1 /* 2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. 3 * 4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. 5 * 6 * Thanks to Essential Communication for providing us with hardware 7 * and very comprehensive documentation without which I would not have 8 * been able to write this driver. A special thank you to John Gibbon 9 * for sorting out the legal issues, with the NDA, allowing the code to 10 * be released under the GPL. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the 18 * stupid bugs in my code. 19 * 20 * Softnet support and various other patches from Val Henson of 21 * ODS/Essential. 22 * 23 * PCI DMA mapping code partly based on work by Francois Romieu. 24 */ 25 26 27 #define DEBUG 1 28 #define RX_DMA_SKBUFF 1 29 #define PKT_COPY_THRESHOLD 512 30 31 #include <linux/module.h> 32 #include <linux/types.h> 33 #include <linux/errno.h> 34 #include <linux/ioport.h> 35 #include <linux/pci.h> 36 #include <linux/kernel.h> 37 #include <linux/netdevice.h> 38 #include <linux/hippidevice.h> 39 #include <linux/skbuff.h> 40 #include <linux/init.h> 41 #include <linux/delay.h> 42 #include <linux/mm.h> 43 #include <linux/slab.h> 44 #include <net/sock.h> 45 46 #include <asm/cache.h> 47 #include <asm/byteorder.h> 48 #include <asm/io.h> 49 #include <asm/irq.h> 50 #include <asm/uaccess.h> 51 52 #define rr_if_busy(dev) netif_queue_stopped(dev) 53 #define rr_if_running(dev) netif_running(dev) 54 55 #include "rrunner.h" 56 57 #define RUN_AT(x) (jiffies + (x)) 58 59 60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); 61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); 62 MODULE_LICENSE("GPL"); 63 64 static char version[] = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; 65 66 67 static const struct net_device_ops rr_netdev_ops = { 68 .ndo_open = rr_open, 69 .ndo_stop = rr_close, 70 .ndo_do_ioctl = rr_ioctl, 71 .ndo_start_xmit = rr_start_xmit, 72 .ndo_change_mtu = hippi_change_mtu, 73 .ndo_set_mac_address = hippi_mac_addr, 74 }; 75 76 /* 77 * Implementation notes: 78 * 79 * The DMA engine only allows for DMA within physical 64KB chunks of 80 * memory. The current approach of the driver (and stack) is to use 81 * linear blocks of memory for the skbuffs. However, as the data block 82 * is always the first part of the skb and skbs are 2^n aligned so we 83 * are guarantted to get the whole block within one 64KB align 64KB 84 * chunk. 85 * 86 * On the long term, relying on being able to allocate 64KB linear 87 * chunks of memory is not feasible and the skb handling code and the 88 * stack will need to know about I/O vectors or something similar. 89 */ 90 91 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 92 { 93 struct net_device *dev; 94 static int version_disp; 95 u8 pci_latency; 96 struct rr_private *rrpriv; 97 void *tmpptr; 98 dma_addr_t ring_dma; 99 int ret = -ENOMEM; 100 101 dev = alloc_hippi_dev(sizeof(struct rr_private)); 102 if (!dev) 103 goto out3; 104 105 ret = pci_enable_device(pdev); 106 if (ret) { 107 ret = -ENODEV; 108 goto out2; 109 } 110 111 rrpriv = netdev_priv(dev); 112 113 SET_NETDEV_DEV(dev, &pdev->dev); 114 115 ret = pci_request_regions(pdev, "rrunner"); 116 if (ret < 0) 117 goto out; 118 119 pci_set_drvdata(pdev, dev); 120 121 rrpriv->pci_dev = pdev; 122 123 spin_lock_init(&rrpriv->lock); 124 125 dev->netdev_ops = &rr_netdev_ops; 126 127 /* display version info if adapter is found */ 128 if (!version_disp) { 129 /* set display flag to TRUE so that */ 130 /* we only display this string ONCE */ 131 version_disp = 1; 132 printk(version); 133 } 134 135 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 136 if (pci_latency <= 0x58){ 137 pci_latency = 0x58; 138 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); 139 } 140 141 pci_set_master(pdev); 142 143 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " 144 "at 0x%llx, irq %i, PCI latency %i\n", dev->name, 145 (unsigned long long)pci_resource_start(pdev, 0), 146 pdev->irq, pci_latency); 147 148 /* 149 * Remap the MMIO regs into kernel space. 150 */ 151 rrpriv->regs = pci_iomap(pdev, 0, 0x1000); 152 if (!rrpriv->regs) { 153 printk(KERN_ERR "%s: Unable to map I/O register, " 154 "RoadRunner will be disabled.\n", dev->name); 155 ret = -EIO; 156 goto out; 157 } 158 159 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 160 rrpriv->tx_ring = tmpptr; 161 rrpriv->tx_ring_dma = ring_dma; 162 163 if (!tmpptr) { 164 ret = -ENOMEM; 165 goto out; 166 } 167 168 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 169 rrpriv->rx_ring = tmpptr; 170 rrpriv->rx_ring_dma = ring_dma; 171 172 if (!tmpptr) { 173 ret = -ENOMEM; 174 goto out; 175 } 176 177 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); 178 rrpriv->evt_ring = tmpptr; 179 rrpriv->evt_ring_dma = ring_dma; 180 181 if (!tmpptr) { 182 ret = -ENOMEM; 183 goto out; 184 } 185 186 /* 187 * Don't access any register before this point! 188 */ 189 #ifdef __BIG_ENDIAN 190 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, 191 &rrpriv->regs->HostCtrl); 192 #endif 193 /* 194 * Need to add a case for little-endian 64-bit hosts here. 195 */ 196 197 rr_init(dev); 198 199 ret = register_netdev(dev); 200 if (ret) 201 goto out; 202 return 0; 203 204 out: 205 if (rrpriv->evt_ring) 206 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring, 207 rrpriv->evt_ring_dma); 208 if (rrpriv->rx_ring) 209 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, 210 rrpriv->rx_ring_dma); 211 if (rrpriv->tx_ring) 212 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, 213 rrpriv->tx_ring_dma); 214 if (rrpriv->regs) 215 pci_iounmap(pdev, rrpriv->regs); 216 if (pdev) { 217 pci_release_regions(pdev); 218 pci_set_drvdata(pdev, NULL); 219 } 220 out2: 221 free_netdev(dev); 222 out3: 223 return ret; 224 } 225 226 static void rr_remove_one(struct pci_dev *pdev) 227 { 228 struct net_device *dev = pci_get_drvdata(pdev); 229 struct rr_private *rr = netdev_priv(dev); 230 231 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) { 232 printk(KERN_ERR "%s: trying to unload running NIC\n", 233 dev->name); 234 writel(HALT_NIC, &rr->regs->HostCtrl); 235 } 236 237 unregister_netdev(dev); 238 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, 239 rr->evt_ring_dma); 240 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, 241 rr->rx_ring_dma); 242 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, 243 rr->tx_ring_dma); 244 pci_iounmap(pdev, rr->regs); 245 pci_release_regions(pdev); 246 pci_disable_device(pdev); 247 pci_set_drvdata(pdev, NULL); 248 free_netdev(dev); 249 } 250 251 252 /* 253 * Commands are considered to be slow, thus there is no reason to 254 * inline this. 255 */ 256 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) 257 { 258 struct rr_regs __iomem *regs; 259 u32 idx; 260 261 regs = rrpriv->regs; 262 /* 263 * This is temporary - it will go away in the final version. 264 * We probably also want to make this function inline. 265 */ 266 if (readl(®s->HostCtrl) & NIC_HALTED){ 267 printk("issuing command for halted NIC, code 0x%x, " 268 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); 269 if (readl(®s->Mode) & FATAL_ERR) 270 printk("error codes Fail1 %02x, Fail2 %02x\n", 271 readl(®s->Fail1), readl(®s->Fail2)); 272 } 273 274 idx = rrpriv->info->cmd_ctrl.pi; 275 276 writel(*(u32*)(cmd), ®s->CmdRing[idx]); 277 wmb(); 278 279 idx = (idx - 1) % CMD_RING_ENTRIES; 280 rrpriv->info->cmd_ctrl.pi = idx; 281 wmb(); 282 283 if (readl(®s->Mode) & FATAL_ERR) 284 printk("error code %02x\n", readl(®s->Fail1)); 285 } 286 287 288 /* 289 * Reset the board in a sensible manner. The NIC is already halted 290 * when we get here and a spin-lock is held. 291 */ 292 static int rr_reset(struct net_device *dev) 293 { 294 struct rr_private *rrpriv; 295 struct rr_regs __iomem *regs; 296 u32 start_pc; 297 int i; 298 299 rrpriv = netdev_priv(dev); 300 regs = rrpriv->regs; 301 302 rr_load_firmware(dev); 303 304 writel(0x01000000, ®s->TX_state); 305 writel(0xff800000, ®s->RX_state); 306 writel(0, ®s->AssistState); 307 writel(CLEAR_INTA, ®s->LocalCtrl); 308 writel(0x01, ®s->BrkPt); 309 writel(0, ®s->Timer); 310 writel(0, ®s->TimerRef); 311 writel(RESET_DMA, ®s->DmaReadState); 312 writel(RESET_DMA, ®s->DmaWriteState); 313 writel(0, ®s->DmaWriteHostHi); 314 writel(0, ®s->DmaWriteHostLo); 315 writel(0, ®s->DmaReadHostHi); 316 writel(0, ®s->DmaReadHostLo); 317 writel(0, ®s->DmaReadLen); 318 writel(0, ®s->DmaWriteLen); 319 writel(0, ®s->DmaWriteLcl); 320 writel(0, ®s->DmaWriteIPchecksum); 321 writel(0, ®s->DmaReadLcl); 322 writel(0, ®s->DmaReadIPchecksum); 323 writel(0, ®s->PciState); 324 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN 325 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); 326 #elif (BITS_PER_LONG == 64) 327 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); 328 #else 329 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); 330 #endif 331 332 #if 0 333 /* 334 * Don't worry, this is just black magic. 335 */ 336 writel(0xdf000, ®s->RxBase); 337 writel(0xdf000, ®s->RxPrd); 338 writel(0xdf000, ®s->RxCon); 339 writel(0xce000, ®s->TxBase); 340 writel(0xce000, ®s->TxPrd); 341 writel(0xce000, ®s->TxCon); 342 writel(0, ®s->RxIndPro); 343 writel(0, ®s->RxIndCon); 344 writel(0, ®s->RxIndRef); 345 writel(0, ®s->TxIndPro); 346 writel(0, ®s->TxIndCon); 347 writel(0, ®s->TxIndRef); 348 writel(0xcc000, ®s->pad10[0]); 349 writel(0, ®s->DrCmndPro); 350 writel(0, ®s->DrCmndCon); 351 writel(0, ®s->DwCmndPro); 352 writel(0, ®s->DwCmndCon); 353 writel(0, ®s->DwCmndRef); 354 writel(0, ®s->DrDataPro); 355 writel(0, ®s->DrDataCon); 356 writel(0, ®s->DrDataRef); 357 writel(0, ®s->DwDataPro); 358 writel(0, ®s->DwDataCon); 359 writel(0, ®s->DwDataRef); 360 #endif 361 362 writel(0xffffffff, ®s->MbEvent); 363 writel(0, ®s->Event); 364 365 writel(0, ®s->TxPi); 366 writel(0, ®s->IpRxPi); 367 368 writel(0, ®s->EvtCon); 369 writel(0, ®s->EvtPrd); 370 371 rrpriv->info->evt_ctrl.pi = 0; 372 373 for (i = 0; i < CMD_RING_ENTRIES; i++) 374 writel(0, ®s->CmdRing[i]); 375 376 /* 377 * Why 32 ? is this not cache line size dependent? 378 */ 379 writel(RBURST_64|WBURST_64, ®s->PciState); 380 wmb(); 381 382 start_pc = rr_read_eeprom_word(rrpriv, 383 offsetof(struct eeprom, rncd_info.FwStart)); 384 385 #if (DEBUG > 1) 386 printk("%s: Executing firmware at address 0x%06x\n", 387 dev->name, start_pc); 388 #endif 389 390 writel(start_pc + 0x800, ®s->Pc); 391 wmb(); 392 udelay(5); 393 394 writel(start_pc, ®s->Pc); 395 wmb(); 396 397 return 0; 398 } 399 400 401 /* 402 * Read a string from the EEPROM. 403 */ 404 static unsigned int rr_read_eeprom(struct rr_private *rrpriv, 405 unsigned long offset, 406 unsigned char *buf, 407 unsigned long length) 408 { 409 struct rr_regs __iomem *regs = rrpriv->regs; 410 u32 misc, io, host, i; 411 412 io = readl(®s->ExtIo); 413 writel(0, ®s->ExtIo); 414 misc = readl(®s->LocalCtrl); 415 writel(0, ®s->LocalCtrl); 416 host = readl(®s->HostCtrl); 417 writel(host | HALT_NIC, ®s->HostCtrl); 418 mb(); 419 420 for (i = 0; i < length; i++){ 421 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 422 mb(); 423 buf[i] = (readl(®s->WinData) >> 24) & 0xff; 424 mb(); 425 } 426 427 writel(host, ®s->HostCtrl); 428 writel(misc, ®s->LocalCtrl); 429 writel(io, ®s->ExtIo); 430 mb(); 431 return i; 432 } 433 434 435 /* 436 * Shortcut to read one word (4 bytes) out of the EEPROM and convert 437 * it to our CPU byte-order. 438 */ 439 static u32 rr_read_eeprom_word(struct rr_private *rrpriv, 440 size_t offset) 441 { 442 __be32 word; 443 444 if ((rr_read_eeprom(rrpriv, offset, 445 (unsigned char *)&word, 4) == 4)) 446 return be32_to_cpu(word); 447 return 0; 448 } 449 450 451 /* 452 * Write a string to the EEPROM. 453 * 454 * This is only called when the firmware is not running. 455 */ 456 static unsigned int write_eeprom(struct rr_private *rrpriv, 457 unsigned long offset, 458 unsigned char *buf, 459 unsigned long length) 460 { 461 struct rr_regs __iomem *regs = rrpriv->regs; 462 u32 misc, io, data, i, j, ready, error = 0; 463 464 io = readl(®s->ExtIo); 465 writel(0, ®s->ExtIo); 466 misc = readl(®s->LocalCtrl); 467 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); 468 mb(); 469 470 for (i = 0; i < length; i++){ 471 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 472 mb(); 473 data = buf[i] << 24; 474 /* 475 * Only try to write the data if it is not the same 476 * value already. 477 */ 478 if ((readl(®s->WinData) & 0xff000000) != data){ 479 writel(data, ®s->WinData); 480 ready = 0; 481 j = 0; 482 mb(); 483 while(!ready){ 484 udelay(20); 485 if ((readl(®s->WinData) & 0xff000000) == 486 data) 487 ready = 1; 488 mb(); 489 if (j++ > 5000){ 490 printk("data mismatch: %08x, " 491 "WinData %08x\n", data, 492 readl(®s->WinData)); 493 ready = 1; 494 error = 1; 495 } 496 } 497 } 498 } 499 500 writel(misc, ®s->LocalCtrl); 501 writel(io, ®s->ExtIo); 502 mb(); 503 504 return error; 505 } 506 507 508 static int rr_init(struct net_device *dev) 509 { 510 struct rr_private *rrpriv; 511 struct rr_regs __iomem *regs; 512 u32 sram_size, rev; 513 514 rrpriv = netdev_priv(dev); 515 regs = rrpriv->regs; 516 517 rev = readl(®s->FwRev); 518 rrpriv->fw_rev = rev; 519 if (rev > 0x00020024) 520 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), 521 ((rev >> 8) & 0xff), (rev & 0xff)); 522 else if (rev >= 0x00020000) { 523 printk(" Firmware revision: %i.%i.%i (2.0.37 or " 524 "later is recommended)\n", (rev >> 16), 525 ((rev >> 8) & 0xff), (rev & 0xff)); 526 }else{ 527 printk(" Firmware revision too old: %i.%i.%i, please " 528 "upgrade to 2.0.37 or later.\n", 529 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); 530 } 531 532 #if (DEBUG > 2) 533 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); 534 #endif 535 536 /* 537 * Read the hardware address from the eeprom. The HW address 538 * is not really necessary for HIPPI but awfully convenient. 539 * The pointer arithmetic to put it in dev_addr is ugly, but 540 * Donald Becker does it this way for the GigE version of this 541 * card and it's shorter and more portable than any 542 * other method I've seen. -VAL 543 */ 544 545 *(__be16 *)(dev->dev_addr) = 546 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); 547 *(__be32 *)(dev->dev_addr+2) = 548 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); 549 550 printk(" MAC: %pM\n", dev->dev_addr); 551 552 sram_size = rr_read_eeprom_word(rrpriv, 8); 553 printk(" SRAM size 0x%06x\n", sram_size); 554 555 return 0; 556 } 557 558 559 static int rr_init1(struct net_device *dev) 560 { 561 struct rr_private *rrpriv; 562 struct rr_regs __iomem *regs; 563 unsigned long myjif, flags; 564 struct cmd cmd; 565 u32 hostctrl; 566 int ecode = 0; 567 short i; 568 569 rrpriv = netdev_priv(dev); 570 regs = rrpriv->regs; 571 572 spin_lock_irqsave(&rrpriv->lock, flags); 573 574 hostctrl = readl(®s->HostCtrl); 575 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); 576 wmb(); 577 578 if (hostctrl & PARITY_ERR){ 579 printk("%s: Parity error halting NIC - this is serious!\n", 580 dev->name); 581 spin_unlock_irqrestore(&rrpriv->lock, flags); 582 ecode = -EFAULT; 583 goto error; 584 } 585 586 set_rxaddr(regs, rrpriv->rx_ctrl_dma); 587 set_infoaddr(regs, rrpriv->info_dma); 588 589 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); 590 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; 591 rrpriv->info->evt_ctrl.mode = 0; 592 rrpriv->info->evt_ctrl.pi = 0; 593 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); 594 595 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); 596 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; 597 rrpriv->info->cmd_ctrl.mode = 0; 598 rrpriv->info->cmd_ctrl.pi = 15; 599 600 for (i = 0; i < CMD_RING_ENTRIES; i++) { 601 writel(0, ®s->CmdRing[i]); 602 } 603 604 for (i = 0; i < TX_RING_ENTRIES; i++) { 605 rrpriv->tx_ring[i].size = 0; 606 set_rraddr(&rrpriv->tx_ring[i].addr, 0); 607 rrpriv->tx_skbuff[i] = NULL; 608 } 609 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); 610 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; 611 rrpriv->info->tx_ctrl.mode = 0; 612 rrpriv->info->tx_ctrl.pi = 0; 613 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); 614 615 /* 616 * Set dirty_tx before we start receiving interrupts, otherwise 617 * the interrupt handler might think it is supposed to process 618 * tx ints before we are up and running, which may cause a null 619 * pointer access in the int handler. 620 */ 621 rrpriv->tx_full = 0; 622 rrpriv->cur_rx = 0; 623 rrpriv->dirty_rx = rrpriv->dirty_tx = 0; 624 625 rr_reset(dev); 626 627 /* Tuning values */ 628 writel(0x5000, ®s->ConRetry); 629 writel(0x100, ®s->ConRetryTmr); 630 writel(0x500000, ®s->ConTmout); 631 writel(0x60, ®s->IntrTmr); 632 writel(0x500000, ®s->TxDataMvTimeout); 633 writel(0x200000, ®s->RxDataMvTimeout); 634 writel(0x80, ®s->WriteDmaThresh); 635 writel(0x80, ®s->ReadDmaThresh); 636 637 rrpriv->fw_running = 0; 638 wmb(); 639 640 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); 641 writel(hostctrl, ®s->HostCtrl); 642 wmb(); 643 644 spin_unlock_irqrestore(&rrpriv->lock, flags); 645 646 for (i = 0; i < RX_RING_ENTRIES; i++) { 647 struct sk_buff *skb; 648 dma_addr_t addr; 649 650 rrpriv->rx_ring[i].mode = 0; 651 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); 652 if (!skb) { 653 printk(KERN_WARNING "%s: Unable to allocate memory " 654 "for receive ring - halting NIC\n", dev->name); 655 ecode = -ENOMEM; 656 goto error; 657 } 658 rrpriv->rx_skbuff[i] = skb; 659 addr = pci_map_single(rrpriv->pci_dev, skb->data, 660 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 661 /* 662 * Sanity test to see if we conflict with the DMA 663 * limitations of the Roadrunner. 664 */ 665 if ((((unsigned long)skb->data) & 0xfff) > ~65320) 666 printk("skb alloc error\n"); 667 668 set_rraddr(&rrpriv->rx_ring[i].addr, addr); 669 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; 670 } 671 672 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); 673 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; 674 rrpriv->rx_ctrl[4].mode = 8; 675 rrpriv->rx_ctrl[4].pi = 0; 676 wmb(); 677 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); 678 679 udelay(1000); 680 681 /* 682 * Now start the FirmWare. 683 */ 684 cmd.code = C_START_FW; 685 cmd.ring = 0; 686 cmd.index = 0; 687 688 rr_issue_cmd(rrpriv, &cmd); 689 690 /* 691 * Give the FirmWare time to chew on the `get running' command. 692 */ 693 myjif = jiffies + 5 * HZ; 694 while (time_before(jiffies, myjif) && !rrpriv->fw_running) 695 cpu_relax(); 696 697 netif_start_queue(dev); 698 699 return ecode; 700 701 error: 702 /* 703 * We might have gotten here because we are out of memory, 704 * make sure we release everything we allocated before failing 705 */ 706 for (i = 0; i < RX_RING_ENTRIES; i++) { 707 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 708 709 if (skb) { 710 pci_unmap_single(rrpriv->pci_dev, 711 rrpriv->rx_ring[i].addr.addrlo, 712 dev->mtu + HIPPI_HLEN, 713 PCI_DMA_FROMDEVICE); 714 rrpriv->rx_ring[i].size = 0; 715 set_rraddr(&rrpriv->rx_ring[i].addr, 0); 716 dev_kfree_skb(skb); 717 rrpriv->rx_skbuff[i] = NULL; 718 } 719 } 720 return ecode; 721 } 722 723 724 /* 725 * All events are considered to be slow (RX/TX ints do not generate 726 * events) and are handled here, outside the main interrupt handler, 727 * to reduce the size of the handler. 728 */ 729 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) 730 { 731 struct rr_private *rrpriv; 732 struct rr_regs __iomem *regs; 733 u32 tmp; 734 735 rrpriv = netdev_priv(dev); 736 regs = rrpriv->regs; 737 738 while (prodidx != eidx){ 739 switch (rrpriv->evt_ring[eidx].code){ 740 case E_NIC_UP: 741 tmp = readl(®s->FwRev); 742 printk(KERN_INFO "%s: Firmware revision %i.%i.%i " 743 "up and running\n", dev->name, 744 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); 745 rrpriv->fw_running = 1; 746 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); 747 wmb(); 748 break; 749 case E_LINK_ON: 750 printk(KERN_INFO "%s: Optical link ON\n", dev->name); 751 break; 752 case E_LINK_OFF: 753 printk(KERN_INFO "%s: Optical link OFF\n", dev->name); 754 break; 755 case E_RX_IDLE: 756 printk(KERN_WARNING "%s: RX data not moving\n", 757 dev->name); 758 goto drop; 759 case E_WATCHDOG: 760 printk(KERN_INFO "%s: The watchdog is here to see " 761 "us\n", dev->name); 762 break; 763 case E_INTERN_ERR: 764 printk(KERN_ERR "%s: HIPPI Internal NIC error\n", 765 dev->name); 766 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 767 ®s->HostCtrl); 768 wmb(); 769 break; 770 case E_HOST_ERR: 771 printk(KERN_ERR "%s: Host software error\n", 772 dev->name); 773 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 774 ®s->HostCtrl); 775 wmb(); 776 break; 777 /* 778 * TX events. 779 */ 780 case E_CON_REJ: 781 printk(KERN_WARNING "%s: Connection rejected\n", 782 dev->name); 783 dev->stats.tx_aborted_errors++; 784 break; 785 case E_CON_TMOUT: 786 printk(KERN_WARNING "%s: Connection timeout\n", 787 dev->name); 788 break; 789 case E_DISC_ERR: 790 printk(KERN_WARNING "%s: HIPPI disconnect error\n", 791 dev->name); 792 dev->stats.tx_aborted_errors++; 793 break; 794 case E_INT_PRTY: 795 printk(KERN_ERR "%s: HIPPI Internal Parity error\n", 796 dev->name); 797 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 798 ®s->HostCtrl); 799 wmb(); 800 break; 801 case E_TX_IDLE: 802 printk(KERN_WARNING "%s: Transmitter idle\n", 803 dev->name); 804 break; 805 case E_TX_LINK_DROP: 806 printk(KERN_WARNING "%s: Link lost during transmit\n", 807 dev->name); 808 dev->stats.tx_aborted_errors++; 809 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 810 ®s->HostCtrl); 811 wmb(); 812 break; 813 case E_TX_INV_RNG: 814 printk(KERN_ERR "%s: Invalid send ring block\n", 815 dev->name); 816 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 817 ®s->HostCtrl); 818 wmb(); 819 break; 820 case E_TX_INV_BUF: 821 printk(KERN_ERR "%s: Invalid send buffer address\n", 822 dev->name); 823 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 824 ®s->HostCtrl); 825 wmb(); 826 break; 827 case E_TX_INV_DSC: 828 printk(KERN_ERR "%s: Invalid descriptor address\n", 829 dev->name); 830 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 831 ®s->HostCtrl); 832 wmb(); 833 break; 834 /* 835 * RX events. 836 */ 837 case E_RX_RNG_OUT: 838 printk(KERN_INFO "%s: Receive ring full\n", dev->name); 839 break; 840 841 case E_RX_PAR_ERR: 842 printk(KERN_WARNING "%s: Receive parity error\n", 843 dev->name); 844 goto drop; 845 case E_RX_LLRC_ERR: 846 printk(KERN_WARNING "%s: Receive LLRC error\n", 847 dev->name); 848 goto drop; 849 case E_PKT_LN_ERR: 850 printk(KERN_WARNING "%s: Receive packet length " 851 "error\n", dev->name); 852 goto drop; 853 case E_DTA_CKSM_ERR: 854 printk(KERN_WARNING "%s: Data checksum error\n", 855 dev->name); 856 goto drop; 857 case E_SHT_BST: 858 printk(KERN_WARNING "%s: Unexpected short burst " 859 "error\n", dev->name); 860 goto drop; 861 case E_STATE_ERR: 862 printk(KERN_WARNING "%s: Recv. state transition" 863 " error\n", dev->name); 864 goto drop; 865 case E_UNEXP_DATA: 866 printk(KERN_WARNING "%s: Unexpected data error\n", 867 dev->name); 868 goto drop; 869 case E_LST_LNK_ERR: 870 printk(KERN_WARNING "%s: Link lost error\n", 871 dev->name); 872 goto drop; 873 case E_FRM_ERR: 874 printk(KERN_WARNING "%s: Framming Error\n", 875 dev->name); 876 goto drop; 877 case E_FLG_SYN_ERR: 878 printk(KERN_WARNING "%s: Flag sync. lost during " 879 "packet\n", dev->name); 880 goto drop; 881 case E_RX_INV_BUF: 882 printk(KERN_ERR "%s: Invalid receive buffer " 883 "address\n", dev->name); 884 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 885 ®s->HostCtrl); 886 wmb(); 887 break; 888 case E_RX_INV_DSC: 889 printk(KERN_ERR "%s: Invalid receive descriptor " 890 "address\n", dev->name); 891 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 892 ®s->HostCtrl); 893 wmb(); 894 break; 895 case E_RNG_BLK: 896 printk(KERN_ERR "%s: Invalid ring block\n", 897 dev->name); 898 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 899 ®s->HostCtrl); 900 wmb(); 901 break; 902 drop: 903 /* Label packet to be dropped. 904 * Actual dropping occurs in rx 905 * handling. 906 * 907 * The index of packet we get to drop is 908 * the index of the packet following 909 * the bad packet. -kbf 910 */ 911 { 912 u16 index = rrpriv->evt_ring[eidx].index; 913 index = (index + (RX_RING_ENTRIES - 1)) % 914 RX_RING_ENTRIES; 915 rrpriv->rx_ring[index].mode |= 916 (PACKET_BAD | PACKET_END); 917 } 918 break; 919 default: 920 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", 921 dev->name, rrpriv->evt_ring[eidx].code); 922 } 923 eidx = (eidx + 1) % EVT_RING_ENTRIES; 924 } 925 926 rrpriv->info->evt_ctrl.pi = eidx; 927 wmb(); 928 return eidx; 929 } 930 931 932 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) 933 { 934 struct rr_private *rrpriv = netdev_priv(dev); 935 struct rr_regs __iomem *regs = rrpriv->regs; 936 937 do { 938 struct rx_desc *desc; 939 u32 pkt_len; 940 941 desc = &(rrpriv->rx_ring[index]); 942 pkt_len = desc->size; 943 #if (DEBUG > 2) 944 printk("index %i, rxlimit %i\n", index, rxlimit); 945 printk("len %x, mode %x\n", pkt_len, desc->mode); 946 #endif 947 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ 948 dev->stats.rx_dropped++; 949 goto defer; 950 } 951 952 if (pkt_len > 0){ 953 struct sk_buff *skb, *rx_skb; 954 955 rx_skb = rrpriv->rx_skbuff[index]; 956 957 if (pkt_len < PKT_COPY_THRESHOLD) { 958 skb = alloc_skb(pkt_len, GFP_ATOMIC); 959 if (skb == NULL){ 960 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); 961 dev->stats.rx_dropped++; 962 goto defer; 963 } else { 964 pci_dma_sync_single_for_cpu(rrpriv->pci_dev, 965 desc->addr.addrlo, 966 pkt_len, 967 PCI_DMA_FROMDEVICE); 968 969 memcpy(skb_put(skb, pkt_len), 970 rx_skb->data, pkt_len); 971 972 pci_dma_sync_single_for_device(rrpriv->pci_dev, 973 desc->addr.addrlo, 974 pkt_len, 975 PCI_DMA_FROMDEVICE); 976 } 977 }else{ 978 struct sk_buff *newskb; 979 980 newskb = alloc_skb(dev->mtu + HIPPI_HLEN, 981 GFP_ATOMIC); 982 if (newskb){ 983 dma_addr_t addr; 984 985 pci_unmap_single(rrpriv->pci_dev, 986 desc->addr.addrlo, dev->mtu + 987 HIPPI_HLEN, PCI_DMA_FROMDEVICE); 988 skb = rx_skb; 989 skb_put(skb, pkt_len); 990 rrpriv->rx_skbuff[index] = newskb; 991 addr = pci_map_single(rrpriv->pci_dev, 992 newskb->data, 993 dev->mtu + HIPPI_HLEN, 994 PCI_DMA_FROMDEVICE); 995 set_rraddr(&desc->addr, addr); 996 } else { 997 printk("%s: Out of memory, deferring " 998 "packet\n", dev->name); 999 dev->stats.rx_dropped++; 1000 goto defer; 1001 } 1002 } 1003 skb->protocol = hippi_type_trans(skb, dev); 1004 1005 netif_rx(skb); /* send it up */ 1006 1007 dev->stats.rx_packets++; 1008 dev->stats.rx_bytes += pkt_len; 1009 } 1010 defer: 1011 desc->mode = 0; 1012 desc->size = dev->mtu + HIPPI_HLEN; 1013 1014 if ((index & 7) == 7) 1015 writel(index, ®s->IpRxPi); 1016 1017 index = (index + 1) % RX_RING_ENTRIES; 1018 } while(index != rxlimit); 1019 1020 rrpriv->cur_rx = index; 1021 wmb(); 1022 } 1023 1024 1025 static irqreturn_t rr_interrupt(int irq, void *dev_id) 1026 { 1027 struct rr_private *rrpriv; 1028 struct rr_regs __iomem *regs; 1029 struct net_device *dev = (struct net_device *)dev_id; 1030 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; 1031 1032 rrpriv = netdev_priv(dev); 1033 regs = rrpriv->regs; 1034 1035 if (!(readl(®s->HostCtrl) & RR_INT)) 1036 return IRQ_NONE; 1037 1038 spin_lock(&rrpriv->lock); 1039 1040 prodidx = readl(®s->EvtPrd); 1041 txcsmr = (prodidx >> 8) & 0xff; 1042 rxlimit = (prodidx >> 16) & 0xff; 1043 prodidx &= 0xff; 1044 1045 #if (DEBUG > 2) 1046 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, 1047 prodidx, rrpriv->info->evt_ctrl.pi); 1048 #endif 1049 /* 1050 * Order here is important. We must handle events 1051 * before doing anything else in order to catch 1052 * such things as LLRC errors, etc -kbf 1053 */ 1054 1055 eidx = rrpriv->info->evt_ctrl.pi; 1056 if (prodidx != eidx) 1057 eidx = rr_handle_event(dev, prodidx, eidx); 1058 1059 rxindex = rrpriv->cur_rx; 1060 if (rxindex != rxlimit) 1061 rx_int(dev, rxlimit, rxindex); 1062 1063 txcon = rrpriv->dirty_tx; 1064 if (txcsmr != txcon) { 1065 do { 1066 /* Due to occational firmware TX producer/consumer out 1067 * of sync. error need to check entry in ring -kbf 1068 */ 1069 if(rrpriv->tx_skbuff[txcon]){ 1070 struct tx_desc *desc; 1071 struct sk_buff *skb; 1072 1073 desc = &(rrpriv->tx_ring[txcon]); 1074 skb = rrpriv->tx_skbuff[txcon]; 1075 1076 dev->stats.tx_packets++; 1077 dev->stats.tx_bytes += skb->len; 1078 1079 pci_unmap_single(rrpriv->pci_dev, 1080 desc->addr.addrlo, skb->len, 1081 PCI_DMA_TODEVICE); 1082 dev_kfree_skb_irq(skb); 1083 1084 rrpriv->tx_skbuff[txcon] = NULL; 1085 desc->size = 0; 1086 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); 1087 desc->mode = 0; 1088 } 1089 txcon = (txcon + 1) % TX_RING_ENTRIES; 1090 } while (txcsmr != txcon); 1091 wmb(); 1092 1093 rrpriv->dirty_tx = txcon; 1094 if (rrpriv->tx_full && rr_if_busy(dev) && 1095 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) 1096 != rrpriv->dirty_tx)){ 1097 rrpriv->tx_full = 0; 1098 netif_wake_queue(dev); 1099 } 1100 } 1101 1102 eidx |= ((txcsmr << 8) | (rxlimit << 16)); 1103 writel(eidx, ®s->EvtCon); 1104 wmb(); 1105 1106 spin_unlock(&rrpriv->lock); 1107 return IRQ_HANDLED; 1108 } 1109 1110 static inline void rr_raz_tx(struct rr_private *rrpriv, 1111 struct net_device *dev) 1112 { 1113 int i; 1114 1115 for (i = 0; i < TX_RING_ENTRIES; i++) { 1116 struct sk_buff *skb = rrpriv->tx_skbuff[i]; 1117 1118 if (skb) { 1119 struct tx_desc *desc = &(rrpriv->tx_ring[i]); 1120 1121 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1122 skb->len, PCI_DMA_TODEVICE); 1123 desc->size = 0; 1124 set_rraddr(&desc->addr, 0); 1125 dev_kfree_skb(skb); 1126 rrpriv->tx_skbuff[i] = NULL; 1127 } 1128 } 1129 } 1130 1131 1132 static inline void rr_raz_rx(struct rr_private *rrpriv, 1133 struct net_device *dev) 1134 { 1135 int i; 1136 1137 for (i = 0; i < RX_RING_ENTRIES; i++) { 1138 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 1139 1140 if (skb) { 1141 struct rx_desc *desc = &(rrpriv->rx_ring[i]); 1142 1143 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1144 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 1145 desc->size = 0; 1146 set_rraddr(&desc->addr, 0); 1147 dev_kfree_skb(skb); 1148 rrpriv->rx_skbuff[i] = NULL; 1149 } 1150 } 1151 } 1152 1153 static void rr_timer(unsigned long data) 1154 { 1155 struct net_device *dev = (struct net_device *)data; 1156 struct rr_private *rrpriv = netdev_priv(dev); 1157 struct rr_regs __iomem *regs = rrpriv->regs; 1158 unsigned long flags; 1159 1160 if (readl(®s->HostCtrl) & NIC_HALTED){ 1161 printk("%s: Restarting nic\n", dev->name); 1162 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); 1163 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1164 wmb(); 1165 1166 rr_raz_tx(rrpriv, dev); 1167 rr_raz_rx(rrpriv, dev); 1168 1169 if (rr_init1(dev)) { 1170 spin_lock_irqsave(&rrpriv->lock, flags); 1171 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 1172 ®s->HostCtrl); 1173 spin_unlock_irqrestore(&rrpriv->lock, flags); 1174 } 1175 } 1176 rrpriv->timer.expires = RUN_AT(5*HZ); 1177 add_timer(&rrpriv->timer); 1178 } 1179 1180 1181 static int rr_open(struct net_device *dev) 1182 { 1183 struct rr_private *rrpriv = netdev_priv(dev); 1184 struct pci_dev *pdev = rrpriv->pci_dev; 1185 struct rr_regs __iomem *regs; 1186 int ecode = 0; 1187 unsigned long flags; 1188 dma_addr_t dma_addr; 1189 1190 regs = rrpriv->regs; 1191 1192 if (rrpriv->fw_rev < 0x00020000) { 1193 printk(KERN_WARNING "%s: trying to configure device with " 1194 "obsolete firmware\n", dev->name); 1195 ecode = -EBUSY; 1196 goto error; 1197 } 1198 1199 rrpriv->rx_ctrl = pci_alloc_consistent(pdev, 1200 256 * sizeof(struct ring_ctrl), 1201 &dma_addr); 1202 if (!rrpriv->rx_ctrl) { 1203 ecode = -ENOMEM; 1204 goto error; 1205 } 1206 rrpriv->rx_ctrl_dma = dma_addr; 1207 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); 1208 1209 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), 1210 &dma_addr); 1211 if (!rrpriv->info) { 1212 ecode = -ENOMEM; 1213 goto error; 1214 } 1215 rrpriv->info_dma = dma_addr; 1216 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1217 wmb(); 1218 1219 spin_lock_irqsave(&rrpriv->lock, flags); 1220 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1221 readl(®s->HostCtrl); 1222 spin_unlock_irqrestore(&rrpriv->lock, flags); 1223 1224 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { 1225 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1226 dev->name, pdev->irq); 1227 ecode = -EAGAIN; 1228 goto error; 1229 } 1230 1231 if ((ecode = rr_init1(dev))) 1232 goto error; 1233 1234 /* Set the timer to switch to check for link beat and perhaps switch 1235 to an alternate media type. */ 1236 init_timer(&rrpriv->timer); 1237 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ 1238 rrpriv->timer.data = (unsigned long)dev; 1239 rrpriv->timer.function = rr_timer; /* timer handler */ 1240 add_timer(&rrpriv->timer); 1241 1242 netif_start_queue(dev); 1243 1244 return ecode; 1245 1246 error: 1247 spin_lock_irqsave(&rrpriv->lock, flags); 1248 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1249 spin_unlock_irqrestore(&rrpriv->lock, flags); 1250 1251 if (rrpriv->info) { 1252 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1253 rrpriv->info_dma); 1254 rrpriv->info = NULL; 1255 } 1256 if (rrpriv->rx_ctrl) { 1257 pci_free_consistent(pdev, sizeof(struct ring_ctrl), 1258 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1259 rrpriv->rx_ctrl = NULL; 1260 } 1261 1262 netif_stop_queue(dev); 1263 1264 return ecode; 1265 } 1266 1267 1268 static void rr_dump(struct net_device *dev) 1269 { 1270 struct rr_private *rrpriv; 1271 struct rr_regs __iomem *regs; 1272 u32 index, cons; 1273 short i; 1274 int len; 1275 1276 rrpriv = netdev_priv(dev); 1277 regs = rrpriv->regs; 1278 1279 printk("%s: dumping NIC TX rings\n", dev->name); 1280 1281 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", 1282 readl(®s->RxPrd), readl(®s->TxPrd), 1283 readl(®s->EvtPrd), readl(®s->TxPi), 1284 rrpriv->info->tx_ctrl.pi); 1285 1286 printk("Error code 0x%x\n", readl(®s->Fail1)); 1287 1288 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES; 1289 cons = rrpriv->dirty_tx; 1290 printk("TX ring index %i, TX consumer %i\n", 1291 index, cons); 1292 1293 if (rrpriv->tx_skbuff[index]){ 1294 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); 1295 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); 1296 for (i = 0; i < len; i++){ 1297 if (!(i & 7)) 1298 printk("\n"); 1299 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); 1300 } 1301 printk("\n"); 1302 } 1303 1304 if (rrpriv->tx_skbuff[cons]){ 1305 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); 1306 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); 1307 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n", 1308 rrpriv->tx_ring[cons].mode, 1309 rrpriv->tx_ring[cons].size, 1310 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, 1311 (unsigned long)rrpriv->tx_skbuff[cons]->data, 1312 (unsigned int)rrpriv->tx_skbuff[cons]->truesize); 1313 for (i = 0; i < len; i++){ 1314 if (!(i & 7)) 1315 printk("\n"); 1316 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); 1317 } 1318 printk("\n"); 1319 } 1320 1321 printk("dumping TX ring info:\n"); 1322 for (i = 0; i < TX_RING_ENTRIES; i++) 1323 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", 1324 rrpriv->tx_ring[i].mode, 1325 rrpriv->tx_ring[i].size, 1326 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); 1327 1328 } 1329 1330 1331 static int rr_close(struct net_device *dev) 1332 { 1333 struct rr_private *rrpriv = netdev_priv(dev); 1334 struct rr_regs __iomem *regs = rrpriv->regs; 1335 struct pci_dev *pdev = rrpriv->pci_dev; 1336 unsigned long flags; 1337 u32 tmp; 1338 short i; 1339 1340 netif_stop_queue(dev); 1341 1342 1343 /* 1344 * Lock to make sure we are not cleaning up while another CPU 1345 * is handling interrupts. 1346 */ 1347 spin_lock_irqsave(&rrpriv->lock, flags); 1348 1349 tmp = readl(®s->HostCtrl); 1350 if (tmp & NIC_HALTED){ 1351 printk("%s: NIC already halted\n", dev->name); 1352 rr_dump(dev); 1353 }else{ 1354 tmp |= HALT_NIC | RR_CLEAR_INT; 1355 writel(tmp, ®s->HostCtrl); 1356 readl(®s->HostCtrl); 1357 } 1358 1359 rrpriv->fw_running = 0; 1360 1361 del_timer_sync(&rrpriv->timer); 1362 1363 writel(0, ®s->TxPi); 1364 writel(0, ®s->IpRxPi); 1365 1366 writel(0, ®s->EvtCon); 1367 writel(0, ®s->EvtPrd); 1368 1369 for (i = 0; i < CMD_RING_ENTRIES; i++) 1370 writel(0, ®s->CmdRing[i]); 1371 1372 rrpriv->info->tx_ctrl.entries = 0; 1373 rrpriv->info->cmd_ctrl.pi = 0; 1374 rrpriv->info->evt_ctrl.pi = 0; 1375 rrpriv->rx_ctrl[4].entries = 0; 1376 1377 rr_raz_tx(rrpriv, dev); 1378 rr_raz_rx(rrpriv, dev); 1379 1380 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl), 1381 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1382 rrpriv->rx_ctrl = NULL; 1383 1384 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1385 rrpriv->info_dma); 1386 rrpriv->info = NULL; 1387 1388 free_irq(pdev->irq, dev); 1389 spin_unlock_irqrestore(&rrpriv->lock, flags); 1390 1391 return 0; 1392 } 1393 1394 1395 static netdev_tx_t rr_start_xmit(struct sk_buff *skb, 1396 struct net_device *dev) 1397 { 1398 struct rr_private *rrpriv = netdev_priv(dev); 1399 struct rr_regs __iomem *regs = rrpriv->regs; 1400 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; 1401 struct ring_ctrl *txctrl; 1402 unsigned long flags; 1403 u32 index, len = skb->len; 1404 u32 *ifield; 1405 struct sk_buff *new_skb; 1406 1407 if (readl(®s->Mode) & FATAL_ERR) 1408 printk("error codes Fail1 %02x, Fail2 %02x\n", 1409 readl(®s->Fail1), readl(®s->Fail2)); 1410 1411 /* 1412 * We probably need to deal with tbusy here to prevent overruns. 1413 */ 1414 1415 if (skb_headroom(skb) < 8){ 1416 printk("incoming skb too small - reallocating\n"); 1417 if (!(new_skb = dev_alloc_skb(len + 8))) { 1418 dev_kfree_skb(skb); 1419 netif_wake_queue(dev); 1420 return NETDEV_TX_OK; 1421 } 1422 skb_reserve(new_skb, 8); 1423 skb_put(new_skb, len); 1424 skb_copy_from_linear_data(skb, new_skb->data, len); 1425 dev_kfree_skb(skb); 1426 skb = new_skb; 1427 } 1428 1429 ifield = (u32 *)skb_push(skb, 8); 1430 1431 ifield[0] = 0; 1432 ifield[1] = hcb->ifield; 1433 1434 /* 1435 * We don't need the lock before we are actually going to start 1436 * fiddling with the control blocks. 1437 */ 1438 spin_lock_irqsave(&rrpriv->lock, flags); 1439 1440 txctrl = &rrpriv->info->tx_ctrl; 1441 1442 index = txctrl->pi; 1443 1444 rrpriv->tx_skbuff[index] = skb; 1445 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( 1446 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); 1447 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ 1448 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; 1449 txctrl->pi = (index + 1) % TX_RING_ENTRIES; 1450 wmb(); 1451 writel(txctrl->pi, ®s->TxPi); 1452 1453 if (txctrl->pi == rrpriv->dirty_tx){ 1454 rrpriv->tx_full = 1; 1455 netif_stop_queue(dev); 1456 } 1457 1458 spin_unlock_irqrestore(&rrpriv->lock, flags); 1459 1460 return NETDEV_TX_OK; 1461 } 1462 1463 1464 /* 1465 * Read the firmware out of the EEPROM and put it into the SRAM 1466 * (or from user space - later) 1467 * 1468 * This operation requires the NIC to be halted and is performed with 1469 * interrupts disabled and with the spinlock hold. 1470 */ 1471 static int rr_load_firmware(struct net_device *dev) 1472 { 1473 struct rr_private *rrpriv; 1474 struct rr_regs __iomem *regs; 1475 size_t eptr, segptr; 1476 int i, j; 1477 u32 localctrl, sptr, len, tmp; 1478 u32 p2len, p2size, nr_seg, revision, io, sram_size; 1479 1480 rrpriv = netdev_priv(dev); 1481 regs = rrpriv->regs; 1482 1483 if (dev->flags & IFF_UP) 1484 return -EBUSY; 1485 1486 if (!(readl(®s->HostCtrl) & NIC_HALTED)){ 1487 printk("%s: Trying to load firmware to a running NIC.\n", 1488 dev->name); 1489 return -EBUSY; 1490 } 1491 1492 localctrl = readl(®s->LocalCtrl); 1493 writel(0, ®s->LocalCtrl); 1494 1495 writel(0, ®s->EvtPrd); 1496 writel(0, ®s->RxPrd); 1497 writel(0, ®s->TxPrd); 1498 1499 /* 1500 * First wipe the entire SRAM, otherwise we might run into all 1501 * kinds of trouble ... sigh, this took almost all afternoon 1502 * to track down ;-( 1503 */ 1504 io = readl(®s->ExtIo); 1505 writel(0, ®s->ExtIo); 1506 sram_size = rr_read_eeprom_word(rrpriv, 8); 1507 1508 for (i = 200; i < sram_size / 4; i++){ 1509 writel(i * 4, ®s->WinBase); 1510 mb(); 1511 writel(0, ®s->WinData); 1512 mb(); 1513 } 1514 writel(io, ®s->ExtIo); 1515 mb(); 1516 1517 eptr = rr_read_eeprom_word(rrpriv, 1518 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); 1519 eptr = ((eptr & 0x1fffff) >> 3); 1520 1521 p2len = rr_read_eeprom_word(rrpriv, 0x83*4); 1522 p2len = (p2len << 2); 1523 p2size = rr_read_eeprom_word(rrpriv, 0x84*4); 1524 p2size = ((p2size & 0x1fffff) >> 3); 1525 1526 if ((eptr < p2size) || (eptr > (p2size + p2len))){ 1527 printk("%s: eptr is invalid\n", dev->name); 1528 goto out; 1529 } 1530 1531 revision = rr_read_eeprom_word(rrpriv, 1532 offsetof(struct eeprom, manf.HeaderFmt)); 1533 1534 if (revision != 1){ 1535 printk("%s: invalid firmware format (%i)\n", 1536 dev->name, revision); 1537 goto out; 1538 } 1539 1540 nr_seg = rr_read_eeprom_word(rrpriv, eptr); 1541 eptr +=4; 1542 #if (DEBUG > 1) 1543 printk("%s: nr_seg %i\n", dev->name, nr_seg); 1544 #endif 1545 1546 for (i = 0; i < nr_seg; i++){ 1547 sptr = rr_read_eeprom_word(rrpriv, eptr); 1548 eptr += 4; 1549 len = rr_read_eeprom_word(rrpriv, eptr); 1550 eptr += 4; 1551 segptr = rr_read_eeprom_word(rrpriv, eptr); 1552 segptr = ((segptr & 0x1fffff) >> 3); 1553 eptr += 4; 1554 #if (DEBUG > 1) 1555 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", 1556 dev->name, i, sptr, len, segptr); 1557 #endif 1558 for (j = 0; j < len; j++){ 1559 tmp = rr_read_eeprom_word(rrpriv, segptr); 1560 writel(sptr, ®s->WinBase); 1561 mb(); 1562 writel(tmp, ®s->WinData); 1563 mb(); 1564 segptr += 4; 1565 sptr += 4; 1566 } 1567 } 1568 1569 out: 1570 writel(localctrl, ®s->LocalCtrl); 1571 mb(); 1572 return 0; 1573 } 1574 1575 1576 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1577 { 1578 struct rr_private *rrpriv; 1579 unsigned char *image, *oldimage; 1580 unsigned long flags; 1581 unsigned int i; 1582 int error = -EOPNOTSUPP; 1583 1584 rrpriv = netdev_priv(dev); 1585 1586 switch(cmd){ 1587 case SIOCRRGFW: 1588 if (!capable(CAP_SYS_RAWIO)){ 1589 return -EPERM; 1590 } 1591 1592 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1593 if (!image) 1594 return -ENOMEM; 1595 1596 if (rrpriv->fw_running){ 1597 printk("%s: Firmware already running\n", dev->name); 1598 error = -EPERM; 1599 goto gf_out; 1600 } 1601 1602 spin_lock_irqsave(&rrpriv->lock, flags); 1603 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1604 spin_unlock_irqrestore(&rrpriv->lock, flags); 1605 if (i != EEPROM_BYTES){ 1606 printk(KERN_ERR "%s: Error reading EEPROM\n", 1607 dev->name); 1608 error = -EFAULT; 1609 goto gf_out; 1610 } 1611 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); 1612 if (error) 1613 error = -EFAULT; 1614 gf_out: 1615 kfree(image); 1616 return error; 1617 1618 case SIOCRRPFW: 1619 if (!capable(CAP_SYS_RAWIO)){ 1620 return -EPERM; 1621 } 1622 1623 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1624 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1625 if (!image || !oldimage) { 1626 error = -ENOMEM; 1627 goto wf_out; 1628 } 1629 1630 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); 1631 if (error) { 1632 error = -EFAULT; 1633 goto wf_out; 1634 } 1635 1636 if (rrpriv->fw_running){ 1637 printk("%s: Firmware already running\n", dev->name); 1638 error = -EPERM; 1639 goto wf_out; 1640 } 1641 1642 printk("%s: Updating EEPROM firmware\n", dev->name); 1643 1644 spin_lock_irqsave(&rrpriv->lock, flags); 1645 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1646 if (error) 1647 printk(KERN_ERR "%s: Error writing EEPROM\n", 1648 dev->name); 1649 1650 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); 1651 spin_unlock_irqrestore(&rrpriv->lock, flags); 1652 1653 if (i != EEPROM_BYTES) 1654 printk(KERN_ERR "%s: Error reading back EEPROM " 1655 "image\n", dev->name); 1656 1657 error = memcmp(image, oldimage, EEPROM_BYTES); 1658 if (error){ 1659 printk(KERN_ERR "%s: Error verifying EEPROM image\n", 1660 dev->name); 1661 error = -EFAULT; 1662 } 1663 wf_out: 1664 kfree(oldimage); 1665 kfree(image); 1666 return error; 1667 1668 case SIOCRRID: 1669 return put_user(0x52523032, (int __user *)rq->ifr_data); 1670 default: 1671 return error; 1672 } 1673 } 1674 1675 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = { 1676 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, 1677 PCI_ANY_ID, PCI_ANY_ID, }, 1678 { 0,} 1679 }; 1680 MODULE_DEVICE_TABLE(pci, rr_pci_tbl); 1681 1682 static struct pci_driver rr_driver = { 1683 .name = "rrunner", 1684 .id_table = rr_pci_tbl, 1685 .probe = rr_init_one, 1686 .remove = rr_remove_one, 1687 }; 1688 1689 module_pci_driver(rr_driver); 1690