan, net_device, 1657 ndev, nvchan->desc, budget); 1658 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc); 1659 } 1660 1661 if (nvchan->xdp_flush) 1662 xdp_do_flush(); 1663 1664 /* Send any pending receive completions */ 1665 ret = send_recv_completions(ndev, net_device, nvchan); 1666 1667 /* If it did not exhaust NAPI budget this time 1668 * and not doing busy poll 1669 * then re-enable host interrupts 1670 * and reschedule if ring is not empty 1671 * or sending receive completion failed. 1672 */ 1673 if (work_done < budget && 1674 napi_complete_done(napi, work_done) && 1675 (ret || hv_end_read(&channel->inbound)) && 1676 napi_schedule_prep(napi)) { 1677 hv_begin_read(&channel->inbound); 1678 __napi_schedule(napi); 1679 } 1680 1681 /* Driver may overshoot since multiple packets per descriptor */ 1682 return min(work_done, budget); 1683 } 1684 1685 /* Call back when data is available in host ring buffer. 1686 * Processing is deferred until network softirq (NAPI) 1687 */ 1688 void netvsc_channel_cb(void *context) 1689 { 1690 struct netvsc_channel *nvchan = context; 1691 struct vmbus_channel *channel = nvchan->channel; 1692 struct hv_ring_buffer_info *rbi = &channel->inbound; 1693 1694 /* preload first vmpacket descriptor */ 1695 prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 1696 1697 if (napi_schedule_prep(&nvchan->napi)) { 1698 /* disable interrupts from host */ 1699 hv_begin_read(rbi); 1700 1701 __napi_schedule_irqoff(&nvchan->napi); 1702 } 1703 } 1704 1705 /* 1706 * netvsc_device_add - Callback when the device belonging to this 1707 * driver is added 1708 */ 1709 struct netvsc_device *netvsc_device_add(struct hv_device *device, 1710 const struct netvsc_device_info *device_info) 1711 { 1712 int i, ret = 0; 1713 struct netvsc_device *net_device; 1714 struct net_device *ndev = hv_get_drvdata(device); 1715 struct net_device_context *net_device_ctx = netdev_priv(ndev); 1716 1717 net_device = alloc_net_device(); 1718 if (!net_device) 1719 return ERR_PTR(-ENOMEM); 1720 1721 for (i = 0; i < VRSS_SEND_TAB_SIZE; i++) 1722 net_device_ctx->tx_table[i] = 0; 1723 1724 /* Because the device uses NAPI, all the interrupt batching and 1725 * control is done via Net softirq, not the channel handling 1726 */ 1727 set_channel_read_mode(device->channel, HV_CALL_ISR); 1728 1729 /* If we're reopening the device we may have multiple queues, fill the 1730 * chn_table with the default channel to use it before subchannels are 1731 * opened. 1732 * Initialize the channel state before we open; 1733 * we can be interrupted as soon as we open the channel. 1734 */ 1735 1736 for (i = 0; i < VRSS_CHANNEL_MAX; i++) { 1737 struct netvsc_channel *nvchan = &net_device->chan_table[i]; 1738 1739 nvchan->channel = device->channel; 1740 nvchan->net_device = net_device; 1741 u64_stats_init(&nvchan->tx_stats.syncp); 1742 u64_stats_init(&nvchan->rx_stats.syncp); 1743 1744 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0); 1745 1746 if (ret) { 1747 netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret); 1748 goto cleanup2; 1749 } 1750 1751 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq, 1752 MEM_TYPE_PAGE_SHARED, NULL); 1753 1754 if (ret) { 1755 netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret); 1756 goto cleanup2; 1757 } 1758 } 1759 1760 /* Enable NAPI handler before init callbacks */ 1761 netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll); 1762 1763 /* Open the channel */ 1764 device->channel->next_request_id_callback = vmbus_next_request_id; 1765 device->channel->request_addr_callback = vmbus_request_addr; 1766 device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes); 1767 device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE; 1768 1769 ret = vmbus_open(device->channel, netvsc_ring_bytes, 1770 netvsc_ring_bytes, NULL, 0, 1771 netvsc_channel_cb, net_device->chan_table); 1772 1773 if (ret != 0) { 1774 netdev_err(ndev, "unable to open channel: %d\n", ret); 1775 goto cleanup; 1776 } 1777 1778 /* Channel is opened */ 1779 netdev_dbg(ndev, "hv_netvsc channel opened successfully\n"); 1780 1781 napi_enable(&net_device->chan_table[0].napi); 1782 1783 /* Connect with the NetVsp */ 1784 ret = netvsc_connect_vsp(device, net_device, device_info); 1785 if (ret != 0) { 1786 netdev_err(ndev, 1787 "unable to connect to NetVSP - %d\n", ret); 1788 goto close; 1789 } 1790 1791 /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is 1792 * populated. 1793 */ 1794 rcu_assign_pointer(net_device_ctx->nvdev, net_device); 1795 1796 return net_device; 1797 1798 close: 1799 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); 1800 napi_disable(&net_device->chan_table[0].napi); 1801 1802 /* Now, we can close the channel safely */ 1803 vmbus_close(device->channel); 1804 1805 cleanup: 1806 netif_napi_del(&net_device->chan_table[0].napi); 1807 1808 cleanup2: 1809 free_netvsc_device(&net_device->rcu); 1810 1811 return ERR_PTR(ret); 1812 } 1813