xref: /linux/drivers/net/hyperv/netvsc.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/wait.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/slab.h>
18 #include <linux/netdevice.h>
19 #include <linux/if_ether.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/prefetch.h>
23 #include <linux/filter.h>
24 
25 #include <asm/sync_bitops.h>
26 #include <asm/mshyperv.h>
27 
28 #include "hyperv_net.h"
29 #include "netvsc_trace.h"
30 
31 /*
32  * Switch the data path from the synthetic interface to the VF
33  * interface.
34  */
35 int netvsc_switch_datapath(struct net_device *ndev, bool vf)
36 {
37 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
38 	struct hv_device *dev = net_device_ctx->device_ctx;
39 	struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
40 	struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
41 	int ret, retry = 0;
42 
43 	/* Block sending traffic to VF if it's about to be gone */
44 	if (!vf)
45 		net_device_ctx->data_path_is_vf = vf;
46 
47 	memset(init_pkt, 0, sizeof(struct nvsp_message));
48 	init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
49 	if (vf)
50 		init_pkt->msg.v4_msg.active_dp.active_datapath =
51 			NVSP_DATAPATH_VF;
52 	else
53 		init_pkt->msg.v4_msg.active_dp.active_datapath =
54 			NVSP_DATAPATH_SYNTHETIC;
55 
56 again:
57 	trace_nvsp_send(ndev, init_pkt);
58 
59 	ret = vmbus_sendpacket(dev->channel, init_pkt,
60 			       sizeof(struct nvsp_message),
61 			       (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
62 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
63 
64 	/* If failed to switch to/from VF, let data_path_is_vf stay false,
65 	 * so we use synthetic path to send data.
66 	 */
67 	if (ret) {
68 		if (ret != -EAGAIN) {
69 			netdev_err(ndev,
70 				   "Unable to send sw datapath msg, err: %d\n",
71 				   ret);
72 			return ret;
73 		}
74 
75 		if (retry++ < RETRY_MAX) {
76 			usleep_range(RETRY_US_LO, RETRY_US_HI);
77 			goto again;
78 		} else {
79 			netdev_err(
80 				ndev,
81 				"Retry failed to send sw datapath msg, err: %d\n",
82 				ret);
83 			return ret;
84 		}
85 	}
86 
87 	wait_for_completion(&nv_dev->channel_init_wait);
88 	net_device_ctx->data_path_is_vf = vf;
89 
90 	return 0;
91 }
92 
93 /* Worker to setup sub channels on initial setup
94  * Initial hotplug event occurs in softirq context
95  * and can't wait for channels.
96  */
97 static void netvsc_subchan_work(struct work_struct *w)
98 {
99 	struct netvsc_device *nvdev =
100 		container_of(w, struct netvsc_device, subchan_work);
101 	struct rndis_device *rdev;
102 	int i, ret;
103 
104 	/* Avoid deadlock with device removal already under RTNL */
105 	if (!rtnl_trylock()) {
106 		schedule_work(w);
107 		return;
108 	}
109 
110 	rdev = nvdev->extension;
111 	if (rdev) {
112 		ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
113 		if (ret == 0) {
114 			netif_device_attach(rdev->ndev);
115 		} else {
116 			/* fallback to only primary channel */
117 			for (i = 1; i < nvdev->num_chn; i++)
118 				netif_napi_del(&nvdev->chan_table[i].napi);
119 
120 			nvdev->max_chn = 1;
121 			nvdev->num_chn = 1;
122 		}
123 	}
124 
125 	rtnl_unlock();
126 }
127 
128 static struct netvsc_device *alloc_net_device(void)
129 {
130 	struct netvsc_device *net_device;
131 
132 	net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
133 	if (!net_device)
134 		return NULL;
135 
136 	init_waitqueue_head(&net_device->wait_drain);
137 	net_device->destroy = false;
138 	net_device->tx_disable = true;
139 
140 	net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
141 	net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
142 
143 	init_completion(&net_device->channel_init_wait);
144 	init_waitqueue_head(&net_device->subchan_open);
145 	INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
146 
147 	return net_device;
148 }
149 
150 static void free_netvsc_device(struct rcu_head *head)
151 {
152 	struct netvsc_device *nvdev
153 		= container_of(head, struct netvsc_device, rcu);
154 	int i;
155 
156 	kfree(nvdev->extension);
157 
158 	if (!nvdev->recv_buf_gpadl_handle.decrypted)
159 		vfree(nvdev->recv_buf);
160 	if (!nvdev->send_buf_gpadl_handle.decrypted)
161 		vfree(nvdev->send_buf);
162 	bitmap_free(nvdev->send_section_map);
163 
164 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
165 		xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
166 		kfree(nvdev->chan_table[i].recv_buf);
167 		vfree(nvdev->chan_table[i].mrc.slots);
168 	}
169 
170 	kfree(nvdev);
171 }
172 
173 static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
174 {
175 	call_rcu(&nvdev->rcu, free_netvsc_device);
176 }
177 
178 static void netvsc_revoke_recv_buf(struct hv_device *device,
179 				   struct netvsc_device *net_device,
180 				   struct net_device *ndev)
181 {
182 	struct nvsp_message *revoke_packet;
183 	int ret;
184 
185 	/*
186 	 * If we got a section count, it means we received a
187 	 * SendReceiveBufferComplete msg (ie sent
188 	 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
189 	 * to send a revoke msg here
190 	 */
191 	if (net_device->recv_section_cnt) {
192 		/* Send the revoke receive buffer */
193 		revoke_packet = &net_device->revoke_packet;
194 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
195 
196 		revoke_packet->hdr.msg_type =
197 			NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
198 		revoke_packet->msg.v1_msg.
199 		revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
200 
201 		trace_nvsp_send(ndev, revoke_packet);
202 
203 		ret = vmbus_sendpacket(device->channel,
204 				       revoke_packet,
205 				       sizeof(struct nvsp_message),
206 				       VMBUS_RQST_ID_NO_RESPONSE,
207 				       VM_PKT_DATA_INBAND, 0);
208 		/* If the failure is because the channel is rescinded;
209 		 * ignore the failure since we cannot send on a rescinded
210 		 * channel. This would allow us to properly cleanup
211 		 * even when the channel is rescinded.
212 		 */
213 		if (device->channel->rescind)
214 			ret = 0;
215 		/*
216 		 * If we failed here, we might as well return and
217 		 * have a leak rather than continue and a bugchk
218 		 */
219 		if (ret != 0) {
220 			netdev_err(ndev, "unable to send "
221 				"revoke receive buffer to netvsp\n");
222 			return;
223 		}
224 		net_device->recv_section_cnt = 0;
225 	}
226 }
227 
228 static void netvsc_revoke_send_buf(struct hv_device *device,
229 				   struct netvsc_device *net_device,
230 				   struct net_device *ndev)
231 {
232 	struct nvsp_message *revoke_packet;
233 	int ret;
234 
235 	/* Deal with the send buffer we may have setup.
236 	 * If we got a  send section size, it means we received a
237 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
238 	 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
239 	 * to send a revoke msg here
240 	 */
241 	if (net_device->send_section_cnt) {
242 		/* Send the revoke receive buffer */
243 		revoke_packet = &net_device->revoke_packet;
244 		memset(revoke_packet, 0, sizeof(struct nvsp_message));
245 
246 		revoke_packet->hdr.msg_type =
247 			NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
248 		revoke_packet->msg.v1_msg.revoke_send_buf.id =
249 			NETVSC_SEND_BUFFER_ID;
250 
251 		trace_nvsp_send(ndev, revoke_packet);
252 
253 		ret = vmbus_sendpacket(device->channel,
254 				       revoke_packet,
255 				       sizeof(struct nvsp_message),
256 				       VMBUS_RQST_ID_NO_RESPONSE,
257 				       VM_PKT_DATA_INBAND, 0);
258 
259 		/* If the failure is because the channel is rescinded;
260 		 * ignore the failure since we cannot send on a rescinded
261 		 * channel. This would allow us to properly cleanup
262 		 * even when the channel is rescinded.
263 		 */
264 		if (device->channel->rescind)
265 			ret = 0;
266 
267 		/* If we failed here, we might as well return and
268 		 * have a leak rather than continue and a bugchk
269 		 */
270 		if (ret != 0) {
271 			netdev_err(ndev, "unable to send "
272 				   "revoke send buffer to netvsp\n");
273 			return;
274 		}
275 		net_device->send_section_cnt = 0;
276 	}
277 }
278 
279 static void netvsc_teardown_recv_gpadl(struct hv_device *device,
280 				       struct netvsc_device *net_device,
281 				       struct net_device *ndev)
282 {
283 	int ret;
284 
285 	if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
286 		ret = vmbus_teardown_gpadl(device->channel,
287 					   &net_device->recv_buf_gpadl_handle);
288 
289 		/* If we failed here, we might as well return and have a leak
290 		 * rather than continue and a bugchk
291 		 */
292 		if (ret != 0) {
293 			netdev_err(ndev,
294 				   "unable to teardown receive buffer's gpadl\n");
295 			return;
296 		}
297 	}
298 }
299 
300 static void netvsc_teardown_send_gpadl(struct hv_device *device,
301 				       struct netvsc_device *net_device,
302 				       struct net_device *ndev)
303 {
304 	int ret;
305 
306 	if (net_device->send_buf_gpadl_handle.gpadl_handle) {
307 		ret = vmbus_teardown_gpadl(device->channel,
308 					   &net_device->send_buf_gpadl_handle);
309 
310 		/* If we failed here, we might as well return and have a leak
311 		 * rather than continue and a bugchk
312 		 */
313 		if (ret != 0) {
314 			netdev_err(ndev,
315 				   "unable to teardown send buffer's gpadl\n");
316 			return;
317 		}
318 	}
319 }
320 
321 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
322 {
323 	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
324 	int node = cpu_to_node(nvchan->channel->target_cpu);
325 	size_t size;
326 
327 	size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
328 	nvchan->mrc.slots = vzalloc_node(size, node);
329 	if (!nvchan->mrc.slots)
330 		nvchan->mrc.slots = vzalloc(size);
331 
332 	return nvchan->mrc.slots ? 0 : -ENOMEM;
333 }
334 
335 static int netvsc_init_buf(struct hv_device *device,
336 			   struct netvsc_device *net_device,
337 			   const struct netvsc_device_info *device_info)
338 {
339 	struct nvsp_1_message_send_receive_buffer_complete *resp;
340 	struct net_device *ndev = hv_get_drvdata(device);
341 	struct nvsp_message *init_packet;
342 	unsigned int buf_size;
343 	int i, ret = 0;
344 
345 	/* Get receive buffer area. */
346 	buf_size = device_info->recv_sections * device_info->recv_section_size;
347 	buf_size = roundup(buf_size, PAGE_SIZE);
348 
349 	/* Legacy hosts only allow smaller receive buffer */
350 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
351 		buf_size = min_t(unsigned int, buf_size,
352 				 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
353 
354 	net_device->recv_buf = vzalloc(buf_size);
355 	if (!net_device->recv_buf) {
356 		netdev_err(ndev,
357 			   "unable to allocate receive buffer of size %u\n",
358 			   buf_size);
359 		ret = -ENOMEM;
360 		goto cleanup;
361 	}
362 
363 	net_device->recv_buf_size = buf_size;
364 
365 	/*
366 	 * Establish the gpadl handle for this buffer on this
367 	 * channel.  Note: This call uses the vmbus connection rather
368 	 * than the channel to establish the gpadl handle.
369 	 */
370 	ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
371 				    buf_size,
372 				    &net_device->recv_buf_gpadl_handle);
373 	if (ret != 0) {
374 		netdev_err(ndev,
375 			"unable to establish receive buffer's gpadl\n");
376 		goto cleanup;
377 	}
378 
379 	/* Notify the NetVsp of the gpadl handle */
380 	init_packet = &net_device->channel_init_pkt;
381 	memset(init_packet, 0, sizeof(struct nvsp_message));
382 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
383 	init_packet->msg.v1_msg.send_recv_buf.
384 		gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
385 	init_packet->msg.v1_msg.
386 		send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
387 
388 	trace_nvsp_send(ndev, init_packet);
389 
390 	/* Send the gpadl notification request */
391 	ret = vmbus_sendpacket(device->channel, init_packet,
392 			       sizeof(struct nvsp_message),
393 			       (unsigned long)init_packet,
394 			       VM_PKT_DATA_INBAND,
395 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
396 	if (ret != 0) {
397 		netdev_err(ndev,
398 			"unable to send receive buffer's gpadl to netvsp\n");
399 		goto cleanup;
400 	}
401 
402 	wait_for_completion(&net_device->channel_init_wait);
403 
404 	/* Check the response */
405 	resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
406 	if (resp->status != NVSP_STAT_SUCCESS) {
407 		netdev_err(ndev,
408 			   "Unable to complete receive buffer initialization with NetVsp - status %d\n",
409 			   resp->status);
410 		ret = -EINVAL;
411 		goto cleanup;
412 	}
413 
414 	/* Parse the response */
415 	netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
416 		   resp->num_sections, resp->sections[0].sub_alloc_size,
417 		   resp->sections[0].num_sub_allocs);
418 
419 	/* There should only be one section for the entire receive buffer */
420 	if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
421 		ret = -EINVAL;
422 		goto cleanup;
423 	}
424 
425 	net_device->recv_section_size = resp->sections[0].sub_alloc_size;
426 	net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
427 
428 	/* Ensure buffer will not overflow */
429 	if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
430 	    (u64)net_device->recv_section_cnt > (u64)buf_size) {
431 		netdev_err(ndev, "invalid recv_section_size %u\n",
432 			   net_device->recv_section_size);
433 		ret = -EINVAL;
434 		goto cleanup;
435 	}
436 
437 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
438 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
439 
440 		nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
441 		if (nvchan->recv_buf == NULL) {
442 			ret = -ENOMEM;
443 			goto cleanup;
444 		}
445 	}
446 
447 	/* Setup receive completion ring.
448 	 * Add 1 to the recv_section_cnt because at least one entry in a
449 	 * ring buffer has to be empty.
450 	 */
451 	net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
452 	ret = netvsc_alloc_recv_comp_ring(net_device, 0);
453 	if (ret)
454 		goto cleanup;
455 
456 	/* Now setup the send buffer. */
457 	buf_size = device_info->send_sections * device_info->send_section_size;
458 	buf_size = round_up(buf_size, PAGE_SIZE);
459 
460 	net_device->send_buf = vzalloc(buf_size);
461 	if (!net_device->send_buf) {
462 		netdev_err(ndev, "unable to allocate send buffer of size %u\n",
463 			   buf_size);
464 		ret = -ENOMEM;
465 		goto cleanup;
466 	}
467 	net_device->send_buf_size = buf_size;
468 
469 	/* Establish the gpadl handle for this buffer on this
470 	 * channel.  Note: This call uses the vmbus connection rather
471 	 * than the channel to establish the gpadl handle.
472 	 */
473 	ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
474 				    buf_size,
475 				    &net_device->send_buf_gpadl_handle);
476 	if (ret != 0) {
477 		netdev_err(ndev,
478 			   "unable to establish send buffer's gpadl\n");
479 		goto cleanup;
480 	}
481 
482 	/* Notify the NetVsp of the gpadl handle */
483 	init_packet = &net_device->channel_init_pkt;
484 	memset(init_packet, 0, sizeof(struct nvsp_message));
485 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
486 	init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
487 		net_device->send_buf_gpadl_handle.gpadl_handle;
488 	init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
489 
490 	trace_nvsp_send(ndev, init_packet);
491 
492 	/* Send the gpadl notification request */
493 	ret = vmbus_sendpacket(device->channel, init_packet,
494 			       sizeof(struct nvsp_message),
495 			       (unsigned long)init_packet,
496 			       VM_PKT_DATA_INBAND,
497 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
498 	if (ret != 0) {
499 		netdev_err(ndev,
500 			   "unable to send send buffer's gpadl to netvsp\n");
501 		goto cleanup;
502 	}
503 
504 	wait_for_completion(&net_device->channel_init_wait);
505 
506 	/* Check the response */
507 	if (init_packet->msg.v1_msg.
508 	    send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
509 		netdev_err(ndev, "Unable to complete send buffer "
510 			   "initialization with NetVsp - status %d\n",
511 			   init_packet->msg.v1_msg.
512 			   send_send_buf_complete.status);
513 		ret = -EINVAL;
514 		goto cleanup;
515 	}
516 
517 	/* Parse the response */
518 	net_device->send_section_size = init_packet->msg.
519 				v1_msg.send_send_buf_complete.section_size;
520 	if (net_device->send_section_size < NETVSC_MTU_MIN) {
521 		netdev_err(ndev, "invalid send_section_size %u\n",
522 			   net_device->send_section_size);
523 		ret = -EINVAL;
524 		goto cleanup;
525 	}
526 
527 	/* Section count is simply the size divided by the section size. */
528 	net_device->send_section_cnt = buf_size / net_device->send_section_size;
529 
530 	netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
531 		   net_device->send_section_size, net_device->send_section_cnt);
532 
533 	/* Setup state for managing the send buffer. */
534 	net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
535 						     GFP_KERNEL);
536 	if (!net_device->send_section_map) {
537 		ret = -ENOMEM;
538 		goto cleanup;
539 	}
540 
541 	goto exit;
542 
543 cleanup:
544 	netvsc_revoke_recv_buf(device, net_device, ndev);
545 	netvsc_revoke_send_buf(device, net_device, ndev);
546 	netvsc_teardown_recv_gpadl(device, net_device, ndev);
547 	netvsc_teardown_send_gpadl(device, net_device, ndev);
548 
549 exit:
550 	return ret;
551 }
552 
553 /* Negotiate NVSP protocol version */
554 static int negotiate_nvsp_ver(struct hv_device *device,
555 			      struct netvsc_device *net_device,
556 			      struct nvsp_message *init_packet,
557 			      u32 nvsp_ver)
558 {
559 	struct net_device *ndev = hv_get_drvdata(device);
560 	int ret;
561 
562 	memset(init_packet, 0, sizeof(struct nvsp_message));
563 	init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
564 	init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
565 	init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
566 	trace_nvsp_send(ndev, init_packet);
567 
568 	/* Send the init request */
569 	ret = vmbus_sendpacket(device->channel, init_packet,
570 			       sizeof(struct nvsp_message),
571 			       (unsigned long)init_packet,
572 			       VM_PKT_DATA_INBAND,
573 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
574 
575 	if (ret != 0)
576 		return ret;
577 
578 	wait_for_completion(&net_device->channel_init_wait);
579 
580 	if (init_packet->msg.init_msg.init_complete.status !=
581 	    NVSP_STAT_SUCCESS)
582 		return -EINVAL;
583 
584 	if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
585 		return 0;
586 
587 	/* NVSPv2 or later: Send NDIS config */
588 	memset(init_packet, 0, sizeof(struct nvsp_message));
589 	init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
590 	init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
591 	init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
592 
593 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
594 		if (hv_is_isolation_supported())
595 			netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
596 		else
597 			init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
598 
599 		/* Teaming bit is needed to receive link speed updates */
600 		init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
601 	}
602 
603 	if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
604 		init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
605 
606 	trace_nvsp_send(ndev, init_packet);
607 
608 	ret = vmbus_sendpacket(device->channel, init_packet,
609 				sizeof(struct nvsp_message),
610 				VMBUS_RQST_ID_NO_RESPONSE,
611 				VM_PKT_DATA_INBAND, 0);
612 
613 	return ret;
614 }
615 
616 static int netvsc_connect_vsp(struct hv_device *device,
617 			      struct netvsc_device *net_device,
618 			      const struct netvsc_device_info *device_info)
619 {
620 	struct net_device *ndev = hv_get_drvdata(device);
621 	static const u32 ver_list[] = {
622 		NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
623 		NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
624 		NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
625 	};
626 	struct nvsp_message *init_packet;
627 	int ndis_version, i, ret;
628 
629 	init_packet = &net_device->channel_init_pkt;
630 
631 	/* Negotiate the latest NVSP protocol supported */
632 	for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
633 		if (negotiate_nvsp_ver(device, net_device, init_packet,
634 				       ver_list[i])  == 0) {
635 			net_device->nvsp_version = ver_list[i];
636 			break;
637 		}
638 
639 	if (i < 0) {
640 		ret = -EPROTO;
641 		goto cleanup;
642 	}
643 
644 	if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
645 		netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
646 			   net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
647 		ret = -EPROTO;
648 		goto cleanup;
649 	}
650 
651 	pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
652 
653 	/* Send the ndis version */
654 	memset(init_packet, 0, sizeof(struct nvsp_message));
655 
656 	if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
657 		ndis_version = 0x00060001;
658 	else
659 		ndis_version = 0x0006001e;
660 
661 	init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
662 	init_packet->msg.v1_msg.
663 		send_ndis_ver.ndis_major_ver =
664 				(ndis_version & 0xFFFF0000) >> 16;
665 	init_packet->msg.v1_msg.
666 		send_ndis_ver.ndis_minor_ver =
667 				ndis_version & 0xFFFF;
668 
669 	trace_nvsp_send(ndev, init_packet);
670 
671 	/* Send the init request */
672 	ret = vmbus_sendpacket(device->channel, init_packet,
673 				sizeof(struct nvsp_message),
674 				VMBUS_RQST_ID_NO_RESPONSE,
675 				VM_PKT_DATA_INBAND, 0);
676 	if (ret != 0)
677 		goto cleanup;
678 
679 
680 	ret = netvsc_init_buf(device, net_device, device_info);
681 
682 cleanup:
683 	return ret;
684 }
685 
686 /*
687  * netvsc_device_remove - Callback when the root bus device is removed
688  */
689 void netvsc_device_remove(struct hv_device *device)
690 {
691 	struct net_device *ndev = hv_get_drvdata(device);
692 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
693 	struct netvsc_device *net_device
694 		= rtnl_dereference(net_device_ctx->nvdev);
695 	int i;
696 
697 	/*
698 	 * Revoke receive buffer. If host is pre-Win2016 then tear down
699 	 * receive buffer GPADL. Do the same for send buffer.
700 	 */
701 	netvsc_revoke_recv_buf(device, net_device, ndev);
702 	if (vmbus_proto_version < VERSION_WIN10)
703 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
704 
705 	netvsc_revoke_send_buf(device, net_device, ndev);
706 	if (vmbus_proto_version < VERSION_WIN10)
707 		netvsc_teardown_send_gpadl(device, net_device, ndev);
708 
709 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
710 
711 	/* Disable NAPI and disassociate its context from the device. */
712 	for (i = 0; i < net_device->num_chn; i++) {
713 		/* See also vmbus_reset_channel_cb(). */
714 		/* only disable enabled NAPI channel */
715 		if (i < ndev->real_num_rx_queues)
716 			napi_disable(&net_device->chan_table[i].napi);
717 
718 		netif_napi_del(&net_device->chan_table[i].napi);
719 	}
720 
721 	/*
722 	 * At this point, no one should be accessing net_device
723 	 * except in here
724 	 */
725 	netdev_dbg(ndev, "net device safe to remove\n");
726 
727 	/* Now, we can close the channel safely */
728 	vmbus_close(device->channel);
729 
730 	/*
731 	 * If host is Win2016 or higher then we do the GPADL tear down
732 	 * here after VMBus is closed.
733 	*/
734 	if (vmbus_proto_version >= VERSION_WIN10) {
735 		netvsc_teardown_recv_gpadl(device, net_device, ndev);
736 		netvsc_teardown_send_gpadl(device, net_device, ndev);
737 	}
738 
739 	/* Release all resources */
740 	free_netvsc_device_rcu(net_device);
741 }
742 
743 #define RING_AVAIL_PERCENT_HIWATER 20
744 #define RING_AVAIL_PERCENT_LOWATER 10
745 
746 static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
747 					 u32 index)
748 {
749 	sync_change_bit(index, net_device->send_section_map);
750 }
751 
752 static void netvsc_send_tx_complete(struct net_device *ndev,
753 				    struct netvsc_device *net_device,
754 				    struct vmbus_channel *channel,
755 				    const struct vmpacket_descriptor *desc,
756 				    int budget)
757 {
758 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
759 	struct sk_buff *skb;
760 	u16 q_idx = 0;
761 	int queue_sends;
762 	u64 cmd_rqst;
763 
764 	cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
765 	if (cmd_rqst == VMBUS_RQST_ERROR) {
766 		netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
767 		return;
768 	}
769 
770 	skb = (struct sk_buff *)(unsigned long)cmd_rqst;
771 
772 	/* Notify the layer above us */
773 	if (likely(skb)) {
774 		struct hv_netvsc_packet *packet
775 			= (struct hv_netvsc_packet *)skb->cb;
776 		u32 send_index = packet->send_buf_index;
777 		struct netvsc_stats_tx *tx_stats;
778 
779 		if (send_index != NETVSC_INVALID_INDEX)
780 			netvsc_free_send_slot(net_device, send_index);
781 		q_idx = packet->q_idx;
782 
783 		tx_stats = &net_device->chan_table[q_idx].tx_stats;
784 
785 		u64_stats_update_begin(&tx_stats->syncp);
786 		tx_stats->packets += packet->total_packets;
787 		tx_stats->bytes += packet->total_bytes;
788 		u64_stats_update_end(&tx_stats->syncp);
789 
790 		netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
791 		napi_consume_skb(skb, budget);
792 	}
793 
794 	queue_sends =
795 		atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
796 
797 	if (unlikely(net_device->destroy)) {
798 		if (queue_sends == 0)
799 			wake_up(&net_device->wait_drain);
800 	} else {
801 		struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
802 
803 		if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
804 		    (hv_get_avail_to_write_percent(&channel->outbound) >
805 		     RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
806 			netif_tx_wake_queue(txq);
807 			ndev_ctx->eth_stats.wake_queue++;
808 		}
809 	}
810 }
811 
812 static void netvsc_send_completion(struct net_device *ndev,
813 				   struct netvsc_device *net_device,
814 				   struct vmbus_channel *incoming_channel,
815 				   const struct vmpacket_descriptor *desc,
816 				   int budget)
817 {
818 	const struct nvsp_message *nvsp_packet;
819 	u32 msglen = hv_pkt_datalen(desc);
820 	struct nvsp_message *pkt_rqst;
821 	u64 cmd_rqst;
822 	u32 status;
823 
824 	/* First check if this is a VMBUS completion without data payload */
825 	if (!msglen) {
826 		cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
827 								   desc->trans_id);
828 		if (cmd_rqst == VMBUS_RQST_ERROR) {
829 			netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
830 			return;
831 		}
832 
833 		pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
834 		switch (pkt_rqst->hdr.msg_type) {
835 		case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
836 			complete(&net_device->channel_init_wait);
837 			break;
838 
839 		default:
840 			netdev_err(ndev, "Unexpected VMBUS completion!!\n");
841 		}
842 		return;
843 	}
844 
845 	/* Ensure packet is big enough to read header fields */
846 	if (msglen < sizeof(struct nvsp_message_header)) {
847 		netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
848 		return;
849 	}
850 
851 	nvsp_packet = hv_pkt_data(desc);
852 	switch (nvsp_packet->hdr.msg_type) {
853 	case NVSP_MSG_TYPE_INIT_COMPLETE:
854 		if (msglen < sizeof(struct nvsp_message_header) +
855 				sizeof(struct nvsp_message_init_complete)) {
856 			netdev_err(ndev, "nvsp_msg length too small: %u\n",
857 				   msglen);
858 			return;
859 		}
860 		break;
861 
862 	case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
863 		if (msglen < sizeof(struct nvsp_message_header) +
864 				sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
865 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
866 				   msglen);
867 			return;
868 		}
869 		break;
870 
871 	case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
872 		if (msglen < sizeof(struct nvsp_message_header) +
873 				sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
874 			netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
875 				   msglen);
876 			return;
877 		}
878 		break;
879 
880 	case NVSP_MSG5_TYPE_SUBCHANNEL:
881 		if (msglen < sizeof(struct nvsp_message_header) +
882 				sizeof(struct nvsp_5_subchannel_complete)) {
883 			netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
884 				   msglen);
885 			return;
886 		}
887 		break;
888 
889 	case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
890 		if (msglen < sizeof(struct nvsp_message_header) +
891 		    sizeof(struct nvsp_1_message_send_rndis_packet_complete)) {
892 			if (net_ratelimit())
893 				netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n",
894 					   msglen);
895 			return;
896 		}
897 
898 		/* If status indicates an error, output a message so we know
899 		 * there's a problem. But process the completion anyway so the
900 		 * resources are released.
901 		 */
902 		status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status;
903 		if (status != NVSP_STAT_SUCCESS && net_ratelimit())
904 			netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n",
905 				   status);
906 
907 		netvsc_send_tx_complete(ndev, net_device, incoming_channel,
908 					desc, budget);
909 		return;
910 
911 	default:
912 		netdev_err(ndev,
913 			   "Unknown send completion type %d received!!\n",
914 			   nvsp_packet->hdr.msg_type);
915 		return;
916 	}
917 
918 	/* Copy the response back */
919 	memcpy(&net_device->channel_init_pkt, nvsp_packet,
920 	       sizeof(struct nvsp_message));
921 	complete(&net_device->channel_init_wait);
922 }
923 
924 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
925 {
926 	unsigned long *map_addr = net_device->send_section_map;
927 	unsigned int i;
928 
929 	for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
930 		if (sync_test_and_set_bit(i, map_addr) == 0)
931 			return i;
932 	}
933 
934 	return NETVSC_INVALID_INDEX;
935 }
936 
937 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
938 				    unsigned int section_index,
939 				    u32 pend_size,
940 				    struct hv_netvsc_packet *packet,
941 				    struct rndis_message *rndis_msg,
942 				    struct hv_page_buffer *pb,
943 				    bool xmit_more)
944 {
945 	char *start = net_device->send_buf;
946 	char *dest = start + (section_index * net_device->send_section_size)
947 		     + pend_size;
948 	int i;
949 	u32 padding = 0;
950 	u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
951 		packet->page_buf_cnt;
952 	u32 remain;
953 
954 	/* Add padding */
955 	remain = packet->total_data_buflen & (net_device->pkt_align - 1);
956 	if (xmit_more && remain) {
957 		padding = net_device->pkt_align - remain;
958 		rndis_msg->msg_len += padding;
959 		packet->total_data_buflen += padding;
960 	}
961 
962 	for (i = 0; i < page_count; i++) {
963 		char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
964 		u32 offset = pb[i].offset;
965 		u32 len = pb[i].len;
966 
967 		memcpy(dest, (src + offset), len);
968 		dest += len;
969 	}
970 
971 	if (padding)
972 		memset(dest, 0, padding);
973 }
974 
975 void netvsc_dma_unmap(struct hv_device *hv_dev,
976 		      struct hv_netvsc_packet *packet)
977 {
978 	int i;
979 
980 	if (!hv_is_isolation_supported())
981 		return;
982 
983 	if (!packet->dma_range)
984 		return;
985 
986 	for (i = 0; i < packet->page_buf_cnt; i++)
987 		dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
988 				 packet->dma_range[i].mapping_size,
989 				 DMA_TO_DEVICE);
990 
991 	kfree(packet->dma_range);
992 }
993 
994 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of
995  * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
996  * VM.
997  *
998  * In isolation VM, netvsc send buffer has been marked visible to
999  * host and so the data copied to send buffer doesn't need to use
1000  * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
1001  * may not be copied to send buffer and so these pages need to be
1002  * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1003  * that. The pfns in the struct hv_page_buffer need to be converted
1004  * to bounce buffer's pfn. The loop here is necessary because the
1005  * entries in the page buffer array are not necessarily full
1006  * pages of data.  Each entry in the array has a separate offset and
1007  * len that may be non-zero, even for entries in the middle of the
1008  * array.  And the entries are not physically contiguous.  So each
1009  * entry must be individually mapped rather than as a contiguous unit.
1010  * So not use dma_map_sg() here.
1011  */
1012 static int netvsc_dma_map(struct hv_device *hv_dev,
1013 			  struct hv_netvsc_packet *packet,
1014 			  struct hv_page_buffer *pb)
1015 {
1016 	u32 page_count = packet->page_buf_cnt;
1017 	dma_addr_t dma;
1018 	int i;
1019 
1020 	if (!hv_is_isolation_supported())
1021 		return 0;
1022 
1023 	packet->dma_range = kcalloc(page_count,
1024 				    sizeof(*packet->dma_range),
1025 				    GFP_ATOMIC);
1026 	if (!packet->dma_range)
1027 		return -ENOMEM;
1028 
1029 	for (i = 0; i < page_count; i++) {
1030 		char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1031 					 + pb[i].offset);
1032 		u32 len = pb[i].len;
1033 
1034 		dma = dma_map_single(&hv_dev->device, src, len,
1035 				     DMA_TO_DEVICE);
1036 		if (dma_mapping_error(&hv_dev->device, dma)) {
1037 			kfree(packet->dma_range);
1038 			return -ENOMEM;
1039 		}
1040 
1041 		/* pb[].offset and pb[].len are not changed during dma mapping
1042 		 * and so not reassign.
1043 		 */
1044 		packet->dma_range[i].dma = dma;
1045 		packet->dma_range[i].mapping_size = len;
1046 		pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static inline int netvsc_send_pkt(
1053 	struct hv_device *device,
1054 	struct hv_netvsc_packet *packet,
1055 	struct netvsc_device *net_device,
1056 	struct hv_page_buffer *pb,
1057 	struct sk_buff *skb)
1058 {
1059 	struct nvsp_message nvmsg;
1060 	struct nvsp_1_message_send_rndis_packet *rpkt =
1061 		&nvmsg.msg.v1_msg.send_rndis_pkt;
1062 	struct netvsc_channel * const nvchan =
1063 		&net_device->chan_table[packet->q_idx];
1064 	struct vmbus_channel *out_channel = nvchan->channel;
1065 	struct net_device *ndev = hv_get_drvdata(device);
1066 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1067 	struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1068 	u64 req_id;
1069 	int ret;
1070 	u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1071 
1072 	memset(&nvmsg, 0, sizeof(struct nvsp_message));
1073 	nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1074 	if (skb)
1075 		rpkt->channel_type = 0;		/* 0 is RMC_DATA */
1076 	else
1077 		rpkt->channel_type = 1;		/* 1 is RMC_CONTROL */
1078 
1079 	rpkt->send_buf_section_index = packet->send_buf_index;
1080 	if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1081 		rpkt->send_buf_section_size = 0;
1082 	else
1083 		rpkt->send_buf_section_size = packet->total_data_buflen;
1084 
1085 	req_id = (ulong)skb;
1086 
1087 	if (out_channel->rescind)
1088 		return -ENODEV;
1089 
1090 	trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1091 
1092 	packet->dma_range = NULL;
1093 	if (packet->page_buf_cnt) {
1094 		if (packet->cp_partial)
1095 			pb += packet->rmsg_pgcnt;
1096 
1097 		ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1098 		if (ret) {
1099 			ret = -EAGAIN;
1100 			goto exit;
1101 		}
1102 
1103 		ret = vmbus_sendpacket_pagebuffer(out_channel,
1104 						  pb, packet->page_buf_cnt,
1105 						  &nvmsg, sizeof(nvmsg),
1106 						  req_id);
1107 
1108 		if (ret)
1109 			netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1110 	} else {
1111 		ret = vmbus_sendpacket(out_channel,
1112 				       &nvmsg, sizeof(nvmsg),
1113 				       req_id, VM_PKT_DATA_INBAND,
1114 				       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1115 	}
1116 
1117 exit:
1118 	if (ret == 0) {
1119 		atomic_inc_return(&nvchan->queue_sends);
1120 
1121 		if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1122 			netif_tx_stop_queue(txq);
1123 			ndev_ctx->eth_stats.stop_queue++;
1124 		}
1125 	} else if (ret == -EAGAIN) {
1126 		netif_tx_stop_queue(txq);
1127 		ndev_ctx->eth_stats.stop_queue++;
1128 	} else {
1129 		netdev_err(ndev,
1130 			   "Unable to send packet pages %u len %u, ret %d\n",
1131 			   packet->page_buf_cnt, packet->total_data_buflen,
1132 			   ret);
1133 	}
1134 
1135 	if (netif_tx_queue_stopped(txq) &&
1136 	    atomic_read(&nvchan->queue_sends) < 1 &&
1137 	    !net_device->tx_disable) {
1138 		netif_tx_wake_queue(txq);
1139 		ndev_ctx->eth_stats.wake_queue++;
1140 		if (ret == -EAGAIN)
1141 			ret = -ENOSPC;
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 /* Move packet out of multi send data (msd), and clear msd */
1148 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1149 				struct sk_buff **msd_skb,
1150 				struct multi_send_data *msdp)
1151 {
1152 	*msd_skb = msdp->skb;
1153 	*msd_send = msdp->pkt;
1154 	msdp->skb = NULL;
1155 	msdp->pkt = NULL;
1156 	msdp->count = 0;
1157 }
1158 
1159 /* RCU already held by caller */
1160 /* Batching/bouncing logic is designed to attempt to optimize
1161  * performance.
1162  *
1163  * For small, non-LSO packets we copy the packet to a send buffer
1164  * which is pre-registered with the Hyper-V side. This enables the
1165  * hypervisor to avoid remapping the aperture to access the packet
1166  * descriptor and data.
1167  *
1168  * If we already started using a buffer and the netdev is transmitting
1169  * a burst of packets, keep on copying into the buffer until it is
1170  * full or we are done collecting a burst. If there is an existing
1171  * buffer with space for the RNDIS descriptor but not the packet, copy
1172  * the RNDIS descriptor to the buffer, keeping the packet in place.
1173  *
1174  * If we do batching and send more than one packet using a single
1175  * NetVSC message, free the SKBs of the packets copied, except for the
1176  * last packet. This is done to streamline the handling of the case
1177  * where the last packet only had the RNDIS descriptor copied to the
1178  * send buffer, with the data pointers included in the NetVSC message.
1179  */
1180 int netvsc_send(struct net_device *ndev,
1181 		struct hv_netvsc_packet *packet,
1182 		struct rndis_message *rndis_msg,
1183 		struct hv_page_buffer *pb,
1184 		struct sk_buff *skb,
1185 		bool xdp_tx)
1186 {
1187 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1188 	struct netvsc_device *net_device
1189 		= rcu_dereference_bh(ndev_ctx->nvdev);
1190 	struct hv_device *device = ndev_ctx->device_ctx;
1191 	int ret = 0;
1192 	struct netvsc_channel *nvchan;
1193 	u32 pktlen = packet->total_data_buflen, msd_len = 0;
1194 	unsigned int section_index = NETVSC_INVALID_INDEX;
1195 	struct multi_send_data *msdp;
1196 	struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1197 	struct sk_buff *msd_skb = NULL;
1198 	bool try_batch, xmit_more;
1199 
1200 	/* If device is rescinded, return error and packet will get dropped. */
1201 	if (unlikely(!net_device || net_device->destroy))
1202 		return -ENODEV;
1203 
1204 	nvchan = &net_device->chan_table[packet->q_idx];
1205 	packet->send_buf_index = NETVSC_INVALID_INDEX;
1206 	packet->cp_partial = false;
1207 
1208 	/* Send a control message or XDP packet directly without accessing
1209 	 * msd (Multi-Send Data) field which may be changed during data packet
1210 	 * processing.
1211 	 */
1212 	if (!skb || xdp_tx)
1213 		return netvsc_send_pkt(device, packet, net_device, pb, skb);
1214 
1215 	/* batch packets in send buffer if possible */
1216 	msdp = &nvchan->msd;
1217 	if (msdp->pkt)
1218 		msd_len = msdp->pkt->total_data_buflen;
1219 
1220 	try_batch =  msd_len > 0 && msdp->count < net_device->max_pkt;
1221 	if (try_batch && msd_len + pktlen + net_device->pkt_align <
1222 	    net_device->send_section_size) {
1223 		section_index = msdp->pkt->send_buf_index;
1224 
1225 	} else if (try_batch && msd_len + packet->rmsg_size <
1226 		   net_device->send_section_size) {
1227 		section_index = msdp->pkt->send_buf_index;
1228 		packet->cp_partial = true;
1229 
1230 	} else if (pktlen + net_device->pkt_align <
1231 		   net_device->send_section_size) {
1232 		section_index = netvsc_get_next_send_section(net_device);
1233 		if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1234 			++ndev_ctx->eth_stats.tx_send_full;
1235 		} else {
1236 			move_pkt_msd(&msd_send, &msd_skb, msdp);
1237 			msd_len = 0;
1238 		}
1239 	}
1240 
1241 	/* Keep aggregating only if stack says more data is coming
1242 	 * and not doing mixed modes send and not flow blocked
1243 	 */
1244 	xmit_more = netdev_xmit_more() &&
1245 		!packet->cp_partial &&
1246 		!netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1247 
1248 	if (section_index != NETVSC_INVALID_INDEX) {
1249 		netvsc_copy_to_send_buf(net_device,
1250 					section_index, msd_len,
1251 					packet, rndis_msg, pb, xmit_more);
1252 
1253 		packet->send_buf_index = section_index;
1254 
1255 		if (packet->cp_partial) {
1256 			packet->page_buf_cnt -= packet->rmsg_pgcnt;
1257 			packet->total_data_buflen = msd_len + packet->rmsg_size;
1258 		} else {
1259 			packet->page_buf_cnt = 0;
1260 			packet->total_data_buflen += msd_len;
1261 		}
1262 
1263 		if (msdp->pkt) {
1264 			packet->total_packets += msdp->pkt->total_packets;
1265 			packet->total_bytes += msdp->pkt->total_bytes;
1266 		}
1267 
1268 		if (msdp->skb)
1269 			dev_consume_skb_any(msdp->skb);
1270 
1271 		if (xmit_more) {
1272 			msdp->skb = skb;
1273 			msdp->pkt = packet;
1274 			msdp->count++;
1275 		} else {
1276 			cur_send = packet;
1277 			msdp->skb = NULL;
1278 			msdp->pkt = NULL;
1279 			msdp->count = 0;
1280 		}
1281 	} else {
1282 		move_pkt_msd(&msd_send, &msd_skb, msdp);
1283 		cur_send = packet;
1284 	}
1285 
1286 	if (msd_send) {
1287 		int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1288 					    NULL, msd_skb);
1289 
1290 		if (m_ret != 0) {
1291 			netvsc_free_send_slot(net_device,
1292 					      msd_send->send_buf_index);
1293 			dev_kfree_skb_any(msd_skb);
1294 		}
1295 	}
1296 
1297 	if (cur_send)
1298 		ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1299 
1300 	if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1301 		netvsc_free_send_slot(net_device, section_index);
1302 
1303 	return ret;
1304 }
1305 
1306 /* Send pending recv completions */
1307 static int send_recv_completions(struct net_device *ndev,
1308 				 struct netvsc_device *nvdev,
1309 				 struct netvsc_channel *nvchan)
1310 {
1311 	struct multi_recv_comp *mrc = &nvchan->mrc;
1312 	struct recv_comp_msg {
1313 		struct nvsp_message_header hdr;
1314 		u32 status;
1315 	}  __packed;
1316 	struct recv_comp_msg msg = {
1317 		.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1318 	};
1319 	int ret;
1320 
1321 	while (mrc->first != mrc->next) {
1322 		const struct recv_comp_data *rcd
1323 			= mrc->slots + mrc->first;
1324 
1325 		msg.status = rcd->status;
1326 		ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1327 				       rcd->tid, VM_PKT_COMP, 0);
1328 		if (unlikely(ret)) {
1329 			struct net_device_context *ndev_ctx = netdev_priv(ndev);
1330 
1331 			++ndev_ctx->eth_stats.rx_comp_busy;
1332 			return ret;
1333 		}
1334 
1335 		if (++mrc->first == nvdev->recv_completion_cnt)
1336 			mrc->first = 0;
1337 	}
1338 
1339 	/* receive completion ring has been emptied */
1340 	if (unlikely(nvdev->destroy))
1341 		wake_up(&nvdev->wait_drain);
1342 
1343 	return 0;
1344 }
1345 
1346 /* Count how many receive completions are outstanding */
1347 static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1348 				 const struct multi_recv_comp *mrc,
1349 				 u32 *filled, u32 *avail)
1350 {
1351 	u32 count = nvdev->recv_completion_cnt;
1352 
1353 	if (mrc->next >= mrc->first)
1354 		*filled = mrc->next - mrc->first;
1355 	else
1356 		*filled = (count - mrc->first) + mrc->next;
1357 
1358 	*avail = count - *filled - 1;
1359 }
1360 
1361 /* Add receive complete to ring to send to host. */
1362 static void enq_receive_complete(struct net_device *ndev,
1363 				 struct netvsc_device *nvdev, u16 q_idx,
1364 				 u64 tid, u32 status)
1365 {
1366 	struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1367 	struct multi_recv_comp *mrc = &nvchan->mrc;
1368 	struct recv_comp_data *rcd;
1369 	u32 filled, avail;
1370 
1371 	recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1372 
1373 	if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1374 		send_recv_completions(ndev, nvdev, nvchan);
1375 		recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1376 	}
1377 
1378 	if (unlikely(!avail)) {
1379 		netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1380 			   q_idx, tid);
1381 		return;
1382 	}
1383 
1384 	rcd = mrc->slots + mrc->next;
1385 	rcd->tid = tid;
1386 	rcd->status = status;
1387 
1388 	if (++mrc->next == nvdev->recv_completion_cnt)
1389 		mrc->next = 0;
1390 }
1391 
1392 static int netvsc_receive(struct net_device *ndev,
1393 			  struct netvsc_device *net_device,
1394 			  struct netvsc_channel *nvchan,
1395 			  const struct vmpacket_descriptor *desc)
1396 {
1397 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1398 	struct vmbus_channel *channel = nvchan->channel;
1399 	const struct vmtransfer_page_packet_header *vmxferpage_packet
1400 		= container_of(desc, const struct vmtransfer_page_packet_header, d);
1401 	const struct nvsp_message *nvsp = hv_pkt_data(desc);
1402 	u32 msglen = hv_pkt_datalen(desc);
1403 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
1404 	char *recv_buf = net_device->recv_buf;
1405 	u32 status = NVSP_STAT_SUCCESS;
1406 	int i;
1407 	int count = 0;
1408 
1409 	/* Ensure packet is big enough to read header fields */
1410 	if (msglen < sizeof(struct nvsp_message_header)) {
1411 		netif_err(net_device_ctx, rx_err, ndev,
1412 			  "invalid nvsp header, length too small: %u\n",
1413 			  msglen);
1414 		return 0;
1415 	}
1416 
1417 	/* Make sure this is a valid nvsp packet */
1418 	if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1419 		netif_err(net_device_ctx, rx_err, ndev,
1420 			  "Unknown nvsp packet type received %u\n",
1421 			  nvsp->hdr.msg_type);
1422 		return 0;
1423 	}
1424 
1425 	/* Validate xfer page pkt header */
1426 	if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1427 		netif_err(net_device_ctx, rx_err, ndev,
1428 			  "Invalid xfer page pkt, offset too small: %u\n",
1429 			  desc->offset8 << 3);
1430 		return 0;
1431 	}
1432 
1433 	if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1434 		netif_err(net_device_ctx, rx_err, ndev,
1435 			  "Invalid xfer page set id - expecting %x got %x\n",
1436 			  NETVSC_RECEIVE_BUFFER_ID,
1437 			  vmxferpage_packet->xfer_pageset_id);
1438 		return 0;
1439 	}
1440 
1441 	count = vmxferpage_packet->range_cnt;
1442 
1443 	/* Check count for a valid value */
1444 	if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1445 		netif_err(net_device_ctx, rx_err, ndev,
1446 			  "Range count is not valid: %d\n",
1447 			  count);
1448 		return 0;
1449 	}
1450 
1451 	/* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1452 	for (i = 0; i < count; i++) {
1453 		u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1454 		u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1455 		void *data;
1456 		int ret;
1457 
1458 		if (unlikely(offset > net_device->recv_buf_size ||
1459 			     buflen > net_device->recv_buf_size - offset)) {
1460 			nvchan->rsc.cnt = 0;
1461 			status = NVSP_STAT_FAIL;
1462 			netif_err(net_device_ctx, rx_err, ndev,
1463 				  "Packet offset:%u + len:%u too big\n",
1464 				  offset, buflen);
1465 
1466 			continue;
1467 		}
1468 
1469 		/* We're going to copy (sections of) the packet into nvchan->recv_buf;
1470 		 * make sure that nvchan->recv_buf is large enough to hold the packet.
1471 		 */
1472 		if (unlikely(buflen > net_device->recv_section_size)) {
1473 			nvchan->rsc.cnt = 0;
1474 			status = NVSP_STAT_FAIL;
1475 			netif_err(net_device_ctx, rx_err, ndev,
1476 				  "Packet too big: buflen=%u recv_section_size=%u\n",
1477 				  buflen, net_device->recv_section_size);
1478 
1479 			continue;
1480 		}
1481 
1482 		data = recv_buf + offset;
1483 
1484 		nvchan->rsc.is_last = (i == count - 1);
1485 
1486 		trace_rndis_recv(ndev, q_idx, data);
1487 
1488 		/* Pass it to the upper layer */
1489 		ret = rndis_filter_receive(ndev, net_device,
1490 					   nvchan, data, buflen);
1491 
1492 		if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1493 			/* Drop incomplete packet */
1494 			nvchan->rsc.cnt = 0;
1495 			status = NVSP_STAT_FAIL;
1496 		}
1497 	}
1498 
1499 	enq_receive_complete(ndev, net_device, q_idx,
1500 			     vmxferpage_packet->d.trans_id, status);
1501 
1502 	return count;
1503 }
1504 
1505 static void netvsc_send_table(struct net_device *ndev,
1506 			      struct netvsc_device *nvscdev,
1507 			      const struct nvsp_message *nvmsg,
1508 			      u32 msglen)
1509 {
1510 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1511 	u32 count, offset, *tab;
1512 	int i;
1513 
1514 	/* Ensure packet is big enough to read send_table fields */
1515 	if (msglen < sizeof(struct nvsp_message_header) +
1516 		     sizeof(struct nvsp_5_send_indirect_table)) {
1517 		netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1518 		return;
1519 	}
1520 
1521 	count = nvmsg->msg.v5_msg.send_table.count;
1522 	offset = nvmsg->msg.v5_msg.send_table.offset;
1523 
1524 	if (count != VRSS_SEND_TAB_SIZE) {
1525 		netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1526 		return;
1527 	}
1528 
1529 	/* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1530 	 * wrong due to a host bug. So fix the offset here.
1531 	 */
1532 	if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1533 	    msglen >= sizeof(struct nvsp_message_header) +
1534 	    sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1535 		offset = sizeof(struct nvsp_message_header) +
1536 			 sizeof(union nvsp_6_message_uber);
1537 
1538 	/* Boundary check for all versions */
1539 	if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1540 		netdev_err(ndev, "Received send-table offset too big:%u\n",
1541 			   offset);
1542 		return;
1543 	}
1544 
1545 	tab = (void *)nvmsg + offset;
1546 
1547 	for (i = 0; i < count; i++)
1548 		net_device_ctx->tx_table[i] = tab[i];
1549 }
1550 
1551 static void netvsc_send_vf(struct net_device *ndev,
1552 			   const struct nvsp_message *nvmsg,
1553 			   u32 msglen)
1554 {
1555 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1556 
1557 	/* Ensure packet is big enough to read its fields */
1558 	if (msglen < sizeof(struct nvsp_message_header) +
1559 		     sizeof(struct nvsp_4_send_vf_association)) {
1560 		netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1561 		return;
1562 	}
1563 
1564 	net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1565 	net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1566 
1567 	if (net_device_ctx->vf_alloc)
1568 		complete(&net_device_ctx->vf_add);
1569 
1570 	netdev_info(ndev, "VF slot %u %s\n",
1571 		    net_device_ctx->vf_serial,
1572 		    net_device_ctx->vf_alloc ? "added" : "removed");
1573 }
1574 
1575 static void netvsc_receive_inband(struct net_device *ndev,
1576 				  struct netvsc_device *nvscdev,
1577 				  const struct vmpacket_descriptor *desc)
1578 {
1579 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1580 	u32 msglen = hv_pkt_datalen(desc);
1581 
1582 	/* Ensure packet is big enough to read header fields */
1583 	if (msglen < sizeof(struct nvsp_message_header)) {
1584 		netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1585 		return;
1586 	}
1587 
1588 	switch (nvmsg->hdr.msg_type) {
1589 	case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1590 		netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1591 		break;
1592 
1593 	case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1594 		if (hv_is_isolation_supported())
1595 			netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1596 		else
1597 			netvsc_send_vf(ndev, nvmsg, msglen);
1598 		break;
1599 	}
1600 }
1601 
1602 static int netvsc_process_raw_pkt(struct hv_device *device,
1603 				  struct netvsc_channel *nvchan,
1604 				  struct netvsc_device *net_device,
1605 				  struct net_device *ndev,
1606 				  const struct vmpacket_descriptor *desc,
1607 				  int budget)
1608 {
1609 	struct vmbus_channel *channel = nvchan->channel;
1610 	const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1611 
1612 	trace_nvsp_recv(ndev, channel, nvmsg);
1613 
1614 	switch (desc->type) {
1615 	case VM_PKT_COMP:
1616 		netvsc_send_completion(ndev, net_device, channel, desc, budget);
1617 		break;
1618 
1619 	case VM_PKT_DATA_USING_XFER_PAGES:
1620 		return netvsc_receive(ndev, net_device, nvchan, desc);
1621 
1622 	case VM_PKT_DATA_INBAND:
1623 		netvsc_receive_inband(ndev, net_device, desc);
1624 		break;
1625 
1626 	default:
1627 		netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1628 			   desc->type, desc->trans_id);
1629 		break;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1636 {
1637 	struct vmbus_channel *primary = channel->primary_channel;
1638 
1639 	return primary ? primary->device_obj : channel->device_obj;
1640 }
1641 
1642 /* Network processing softirq
1643  * Process data in incoming ring buffer from host
1644  * Stops when ring is empty or budget is met or exceeded.
1645  */
1646 int netvsc_poll(struct napi_struct *napi, int budget)
1647 {
1648 	struct netvsc_channel *nvchan
1649 		= container_of(napi, struct netvsc_channel, napi);
1650 	struct netvsc_device *net_device = nvchan->net_device;
1651 	struct vmbus_channel *channel = nvchan->channel;
1652 	struct hv_device *device = netvsc_channel_to_device(channel);
1653 	struct net_device *ndev = hv_get_drvdata(device);
1654 	int work_done = 0;
1655 	int ret;
1656 
1657 	/* If starting a new interval */
1658 	if (!nvchan->desc)
1659 		nvchan->desc = hv_pkt_iter_first(channel);
1660 
1661 	nvchan->xdp_flush = false;
1662 
1663 	while (nvchan->desc && work_done < budget) {
1664 		work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1665 						    ndev, nvchan->desc, budget);
1666 		nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1667 	}
1668 
1669 	if (nvchan->xdp_flush)
1670 		xdp_do_flush();
1671 
1672 	/* Send any pending receive completions */
1673 	ret = send_recv_completions(ndev, net_device, nvchan);
1674 
1675 	/* If it did not exhaust NAPI budget this time
1676 	 *  and not doing busy poll
1677 	 * then re-enable host interrupts
1678 	 *  and reschedule if ring is not empty
1679 	 *   or sending receive completion failed.
1680 	 */
1681 	if (work_done < budget &&
1682 	    napi_complete_done(napi, work_done) &&
1683 	    (ret || hv_end_read(&channel->inbound)) &&
1684 	    napi_schedule_prep(napi)) {
1685 		hv_begin_read(&channel->inbound);
1686 		__napi_schedule(napi);
1687 	}
1688 
1689 	/* Driver may overshoot since multiple packets per descriptor */
1690 	return min(work_done, budget);
1691 }
1692 
1693 /* Call back when data is available in host ring buffer.
1694  * Processing is deferred until network softirq (NAPI)
1695  */
1696 void netvsc_channel_cb(void *context)
1697 {
1698 	struct netvsc_channel *nvchan = context;
1699 	struct vmbus_channel *channel = nvchan->channel;
1700 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1701 
1702 	/* preload first vmpacket descriptor */
1703 	prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1704 
1705 	if (napi_schedule_prep(&nvchan->napi)) {
1706 		/* disable interrupts from host */
1707 		hv_begin_read(rbi);
1708 
1709 		__napi_schedule_irqoff(&nvchan->napi);
1710 	}
1711 }
1712 
1713 /*
1714  * netvsc_device_add - Callback when the device belonging to this
1715  * driver is added
1716  */
1717 struct netvsc_device *netvsc_device_add(struct hv_device *device,
1718 				const struct netvsc_device_info *device_info)
1719 {
1720 	int i, ret = 0;
1721 	struct netvsc_device *net_device;
1722 	struct net_device *ndev = hv_get_drvdata(device);
1723 	struct net_device_context *net_device_ctx = netdev_priv(ndev);
1724 
1725 	net_device = alloc_net_device();
1726 	if (!net_device)
1727 		return ERR_PTR(-ENOMEM);
1728 
1729 	for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1730 		net_device_ctx->tx_table[i] = 0;
1731 
1732 	/* Because the device uses NAPI, all the interrupt batching and
1733 	 * control is done via Net softirq, not the channel handling
1734 	 */
1735 	set_channel_read_mode(device->channel, HV_CALL_ISR);
1736 
1737 	/* If we're reopening the device we may have multiple queues, fill the
1738 	 * chn_table with the default channel to use it before subchannels are
1739 	 * opened.
1740 	 * Initialize the channel state before we open;
1741 	 * we can be interrupted as soon as we open the channel.
1742 	 */
1743 
1744 	for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1745 		struct netvsc_channel *nvchan = &net_device->chan_table[i];
1746 
1747 		nvchan->channel = device->channel;
1748 		nvchan->net_device = net_device;
1749 		u64_stats_init(&nvchan->tx_stats.syncp);
1750 		u64_stats_init(&nvchan->rx_stats.syncp);
1751 
1752 		ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1753 
1754 		if (ret) {
1755 			netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1756 			goto cleanup2;
1757 		}
1758 
1759 		ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1760 						 MEM_TYPE_PAGE_SHARED, NULL);
1761 
1762 		if (ret) {
1763 			netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1764 			goto cleanup2;
1765 		}
1766 	}
1767 
1768 	/* Enable NAPI handler before init callbacks */
1769 	netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
1770 
1771 	/* Open the channel */
1772 	device->channel->next_request_id_callback = vmbus_next_request_id;
1773 	device->channel->request_addr_callback = vmbus_request_addr;
1774 	device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1775 	device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1776 
1777 	ret = vmbus_open(device->channel, netvsc_ring_bytes,
1778 			 netvsc_ring_bytes,  NULL, 0,
1779 			 netvsc_channel_cb, net_device->chan_table);
1780 
1781 	if (ret != 0) {
1782 		netdev_err(ndev, "unable to open channel: %d\n", ret);
1783 		goto cleanup;
1784 	}
1785 
1786 	/* Channel is opened */
1787 	netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1788 
1789 	napi_enable(&net_device->chan_table[0].napi);
1790 
1791 	/* Connect with the NetVsp */
1792 	ret = netvsc_connect_vsp(device, net_device, device_info);
1793 	if (ret != 0) {
1794 		netdev_err(ndev,
1795 			"unable to connect to NetVSP - %d\n", ret);
1796 		goto close;
1797 	}
1798 
1799 	/* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1800 	 * populated.
1801 	 */
1802 	rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1803 
1804 	return net_device;
1805 
1806 close:
1807 	RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1808 	napi_disable(&net_device->chan_table[0].napi);
1809 
1810 	/* Now, we can close the channel safely */
1811 	vmbus_close(device->channel);
1812 
1813 cleanup:
1814 	netif_napi_del(&net_device->chan_table[0].napi);
1815 
1816 cleanup2:
1817 	free_netvsc_device(&net_device->rcu);
1818 
1819 	return ERR_PTR(ret);
1820 }
1821