1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. 4 * 5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. 6 * 7 * Thanks to Essential Communication for providing us with hardware 8 * and very comprehensive documentation without which I would not have 9 * been able to write this driver. A special thank you to John Gibbon 10 * for sorting out the legal issues, with the NDA, allowing the code to 11 * be released under the GPL. 12 * 13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the 14 * stupid bugs in my code. 15 * 16 * Softnet support and various other patches from Val Henson of 17 * ODS/Essential. 18 * 19 * PCI DMA mapping code partly based on work by Francois Romieu. 20 */ 21 22 23 #define DEBUG 1 24 #define RX_DMA_SKBUFF 1 25 #define PKT_COPY_THRESHOLD 512 26 27 #include <linux/module.h> 28 #include <linux/types.h> 29 #include <linux/errno.h> 30 #include <linux/ioport.h> 31 #include <linux/pci.h> 32 #include <linux/kernel.h> 33 #include <linux/netdevice.h> 34 #include <linux/hippidevice.h> 35 #include <linux/skbuff.h> 36 #include <linux/delay.h> 37 #include <linux/mm.h> 38 #include <linux/slab.h> 39 #include <net/sock.h> 40 41 #include <asm/cache.h> 42 #include <asm/byteorder.h> 43 #include <asm/io.h> 44 #include <asm/irq.h> 45 #include <linux/uaccess.h> 46 47 #define rr_if_busy(dev) netif_queue_stopped(dev) 48 #define rr_if_running(dev) netif_running(dev) 49 50 #include "rrunner.h" 51 52 #define RUN_AT(x) (jiffies + (x)) 53 54 55 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); 56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); 57 MODULE_LICENSE("GPL"); 58 59 static const char version[] = 60 "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; 61 62 63 static const struct net_device_ops rr_netdev_ops = { 64 .ndo_open = rr_open, 65 .ndo_stop = rr_close, 66 .ndo_siocdevprivate = rr_siocdevprivate, 67 .ndo_start_xmit = rr_start_xmit, 68 .ndo_set_mac_address = hippi_mac_addr, 69 }; 70 71 /* 72 * Implementation notes: 73 * 74 * The DMA engine only allows for DMA within physical 64KB chunks of 75 * memory. The current approach of the driver (and stack) is to use 76 * linear blocks of memory for the skbuffs. However, as the data block 77 * is always the first part of the skb and skbs are 2^n aligned so we 78 * are guarantted to get the whole block within one 64KB align 64KB 79 * chunk. 80 * 81 * On the long term, relying on being able to allocate 64KB linear 82 * chunks of memory is not feasible and the skb handling code and the 83 * stack will need to know about I/O vectors or something similar. 84 */ 85 86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 87 { 88 struct net_device *dev; 89 static int version_disp; 90 u8 pci_latency; 91 struct rr_private *rrpriv; 92 void *tmpptr; 93 dma_addr_t ring_dma; 94 int ret = -ENOMEM; 95 96 dev = alloc_hippi_dev(sizeof(struct rr_private)); 97 if (!dev) 98 goto out3; 99 100 ret = pci_enable_device(pdev); 101 if (ret) { 102 ret = -ENODEV; 103 goto out2; 104 } 105 106 rrpriv = netdev_priv(dev); 107 108 SET_NETDEV_DEV(dev, &pdev->dev); 109 110 ret = pci_request_regions(pdev, "rrunner"); 111 if (ret < 0) 112 goto out; 113 114 pci_set_drvdata(pdev, dev); 115 116 rrpriv->pci_dev = pdev; 117 118 spin_lock_init(&rrpriv->lock); 119 120 dev->netdev_ops = &rr_netdev_ops; 121 122 /* display version info if adapter is found */ 123 if (!version_disp) { 124 /* set display flag to TRUE so that */ 125 /* we only display this string ONCE */ 126 version_disp = 1; 127 printk(version); 128 } 129 130 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 131 if (pci_latency <= 0x58){ 132 pci_latency = 0x58; 133 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); 134 } 135 136 pci_set_master(pdev); 137 138 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " 139 "at 0x%llx, irq %i, PCI latency %i\n", dev->name, 140 (unsigned long long)pci_resource_start(pdev, 0), 141 pdev->irq, pci_latency); 142 143 /* 144 * Remap the MMIO regs into kernel space. 145 */ 146 rrpriv->regs = pci_iomap(pdev, 0, 0x1000); 147 if (!rrpriv->regs) { 148 printk(KERN_ERR "%s: Unable to map I/O register, " 149 "RoadRunner will be disabled.\n", dev->name); 150 ret = -EIO; 151 goto out; 152 } 153 154 tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 155 GFP_KERNEL); 156 rrpriv->tx_ring = tmpptr; 157 rrpriv->tx_ring_dma = ring_dma; 158 159 if (!tmpptr) { 160 ret = -ENOMEM; 161 goto out; 162 } 163 164 tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 165 GFP_KERNEL); 166 rrpriv->rx_ring = tmpptr; 167 rrpriv->rx_ring_dma = ring_dma; 168 169 if (!tmpptr) { 170 ret = -ENOMEM; 171 goto out; 172 } 173 174 tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma, 175 GFP_KERNEL); 176 rrpriv->evt_ring = tmpptr; 177 rrpriv->evt_ring_dma = ring_dma; 178 179 if (!tmpptr) { 180 ret = -ENOMEM; 181 goto out; 182 } 183 184 /* 185 * Don't access any register before this point! 186 */ 187 #ifdef __BIG_ENDIAN 188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, 189 &rrpriv->regs->HostCtrl); 190 #endif 191 /* 192 * Need to add a case for little-endian 64-bit hosts here. 193 */ 194 195 rr_init(dev); 196 197 ret = register_netdev(dev); 198 if (ret) 199 goto out; 200 return 0; 201 202 out: 203 if (rrpriv->evt_ring) 204 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring, 205 rrpriv->evt_ring_dma); 206 if (rrpriv->rx_ring) 207 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring, 208 rrpriv->rx_ring_dma); 209 if (rrpriv->tx_ring) 210 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring, 211 rrpriv->tx_ring_dma); 212 if (rrpriv->regs) 213 pci_iounmap(pdev, rrpriv->regs); 214 if (pdev) 215 pci_release_regions(pdev); 216 pci_disable_device(pdev); 217 out2: 218 free_netdev(dev); 219 out3: 220 return ret; 221 } 222 223 static void rr_remove_one(struct pci_dev *pdev) 224 { 225 struct net_device *dev = pci_get_drvdata(pdev); 226 struct rr_private *rr = netdev_priv(dev); 227 228 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) { 229 printk(KERN_ERR "%s: trying to unload running NIC\n", 230 dev->name); 231 writel(HALT_NIC, &rr->regs->HostCtrl); 232 } 233 234 unregister_netdev(dev); 235 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring, 236 rr->evt_ring_dma); 237 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring, 238 rr->rx_ring_dma); 239 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring, 240 rr->tx_ring_dma); 241 pci_iounmap(pdev, rr->regs); 242 pci_release_regions(pdev); 243 pci_disable_device(pdev); 244 free_netdev(dev); 245 } 246 247 248 /* 249 * Commands are considered to be slow, thus there is no reason to 250 * inline this. 251 */ 252 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) 253 { 254 struct rr_regs __iomem *regs; 255 u32 idx; 256 257 regs = rrpriv->regs; 258 /* 259 * This is temporary - it will go away in the final version. 260 * We probably also want to make this function inline. 261 */ 262 if (readl(®s->HostCtrl) & NIC_HALTED){ 263 printk("issuing command for halted NIC, code 0x%x, " 264 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); 265 if (readl(®s->Mode) & FATAL_ERR) 266 printk("error codes Fail1 %02x, Fail2 %02x\n", 267 readl(®s->Fail1), readl(®s->Fail2)); 268 } 269 270 idx = rrpriv->info->cmd_ctrl.pi; 271 272 writel(*(u32*)(cmd), ®s->CmdRing[idx]); 273 wmb(); 274 275 idx = (idx - 1) % CMD_RING_ENTRIES; 276 rrpriv->info->cmd_ctrl.pi = idx; 277 wmb(); 278 279 if (readl(®s->Mode) & FATAL_ERR) 280 printk("error code %02x\n", readl(®s->Fail1)); 281 } 282 283 284 /* 285 * Reset the board in a sensible manner. The NIC is already halted 286 * when we get here and a spin-lock is held. 287 */ 288 static int rr_reset(struct net_device *dev) 289 { 290 struct rr_private *rrpriv; 291 struct rr_regs __iomem *regs; 292 u32 start_pc; 293 int i; 294 295 rrpriv = netdev_priv(dev); 296 regs = rrpriv->regs; 297 298 rr_load_firmware(dev); 299 300 writel(0x01000000, ®s->TX_state); 301 writel(0xff800000, ®s->RX_state); 302 writel(0, ®s->AssistState); 303 writel(CLEAR_INTA, ®s->LocalCtrl); 304 writel(0x01, ®s->BrkPt); 305 writel(0, ®s->Timer); 306 writel(0, ®s->TimerRef); 307 writel(RESET_DMA, ®s->DmaReadState); 308 writel(RESET_DMA, ®s->DmaWriteState); 309 writel(0, ®s->DmaWriteHostHi); 310 writel(0, ®s->DmaWriteHostLo); 311 writel(0, ®s->DmaReadHostHi); 312 writel(0, ®s->DmaReadHostLo); 313 writel(0, ®s->DmaReadLen); 314 writel(0, ®s->DmaWriteLen); 315 writel(0, ®s->DmaWriteLcl); 316 writel(0, ®s->DmaWriteIPchecksum); 317 writel(0, ®s->DmaReadLcl); 318 writel(0, ®s->DmaReadIPchecksum); 319 writel(0, ®s->PciState); 320 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN 321 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); 322 #elif (BITS_PER_LONG == 64) 323 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); 324 #else 325 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); 326 #endif 327 328 #if 0 329 /* 330 * Don't worry, this is just black magic. 331 */ 332 writel(0xdf000, ®s->RxBase); 333 writel(0xdf000, ®s->RxPrd); 334 writel(0xdf000, ®s->RxCon); 335 writel(0xce000, ®s->TxBase); 336 writel(0xce000, ®s->TxPrd); 337 writel(0xce000, ®s->TxCon); 338 writel(0, ®s->RxIndPro); 339 writel(0, ®s->RxIndCon); 340 writel(0, ®s->RxIndRef); 341 writel(0, ®s->TxIndPro); 342 writel(0, ®s->TxIndCon); 343 writel(0, ®s->TxIndRef); 344 writel(0xcc000, ®s->pad10[0]); 345 writel(0, ®s->DrCmndPro); 346 writel(0, ®s->DrCmndCon); 347 writel(0, ®s->DwCmndPro); 348 writel(0, ®s->DwCmndCon); 349 writel(0, ®s->DwCmndRef); 350 writel(0, ®s->DrDataPro); 351 writel(0, ®s->DrDataCon); 352 writel(0, ®s->DrDataRef); 353 writel(0, ®s->DwDataPro); 354 writel(0, ®s->DwDataCon); 355 writel(0, ®s->DwDataRef); 356 #endif 357 358 writel(0xffffffff, ®s->MbEvent); 359 writel(0, ®s->Event); 360 361 writel(0, ®s->TxPi); 362 writel(0, ®s->IpRxPi); 363 364 writel(0, ®s->EvtCon); 365 writel(0, ®s->EvtPrd); 366 367 rrpriv->info->evt_ctrl.pi = 0; 368 369 for (i = 0; i < CMD_RING_ENTRIES; i++) 370 writel(0, ®s->CmdRing[i]); 371 372 /* 373 * Why 32 ? is this not cache line size dependent? 374 */ 375 writel(RBURST_64|WBURST_64, ®s->PciState); 376 wmb(); 377 378 start_pc = rr_read_eeprom_word(rrpriv, 379 offsetof(struct eeprom, rncd_info.FwStart)); 380 381 #if (DEBUG > 1) 382 printk("%s: Executing firmware at address 0x%06x\n", 383 dev->name, start_pc); 384 #endif 385 386 writel(start_pc + 0x800, ®s->Pc); 387 wmb(); 388 udelay(5); 389 390 writel(start_pc, ®s->Pc); 391 wmb(); 392 393 return 0; 394 } 395 396 397 /* 398 * Read a string from the EEPROM. 399 */ 400 static unsigned int rr_read_eeprom(struct rr_private *rrpriv, 401 unsigned long offset, 402 unsigned char *buf, 403 unsigned long length) 404 { 405 struct rr_regs __iomem *regs = rrpriv->regs; 406 u32 misc, io, host, i; 407 408 io = readl(®s->ExtIo); 409 writel(0, ®s->ExtIo); 410 misc = readl(®s->LocalCtrl); 411 writel(0, ®s->LocalCtrl); 412 host = readl(®s->HostCtrl); 413 writel(host | HALT_NIC, ®s->HostCtrl); 414 mb(); 415 416 for (i = 0; i < length; i++){ 417 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 418 mb(); 419 buf[i] = (readl(®s->WinData) >> 24) & 0xff; 420 mb(); 421 } 422 423 writel(host, ®s->HostCtrl); 424 writel(misc, ®s->LocalCtrl); 425 writel(io, ®s->ExtIo); 426 mb(); 427 return i; 428 } 429 430 431 /* 432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert 433 * it to our CPU byte-order. 434 */ 435 static u32 rr_read_eeprom_word(struct rr_private *rrpriv, 436 size_t offset) 437 { 438 __be32 word; 439 440 if ((rr_read_eeprom(rrpriv, offset, 441 (unsigned char *)&word, 4) == 4)) 442 return be32_to_cpu(word); 443 return 0; 444 } 445 446 447 /* 448 * Write a string to the EEPROM. 449 * 450 * This is only called when the firmware is not running. 451 */ 452 static unsigned int write_eeprom(struct rr_private *rrpriv, 453 unsigned long offset, 454 unsigned char *buf, 455 unsigned long length) 456 { 457 struct rr_regs __iomem *regs = rrpriv->regs; 458 u32 misc, io, data, i, j, ready, error = 0; 459 460 io = readl(®s->ExtIo); 461 writel(0, ®s->ExtIo); 462 misc = readl(®s->LocalCtrl); 463 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); 464 mb(); 465 466 for (i = 0; i < length; i++){ 467 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); 468 mb(); 469 data = buf[i] << 24; 470 /* 471 * Only try to write the data if it is not the same 472 * value already. 473 */ 474 if ((readl(®s->WinData) & 0xff000000) != data){ 475 writel(data, ®s->WinData); 476 ready = 0; 477 j = 0; 478 mb(); 479 while(!ready){ 480 udelay(20); 481 if ((readl(®s->WinData) & 0xff000000) == 482 data) 483 ready = 1; 484 mb(); 485 if (j++ > 5000){ 486 printk("data mismatch: %08x, " 487 "WinData %08x\n", data, 488 readl(®s->WinData)); 489 ready = 1; 490 error = 1; 491 } 492 } 493 } 494 } 495 496 writel(misc, ®s->LocalCtrl); 497 writel(io, ®s->ExtIo); 498 mb(); 499 500 return error; 501 } 502 503 504 static int rr_init(struct net_device *dev) 505 { 506 u8 addr[HIPPI_ALEN] __aligned(4); 507 struct rr_private *rrpriv; 508 struct rr_regs __iomem *regs; 509 u32 sram_size, rev; 510 511 rrpriv = netdev_priv(dev); 512 regs = rrpriv->regs; 513 514 rev = readl(®s->FwRev); 515 rrpriv->fw_rev = rev; 516 if (rev > 0x00020024) 517 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), 518 ((rev >> 8) & 0xff), (rev & 0xff)); 519 else if (rev >= 0x00020000) { 520 printk(" Firmware revision: %i.%i.%i (2.0.37 or " 521 "later is recommended)\n", (rev >> 16), 522 ((rev >> 8) & 0xff), (rev & 0xff)); 523 }else{ 524 printk(" Firmware revision too old: %i.%i.%i, please " 525 "upgrade to 2.0.37 or later.\n", 526 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); 527 } 528 529 #if (DEBUG > 2) 530 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); 531 #endif 532 533 /* 534 * Read the hardware address from the eeprom. The HW address 535 * is not really necessary for HIPPI but awfully convenient. 536 * The pointer arithmetic to put it in dev_addr is ugly, but 537 * Donald Becker does it this way for the GigE version of this 538 * card and it's shorter and more portable than any 539 * other method I've seen. -VAL 540 */ 541 542 *(__be16 *)(addr) = 543 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); 544 *(__be32 *)(addr+2) = 545 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); 546 dev_addr_set(dev, addr); 547 548 printk(" MAC: %pM\n", dev->dev_addr); 549 550 sram_size = rr_read_eeprom_word(rrpriv, 8); 551 printk(" SRAM size 0x%06x\n", sram_size); 552 553 return 0; 554 } 555 556 557 static int rr_init1(struct net_device *dev) 558 { 559 struct rr_private *rrpriv; 560 struct rr_regs __iomem *regs; 561 unsigned long myjif, flags; 562 struct cmd cmd; 563 u32 hostctrl; 564 int ecode = 0; 565 short i; 566 567 rrpriv = netdev_priv(dev); 568 regs = rrpriv->regs; 569 570 spin_lock_irqsave(&rrpriv->lock, flags); 571 572 hostctrl = readl(®s->HostCtrl); 573 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); 574 wmb(); 575 576 if (hostctrl & PARITY_ERR){ 577 printk("%s: Parity error halting NIC - this is serious!\n", 578 dev->name); 579 spin_unlock_irqrestore(&rrpriv->lock, flags); 580 ecode = -EFAULT; 581 goto error; 582 } 583 584 set_rxaddr(regs, rrpriv->rx_ctrl_dma); 585 set_infoaddr(regs, rrpriv->info_dma); 586 587 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); 588 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; 589 rrpriv->info->evt_ctrl.mode = 0; 590 rrpriv->info->evt_ctrl.pi = 0; 591 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); 592 593 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); 594 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; 595 rrpriv->info->cmd_ctrl.mode = 0; 596 rrpriv->info->cmd_ctrl.pi = 15; 597 598 for (i = 0; i < CMD_RING_ENTRIES; i++) { 599 writel(0, ®s->CmdRing[i]); 600 } 601 602 for (i = 0; i < TX_RING_ENTRIES; i++) { 603 rrpriv->tx_ring[i].size = 0; 604 set_rraddr(&rrpriv->tx_ring[i].addr, 0); 605 rrpriv->tx_skbuff[i] = NULL; 606 } 607 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); 608 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; 609 rrpriv->info->tx_ctrl.mode = 0; 610 rrpriv->info->tx_ctrl.pi = 0; 611 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); 612 613 /* 614 * Set dirty_tx before we start receiving interrupts, otherwise 615 * the interrupt handler might think it is supposed to process 616 * tx ints before we are up and running, which may cause a null 617 * pointer access in the int handler. 618 */ 619 rrpriv->tx_full = 0; 620 rrpriv->cur_rx = 0; 621 rrpriv->dirty_rx = rrpriv->dirty_tx = 0; 622 623 rr_reset(dev); 624 625 /* Tuning values */ 626 writel(0x5000, ®s->ConRetry); 627 writel(0x100, ®s->ConRetryTmr); 628 writel(0x500000, ®s->ConTmout); 629 writel(0x60, ®s->IntrTmr); 630 writel(0x500000, ®s->TxDataMvTimeout); 631 writel(0x200000, ®s->RxDataMvTimeout); 632 writel(0x80, ®s->WriteDmaThresh); 633 writel(0x80, ®s->ReadDmaThresh); 634 635 rrpriv->fw_running = 0; 636 wmb(); 637 638 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); 639 writel(hostctrl, ®s->HostCtrl); 640 wmb(); 641 642 spin_unlock_irqrestore(&rrpriv->lock, flags); 643 644 for (i = 0; i < RX_RING_ENTRIES; i++) { 645 struct sk_buff *skb; 646 dma_addr_t addr; 647 648 rrpriv->rx_ring[i].mode = 0; 649 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); 650 if (!skb) { 651 printk(KERN_WARNING "%s: Unable to allocate memory " 652 "for receive ring - halting NIC\n", dev->name); 653 ecode = -ENOMEM; 654 goto error; 655 } 656 rrpriv->rx_skbuff[i] = skb; 657 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data, 658 dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE); 659 /* 660 * Sanity test to see if we conflict with the DMA 661 * limitations of the Roadrunner. 662 */ 663 if ((((unsigned long)skb->data) & 0xfff) > ~65320) 664 printk("skb alloc error\n"); 665 666 set_rraddr(&rrpriv->rx_ring[i].addr, addr); 667 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; 668 } 669 670 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); 671 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; 672 rrpriv->rx_ctrl[4].mode = 8; 673 rrpriv->rx_ctrl[4].pi = 0; 674 wmb(); 675 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); 676 677 udelay(1000); 678 679 /* 680 * Now start the FirmWare. 681 */ 682 cmd.code = C_START_FW; 683 cmd.ring = 0; 684 cmd.index = 0; 685 686 rr_issue_cmd(rrpriv, &cmd); 687 688 /* 689 * Give the FirmWare time to chew on the `get running' command. 690 */ 691 myjif = jiffies + 5 * HZ; 692 while (time_before(jiffies, myjif) && !rrpriv->fw_running) 693 cpu_relax(); 694 695 netif_start_queue(dev); 696 697 return ecode; 698 699 error: 700 /* 701 * We might have gotten here because we are out of memory, 702 * make sure we release everything we allocated before failing 703 */ 704 for (i = 0; i < RX_RING_ENTRIES; i++) { 705 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 706 707 if (skb) { 708 dma_unmap_single(&rrpriv->pci_dev->dev, 709 rrpriv->rx_ring[i].addr.addrlo, 710 dev->mtu + HIPPI_HLEN, 711 DMA_FROM_DEVICE); 712 rrpriv->rx_ring[i].size = 0; 713 set_rraddr(&rrpriv->rx_ring[i].addr, 0); 714 dev_kfree_skb(skb); 715 rrpriv->rx_skbuff[i] = NULL; 716 } 717 } 718 return ecode; 719 } 720 721 722 /* 723 * All events are considered to be slow (RX/TX ints do not generate 724 * events) and are handled here, outside the main interrupt handler, 725 * to reduce the size of the handler. 726 */ 727 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) 728 { 729 struct rr_private *rrpriv; 730 struct rr_regs __iomem *regs; 731 u32 tmp; 732 733 rrpriv = netdev_priv(dev); 734 regs = rrpriv->regs; 735 736 while (prodidx != eidx){ 737 switch (rrpriv->evt_ring[eidx].code){ 738 case E_NIC_UP: 739 tmp = readl(®s->FwRev); 740 printk(KERN_INFO "%s: Firmware revision %i.%i.%i " 741 "up and running\n", dev->name, 742 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); 743 rrpriv->fw_running = 1; 744 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); 745 wmb(); 746 break; 747 case E_LINK_ON: 748 printk(KERN_INFO "%s: Optical link ON\n", dev->name); 749 break; 750 case E_LINK_OFF: 751 printk(KERN_INFO "%s: Optical link OFF\n", dev->name); 752 break; 753 case E_RX_IDLE: 754 printk(KERN_WARNING "%s: RX data not moving\n", 755 dev->name); 756 goto drop; 757 case E_WATCHDOG: 758 printk(KERN_INFO "%s: The watchdog is here to see " 759 "us\n", dev->name); 760 break; 761 case E_INTERN_ERR: 762 printk(KERN_ERR "%s: HIPPI Internal NIC error\n", 763 dev->name); 764 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 765 ®s->HostCtrl); 766 wmb(); 767 break; 768 case E_HOST_ERR: 769 printk(KERN_ERR "%s: Host software error\n", 770 dev->name); 771 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 772 ®s->HostCtrl); 773 wmb(); 774 break; 775 /* 776 * TX events. 777 */ 778 case E_CON_REJ: 779 printk(KERN_WARNING "%s: Connection rejected\n", 780 dev->name); 781 dev->stats.tx_aborted_errors++; 782 break; 783 case E_CON_TMOUT: 784 printk(KERN_WARNING "%s: Connection timeout\n", 785 dev->name); 786 break; 787 case E_DISC_ERR: 788 printk(KERN_WARNING "%s: HIPPI disconnect error\n", 789 dev->name); 790 dev->stats.tx_aborted_errors++; 791 break; 792 case E_INT_PRTY: 793 printk(KERN_ERR "%s: HIPPI Internal Parity error\n", 794 dev->name); 795 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 796 ®s->HostCtrl); 797 wmb(); 798 break; 799 case E_TX_IDLE: 800 printk(KERN_WARNING "%s: Transmitter idle\n", 801 dev->name); 802 break; 803 case E_TX_LINK_DROP: 804 printk(KERN_WARNING "%s: Link lost during transmit\n", 805 dev->name); 806 dev->stats.tx_aborted_errors++; 807 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 808 ®s->HostCtrl); 809 wmb(); 810 break; 811 case E_TX_INV_RNG: 812 printk(KERN_ERR "%s: Invalid send ring block\n", 813 dev->name); 814 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 815 ®s->HostCtrl); 816 wmb(); 817 break; 818 case E_TX_INV_BUF: 819 printk(KERN_ERR "%s: Invalid send buffer address\n", 820 dev->name); 821 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 822 ®s->HostCtrl); 823 wmb(); 824 break; 825 case E_TX_INV_DSC: 826 printk(KERN_ERR "%s: Invalid descriptor address\n", 827 dev->name); 828 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 829 ®s->HostCtrl); 830 wmb(); 831 break; 832 /* 833 * RX events. 834 */ 835 case E_RX_RNG_OUT: 836 printk(KERN_INFO "%s: Receive ring full\n", dev->name); 837 break; 838 839 case E_RX_PAR_ERR: 840 printk(KERN_WARNING "%s: Receive parity error\n", 841 dev->name); 842 goto drop; 843 case E_RX_LLRC_ERR: 844 printk(KERN_WARNING "%s: Receive LLRC error\n", 845 dev->name); 846 goto drop; 847 case E_PKT_LN_ERR: 848 printk(KERN_WARNING "%s: Receive packet length " 849 "error\n", dev->name); 850 goto drop; 851 case E_DTA_CKSM_ERR: 852 printk(KERN_WARNING "%s: Data checksum error\n", 853 dev->name); 854 goto drop; 855 case E_SHT_BST: 856 printk(KERN_WARNING "%s: Unexpected short burst " 857 "error\n", dev->name); 858 goto drop; 859 case E_STATE_ERR: 860 printk(KERN_WARNING "%s: Recv. state transition" 861 " error\n", dev->name); 862 goto drop; 863 case E_UNEXP_DATA: 864 printk(KERN_WARNING "%s: Unexpected data error\n", 865 dev->name); 866 goto drop; 867 case E_LST_LNK_ERR: 868 printk(KERN_WARNING "%s: Link lost error\n", 869 dev->name); 870 goto drop; 871 case E_FRM_ERR: 872 printk(KERN_WARNING "%s: Framing Error\n", 873 dev->name); 874 goto drop; 875 case E_FLG_SYN_ERR: 876 printk(KERN_WARNING "%s: Flag sync. lost during " 877 "packet\n", dev->name); 878 goto drop; 879 case E_RX_INV_BUF: 880 printk(KERN_ERR "%s: Invalid receive buffer " 881 "address\n", dev->name); 882 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 883 ®s->HostCtrl); 884 wmb(); 885 break; 886 case E_RX_INV_DSC: 887 printk(KERN_ERR "%s: Invalid receive descriptor " 888 "address\n", dev->name); 889 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 890 ®s->HostCtrl); 891 wmb(); 892 break; 893 case E_RNG_BLK: 894 printk(KERN_ERR "%s: Invalid ring block\n", 895 dev->name); 896 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 897 ®s->HostCtrl); 898 wmb(); 899 break; 900 drop: 901 /* Label packet to be dropped. 902 * Actual dropping occurs in rx 903 * handling. 904 * 905 * The index of packet we get to drop is 906 * the index of the packet following 907 * the bad packet. -kbf 908 */ 909 { 910 u16 index = rrpriv->evt_ring[eidx].index; 911 index = (index + (RX_RING_ENTRIES - 1)) % 912 RX_RING_ENTRIES; 913 rrpriv->rx_ring[index].mode |= 914 (PACKET_BAD | PACKET_END); 915 } 916 break; 917 default: 918 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", 919 dev->name, rrpriv->evt_ring[eidx].code); 920 } 921 eidx = (eidx + 1) % EVT_RING_ENTRIES; 922 } 923 924 rrpriv->info->evt_ctrl.pi = eidx; 925 wmb(); 926 return eidx; 927 } 928 929 930 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) 931 { 932 struct rr_private *rrpriv = netdev_priv(dev); 933 struct rr_regs __iomem *regs = rrpriv->regs; 934 935 do { 936 struct rx_desc *desc; 937 u32 pkt_len; 938 939 desc = &(rrpriv->rx_ring[index]); 940 pkt_len = desc->size; 941 #if (DEBUG > 2) 942 printk("index %i, rxlimit %i\n", index, rxlimit); 943 printk("len %x, mode %x\n", pkt_len, desc->mode); 944 #endif 945 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ 946 dev->stats.rx_dropped++; 947 goto defer; 948 } 949 950 if (pkt_len > 0){ 951 struct sk_buff *skb, *rx_skb; 952 953 rx_skb = rrpriv->rx_skbuff[index]; 954 955 if (pkt_len < PKT_COPY_THRESHOLD) { 956 skb = alloc_skb(pkt_len, GFP_ATOMIC); 957 if (skb == NULL){ 958 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); 959 dev->stats.rx_dropped++; 960 goto defer; 961 } else { 962 dma_sync_single_for_cpu(&rrpriv->pci_dev->dev, 963 desc->addr.addrlo, 964 pkt_len, 965 DMA_FROM_DEVICE); 966 967 skb_put_data(skb, rx_skb->data, 968 pkt_len); 969 970 dma_sync_single_for_device(&rrpriv->pci_dev->dev, 971 desc->addr.addrlo, 972 pkt_len, 973 DMA_FROM_DEVICE); 974 } 975 }else{ 976 struct sk_buff *newskb; 977 978 newskb = alloc_skb(dev->mtu + HIPPI_HLEN, 979 GFP_ATOMIC); 980 if (newskb){ 981 dma_addr_t addr; 982 983 dma_unmap_single(&rrpriv->pci_dev->dev, 984 desc->addr.addrlo, 985 dev->mtu + HIPPI_HLEN, 986 DMA_FROM_DEVICE); 987 skb = rx_skb; 988 skb_put(skb, pkt_len); 989 rrpriv->rx_skbuff[index] = newskb; 990 addr = dma_map_single(&rrpriv->pci_dev->dev, 991 newskb->data, 992 dev->mtu + HIPPI_HLEN, 993 DMA_FROM_DEVICE); 994 set_rraddr(&desc->addr, addr); 995 } else { 996 printk("%s: Out of memory, deferring " 997 "packet\n", dev->name); 998 dev->stats.rx_dropped++; 999 goto defer; 1000 } 1001 } 1002 skb->protocol = hippi_type_trans(skb, dev); 1003 1004 netif_rx(skb); /* send it up */ 1005 1006 dev->stats.rx_packets++; 1007 dev->stats.rx_bytes += pkt_len; 1008 } 1009 defer: 1010 desc->mode = 0; 1011 desc->size = dev->mtu + HIPPI_HLEN; 1012 1013 if ((index & 7) == 7) 1014 writel(index, ®s->IpRxPi); 1015 1016 index = (index + 1) % RX_RING_ENTRIES; 1017 } while(index != rxlimit); 1018 1019 rrpriv->cur_rx = index; 1020 wmb(); 1021 } 1022 1023 1024 static irqreturn_t rr_interrupt(int irq, void *dev_id) 1025 { 1026 struct rr_private *rrpriv; 1027 struct rr_regs __iomem *regs; 1028 struct net_device *dev = (struct net_device *)dev_id; 1029 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; 1030 1031 rrpriv = netdev_priv(dev); 1032 regs = rrpriv->regs; 1033 1034 if (!(readl(®s->HostCtrl) & RR_INT)) 1035 return IRQ_NONE; 1036 1037 spin_lock(&rrpriv->lock); 1038 1039 prodidx = readl(®s->EvtPrd); 1040 txcsmr = (prodidx >> 8) & 0xff; 1041 rxlimit = (prodidx >> 16) & 0xff; 1042 prodidx &= 0xff; 1043 1044 #if (DEBUG > 2) 1045 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, 1046 prodidx, rrpriv->info->evt_ctrl.pi); 1047 #endif 1048 /* 1049 * Order here is important. We must handle events 1050 * before doing anything else in order to catch 1051 * such things as LLRC errors, etc -kbf 1052 */ 1053 1054 eidx = rrpriv->info->evt_ctrl.pi; 1055 if (prodidx != eidx) 1056 eidx = rr_handle_event(dev, prodidx, eidx); 1057 1058 rxindex = rrpriv->cur_rx; 1059 if (rxindex != rxlimit) 1060 rx_int(dev, rxlimit, rxindex); 1061 1062 txcon = rrpriv->dirty_tx; 1063 if (txcsmr != txcon) { 1064 do { 1065 /* Due to occational firmware TX producer/consumer out 1066 * of sync. error need to check entry in ring -kbf 1067 */ 1068 if(rrpriv->tx_skbuff[txcon]){ 1069 struct tx_desc *desc; 1070 struct sk_buff *skb; 1071 1072 desc = &(rrpriv->tx_ring[txcon]); 1073 skb = rrpriv->tx_skbuff[txcon]; 1074 1075 dev->stats.tx_packets++; 1076 dev->stats.tx_bytes += skb->len; 1077 1078 dma_unmap_single(&rrpriv->pci_dev->dev, 1079 desc->addr.addrlo, skb->len, 1080 DMA_TO_DEVICE); 1081 dev_kfree_skb_irq(skb); 1082 1083 rrpriv->tx_skbuff[txcon] = NULL; 1084 desc->size = 0; 1085 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); 1086 desc->mode = 0; 1087 } 1088 txcon = (txcon + 1) % TX_RING_ENTRIES; 1089 } while (txcsmr != txcon); 1090 wmb(); 1091 1092 rrpriv->dirty_tx = txcon; 1093 if (rrpriv->tx_full && rr_if_busy(dev) && 1094 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) 1095 != rrpriv->dirty_tx)){ 1096 rrpriv->tx_full = 0; 1097 netif_wake_queue(dev); 1098 } 1099 } 1100 1101 eidx |= ((txcsmr << 8) | (rxlimit << 16)); 1102 writel(eidx, ®s->EvtCon); 1103 wmb(); 1104 1105 spin_unlock(&rrpriv->lock); 1106 return IRQ_HANDLED; 1107 } 1108 1109 static inline void rr_raz_tx(struct rr_private *rrpriv, 1110 struct net_device *dev) 1111 { 1112 int i; 1113 1114 for (i = 0; i < TX_RING_ENTRIES; i++) { 1115 struct sk_buff *skb = rrpriv->tx_skbuff[i]; 1116 1117 if (skb) { 1118 struct tx_desc *desc = &(rrpriv->tx_ring[i]); 1119 1120 dma_unmap_single(&rrpriv->pci_dev->dev, 1121 desc->addr.addrlo, skb->len, 1122 DMA_TO_DEVICE); 1123 desc->size = 0; 1124 set_rraddr(&desc->addr, 0); 1125 dev_kfree_skb(skb); 1126 rrpriv->tx_skbuff[i] = NULL; 1127 } 1128 } 1129 } 1130 1131 1132 static inline void rr_raz_rx(struct rr_private *rrpriv, 1133 struct net_device *dev) 1134 { 1135 int i; 1136 1137 for (i = 0; i < RX_RING_ENTRIES; i++) { 1138 struct sk_buff *skb = rrpriv->rx_skbuff[i]; 1139 1140 if (skb) { 1141 struct rx_desc *desc = &(rrpriv->rx_ring[i]); 1142 1143 dma_unmap_single(&rrpriv->pci_dev->dev, 1144 desc->addr.addrlo, 1145 dev->mtu + HIPPI_HLEN, 1146 DMA_FROM_DEVICE); 1147 desc->size = 0; 1148 set_rraddr(&desc->addr, 0); 1149 dev_kfree_skb(skb); 1150 rrpriv->rx_skbuff[i] = NULL; 1151 } 1152 } 1153 } 1154 1155 static void rr_timer(struct timer_list *t) 1156 { 1157 struct rr_private *rrpriv = from_timer(rrpriv, t, timer); 1158 struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev); 1159 struct rr_regs __iomem *regs = rrpriv->regs; 1160 unsigned long flags; 1161 1162 if (readl(®s->HostCtrl) & NIC_HALTED){ 1163 printk("%s: Restarting nic\n", dev->name); 1164 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); 1165 memset(rrpriv->info, 0, sizeof(struct rr_info)); 1166 wmb(); 1167 1168 rr_raz_tx(rrpriv, dev); 1169 rr_raz_rx(rrpriv, dev); 1170 1171 if (rr_init1(dev)) { 1172 spin_lock_irqsave(&rrpriv->lock, flags); 1173 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, 1174 ®s->HostCtrl); 1175 spin_unlock_irqrestore(&rrpriv->lock, flags); 1176 } 1177 } 1178 rrpriv->timer.expires = RUN_AT(5*HZ); 1179 add_timer(&rrpriv->timer); 1180 } 1181 1182 1183 static int rr_open(struct net_device *dev) 1184 { 1185 struct rr_private *rrpriv = netdev_priv(dev); 1186 struct pci_dev *pdev = rrpriv->pci_dev; 1187 struct rr_regs __iomem *regs; 1188 int ecode = 0; 1189 unsigned long flags; 1190 dma_addr_t dma_addr; 1191 1192 regs = rrpriv->regs; 1193 1194 if (rrpriv->fw_rev < 0x00020000) { 1195 printk(KERN_WARNING "%s: trying to configure device with " 1196 "obsolete firmware\n", dev->name); 1197 ecode = -EBUSY; 1198 goto error; 1199 } 1200 1201 rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev, 1202 256 * sizeof(struct ring_ctrl), 1203 &dma_addr, GFP_KERNEL); 1204 if (!rrpriv->rx_ctrl) { 1205 ecode = -ENOMEM; 1206 goto error; 1207 } 1208 rrpriv->rx_ctrl_dma = dma_addr; 1209 1210 rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info), 1211 &dma_addr, GFP_KERNEL); 1212 if (!rrpriv->info) { 1213 ecode = -ENOMEM; 1214 goto error; 1215 } 1216 rrpriv->info_dma = dma_addr; 1217 wmb(); 1218 1219 spin_lock_irqsave(&rrpriv->lock, flags); 1220 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1221 readl(®s->HostCtrl); 1222 spin_unlock_irqrestore(&rrpriv->lock, flags); 1223 1224 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { 1225 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1226 dev->name, pdev->irq); 1227 ecode = -EAGAIN; 1228 goto error; 1229 } 1230 1231 if ((ecode = rr_init1(dev))) 1232 goto error; 1233 1234 /* Set the timer to switch to check for link beat and perhaps switch 1235 to an alternate media type. */ 1236 timer_setup(&rrpriv->timer, rr_timer, 0); 1237 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ 1238 add_timer(&rrpriv->timer); 1239 1240 netif_start_queue(dev); 1241 1242 return ecode; 1243 1244 error: 1245 spin_lock_irqsave(&rrpriv->lock, flags); 1246 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); 1247 spin_unlock_irqrestore(&rrpriv->lock, flags); 1248 1249 if (rrpriv->info) { 1250 dma_free_coherent(&pdev->dev, sizeof(struct rr_info), 1251 rrpriv->info, rrpriv->info_dma); 1252 rrpriv->info = NULL; 1253 } 1254 if (rrpriv->rx_ctrl) { 1255 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl), 1256 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1257 rrpriv->rx_ctrl = NULL; 1258 } 1259 1260 netif_stop_queue(dev); 1261 1262 return ecode; 1263 } 1264 1265 1266 static void rr_dump(struct net_device *dev) 1267 { 1268 struct rr_private *rrpriv; 1269 struct rr_regs __iomem *regs; 1270 u32 index, cons; 1271 short i; 1272 int len; 1273 1274 rrpriv = netdev_priv(dev); 1275 regs = rrpriv->regs; 1276 1277 printk("%s: dumping NIC TX rings\n", dev->name); 1278 1279 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", 1280 readl(®s->RxPrd), readl(®s->TxPrd), 1281 readl(®s->EvtPrd), readl(®s->TxPi), 1282 rrpriv->info->tx_ctrl.pi); 1283 1284 printk("Error code 0x%x\n", readl(®s->Fail1)); 1285 1286 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES; 1287 cons = rrpriv->dirty_tx; 1288 printk("TX ring index %i, TX consumer %i\n", 1289 index, cons); 1290 1291 if (rrpriv->tx_skbuff[index]){ 1292 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); 1293 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); 1294 for (i = 0; i < len; i++){ 1295 if (!(i & 7)) 1296 printk("\n"); 1297 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); 1298 } 1299 printk("\n"); 1300 } 1301 1302 if (rrpriv->tx_skbuff[cons]){ 1303 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); 1304 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); 1305 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n", 1306 rrpriv->tx_ring[cons].mode, 1307 rrpriv->tx_ring[cons].size, 1308 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, 1309 rrpriv->tx_skbuff[cons]->data, 1310 (unsigned int)rrpriv->tx_skbuff[cons]->truesize); 1311 for (i = 0; i < len; i++){ 1312 if (!(i & 7)) 1313 printk("\n"); 1314 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); 1315 } 1316 printk("\n"); 1317 } 1318 1319 printk("dumping TX ring info:\n"); 1320 for (i = 0; i < TX_RING_ENTRIES; i++) 1321 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", 1322 rrpriv->tx_ring[i].mode, 1323 rrpriv->tx_ring[i].size, 1324 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); 1325 1326 } 1327 1328 1329 static int rr_close(struct net_device *dev) 1330 { 1331 struct rr_private *rrpriv = netdev_priv(dev); 1332 struct rr_regs __iomem *regs = rrpriv->regs; 1333 struct pci_dev *pdev = rrpriv->pci_dev; 1334 unsigned long flags; 1335 u32 tmp; 1336 short i; 1337 1338 netif_stop_queue(dev); 1339 1340 1341 /* 1342 * Lock to make sure we are not cleaning up while another CPU 1343 * is handling interrupts. 1344 */ 1345 spin_lock_irqsave(&rrpriv->lock, flags); 1346 1347 tmp = readl(®s->HostCtrl); 1348 if (tmp & NIC_HALTED){ 1349 printk("%s: NIC already halted\n", dev->name); 1350 rr_dump(dev); 1351 }else{ 1352 tmp |= HALT_NIC | RR_CLEAR_INT; 1353 writel(tmp, ®s->HostCtrl); 1354 readl(®s->HostCtrl); 1355 } 1356 1357 rrpriv->fw_running = 0; 1358 1359 spin_unlock_irqrestore(&rrpriv->lock, flags); 1360 del_timer_sync(&rrpriv->timer); 1361 spin_lock_irqsave(&rrpriv->lock, flags); 1362 1363 writel(0, ®s->TxPi); 1364 writel(0, ®s->IpRxPi); 1365 1366 writel(0, ®s->EvtCon); 1367 writel(0, ®s->EvtPrd); 1368 1369 for (i = 0; i < CMD_RING_ENTRIES; i++) 1370 writel(0, ®s->CmdRing[i]); 1371 1372 rrpriv->info->tx_ctrl.entries = 0; 1373 rrpriv->info->cmd_ctrl.pi = 0; 1374 rrpriv->info->evt_ctrl.pi = 0; 1375 rrpriv->rx_ctrl[4].entries = 0; 1376 1377 rr_raz_tx(rrpriv, dev); 1378 rr_raz_rx(rrpriv, dev); 1379 1380 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl), 1381 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); 1382 rrpriv->rx_ctrl = NULL; 1383 1384 dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info, 1385 rrpriv->info_dma); 1386 rrpriv->info = NULL; 1387 1388 spin_unlock_irqrestore(&rrpriv->lock, flags); 1389 free_irq(pdev->irq, dev); 1390 1391 return 0; 1392 } 1393 1394 1395 static netdev_tx_t rr_start_xmit(struct sk_buff *skb, 1396 struct net_device *dev) 1397 { 1398 struct rr_private *rrpriv = netdev_priv(dev); 1399 struct rr_regs __iomem *regs = rrpriv->regs; 1400 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; 1401 struct ring_ctrl *txctrl; 1402 unsigned long flags; 1403 u32 index, len = skb->len; 1404 u32 *ifield; 1405 struct sk_buff *new_skb; 1406 1407 if (readl(®s->Mode) & FATAL_ERR) 1408 printk("error codes Fail1 %02x, Fail2 %02x\n", 1409 readl(®s->Fail1), readl(®s->Fail2)); 1410 1411 /* 1412 * We probably need to deal with tbusy here to prevent overruns. 1413 */ 1414 1415 if (skb_headroom(skb) < 8){ 1416 printk("incoming skb too small - reallocating\n"); 1417 if (!(new_skb = dev_alloc_skb(len + 8))) { 1418 dev_kfree_skb(skb); 1419 netif_wake_queue(dev); 1420 return NETDEV_TX_OK; 1421 } 1422 skb_reserve(new_skb, 8); 1423 skb_put(new_skb, len); 1424 skb_copy_from_linear_data(skb, new_skb->data, len); 1425 dev_kfree_skb(skb); 1426 skb = new_skb; 1427 } 1428 1429 ifield = skb_push(skb, 8); 1430 1431 ifield[0] = 0; 1432 ifield[1] = hcb->ifield; 1433 1434 /* 1435 * We don't need the lock before we are actually going to start 1436 * fiddling with the control blocks. 1437 */ 1438 spin_lock_irqsave(&rrpriv->lock, flags); 1439 1440 txctrl = &rrpriv->info->tx_ctrl; 1441 1442 index = txctrl->pi; 1443 1444 rrpriv->tx_skbuff[index] = skb; 1445 set_rraddr(&rrpriv->tx_ring[index].addr, 1446 dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE)); 1447 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ 1448 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; 1449 txctrl->pi = (index + 1) % TX_RING_ENTRIES; 1450 wmb(); 1451 writel(txctrl->pi, ®s->TxPi); 1452 1453 if (txctrl->pi == rrpriv->dirty_tx){ 1454 rrpriv->tx_full = 1; 1455 netif_stop_queue(dev); 1456 } 1457 1458 spin_unlock_irqrestore(&rrpriv->lock, flags); 1459 1460 return NETDEV_TX_OK; 1461 } 1462 1463 1464 /* 1465 * Read the firmware out of the EEPROM and put it into the SRAM 1466 * (or from user space - later) 1467 * 1468 * This operation requires the NIC to be halted and is performed with 1469 * interrupts disabled and with the spinlock hold. 1470 */ 1471 static int rr_load_firmware(struct net_device *dev) 1472 { 1473 struct rr_private *rrpriv; 1474 struct rr_regs __iomem *regs; 1475 size_t eptr, segptr; 1476 int i, j; 1477 u32 localctrl, sptr, len, tmp; 1478 u32 p2len, p2size, nr_seg, revision, io, sram_size; 1479 1480 rrpriv = netdev_priv(dev); 1481 regs = rrpriv->regs; 1482 1483 if (dev->flags & IFF_UP) 1484 return -EBUSY; 1485 1486 if (!(readl(®s->HostCtrl) & NIC_HALTED)){ 1487 printk("%s: Trying to load firmware to a running NIC.\n", 1488 dev->name); 1489 return -EBUSY; 1490 } 1491 1492 localctrl = readl(®s->LocalCtrl); 1493 writel(0, ®s->LocalCtrl); 1494 1495 writel(0, ®s->EvtPrd); 1496 writel(0, ®s->RxPrd); 1497 writel(0, ®s->TxPrd); 1498 1499 /* 1500 * First wipe the entire SRAM, otherwise we might run into all 1501 * kinds of trouble ... sigh, this took almost all afternoon 1502 * to track down ;-( 1503 */ 1504 io = readl(®s->ExtIo); 1505 writel(0, ®s->ExtIo); 1506 sram_size = rr_read_eeprom_word(rrpriv, 8); 1507 1508 for (i = 200; i < sram_size / 4; i++){ 1509 writel(i * 4, ®s->WinBase); 1510 mb(); 1511 writel(0, ®s->WinData); 1512 mb(); 1513 } 1514 writel(io, ®s->ExtIo); 1515 mb(); 1516 1517 eptr = rr_read_eeprom_word(rrpriv, 1518 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); 1519 eptr = ((eptr & 0x1fffff) >> 3); 1520 1521 p2len = rr_read_eeprom_word(rrpriv, 0x83*4); 1522 p2len = (p2len << 2); 1523 p2size = rr_read_eeprom_word(rrpriv, 0x84*4); 1524 p2size = ((p2size & 0x1fffff) >> 3); 1525 1526 if ((eptr < p2size) || (eptr > (p2size + p2len))){ 1527 printk("%s: eptr is invalid\n", dev->name); 1528 goto out; 1529 } 1530 1531 revision = rr_read_eeprom_word(rrpriv, 1532 offsetof(struct eeprom, manf.HeaderFmt)); 1533 1534 if (revision != 1){ 1535 printk("%s: invalid firmware format (%i)\n", 1536 dev->name, revision); 1537 goto out; 1538 } 1539 1540 nr_seg = rr_read_eeprom_word(rrpriv, eptr); 1541 eptr +=4; 1542 #if (DEBUG > 1) 1543 printk("%s: nr_seg %i\n", dev->name, nr_seg); 1544 #endif 1545 1546 for (i = 0; i < nr_seg; i++){ 1547 sptr = rr_read_eeprom_word(rrpriv, eptr); 1548 eptr += 4; 1549 len = rr_read_eeprom_word(rrpriv, eptr); 1550 eptr += 4; 1551 segptr = rr_read_eeprom_word(rrpriv, eptr); 1552 segptr = ((segptr & 0x1fffff) >> 3); 1553 eptr += 4; 1554 #if (DEBUG > 1) 1555 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", 1556 dev->name, i, sptr, len, segptr); 1557 #endif 1558 for (j = 0; j < len; j++){ 1559 tmp = rr_read_eeprom_word(rrpriv, segptr); 1560 writel(sptr, ®s->WinBase); 1561 mb(); 1562 writel(tmp, ®s->WinData); 1563 mb(); 1564 segptr += 4; 1565 sptr += 4; 1566 } 1567 } 1568 1569 out: 1570 writel(localctrl, ®s->LocalCtrl); 1571 mb(); 1572 return 0; 1573 } 1574 1575 1576 static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq, 1577 void __user *data, int cmd) 1578 { 1579 struct rr_private *rrpriv; 1580 unsigned char *image, *oldimage; 1581 unsigned long flags; 1582 unsigned int i; 1583 int error = -EOPNOTSUPP; 1584 1585 rrpriv = netdev_priv(dev); 1586 1587 switch(cmd){ 1588 case SIOCRRGFW: 1589 if (!capable(CAP_SYS_RAWIO)){ 1590 return -EPERM; 1591 } 1592 1593 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL); 1594 if (!image) 1595 return -ENOMEM; 1596 1597 if (rrpriv->fw_running){ 1598 printk("%s: Firmware already running\n", dev->name); 1599 error = -EPERM; 1600 goto gf_out; 1601 } 1602 1603 spin_lock_irqsave(&rrpriv->lock, flags); 1604 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1605 spin_unlock_irqrestore(&rrpriv->lock, flags); 1606 if (i != EEPROM_BYTES){ 1607 printk(KERN_ERR "%s: Error reading EEPROM\n", 1608 dev->name); 1609 error = -EFAULT; 1610 goto gf_out; 1611 } 1612 error = copy_to_user(data, image, EEPROM_BYTES); 1613 if (error) 1614 error = -EFAULT; 1615 gf_out: 1616 kfree(image); 1617 return error; 1618 1619 case SIOCRRPFW: 1620 if (!capable(CAP_SYS_RAWIO)){ 1621 return -EPERM; 1622 } 1623 1624 image = memdup_user(data, EEPROM_BYTES); 1625 if (IS_ERR(image)) 1626 return PTR_ERR(image); 1627 1628 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL); 1629 if (!oldimage) { 1630 kfree(image); 1631 return -ENOMEM; 1632 } 1633 1634 if (rrpriv->fw_running){ 1635 printk("%s: Firmware already running\n", dev->name); 1636 error = -EPERM; 1637 goto wf_out; 1638 } 1639 1640 printk("%s: Updating EEPROM firmware\n", dev->name); 1641 1642 spin_lock_irqsave(&rrpriv->lock, flags); 1643 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); 1644 if (error) 1645 printk(KERN_ERR "%s: Error writing EEPROM\n", 1646 dev->name); 1647 1648 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); 1649 spin_unlock_irqrestore(&rrpriv->lock, flags); 1650 1651 if (i != EEPROM_BYTES) 1652 printk(KERN_ERR "%s: Error reading back EEPROM " 1653 "image\n", dev->name); 1654 1655 error = memcmp(image, oldimage, EEPROM_BYTES); 1656 if (error){ 1657 printk(KERN_ERR "%s: Error verifying EEPROM image\n", 1658 dev->name); 1659 error = -EFAULT; 1660 } 1661 wf_out: 1662 kfree(oldimage); 1663 kfree(image); 1664 return error; 1665 1666 case SIOCRRID: 1667 return put_user(0x52523032, (int __user *)data); 1668 default: 1669 return error; 1670 } 1671 } 1672 1673 static const struct pci_device_id rr_pci_tbl[] = { 1674 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, 1675 PCI_ANY_ID, PCI_ANY_ID, }, 1676 { 0,} 1677 }; 1678 MODULE_DEVICE_TABLE(pci, rr_pci_tbl); 1679 1680 static struct pci_driver rr_driver = { 1681 .name = "rrunner", 1682 .id_table = rr_pci_tbl, 1683 .probe = rr_init_one, 1684 .remove = rr_remove_one, 1685 }; 1686 1687 module_pci_driver(rr_driver); 1688