1 /* 2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. 3 * 4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. 5 * 6 * Thanks to Essential Communication for providing us with hardware 7 * and very comprehensive documentation without which I would not have 8 * been able to write this driver. A special thank you to John Gibbon 9 * for sorting out the legal issues, with the NDA, allowing the code to 10 * be released under the GPL. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the 18 * stupid bugs in my code. 19 * 20 * Softnet support and various other patches from Val Henson of 21 * ODS/Essential. 22 * 23 * PCI DMA mapping code partly based on work by Francois Romieu. 24 */ 25 26 27 #define DEBUG 1 28 #define RX_DMA_SKBUFF 1 29 #define PKT_COPY_THRESHOLD 512 30 31 #include <linux/module.h> 32 #include <linux/types.h> 33 #include <linux/errno.h> 34 #include <linux/ioport.h> 35 #include <linux/pci.h> 36 #include <linux/kernel.h> 37 #include <linux/netdevice.h> 38 #include <linux/hippidevice.h> 39 #include <linux/skbuff.h> 40 #include <linux/init.h> 41 #include <linux/delay.h> 42 #include <linux/mm.h> 43 #include <linux/slab.h> 44 #include <net/sock.h> 45 46 #include <asm/system.h> 47 #include <asm/cache.h> 48 #include <asm/byteorder.h> 49 #include <asm/io.h> 50 #include <asm/irq.h> 51 #include <asm/uaccess.h> 52 53 #define rr_if_busy(dev) netif_queue_stopped(dev) 54 #define rr_if_running(dev) netif_running(dev) 55 56 #include "rrunner.h" 57 58 #define RUN_AT(x) (jiffies + (x)) 59 60 61 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); 62 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); 63 MODULE_LICENSE("GPL"); 64 65 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; 66 67 68 static const struct net_device_ops rr_netdev_ops = { 69 .ndo_open = rr_open, 70 .ndo_stop = rr_close, 71 .ndo_do_ioctl = rr_ioctl, 72 .ndo_start_xmit = rr_start_xmit, 73 .ndo_change_mtu = hippi_change_mtu, 74 .ndo_set_mac_address = hippi_mac_addr, 75 }; 76 77 /* 78 * Implementation notes: 79 * 80 * The DMA engine only allows for DMA within physical 64KB chunks of 81 * memory. The current approach of the driver (and stack) is to use 82 * linear blocks of memory for the skbuffs. However, as the data block 83 * is always the first part of the skb and skbs are 2^n aligned so we 84 * are guarantted to get the whole block within one 64KB align 64KB 85 * chunk. 86 * 87 * On the long term, relying on being able to allocate 64KB linear 88 * chunks of memory is not feasible and the skb handling code and the 89 * stack will need to know about I/O vectors or something similar. 90 */ 91 92 static int __devinit rr_init_one(struct pci_dev *pdev, 93 const struct pci_device_id *ent) 94 { 95 struct net_device *dev; 96 static int version_disp; 97 u8 pci_latency; 98 struct rr_private *rrpriv; 99 void *tmpptr; 100 dma_addr_t ring_dma; 101 int ret = -ENOMEM; 102 103 dev = alloc_hippi_dev(sizeof(struct rr_private)); 104 if (!dev) 105 goto out3; 106 107 ret = pci_enable_device(pdev); 108 if (ret) { 109 ret = -ENODEV; 110 goto out2; 111 } 112 113 rrpriv = netdev_priv(dev); 114 115 SET_NETDEV_DEV(dev, &pdev->dev); 116 117 if (pci_request_regions(pdev, "rrunner")) { 118 ret = -EIO; 119 goto out; 120 } 121 122 pci_set_drvdata(pdev, dev); 123 124 rrpriv->pci_dev = pdev; 125 126 spin_lock_init(&rrpriv->lock); 127 128 dev->irq = pdev->irq; 129 dev->netdev_ops = &rr_netdev_ops; 130 131 dev->base_addr = pci_resource_start(pdev, 0); 132 133 /* display version info if adapter is found */ 134 if (!version_disp) { 135 /* set display flag to TRUE so that */ 136 /* we only display this string ONCE */ 137 version_disp = 1; 138 printk(version); 139 } 140 141 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 142 if (pci_latency <= 0x58){ 143 pci_latency = 0x58; 144 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); 145 } 146 147 pci_set_master(pdev); 148 149 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " 150 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name, 151 dev->base_addr, dev->irq, pci_latency); 152 153 /* 154 * Remap the regs into kernel space. 155 */ 156 157 rrpriv->regs = ioremap(dev->base_addr, 0x1000); 158 159 if (!rrpriv->regs){ 160 printk(KERN_ERR "%s: Unable to map I/O register, " 161 "RoadRunner will be disabled.\n", dev->name); 162 ret = -EIO; 163 goto out; 164 } 165 166 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 167 rrpriv->tx_ring = tmpptr; 168 rrpriv->tx_ring_dma = ring_dma; 169 170 if (!tmpptr) { 171 ret = -ENOMEM; 172 goto out; 173 } 174 175 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 176 rrpriv->rx_ring = tmpptr; 177 rrpriv->rx_ring_dma = ring_dma; 178 179 if (!tmpptr) { 180 ret = -ENOMEM; 181 goto out; 182 } 183 184 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); 185 rrpriv->evt_ring = tmpptr; 186 rrpriv->evt_ring_dma = ring_dma; 187 188 if (!tmpptr) { 189 ret = -ENOMEM; 190 goto out; 191 } 192 193 /* 194 * Don't access any register before this point! 195 */ 196 #ifdef __BIG_ENDIAN 197 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, 198 &rrpriv->regs->HostCtrl); 199 #endif 200 /* 201 * Need to add a case for little-endian 64-bit hosts here. 202 */ 203 204 rr_init(dev); 205 206 dev->base_addr = 0; 207 208 ret = register_netdev(dev); 209 if (ret) 210 goto out; 211 return 0; 212 213 out: 214 if (rrpriv->rx_ring) 215 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, 216 rrpriv->rx_ring_dma); 217 if (rrpriv->tx_ring) 218 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, 219 rrpriv->tx_ring_dma); 220 if (rrpriv->regs) 221 iounmap(rrpriv->regs); 222 if (pdev) { 223 pci_release_regions(pdev); 224 pci_set_drvdata(pdev, NULL); 225 } 226 out2: 227 free_netdev(dev); 228 out3: 229 return ret; 230 } 231 232 static void __devexit rr_remove_one (struct pci_dev *pdev) 233 { 234 struct net_device *dev = pci_get_drvdata(pdev); 235 236 if (dev) { 237 struct rr_private *rr = netdev_priv(dev); 238 239 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){ 240 printk(KERN_ERR "%s: trying to unload running NIC\n", 241 dev->name); 242 writel(HALT_NIC, &rr->regs->HostCtrl); 243 } 244 245 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, 246 rr->evt_ring_dma); 247 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, 248 rr->rx_ring_dma); 249 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, 250 rr->tx_ring_dma); 251 unregister_netdev(dev); 252 iounmap(rr->regs); 253 free_netdev(dev); 254 pci_release_regions(pdev); 255 pci_disable_device(pdev); 256 pci_set_drvdata(pdev, NULL); 257 } 258 } 259 260 261 /* 262 * Commands are considered to be slow, thus there is no reason to 263 * inline this. 264 */ 265 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) 266 { 267 struct rr_regs __iomem *regs; 268 u32 idx; 269 270 regs = rrpriv->regs; 271 /* 272 * This is temporary - it will go away in the final version. 273 * We probably also want to make this function inline. 274 */ 275 if (readl(®s->HostCtrl) & NIC_HALTED){ 276 printk("issuing command for halted NIC, code 0x%x, " 277 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); 278 if (readl(®s->Mode) & FATAL_ERR) 279 printk("error codes Fail1 %02x, Fail2 %02x\n", 280 readl(®s->Fail1), readl(®s->Fail2)); 281 } 282 283 idx = rrpriv->info->cmd_ctrl.pi; 284 285 writel(*(u32*)(cmd), ®s->CmdRing[idx]); 286 wmb(); 287 288 idx = (idx - 1) % CMD_RING_ENTRIES; 289 rrpriv->info->cmd_ctrl.pi = idx; 290 wmb(); 291 292 if (readl(®s->Mode) & FATAL_ERR) 293 printk("error code %02x\n", readl(®s->Fail1)); 294 } 295 296 297 /* 298 * Reset the board in a sensible manner. The NIC is already halted 299 * when we get here and a spin-lock is held. 300 */ 301 static int rr_reset(struct net_device *dev) 302 { 303 struct rr_private *rrpriv; 304 struct rr_regs __iomem *regs; 305 u32 start_pc; 306 int i; 307 308 rrpriv = netdev_priv(dev); 309 regs = rrpriv->regs; 310 311 rr_load_firmware(dev); 312 313 writel(0x01000000, ®s->TX_state); 314 writel(0xff800000, ®s->RX_state); 315 writel(0, ®s->AssistState); 316 writel(CLEAR_INTA, ®s->LocalCtrl); 317 writel(0x01, ®s->BrkPt); 318 writel(0, ®s->Timer); 319 writel(0, ®s->TimerRef); 320 writel(RESET_DMA, ®s->DmaReadState); 321 writel(RESET_DMA, ®s->DmaWriteState); 322 writel(0, ®s->DmaWriteHostHi); 323 writel(0, ®s->DmaWriteHostLo); 324 writel(0, ®s->DmaReadHostHi); 325 writel(0, ®s->DmaReadHostLo); 326 writel(0, ®s->DmaReadLen); 327 writel(0, ®s->DmaWriteLen); 328 writel(0, ®s->DmaWriteLcl); 329 writel(0, ®s->DmaWriteIPchecksum); 330 writel(0, ®s->DmaReadLcl); 331 writel(0, ®s->DmaReadIPchecksum); 332 writel(0, ®s->PciState); 333 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN 334 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); 335 #elif (BITS_PER_LONG == 64) 336 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); 337 #else 338 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); 339 #endif 340 341 #if 0 342 /* 343 * Don't worry, this is just black magic. 344 */ 345 writel(0xdf000, ®s->RxBase); 346 writel(0xdf000, ®s->RxPrd); 347 writel(0xdf000, ®s->RxCon); 348 writel(0xce000, ®s->TxBase); 349 writel(0xce000, ®s->TxPrd); 350 writel(0xce000, ®s->TxCon); 351 writel(0, ®s->RxIndPro); 352 writel(0, ®s->RxIndCon); 353 writel(0, ®s->RxIndRef); 354 writel(0, ®s->TxIndPro); 355 writel(0, ®s->TxIndCon); 356 writel(0, ®s->TxIndRef); 357 writel(0xcc000, ®s->pad10[0]); 358 writel(0, ®s->DrCmndPro); 359 writel(0, ®s->DrCmndCon); 360 writel(0, ®s->DwCmndPro); 361 writel(0, ®s->DwCmndCon); 362 writel(0, ®s->DwCmndRef); 363 writel(0, ®s->DrDataPro); 364 writel(0, ®s->DrDataCon); 365 writel(0, ®s->DrDataRef); 366 writel(0, ®s->DwDataPro); 367 writel(0, ®s->DwDataCon); 368 writel(0, ®s->DwDataRef); 369 #endif 370 371 writel(0xffffffff, ®s->MbEvent); 372 writel(0, ®s->Event); 373 374 writel(0, ®s->TxPi); 375 writel(0, ®s->IpRxPi); 376 377 writel(0, ®s->EvtCon); 378 writel(0, ®s->EvtPrd); 379 380 rrpriv->info->evt_ctrl.pi = 0; 381 382 for (i = 0; i < CMD_RING_ENTRIES; i++) 383 writel(0, ®s->CmdRing[i]); 384 385 /* 386 * Why 32 ? is this not cache line size dependent? 387 */ 388 writel(RBURST_64|WBURST_64, ®s->PciState); 389 wmb(); 390 391 start_pc = rr_read_eeprom_word(rrpriv, 392 offsetof(struct eeprom, rncd_info.FwStart)); 393 394 #if (DEBUG > 1) 395 printk("%s: Executing firmware at address 0x%06x\n", 396 dev->name, start_pc); 397 #endif 398 399 writel(start_pc + 0x800, ®s->Pc); 400 wmb(); 401 udelay(5); 402 403 writel(start_pc, ®s->Pc); 404 wmb(); 405 406 return 0; 407 } 408 409 410 /* 411 * Read a string from the EEPROM. 412 */ 413 static unsigned int rr_read_eeprom(struct rr_private *rrpriv, 414 unsigned long offset, 415 unsigned char *buf, 416 unsigned long length) 417 { 418 struct rr_regs __iomem *regs = rrpriv->regs; 419 u32 misc, io, host, i; 420 421 io = readl(®s->ExtIo); 422 writel(0, ®s->ExtIo); 423 misc = readl(®s->LocalCtrl); 424 writel(0, ®s->LocalCtrl); 425 host = readl(®s->HostCtrl); 426 writel(host | HALT_NIC, ®s->HostCtrl); 427 mb(); 428 429 for (i = 0; i < length; i++){ 430 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 431 mb(); 432 buf[i] = (readl(®s->WinData) >> 24) & 0xff; 433 mb(); 434 } 435 436 writel(host, ®s->HostCtrl); 437 writel(misc, ®s->LocalCtrl); 438 writel(io, ®s->ExtIo); 439 mb(); 440 return i; 441 } 442 443 444 /* 445 * Shortcut to read one word (4 bytes) out of the EEPROM and convert 446 * it to our CPU byte-order. 447 */ 448 static u32 rr_read_eeprom_word(struct rr_private *rrpriv, 449 size_t offset) 450 { 451 __be32 word; 452 453 if ((rr_read_eeprom(rrpriv, offset, 454 (unsigned char *)&word, 4) == 4)) 455 return be32_to_cpu(word); 456 return 0; 457 } 458 459 460 /* 461 * Write a string to the EEPROM. 462 * 463 * This is only called when the firmware is not running. 464 */ 465 static unsigned int write_eeprom(struct rr_private *rrpriv, 466 unsigned long offset, 467 unsigned char *buf, 468 unsigned long length) 469 { 470 struct rr_regs __iomem *regs = rrpriv->regs; 471 u32 misc, io, data, i, j, ready, error = 0; 472 473 io = readl(®s->ExtIo); 474 writel(0, ®s->ExtIo); 475 misc = readl(®s->LocalCtrl); 476 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); 477 mb(); 478 479 for (i = 0; i < length; i++){ 480 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 481 mb(); 482 data = buf[i] << 24; 483 /* 484 * Only try to write the data if it is not the same 485 * value already. 486 */ 487 if ((readl(®s->WinData) & 0xff000000) != data){ 488 writel(data, ®s->WinData); 489 ready = 0; 490 j = 0; 491 mb(); 492 while(!ready){ 493 udelay(20); 494 if ((readl(®s->WinData) & 0xff000000) == 495 data) 496 ready = 1; 497 mb(); 498 if (j++ > 5000){ 499 printk("data mismatch: %08x, " 500 "WinData %08x\n", data, 501 readl(®s->WinData)); 502 ready = 1; 503 error = 1; 504 } 505 } 506 } 507 } 508 509 writel(misc, ®s->LocalCtrl); 510 writel(io, ®s->ExtIo); 511 mb(); 512 513 return error; 514 } 515 516 517 static int __devinit rr_init(struct net_device *dev) 518 { 519 struct rr_private *rrpriv; 520 struct rr_regs __iomem *regs; 521 u32 sram_size, rev; 522 523 rrpriv = netdev_priv(dev); 524 regs = rrpriv->regs; 525 526 rev = readl(®s->FwRev); 527 rrpriv->fw_rev = rev; 528 if (rev > 0x00020024) 529 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), 530 ((rev >> 8) & 0xff), (rev & 0xff)); 531 else if (rev >= 0x00020000) { 532 printk(" Firmware revision: %i.%i.%i (2.0.37 or " 533 "later is recommended)\n", (rev >> 16), 534 ((rev >> 8) & 0xff), (rev & 0xff)); 535 }else{ 536 printk(" Firmware revision too old: %i.%i.%i, please " 537 "upgrade to 2.0.37 or later.\n", 538 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); 539 } 540 541 #if (DEBUG > 2) 542 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); 543 #endif 544 545 /* 546 * Read the hardware address from the eeprom. The HW address 547 * is not really necessary for HIPPI but awfully convenient. 548 * The pointer arithmetic to put it in dev_addr is ugly, but 549 * Donald Becker does it this way for the GigE version of this 550 * card and it's shorter and more portable than any 551 * other method I've seen. -VAL 552 */ 553 554 *(__be16 *)(dev->dev_addr) = 555 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); 556 *(__be32 *)(dev->dev_addr+2) = 557 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); 558 559 printk(" MAC: %pM\n", dev->dev_addr); 560 561 sram_size = rr_read_eeprom_word(rrpriv, 8); 562 printk(" SRAM size 0x%06x\n", sram_size); 563 564 return 0; 565 } 566 567 568 static int rr_init1(struct net_device *dev) 569 { 570 struct rr_private *rrpriv; 571 struct rr_regs __iomem *regs; 572 unsigned long myjif, flags; 573 struct cmd cmd; 574 u32 hostctrl; 575 int ecode = 0; 576 short i; 577 578 rrpriv = netdev_priv(dev); 579 regs = rrpriv->regs; 580 581 spin_lock_irqsave(&rrpriv->lock, flags); 582 583 hostctrl = readl(®s->HostCtrl); 584 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); 585 wmb(); 586 587 if (hostctrl & PARITY_ERR){ 588 printk("%s: Parity error halting NIC - this is serious!\n", 589 dev->name); 590 spin_unlock_irqrestore(&rrpriv->lock, flags); 591 ecode = -EFAULT; 592 goto error; 593 } 594 595 set_rxaddr(regs, rrpriv->rx_ctrl_dma); 596 set_infoaddr(regs, rrpriv->info_dma); 597 598 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); 599 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; 600 rrpriv->info->evt_ctrl.mode = 0; 601 rrpriv->info->evt_ctrl.pi = 0; 602 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); 603 604 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); 605 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; 606 rrpriv->info->cmd_ctrl.mode = 0; 607 rrpriv->info->cmd_ctrl.pi = 15; 608 609 for (i = 0; i < CMD_RING_ENTRIES; i++) { 610 writel(0, ®s->CmdRing[i]); 611 } 612 613 for (i = 0; i < TX_RING_ENTRIES; i++) { 614 rrpriv->tx_ring[i].size = 0; 615 set_rraddr(&rrpriv->tx_ring[i].addr, 0); 616 rrpriv->tx_skbuff[i] = NULL; 617 } 618 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); 619 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; 620 rrpriv->info->tx_ctrl.mode = 0; 621 rrpriv->info->tx_ctrl.pi = 0; 622 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); 623 624 /* 625 * Set dirty_tx before we start receiving interrupts, otherwise 626 * the interrupt handler might think it is supposed to process 627 * tx ints before we are up and running, which may cause a null 628 * pointer access in the int handler. 629 */ 630 rrpriv->tx_full = 0; 631 rrpriv->cur_rx = 0; 632 rrpriv->dirty_rx = rrpriv->dirty_tx = 0; 633 634 rr_reset(dev); 635 636 /* Tuning values */ 637 writel(0x5000, ®s->ConRetry); 638 writel(0x100, ®s->ConRetryTmr); 639 writel(0x500000, ®s->ConTmout); 640 writel(0x60, ®s->IntrTmr); 641 writel(0x500000, ®s->TxDataMvTimeout); 642 writel(0x200000, ®s->RxDataMvTimeout); 643 writel(0x80, ®s->WriteDmaThresh); 644 writel(0x80, ®s->ReadDmaThresh); 645 646 rrpriv->fw_running = 0; 647 wmb(); 648 649 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); 650 writel(hostctrl, ®s->HostCtrl); 651 wmb(); 652 653 spin_unlock_irqrestore(&rrpriv->lock, flags); 654 655 for (i = 0; i < RX_RING_ENTRIES; i++) { 656 struct sk_buff *skb; 657 dma_addr_t addr; 658 659 rrpriv->rx_ring[i].mode = 0; 660 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); 661 if (!skb) { 662 printk(KERN_WARNING "%s: Unable to allocate memory " 663 "for receive ring - halting NIC\n", dev->name); 664 ecode = -ENOMEM; 665 goto error; 666 } 667 rrpriv->rx_skbuff[i] = skb; 668 addr = pci_map_single(rrpriv->pci_dev, skb->data, 669 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 670 /* 671 * Sanity test to see if we conflict with the DMA 672 * limitations of the Roadrunner. 673 */ 674 if ((((unsigned long)skb->data) & 0xfff) > ~65320) 675 printk("skb alloc error\n"); 676 677 set_rraddr(&rrpriv->rx_ring[i].addr, addr); 678 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; 679 } 680 681 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); 682 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; 683 rrpriv->rx_ctrl[4].mode = 8; 684 rrpriv->rx_ctrl[4].pi = 0; 685 wmb(); 686 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); 687 688 udelay(1000); 689 690 /* 691 * Now start the FirmWare. 692 */ 693 cmd.code = C_START_FW; 694 cmd.ring = 0; 695 cmd.index = 0; 696 697 rr_issue_cmd(rrpriv, &cmd); 698 699 /* 700 * Give the FirmWare time to chew on the `get running' command. 701 */ 702 myjif = jiffies + 5 * HZ; 703 while (time_before(jiffies, myjif) && !rrpriv->fw_running) 704 cpu_relax(); 705 706 netif_start_queue(dev); 707 708 return ecode; 709 710 error: 711 /* 712 * We might have gotten here because we are out of memory, 713 * make sure we release everything we allocated before failing 714 */ 715 for (i = 0; i < RX_RING_ENTRIES; i++) { 716 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 717 718 if (skb) { 719 pci_unmap_single(rrpriv->pci_dev, 720 rrpriv->rx_ring[i].addr.addrlo, 721 dev->mtu + HIPPI_HLEN, 722 PCI_DMA_FROMDEVICE); 723 rrpriv->rx_ring[i].size = 0; 724 set_rraddr(&rrpriv->rx_ring[i].addr, 0); 725 dev_kfree_skb(skb); 726 rrpriv->rx_skbuff[i] = NULL; 727 } 728 } 729 return ecode; 730 } 731 732 733 /* 734 * All events are considered to be slow (RX/TX ints do not generate 735 * events) and are handled here, outside the main interrupt handler, 736 * to reduce the size of the handler. 737 */ 738 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) 739 { 740 struct rr_private *rrpriv; 741 struct rr_regs __iomem *regs; 742 u32 tmp; 743 744 rrpriv = netdev_priv(dev); 745 regs = rrpriv->regs; 746 747 while (prodidx != eidx){ 748 switch (rrpriv->evt_ring[eidx].code){ 749 case E_NIC_UP: 750 tmp = readl(®s->FwRev); 751 printk(KERN_INFO "%s: Firmware revision %i.%i.%i " 752 "up and running\n", dev->name, 753 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); 754 rrpriv->fw_running = 1; 755 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); 756 wmb(); 757 break; 758 case E_LINK_ON: 759 printk(KERN_INFO "%s: Optical link ON\n", dev->name); 760 break; 761 case E_LINK_OFF: 762 printk(KERN_INFO "%s: Optical link OFF\n", dev->name); 763 break; 764 case E_RX_IDLE: 765 printk(KERN_WARNING "%s: RX data not moving\n", 766 dev->name); 767 goto drop; 768 case E_WATCHDOG: 769 printk(KERN_INFO "%s: The watchdog is here to see " 770 "us\n", dev->name); 771 break; 772 case E_INTERN_ERR: 773 printk(KERN_ERR "%s: HIPPI Internal NIC error\n", 774 dev->name); 775 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 776 ®s->HostCtrl); 777 wmb(); 778 break; 779 case E_HOST_ERR: 780 printk(KERN_ERR "%s: Host software error\n", 781 dev->name); 782 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 783 ®s->HostCtrl); 784 wmb(); 785 break; 786 /* 787 * TX events. 788 */ 789 case E_CON_REJ: 790 printk(KERN_WARNING "%s: Connection rejected\n", 791 dev->name); 792 dev->stats.tx_aborted_errors++; 793 break; 794 case E_CON_TMOUT: 795 printk(KERN_WARNING "%s: Connection timeout\n", 796 dev->name); 797 break; 798 case E_DISC_ERR: 799 printk(KERN_WARNING "%s: HIPPI disconnect error\n", 800 dev->name); 801 dev->stats.tx_aborted_errors++; 802 break; 803 case E_INT_PRTY: 804 printk(KERN_ERR "%s: HIPPI Internal Parity error\n", 805 dev->name); 806 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 807 ®s->HostCtrl); 808 wmb(); 809 break; 810 case E_TX_IDLE: 811 printk(KERN_WARNING "%s: Transmitter idle\n", 812 dev->name); 813 break; 814 case E_TX_LINK_DROP: 815 printk(KERN_WARNING "%s: Link lost during transmit\n", 816 dev->name); 817 dev->stats.tx_aborted_errors++; 818 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 819 ®s->HostCtrl); 820 wmb(); 821 break; 822 case E_TX_INV_RNG: 823 printk(KERN_ERR "%s: Invalid send ring block\n", 824 dev->name); 825 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 826 ®s->HostCtrl); 827 wmb(); 828 break; 829 case E_TX_INV_BUF: 830 printk(KERN_ERR "%s: Invalid send buffer address\n", 831 dev->name); 832 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 833 ®s->HostCtrl); 834 wmb(); 835 break; 836 case E_TX_INV_DSC: 837 printk(KERN_ERR "%s: Invalid descriptor address\n", 838 dev->name); 839 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 840 ®s->HostCtrl); 841 wmb(); 842 break; 843 /* 844 * RX events. 845 */ 846 case E_RX_RNG_OUT: 847 printk(KERN_INFO "%s: Receive ring full\n", dev->name); 848 break; 849 850 case E_RX_PAR_ERR: 851 printk(KERN_WARNING "%s: Receive parity error\n", 852 dev->name); 853 goto drop; 854 case E_RX_LLRC_ERR: 855 printk(KERN_WARNING "%s: Receive LLRC error\n", 856 dev->name); 857 goto drop; 858 case E_PKT_LN_ERR: 859 printk(KERN_WARNING "%s: Receive packet length " 860 "error\n", dev->name); 861 goto drop; 862 case E_DTA_CKSM_ERR: 863 printk(KERN_WARNING "%s: Data checksum error\n", 864 dev->name); 865 goto drop; 866 case E_SHT_BST: 867 printk(KERN_WARNING "%s: Unexpected short burst " 868 "error\n", dev->name); 869 goto drop; 870 case E_STATE_ERR: 871 printk(KERN_WARNING "%s: Recv. state transition" 872 " error\n", dev->name); 873 goto drop; 874 case E_UNEXP_DATA: 875 printk(KERN_WARNING "%s: Unexpected data error\n", 876 dev->name); 877 goto drop; 878 case E_LST_LNK_ERR: 879 printk(KERN_WARNING "%s: Link lost error\n", 880 dev->name); 881 goto drop; 882 case E_FRM_ERR: 883 printk(KERN_WARNING "%s: Framming Error\n", 884 dev->name); 885 goto drop; 886 case E_FLG_SYN_ERR: 887 printk(KERN_WARNING "%s: Flag sync. lost during " 888 "packet\n", dev->name); 889 goto drop; 890 case E_RX_INV_BUF: 891 printk(KERN_ERR "%s: Invalid receive buffer " 892 "address\n", dev->name); 893 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 894 ®s->HostCtrl); 895 wmb(); 896 break; 897 case E_RX_INV_DSC: 898 printk(KERN_ERR "%s: Invalid receive descriptor " 899 "address\n", dev->name); 900 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 901 ®s->HostCtrl); 902 wmb(); 903 break; 904 case E_RNG_BLK: 905 printk(KERN_ERR "%s: Invalid ring block\n", 906 dev->name); 907 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 908 ®s->HostCtrl); 909 wmb(); 910 break; 911 drop: 912 /* Label packet to be dropped. 913 * Actual dropping occurs in rx 914 * handling. 915 * 916 * The index of packet we get to drop is 917 * the index of the packet following 918 * the bad packet. -kbf 919 */ 920 { 921 u16 index = rrpriv->evt_ring[eidx].index; 922 index = (index + (RX_RING_ENTRIES - 1)) % 923 RX_RING_ENTRIES; 924 rrpriv->rx_ring[index].mode |= 925 (PACKET_BAD | PACKET_END); 926 } 927 break; 928 default: 929 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", 930 dev->name, rrpriv->evt_ring[eidx].code); 931 } 932 eidx = (eidx + 1) % EVT_RING_ENTRIES; 933 } 934 935 rrpriv->info->evt_ctrl.pi = eidx; 936 wmb(); 937 return eidx; 938 } 939 940 941 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) 942 { 943 struct rr_private *rrpriv = netdev_priv(dev); 944 struct rr_regs __iomem *regs = rrpriv->regs; 945 946 do { 947 struct rx_desc *desc; 948 u32 pkt_len; 949 950 desc = &(rrpriv->rx_ring[index]); 951 pkt_len = desc->size; 952 #if (DEBUG > 2) 953 printk("index %i, rxlimit %i\n", index, rxlimit); 954 printk("len %x, mode %x\n", pkt_len, desc->mode); 955 #endif 956 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ 957 dev->stats.rx_dropped++; 958 goto defer; 959 } 960 961 if (pkt_len > 0){ 962 struct sk_buff *skb, *rx_skb; 963 964 rx_skb = rrpriv->rx_skbuff[index]; 965 966 if (pkt_len < PKT_COPY_THRESHOLD) { 967 skb = alloc_skb(pkt_len, GFP_ATOMIC); 968 if (skb == NULL){ 969 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); 970 dev->stats.rx_dropped++; 971 goto defer; 972 } else { 973 pci_dma_sync_single_for_cpu(rrpriv->pci_dev, 974 desc->addr.addrlo, 975 pkt_len, 976 PCI_DMA_FROMDEVICE); 977 978 memcpy(skb_put(skb, pkt_len), 979 rx_skb->data, pkt_len); 980 981 pci_dma_sync_single_for_device(rrpriv->pci_dev, 982 desc->addr.addrlo, 983 pkt_len, 984 PCI_DMA_FROMDEVICE); 985 } 986 }else{ 987 struct sk_buff *newskb; 988 989 newskb = alloc_skb(dev->mtu + HIPPI_HLEN, 990 GFP_ATOMIC); 991 if (newskb){ 992 dma_addr_t addr; 993 994 pci_unmap_single(rrpriv->pci_dev, 995 desc->addr.addrlo, dev->mtu + 996 HIPPI_HLEN, PCI_DMA_FROMDEVICE); 997 skb = rx_skb; 998 skb_put(skb, pkt_len); 999 rrpriv->rx_skbuff[index] = newskb; 1000 addr = pci_map_single(rrpriv->pci_dev, 1001 newskb->data, 1002 dev->mtu + HIPPI_HLEN, 1003 PCI_DMA_FROMDEVICE); 1004 set_rraddr(&desc->addr, addr); 1005 } else { 1006 printk("%s: Out of memory, deferring " 1007 "packet\n", dev->name); 1008 dev->stats.rx_dropped++; 1009 goto defer; 1010 } 1011 } 1012 skb->protocol = hippi_type_trans(skb, dev); 1013 1014 netif_rx(skb); /* send it up */ 1015 1016 dev->stats.rx_packets++; 1017 dev->stats.rx_bytes += pkt_len; 1018 } 1019 defer: 1020 desc->mode = 0; 1021 desc->size = dev->mtu + HIPPI_HLEN; 1022 1023 if ((index & 7) == 7) 1024 writel(index, ®s->IpRxPi); 1025 1026 index = (index + 1) % RX_RING_ENTRIES; 1027 } while(index != rxlimit); 1028 1029 rrpriv->cur_rx = index; 1030 wmb(); 1031 } 1032 1033 1034 static irqreturn_t rr_interrupt(int irq, void *dev_id) 1035 { 1036 struct rr_private *rrpriv; 1037 struct rr_regs __iomem *regs; 1038 struct net_device *dev = (struct net_device *)dev_id; 1039 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; 1040 1041 rrpriv = netdev_priv(dev); 1042 regs = rrpriv->regs; 1043 1044 if (!(readl(®s->HostCtrl) & RR_INT)) 1045 return IRQ_NONE; 1046 1047 spin_lock(&rrpriv->lock); 1048 1049 prodidx = readl(®s->EvtPrd); 1050 txcsmr = (prodidx >> 8) & 0xff; 1051 rxlimit = (prodidx >> 16) & 0xff; 1052 prodidx &= 0xff; 1053 1054 #if (DEBUG > 2) 1055 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, 1056 prodidx, rrpriv->info->evt_ctrl.pi); 1057 #endif 1058 /* 1059 * Order here is important. We must handle events 1060 * before doing anything else in order to catch 1061 * such things as LLRC errors, etc -kbf 1062 */ 1063 1064 eidx = rrpriv->info->evt_ctrl.pi; 1065 if (prodidx != eidx) 1066 eidx = rr_handle_event(dev, prodidx, eidx); 1067 1068 rxindex = rrpriv->cur_rx; 1069 if (rxindex != rxlimit) 1070 rx_int(dev, rxlimit, rxindex); 1071 1072 txcon = rrpriv->dirty_tx; 1073 if (txcsmr != txcon) { 1074 do { 1075 /* Due to occational firmware TX producer/consumer out 1076 * of sync. error need to check entry in ring -kbf 1077 */ 1078 if(rrpriv->tx_skbuff[txcon]){ 1079 struct tx_desc *desc; 1080 struct sk_buff *skb; 1081 1082 desc = &(rrpriv->tx_ring[txcon]); 1083 skb = rrpriv->tx_skbuff[txcon]; 1084 1085 dev->stats.tx_packets++; 1086 dev->stats.tx_bytes += skb->len; 1087 1088 pci_unmap_single(rrpriv->pci_dev, 1089 desc->addr.addrlo, skb->len, 1090 PCI_DMA_TODEVICE); 1091 dev_kfree_skb_irq(skb); 1092 1093 rrpriv->tx_skbuff[txcon] = NULL; 1094 desc->size = 0; 1095 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); 1096 desc->mode = 0; 1097 } 1098 txcon = (txcon + 1) % TX_RING_ENTRIES; 1099 } while (txcsmr != txcon); 1100 wmb(); 1101 1102 rrpriv->dirty_tx = txcon; 1103 if (rrpriv->tx_full && rr_if_busy(dev) && 1104 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) 1105 != rrpriv->dirty_tx)){ 1106 rrpriv->tx_full = 0; 1107 netif_wake_queue(dev); 1108 } 1109 } 1110 1111 eidx |= ((txcsmr << 8) | (rxlimit << 16)); 1112 writel(eidx, ®s->EvtCon); 1113 wmb(); 1114 1115 spin_unlock(&rrpriv->lock); 1116 return IRQ_HANDLED; 1117 } 1118 1119 static inline void rr_raz_tx(struct rr_private *rrpriv, 1120 struct net_device *dev) 1121 { 1122 int i; 1123 1124 for (i = 0; i < TX_RING_ENTRIES; i++) { 1125 struct sk_buff *skb = rrpriv->tx_skbuff[i]; 1126 1127 if (skb) { 1128 struct tx_desc *desc = &(rrpriv->tx_ring[i]); 1129 1130 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1131 skb->len, PCI_DMA_TODEVICE); 1132 desc->size = 0; 1133 set_rraddr(&desc->addr, 0); 1134 dev_kfree_skb(skb); 1135 rrpriv->tx_skbuff[i] = NULL; 1136 } 1137 } 1138 } 1139 1140 1141 static inline void rr_raz_rx(struct rr_private *rrpriv, 1142 struct net_device *dev) 1143 { 1144 int i; 1145 1146 for (i = 0; i < RX_RING_ENTRIES; i++) { 1147 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 1148 1149 if (skb) { 1150 struct rx_desc *desc = &(rrpriv->rx_ring[i]); 1151 1152 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, 1153 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); 1154 desc->size = 0; 1155 set_rraddr(&desc->addr, 0); 1156 dev_kfree_skb(skb); 1157 rrpriv->rx_skbuff[i] = NULL; 1158 } 1159 } 1160 } 1161 1162 static void rr_timer(unsigned long data) 1163 { 1164 struct net_device *dev = (struct net_device *)data; 1165 struct rr_private *rrpriv = netdev_priv(dev); 1166 struct rr_regs __iomem *regs = rrpriv->regs; 1167 unsigned long flags; 1168 1169 if (readl(®s->HostCtrl) & NIC_HALTED){ 1170 printk("%s: Restarting nic\n", dev->name); 1171 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); 1172 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1173 wmb(); 1174 1175 rr_raz_tx(rrpriv, dev); 1176 rr_raz_rx(rrpriv, dev); 1177 1178 if (rr_init1(dev)) { 1179 spin_lock_irqsave(&rrpriv->lock, flags); 1180 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 1181 ®s->HostCtrl); 1182 spin_unlock_irqrestore(&rrpriv->lock, flags); 1183 } 1184 } 1185 rrpriv->timer.expires = RUN_AT(5*HZ); 1186 add_timer(&rrpriv->timer); 1187 } 1188 1189 1190 static int rr_open(struct net_device *dev) 1191 { 1192 struct rr_private *rrpriv = netdev_priv(dev); 1193 struct pci_dev *pdev = rrpriv->pci_dev; 1194 struct rr_regs __iomem *regs; 1195 int ecode = 0; 1196 unsigned long flags; 1197 dma_addr_t dma_addr; 1198 1199 regs = rrpriv->regs; 1200 1201 if (rrpriv->fw_rev < 0x00020000) { 1202 printk(KERN_WARNING "%s: trying to configure device with " 1203 "obsolete firmware\n", dev->name); 1204 ecode = -EBUSY; 1205 goto error; 1206 } 1207 1208 rrpriv->rx_ctrl = pci_alloc_consistent(pdev, 1209 256 * sizeof(struct ring_ctrl), 1210 &dma_addr); 1211 if (!rrpriv->rx_ctrl) { 1212 ecode = -ENOMEM; 1213 goto error; 1214 } 1215 rrpriv->rx_ctrl_dma = dma_addr; 1216 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); 1217 1218 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), 1219 &dma_addr); 1220 if (!rrpriv->info) { 1221 ecode = -ENOMEM; 1222 goto error; 1223 } 1224 rrpriv->info_dma = dma_addr; 1225 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1226 wmb(); 1227 1228 spin_lock_irqsave(&rrpriv->lock, flags); 1229 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1230 readl(®s->HostCtrl); 1231 spin_unlock_irqrestore(&rrpriv->lock, flags); 1232 1233 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { 1234 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1235 dev->name, dev->irq); 1236 ecode = -EAGAIN; 1237 goto error; 1238 } 1239 1240 if ((ecode = rr_init1(dev))) 1241 goto error; 1242 1243 /* Set the timer to switch to check for link beat and perhaps switch 1244 to an alternate media type. */ 1245 init_timer(&rrpriv->timer); 1246 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ 1247 rrpriv->timer.data = (unsigned long)dev; 1248 rrpriv->timer.function = rr_timer; /* timer handler */ 1249 add_timer(&rrpriv->timer); 1250 1251 netif_start_queue(dev); 1252 1253 return ecode; 1254 1255 error: 1256 spin_lock_irqsave(&rrpriv->lock, flags); 1257 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1258 spin_unlock_irqrestore(&rrpriv->lock, flags); 1259 1260 if (rrpriv->info) { 1261 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, 1262 rrpriv->info_dma); 1263 rrpriv->info = NULL; 1264 } 1265 if (rrpriv->rx_ctrl) { 1266 pci_free_consistent(pdev, sizeof(struct ring_ctrl), 1267 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1268 rrpriv->rx_ctrl = NULL; 1269 } 1270 1271 netif_stop_queue(dev); 1272 1273 return ecode; 1274 } 1275 1276 1277 static void rr_dump(struct net_device *dev) 1278 { 1279 struct rr_private *rrpriv; 1280 struct rr_regs __iomem *regs; 1281 u32 index, cons; 1282 short i; 1283 int len; 1284 1285 rrpriv = netdev_priv(dev); 1286 regs = rrpriv->regs; 1287 1288 printk("%s: dumping NIC TX rings\n", dev->name); 1289 1290 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", 1291 readl(®s->RxPrd), readl(®s->TxPrd), 1292 readl(®s->EvtPrd), readl(®s->TxPi), 1293 rrpriv->info->tx_ctrl.pi); 1294 1295 printk("Error code 0x%x\n", readl(®s->Fail1)); 1296 1297 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES; 1298 cons = rrpriv->dirty_tx; 1299 printk("TX ring index %i, TX consumer %i\n", 1300 index, cons); 1301 1302 if (rrpriv->tx_skbuff[index]){ 1303 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); 1304 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); 1305 for (i = 0; i < len; i++){ 1306 if (!(i & 7)) 1307 printk("\n"); 1308 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); 1309 } 1310 printk("\n"); 1311 } 1312 1313 if (rrpriv->tx_skbuff[cons]){ 1314 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); 1315 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); 1316 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n", 1317 rrpriv->tx_ring[cons].mode, 1318 rrpriv->tx_ring[cons].size, 1319 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, 1320 (unsigned long)rrpriv->tx_skbuff[cons]->data, 1321 (unsigned int)rrpriv->tx_skbuff[cons]->truesize); 1322 for (i = 0; i < len; i++){ 1323 if (!(i & 7)) 1324 printk("\n"); 1325 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); 1326 } 1327 printk("\n"); 1328 } 1329 1330 printk("dumping TX ring info:\n"); 1331 for (i = 0; i < TX_RING_ENTRIES; i++) 1332 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", 1333 rrpriv->tx_ring[i].mode, 1334 rrpriv->tx_ring[i].size, 1335 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); 1336 1337 } 1338 1339 1340 static int rr_close(struct net_device *dev) 1341 { 1342 struct rr_private *rrpriv; 1343 struct rr_regs __iomem *regs; 1344 unsigned long flags; 1345 u32 tmp; 1346 short i; 1347 1348 netif_stop_queue(dev); 1349 1350 rrpriv = netdev_priv(dev); 1351 regs = rrpriv->regs; 1352 1353 /* 1354 * Lock to make sure we are not cleaning up while another CPU 1355 * is handling interrupts. 1356 */ 1357 spin_lock_irqsave(&rrpriv->lock, flags); 1358 1359 tmp = readl(®s->HostCtrl); 1360 if (tmp & NIC_HALTED){ 1361 printk("%s: NIC already halted\n", dev->name); 1362 rr_dump(dev); 1363 }else{ 1364 tmp |= HALT_NIC | RR_CLEAR_INT; 1365 writel(tmp, ®s->HostCtrl); 1366 readl(®s->HostCtrl); 1367 } 1368 1369 rrpriv->fw_running = 0; 1370 1371 del_timer_sync(&rrpriv->timer); 1372 1373 writel(0, ®s->TxPi); 1374 writel(0, ®s->IpRxPi); 1375 1376 writel(0, ®s->EvtCon); 1377 writel(0, ®s->EvtPrd); 1378 1379 for (i = 0; i < CMD_RING_ENTRIES; i++) 1380 writel(0, ®s->CmdRing[i]); 1381 1382 rrpriv->info->tx_ctrl.entries = 0; 1383 rrpriv->info->cmd_ctrl.pi = 0; 1384 rrpriv->info->evt_ctrl.pi = 0; 1385 rrpriv->rx_ctrl[4].entries = 0; 1386 1387 rr_raz_tx(rrpriv, dev); 1388 rr_raz_rx(rrpriv, dev); 1389 1390 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl), 1391 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1392 rrpriv->rx_ctrl = NULL; 1393 1394 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info), 1395 rrpriv->info, rrpriv->info_dma); 1396 rrpriv->info = NULL; 1397 1398 free_irq(dev->irq, dev); 1399 spin_unlock_irqrestore(&rrpriv->lock, flags); 1400 1401 return 0; 1402 } 1403 1404 1405 static netdev_tx_t rr_start_xmit(struct sk_buff *skb, 1406 struct net_device *dev) 1407 { 1408 struct rr_private *rrpriv = netdev_priv(dev); 1409 struct rr_regs __iomem *regs = rrpriv->regs; 1410 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; 1411 struct ring_ctrl *txctrl; 1412 unsigned long flags; 1413 u32 index, len = skb->len; 1414 u32 *ifield; 1415 struct sk_buff *new_skb; 1416 1417 if (readl(®s->Mode) & FATAL_ERR) 1418 printk("error codes Fail1 %02x, Fail2 %02x\n", 1419 readl(®s->Fail1), readl(®s->Fail2)); 1420 1421 /* 1422 * We probably need to deal with tbusy here to prevent overruns. 1423 */ 1424 1425 if (skb_headroom(skb) < 8){ 1426 printk("incoming skb too small - reallocating\n"); 1427 if (!(new_skb = dev_alloc_skb(len + 8))) { 1428 dev_kfree_skb(skb); 1429 netif_wake_queue(dev); 1430 return NETDEV_TX_OK; 1431 } 1432 skb_reserve(new_skb, 8); 1433 skb_put(new_skb, len); 1434 skb_copy_from_linear_data(skb, new_skb->data, len); 1435 dev_kfree_skb(skb); 1436 skb = new_skb; 1437 } 1438 1439 ifield = (u32 *)skb_push(skb, 8); 1440 1441 ifield[0] = 0; 1442 ifield[1] = hcb->ifield; 1443 1444 /* 1445 * We don't need the lock before we are actually going to start 1446 * fiddling with the control blocks. 1447 */ 1448 spin_lock_irqsave(&rrpriv->lock, flags); 1449 1450 txctrl = &rrpriv->info->tx_ctrl; 1451 1452 index = txctrl->pi; 1453 1454 rrpriv->tx_skbuff[index] = skb; 1455 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( 1456 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); 1457 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ 1458 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; 1459 txctrl->pi = (index + 1) % TX_RING_ENTRIES; 1460 wmb(); 1461 writel(txctrl->pi, ®s->TxPi); 1462 1463 if (txctrl->pi == rrpriv->dirty_tx){ 1464 rrpriv->tx_full = 1; 1465 netif_stop_queue(dev); 1466 } 1467 1468 spin_unlock_irqrestore(&rrpriv->lock, flags); 1469 1470 return NETDEV_TX_OK; 1471 } 1472 1473 1474 /* 1475 * Read the firmware out of the EEPROM and put it into the SRAM 1476 * (or from user space - later) 1477 * 1478 * This operation requires the NIC to be halted and is performed with 1479 * interrupts disabled and with the spinlock hold. 1480 */ 1481 static int rr_load_firmware(struct net_device *dev) 1482 { 1483 struct rr_private *rrpriv; 1484 struct rr_regs __iomem *regs; 1485 size_t eptr, segptr; 1486 int i, j; 1487 u32 localctrl, sptr, len, tmp; 1488 u32 p2len, p2size, nr_seg, revision, io, sram_size; 1489 1490 rrpriv = netdev_priv(dev); 1491 regs = rrpriv->regs; 1492 1493 if (dev->flags & IFF_UP) 1494 return -EBUSY; 1495 1496 if (!(readl(®s->HostCtrl) & NIC_HALTED)){ 1497 printk("%s: Trying to load firmware to a running NIC.\n", 1498 dev->name); 1499 return -EBUSY; 1500 } 1501 1502 localctrl = readl(®s->LocalCtrl); 1503 writel(0, ®s->LocalCtrl); 1504 1505 writel(0, ®s->EvtPrd); 1506 writel(0, ®s->RxPrd); 1507 writel(0, ®s->TxPrd); 1508 1509 /* 1510 * First wipe the entire SRAM, otherwise we might run into all 1511 * kinds of trouble ... sigh, this took almost all afternoon 1512 * to track down ;-( 1513 */ 1514 io = readl(®s->ExtIo); 1515 writel(0, ®s->ExtIo); 1516 sram_size = rr_read_eeprom_word(rrpriv, 8); 1517 1518 for (i = 200; i < sram_size / 4; i++){ 1519 writel(i * 4, ®s->WinBase); 1520 mb(); 1521 writel(0, ®s->WinData); 1522 mb(); 1523 } 1524 writel(io, ®s->ExtIo); 1525 mb(); 1526 1527 eptr = rr_read_eeprom_word(rrpriv, 1528 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); 1529 eptr = ((eptr & 0x1fffff) >> 3); 1530 1531 p2len = rr_read_eeprom_word(rrpriv, 0x83*4); 1532 p2len = (p2len << 2); 1533 p2size = rr_read_eeprom_word(rrpriv, 0x84*4); 1534 p2size = ((p2size & 0x1fffff) >> 3); 1535 1536 if ((eptr < p2size) || (eptr > (p2size + p2len))){ 1537 printk("%s: eptr is invalid\n", dev->name); 1538 goto out; 1539 } 1540 1541 revision = rr_read_eeprom_word(rrpriv, 1542 offsetof(struct eeprom, manf.HeaderFmt)); 1543 1544 if (revision != 1){ 1545 printk("%s: invalid firmware format (%i)\n", 1546 dev->name, revision); 1547 goto out; 1548 } 1549 1550 nr_seg = rr_read_eeprom_word(rrpriv, eptr); 1551 eptr +=4; 1552 #if (DEBUG > 1) 1553 printk("%s: nr_seg %i\n", dev->name, nr_seg); 1554 #endif 1555 1556 for (i = 0; i < nr_seg; i++){ 1557 sptr = rr_read_eeprom_word(rrpriv, eptr); 1558 eptr += 4; 1559 len = rr_read_eeprom_word(rrpriv, eptr); 1560 eptr += 4; 1561 segptr = rr_read_eeprom_word(rrpriv, eptr); 1562 segptr = ((segptr & 0x1fffff) >> 3); 1563 eptr += 4; 1564 #if (DEBUG > 1) 1565 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", 1566 dev->name, i, sptr, len, segptr); 1567 #endif 1568 for (j = 0; j < len; j++){ 1569 tmp = rr_read_eeprom_word(rrpriv, segptr); 1570 writel(sptr, ®s->WinBase); 1571 mb(); 1572 writel(tmp, ®s->WinData); 1573 mb(); 1574 segptr += 4; 1575 sptr += 4; 1576 } 1577 } 1578 1579 out: 1580 writel(localctrl, ®s->LocalCtrl); 1581 mb(); 1582 return 0; 1583 } 1584 1585 1586 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1587 { 1588 struct rr_private *rrpriv; 1589 unsigned char *image, *oldimage; 1590 unsigned long flags; 1591 unsigned int i; 1592 int error = -EOPNOTSUPP; 1593 1594 rrpriv = netdev_priv(dev); 1595 1596 switch(cmd){ 1597 case SIOCRRGFW: 1598 if (!capable(CAP_SYS_RAWIO)){ 1599 return -EPERM; 1600 } 1601 1602 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1603 if (!image){ 1604 printk(KERN_ERR "%s: Unable to allocate memory " 1605 "for EEPROM image\n", dev->name); 1606 return -ENOMEM; 1607 } 1608 1609 1610 if (rrpriv->fw_running){ 1611 printk("%s: Firmware already running\n", dev->name); 1612 error = -EPERM; 1613 goto gf_out; 1614 } 1615 1616 spin_lock_irqsave(&rrpriv->lock, flags); 1617 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1618 spin_unlock_irqrestore(&rrpriv->lock, flags); 1619 if (i != EEPROM_BYTES){ 1620 printk(KERN_ERR "%s: Error reading EEPROM\n", 1621 dev->name); 1622 error = -EFAULT; 1623 goto gf_out; 1624 } 1625 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); 1626 if (error) 1627 error = -EFAULT; 1628 gf_out: 1629 kfree(image); 1630 return error; 1631 1632 case SIOCRRPFW: 1633 if (!capable(CAP_SYS_RAWIO)){ 1634 return -EPERM; 1635 } 1636 1637 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1638 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); 1639 if (!image || !oldimage) { 1640 printk(KERN_ERR "%s: Unable to allocate memory " 1641 "for EEPROM image\n", dev->name); 1642 error = -ENOMEM; 1643 goto wf_out; 1644 } 1645 1646 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); 1647 if (error) { 1648 error = -EFAULT; 1649 goto wf_out; 1650 } 1651 1652 if (rrpriv->fw_running){ 1653 printk("%s: Firmware already running\n", dev->name); 1654 error = -EPERM; 1655 goto wf_out; 1656 } 1657 1658 printk("%s: Updating EEPROM firmware\n", dev->name); 1659 1660 spin_lock_irqsave(&rrpriv->lock, flags); 1661 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1662 if (error) 1663 printk(KERN_ERR "%s: Error writing EEPROM\n", 1664 dev->name); 1665 1666 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); 1667 spin_unlock_irqrestore(&rrpriv->lock, flags); 1668 1669 if (i != EEPROM_BYTES) 1670 printk(KERN_ERR "%s: Error reading back EEPROM " 1671 "image\n", dev->name); 1672 1673 error = memcmp(image, oldimage, EEPROM_BYTES); 1674 if (error){ 1675 printk(KERN_ERR "%s: Error verifying EEPROM image\n", 1676 dev->name); 1677 error = -EFAULT; 1678 } 1679 wf_out: 1680 kfree(oldimage); 1681 kfree(image); 1682 return error; 1683 1684 case SIOCRRID: 1685 return put_user(0x52523032, (int __user *)rq->ifr_data); 1686 default: 1687 return error; 1688 } 1689 } 1690 1691 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = { 1692 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, 1693 PCI_ANY_ID, PCI_ANY_ID, }, 1694 { 0,} 1695 }; 1696 MODULE_DEVICE_TABLE(pci, rr_pci_tbl); 1697 1698 static struct pci_driver rr_driver = { 1699 .name = "rrunner", 1700 .id_table = rr_pci_tbl, 1701 .probe = rr_init_one, 1702 .remove = __devexit_p(rr_remove_one), 1703 }; 1704 1705 static int __init rr_init_module(void) 1706 { 1707 return pci_register_driver(&rr_driver); 1708 } 1709 1710 static void __exit rr_cleanup_module(void) 1711 { 1712 pci_unregister_driver(&rr_driver); 1713 } 1714 1715 module_init(rr_init_module); 1716 module_exit(rr_cleanup_module); 1717