xref: /linux/drivers/net/hippi/rrunner.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25 
26 
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/delay.h>
41 #include <linux/mm.h>
42 #include <linux/slab.h>
43 #include <net/sock.h>
44 
45 #include <asm/cache.h>
46 #include <asm/byteorder.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/uaccess.h>
50 
51 #define rr_if_busy(dev)     netif_queue_stopped(dev)
52 #define rr_if_running(dev)  netif_running(dev)
53 
54 #include "rrunner.h"
55 
56 #define RUN_AT(x) (jiffies + (x))
57 
58 
59 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
60 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
61 MODULE_LICENSE("GPL");
62 
63 static char version[] = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
64 
65 
66 static const struct net_device_ops rr_netdev_ops = {
67 	.ndo_open 		= rr_open,
68 	.ndo_stop		= rr_close,
69 	.ndo_do_ioctl		= rr_ioctl,
70 	.ndo_start_xmit		= rr_start_xmit,
71 	.ndo_change_mtu		= hippi_change_mtu,
72 	.ndo_set_mac_address	= hippi_mac_addr,
73 };
74 
75 /*
76  * Implementation notes:
77  *
78  * The DMA engine only allows for DMA within physical 64KB chunks of
79  * memory. The current approach of the driver (and stack) is to use
80  * linear blocks of memory for the skbuffs. However, as the data block
81  * is always the first part of the skb and skbs are 2^n aligned so we
82  * are guarantted to get the whole block within one 64KB align 64KB
83  * chunk.
84  *
85  * On the long term, relying on being able to allocate 64KB linear
86  * chunks of memory is not feasible and the skb handling code and the
87  * stack will need to know about I/O vectors or something similar.
88  */
89 
90 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
91 {
92 	struct net_device *dev;
93 	static int version_disp;
94 	u8 pci_latency;
95 	struct rr_private *rrpriv;
96 	void *tmpptr;
97 	dma_addr_t ring_dma;
98 	int ret = -ENOMEM;
99 
100 	dev = alloc_hippi_dev(sizeof(struct rr_private));
101 	if (!dev)
102 		goto out3;
103 
104 	ret = pci_enable_device(pdev);
105 	if (ret) {
106 		ret = -ENODEV;
107 		goto out2;
108 	}
109 
110 	rrpriv = netdev_priv(dev);
111 
112 	SET_NETDEV_DEV(dev, &pdev->dev);
113 
114 	ret = pci_request_regions(pdev, "rrunner");
115 	if (ret < 0)
116 		goto out;
117 
118 	pci_set_drvdata(pdev, dev);
119 
120 	rrpriv->pci_dev = pdev;
121 
122 	spin_lock_init(&rrpriv->lock);
123 
124 	dev->netdev_ops = &rr_netdev_ops;
125 
126 	/* display version info if adapter is found */
127 	if (!version_disp) {
128 		/* set display flag to TRUE so that */
129 		/* we only display this string ONCE */
130 		version_disp = 1;
131 		printk(version);
132 	}
133 
134 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
135 	if (pci_latency <= 0x58){
136 		pci_latency = 0x58;
137 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
138 	}
139 
140 	pci_set_master(pdev);
141 
142 	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
143 	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
144 	       (unsigned long long)pci_resource_start(pdev, 0),
145 	       pdev->irq, pci_latency);
146 
147 	/*
148 	 * Remap the MMIO regs into kernel space.
149 	 */
150 	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
151 	if (!rrpriv->regs) {
152 		printk(KERN_ERR "%s:  Unable to map I/O register, "
153 			"RoadRunner will be disabled.\n", dev->name);
154 		ret = -EIO;
155 		goto out;
156 	}
157 
158 	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159 	rrpriv->tx_ring = tmpptr;
160 	rrpriv->tx_ring_dma = ring_dma;
161 
162 	if (!tmpptr) {
163 		ret = -ENOMEM;
164 		goto out;
165 	}
166 
167 	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168 	rrpriv->rx_ring = tmpptr;
169 	rrpriv->rx_ring_dma = ring_dma;
170 
171 	if (!tmpptr) {
172 		ret = -ENOMEM;
173 		goto out;
174 	}
175 
176 	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177 	rrpriv->evt_ring = tmpptr;
178 	rrpriv->evt_ring_dma = ring_dma;
179 
180 	if (!tmpptr) {
181 		ret = -ENOMEM;
182 		goto out;
183 	}
184 
185 	/*
186 	 * Don't access any register before this point!
187 	 */
188 #ifdef __BIG_ENDIAN
189 	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190 		&rrpriv->regs->HostCtrl);
191 #endif
192 	/*
193 	 * Need to add a case for little-endian 64-bit hosts here.
194 	 */
195 
196 	rr_init(dev);
197 
198 	ret = register_netdev(dev);
199 	if (ret)
200 		goto out;
201 	return 0;
202 
203  out:
204 	if (rrpriv->evt_ring)
205 		pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
206 				    rrpriv->evt_ring_dma);
207 	if (rrpriv->rx_ring)
208 		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
209 				    rrpriv->rx_ring_dma);
210 	if (rrpriv->tx_ring)
211 		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
212 				    rrpriv->tx_ring_dma);
213 	if (rrpriv->regs)
214 		pci_iounmap(pdev, rrpriv->regs);
215 	if (pdev)
216 		pci_release_regions(pdev);
217  out2:
218 	free_netdev(dev);
219  out3:
220 	return ret;
221 }
222 
223 static void rr_remove_one(struct pci_dev *pdev)
224 {
225 	struct net_device *dev = pci_get_drvdata(pdev);
226 	struct rr_private *rr = netdev_priv(dev);
227 
228 	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229 		printk(KERN_ERR "%s: trying to unload running NIC\n",
230 		       dev->name);
231 		writel(HALT_NIC, &rr->regs->HostCtrl);
232 	}
233 
234 	unregister_netdev(dev);
235 	pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
236 			    rr->evt_ring_dma);
237 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
238 			    rr->rx_ring_dma);
239 	pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
240 			    rr->tx_ring_dma);
241 	pci_iounmap(pdev, rr->regs);
242 	pci_release_regions(pdev);
243 	pci_disable_device(pdev);
244 	free_netdev(dev);
245 }
246 
247 
248 /*
249  * Commands are considered to be slow, thus there is no reason to
250  * inline this.
251  */
252 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
253 {
254 	struct rr_regs __iomem *regs;
255 	u32 idx;
256 
257 	regs = rrpriv->regs;
258 	/*
259 	 * This is temporary - it will go away in the final version.
260 	 * We probably also want to make this function inline.
261 	 */
262 	if (readl(&regs->HostCtrl) & NIC_HALTED){
263 		printk("issuing command for halted NIC, code 0x%x, "
264 		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
265 		if (readl(&regs->Mode) & FATAL_ERR)
266 			printk("error codes Fail1 %02x, Fail2 %02x\n",
267 			       readl(&regs->Fail1), readl(&regs->Fail2));
268 	}
269 
270 	idx = rrpriv->info->cmd_ctrl.pi;
271 
272 	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
273 	wmb();
274 
275 	idx = (idx - 1) % CMD_RING_ENTRIES;
276 	rrpriv->info->cmd_ctrl.pi = idx;
277 	wmb();
278 
279 	if (readl(&regs->Mode) & FATAL_ERR)
280 		printk("error code %02x\n", readl(&regs->Fail1));
281 }
282 
283 
284 /*
285  * Reset the board in a sensible manner. The NIC is already halted
286  * when we get here and a spin-lock is held.
287  */
288 static int rr_reset(struct net_device *dev)
289 {
290 	struct rr_private *rrpriv;
291 	struct rr_regs __iomem *regs;
292 	u32 start_pc;
293 	int i;
294 
295 	rrpriv = netdev_priv(dev);
296 	regs = rrpriv->regs;
297 
298 	rr_load_firmware(dev);
299 
300 	writel(0x01000000, &regs->TX_state);
301 	writel(0xff800000, &regs->RX_state);
302 	writel(0, &regs->AssistState);
303 	writel(CLEAR_INTA, &regs->LocalCtrl);
304 	writel(0x01, &regs->BrkPt);
305 	writel(0, &regs->Timer);
306 	writel(0, &regs->TimerRef);
307 	writel(RESET_DMA, &regs->DmaReadState);
308 	writel(RESET_DMA, &regs->DmaWriteState);
309 	writel(0, &regs->DmaWriteHostHi);
310 	writel(0, &regs->DmaWriteHostLo);
311 	writel(0, &regs->DmaReadHostHi);
312 	writel(0, &regs->DmaReadHostLo);
313 	writel(0, &regs->DmaReadLen);
314 	writel(0, &regs->DmaWriteLen);
315 	writel(0, &regs->DmaWriteLcl);
316 	writel(0, &regs->DmaWriteIPchecksum);
317 	writel(0, &regs->DmaReadLcl);
318 	writel(0, &regs->DmaReadIPchecksum);
319 	writel(0, &regs->PciState);
320 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321 	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
322 #elif (BITS_PER_LONG == 64)
323 	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
324 #else
325 	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
326 #endif
327 
328 #if 0
329 	/*
330 	 * Don't worry, this is just black magic.
331 	 */
332 	writel(0xdf000, &regs->RxBase);
333 	writel(0xdf000, &regs->RxPrd);
334 	writel(0xdf000, &regs->RxCon);
335 	writel(0xce000, &regs->TxBase);
336 	writel(0xce000, &regs->TxPrd);
337 	writel(0xce000, &regs->TxCon);
338 	writel(0, &regs->RxIndPro);
339 	writel(0, &regs->RxIndCon);
340 	writel(0, &regs->RxIndRef);
341 	writel(0, &regs->TxIndPro);
342 	writel(0, &regs->TxIndCon);
343 	writel(0, &regs->TxIndRef);
344 	writel(0xcc000, &regs->pad10[0]);
345 	writel(0, &regs->DrCmndPro);
346 	writel(0, &regs->DrCmndCon);
347 	writel(0, &regs->DwCmndPro);
348 	writel(0, &regs->DwCmndCon);
349 	writel(0, &regs->DwCmndRef);
350 	writel(0, &regs->DrDataPro);
351 	writel(0, &regs->DrDataCon);
352 	writel(0, &regs->DrDataRef);
353 	writel(0, &regs->DwDataPro);
354 	writel(0, &regs->DwDataCon);
355 	writel(0, &regs->DwDataRef);
356 #endif
357 
358 	writel(0xffffffff, &regs->MbEvent);
359 	writel(0, &regs->Event);
360 
361 	writel(0, &regs->TxPi);
362 	writel(0, &regs->IpRxPi);
363 
364 	writel(0, &regs->EvtCon);
365 	writel(0, &regs->EvtPrd);
366 
367 	rrpriv->info->evt_ctrl.pi = 0;
368 
369 	for (i = 0; i < CMD_RING_ENTRIES; i++)
370 		writel(0, &regs->CmdRing[i]);
371 
372 /*
373  * Why 32 ? is this not cache line size dependent?
374  */
375 	writel(RBURST_64|WBURST_64, &regs->PciState);
376 	wmb();
377 
378 	start_pc = rr_read_eeprom_word(rrpriv,
379 			offsetof(struct eeprom, rncd_info.FwStart));
380 
381 #if (DEBUG > 1)
382 	printk("%s: Executing firmware at address 0x%06x\n",
383 	       dev->name, start_pc);
384 #endif
385 
386 	writel(start_pc + 0x800, &regs->Pc);
387 	wmb();
388 	udelay(5);
389 
390 	writel(start_pc, &regs->Pc);
391 	wmb();
392 
393 	return 0;
394 }
395 
396 
397 /*
398  * Read a string from the EEPROM.
399  */
400 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401 				unsigned long offset,
402 				unsigned char *buf,
403 				unsigned long length)
404 {
405 	struct rr_regs __iomem *regs = rrpriv->regs;
406 	u32 misc, io, host, i;
407 
408 	io = readl(&regs->ExtIo);
409 	writel(0, &regs->ExtIo);
410 	misc = readl(&regs->LocalCtrl);
411 	writel(0, &regs->LocalCtrl);
412 	host = readl(&regs->HostCtrl);
413 	writel(host | HALT_NIC, &regs->HostCtrl);
414 	mb();
415 
416 	for (i = 0; i < length; i++){
417 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
418 		mb();
419 		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
420 		mb();
421 	}
422 
423 	writel(host, &regs->HostCtrl);
424 	writel(misc, &regs->LocalCtrl);
425 	writel(io, &regs->ExtIo);
426 	mb();
427 	return i;
428 }
429 
430 
431 /*
432  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433  * it to our CPU byte-order.
434  */
435 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
436 			    size_t offset)
437 {
438 	__be32 word;
439 
440 	if ((rr_read_eeprom(rrpriv, offset,
441 			    (unsigned char *)&word, 4) == 4))
442 		return be32_to_cpu(word);
443 	return 0;
444 }
445 
446 
447 /*
448  * Write a string to the EEPROM.
449  *
450  * This is only called when the firmware is not running.
451  */
452 static unsigned int write_eeprom(struct rr_private *rrpriv,
453 				 unsigned long offset,
454 				 unsigned char *buf,
455 				 unsigned long length)
456 {
457 	struct rr_regs __iomem *regs = rrpriv->regs;
458 	u32 misc, io, data, i, j, ready, error = 0;
459 
460 	io = readl(&regs->ExtIo);
461 	writel(0, &regs->ExtIo);
462 	misc = readl(&regs->LocalCtrl);
463 	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
464 	mb();
465 
466 	for (i = 0; i < length; i++){
467 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
468 		mb();
469 		data = buf[i] << 24;
470 		/*
471 		 * Only try to write the data if it is not the same
472 		 * value already.
473 		 */
474 		if ((readl(&regs->WinData) & 0xff000000) != data){
475 			writel(data, &regs->WinData);
476 			ready = 0;
477 			j = 0;
478 			mb();
479 			while(!ready){
480 				udelay(20);
481 				if ((readl(&regs->WinData) & 0xff000000) ==
482 				    data)
483 					ready = 1;
484 				mb();
485 				if (j++ > 5000){
486 					printk("data mismatch: %08x, "
487 					       "WinData %08x\n", data,
488 					       readl(&regs->WinData));
489 					ready = 1;
490 					error = 1;
491 				}
492 			}
493 		}
494 	}
495 
496 	writel(misc, &regs->LocalCtrl);
497 	writel(io, &regs->ExtIo);
498 	mb();
499 
500 	return error;
501 }
502 
503 
504 static int rr_init(struct net_device *dev)
505 {
506 	struct rr_private *rrpriv;
507 	struct rr_regs __iomem *regs;
508 	u32 sram_size, rev;
509 
510 	rrpriv = netdev_priv(dev);
511 	regs = rrpriv->regs;
512 
513 	rev = readl(&regs->FwRev);
514 	rrpriv->fw_rev = rev;
515 	if (rev > 0x00020024)
516 		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
517 		       ((rev >> 8) & 0xff), (rev & 0xff));
518 	else if (rev >= 0x00020000) {
519 		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
520 		       "later is recommended)\n", (rev >> 16),
521 		       ((rev >> 8) & 0xff), (rev & 0xff));
522 	}else{
523 		printk("  Firmware revision too old: %i.%i.%i, please "
524 		       "upgrade to 2.0.37 or later.\n",
525 		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
526 	}
527 
528 #if (DEBUG > 2)
529 	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
530 #endif
531 
532 	/*
533 	 * Read the hardware address from the eeprom.  The HW address
534 	 * is not really necessary for HIPPI but awfully convenient.
535 	 * The pointer arithmetic to put it in dev_addr is ugly, but
536 	 * Donald Becker does it this way for the GigE version of this
537 	 * card and it's shorter and more portable than any
538 	 * other method I've seen.  -VAL
539 	 */
540 
541 	*(__be16 *)(dev->dev_addr) =
542 	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
543 	*(__be32 *)(dev->dev_addr+2) =
544 	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
545 
546 	printk("  MAC: %pM\n", dev->dev_addr);
547 
548 	sram_size = rr_read_eeprom_word(rrpriv, 8);
549 	printk("  SRAM size 0x%06x\n", sram_size);
550 
551 	return 0;
552 }
553 
554 
555 static int rr_init1(struct net_device *dev)
556 {
557 	struct rr_private *rrpriv;
558 	struct rr_regs __iomem *regs;
559 	unsigned long myjif, flags;
560 	struct cmd cmd;
561 	u32 hostctrl;
562 	int ecode = 0;
563 	short i;
564 
565 	rrpriv = netdev_priv(dev);
566 	regs = rrpriv->regs;
567 
568 	spin_lock_irqsave(&rrpriv->lock, flags);
569 
570 	hostctrl = readl(&regs->HostCtrl);
571 	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
572 	wmb();
573 
574 	if (hostctrl & PARITY_ERR){
575 		printk("%s: Parity error halting NIC - this is serious!\n",
576 		       dev->name);
577 		spin_unlock_irqrestore(&rrpriv->lock, flags);
578 		ecode = -EFAULT;
579 		goto error;
580 	}
581 
582 	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
583 	set_infoaddr(regs, rrpriv->info_dma);
584 
585 	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
586 	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
587 	rrpriv->info->evt_ctrl.mode = 0;
588 	rrpriv->info->evt_ctrl.pi = 0;
589 	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
590 
591 	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
592 	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
593 	rrpriv->info->cmd_ctrl.mode = 0;
594 	rrpriv->info->cmd_ctrl.pi = 15;
595 
596 	for (i = 0; i < CMD_RING_ENTRIES; i++) {
597 		writel(0, &regs->CmdRing[i]);
598 	}
599 
600 	for (i = 0; i < TX_RING_ENTRIES; i++) {
601 		rrpriv->tx_ring[i].size = 0;
602 		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
603 		rrpriv->tx_skbuff[i] = NULL;
604 	}
605 	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
606 	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
607 	rrpriv->info->tx_ctrl.mode = 0;
608 	rrpriv->info->tx_ctrl.pi = 0;
609 	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
610 
611 	/*
612 	 * Set dirty_tx before we start receiving interrupts, otherwise
613 	 * the interrupt handler might think it is supposed to process
614 	 * tx ints before we are up and running, which may cause a null
615 	 * pointer access in the int handler.
616 	 */
617 	rrpriv->tx_full = 0;
618 	rrpriv->cur_rx = 0;
619 	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
620 
621 	rr_reset(dev);
622 
623 	/* Tuning values */
624 	writel(0x5000, &regs->ConRetry);
625 	writel(0x100, &regs->ConRetryTmr);
626 	writel(0x500000, &regs->ConTmout);
627  	writel(0x60, &regs->IntrTmr);
628 	writel(0x500000, &regs->TxDataMvTimeout);
629 	writel(0x200000, &regs->RxDataMvTimeout);
630  	writel(0x80, &regs->WriteDmaThresh);
631  	writel(0x80, &regs->ReadDmaThresh);
632 
633 	rrpriv->fw_running = 0;
634 	wmb();
635 
636 	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
637 	writel(hostctrl, &regs->HostCtrl);
638 	wmb();
639 
640 	spin_unlock_irqrestore(&rrpriv->lock, flags);
641 
642 	for (i = 0; i < RX_RING_ENTRIES; i++) {
643 		struct sk_buff *skb;
644 		dma_addr_t addr;
645 
646 		rrpriv->rx_ring[i].mode = 0;
647 		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
648 		if (!skb) {
649 			printk(KERN_WARNING "%s: Unable to allocate memory "
650 			       "for receive ring - halting NIC\n", dev->name);
651 			ecode = -ENOMEM;
652 			goto error;
653 		}
654 		rrpriv->rx_skbuff[i] = skb;
655 	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
656 			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
657 		/*
658 		 * Sanity test to see if we conflict with the DMA
659 		 * limitations of the Roadrunner.
660 		 */
661 		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
662 			printk("skb alloc error\n");
663 
664 		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
665 		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
666 	}
667 
668 	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
669 	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
670 	rrpriv->rx_ctrl[4].mode = 8;
671 	rrpriv->rx_ctrl[4].pi = 0;
672 	wmb();
673 	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
674 
675 	udelay(1000);
676 
677 	/*
678 	 * Now start the FirmWare.
679 	 */
680 	cmd.code = C_START_FW;
681 	cmd.ring = 0;
682 	cmd.index = 0;
683 
684 	rr_issue_cmd(rrpriv, &cmd);
685 
686 	/*
687 	 * Give the FirmWare time to chew on the `get running' command.
688 	 */
689 	myjif = jiffies + 5 * HZ;
690 	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
691 		cpu_relax();
692 
693 	netif_start_queue(dev);
694 
695 	return ecode;
696 
697  error:
698 	/*
699 	 * We might have gotten here because we are out of memory,
700 	 * make sure we release everything we allocated before failing
701 	 */
702 	for (i = 0; i < RX_RING_ENTRIES; i++) {
703 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
704 
705 		if (skb) {
706 	        	pci_unmap_single(rrpriv->pci_dev,
707 					 rrpriv->rx_ring[i].addr.addrlo,
708 					 dev->mtu + HIPPI_HLEN,
709 					 PCI_DMA_FROMDEVICE);
710 			rrpriv->rx_ring[i].size = 0;
711 			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
712 			dev_kfree_skb(skb);
713 			rrpriv->rx_skbuff[i] = NULL;
714 		}
715 	}
716 	return ecode;
717 }
718 
719 
720 /*
721  * All events are considered to be slow (RX/TX ints do not generate
722  * events) and are handled here, outside the main interrupt handler,
723  * to reduce the size of the handler.
724  */
725 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
726 {
727 	struct rr_private *rrpriv;
728 	struct rr_regs __iomem *regs;
729 	u32 tmp;
730 
731 	rrpriv = netdev_priv(dev);
732 	regs = rrpriv->regs;
733 
734 	while (prodidx != eidx){
735 		switch (rrpriv->evt_ring[eidx].code){
736 		case E_NIC_UP:
737 			tmp = readl(&regs->FwRev);
738 			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
739 			       "up and running\n", dev->name,
740 			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
741 			rrpriv->fw_running = 1;
742 			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
743 			wmb();
744 			break;
745 		case E_LINK_ON:
746 			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
747 			break;
748 		case E_LINK_OFF:
749 			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
750 			break;
751 		case E_RX_IDLE:
752 			printk(KERN_WARNING "%s: RX data not moving\n",
753 			       dev->name);
754 			goto drop;
755 		case E_WATCHDOG:
756 			printk(KERN_INFO "%s: The watchdog is here to see "
757 			       "us\n", dev->name);
758 			break;
759 		case E_INTERN_ERR:
760 			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
761 			       dev->name);
762 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
763 			       &regs->HostCtrl);
764 			wmb();
765 			break;
766 		case E_HOST_ERR:
767 			printk(KERN_ERR "%s: Host software error\n",
768 			       dev->name);
769 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
770 			       &regs->HostCtrl);
771 			wmb();
772 			break;
773 		/*
774 		 * TX events.
775 		 */
776 		case E_CON_REJ:
777 			printk(KERN_WARNING "%s: Connection rejected\n",
778 			       dev->name);
779 			dev->stats.tx_aborted_errors++;
780 			break;
781 		case E_CON_TMOUT:
782 			printk(KERN_WARNING "%s: Connection timeout\n",
783 			       dev->name);
784 			break;
785 		case E_DISC_ERR:
786 			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
787 			       dev->name);
788 			dev->stats.tx_aborted_errors++;
789 			break;
790 		case E_INT_PRTY:
791 			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
792 			       dev->name);
793 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
794 			       &regs->HostCtrl);
795 			wmb();
796 			break;
797 		case E_TX_IDLE:
798 			printk(KERN_WARNING "%s: Transmitter idle\n",
799 			       dev->name);
800 			break;
801 		case E_TX_LINK_DROP:
802 			printk(KERN_WARNING "%s: Link lost during transmit\n",
803 			       dev->name);
804 			dev->stats.tx_aborted_errors++;
805 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
806 			       &regs->HostCtrl);
807 			wmb();
808 			break;
809 		case E_TX_INV_RNG:
810 			printk(KERN_ERR "%s: Invalid send ring block\n",
811 			       dev->name);
812 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
813 			       &regs->HostCtrl);
814 			wmb();
815 			break;
816 		case E_TX_INV_BUF:
817 			printk(KERN_ERR "%s: Invalid send buffer address\n",
818 			       dev->name);
819 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
820 			       &regs->HostCtrl);
821 			wmb();
822 			break;
823 		case E_TX_INV_DSC:
824 			printk(KERN_ERR "%s: Invalid descriptor address\n",
825 			       dev->name);
826 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
827 			       &regs->HostCtrl);
828 			wmb();
829 			break;
830 		/*
831 		 * RX events.
832 		 */
833 		case E_RX_RNG_OUT:
834 			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
835 			break;
836 
837 		case E_RX_PAR_ERR:
838 			printk(KERN_WARNING "%s: Receive parity error\n",
839 			       dev->name);
840 			goto drop;
841 		case E_RX_LLRC_ERR:
842 			printk(KERN_WARNING "%s: Receive LLRC error\n",
843 			       dev->name);
844 			goto drop;
845 		case E_PKT_LN_ERR:
846 			printk(KERN_WARNING "%s: Receive packet length "
847 			       "error\n", dev->name);
848 			goto drop;
849 		case E_DTA_CKSM_ERR:
850 			printk(KERN_WARNING "%s: Data checksum error\n",
851 			       dev->name);
852 			goto drop;
853 		case E_SHT_BST:
854 			printk(KERN_WARNING "%s: Unexpected short burst "
855 			       "error\n", dev->name);
856 			goto drop;
857 		case E_STATE_ERR:
858 			printk(KERN_WARNING "%s: Recv. state transition"
859 			       " error\n", dev->name);
860 			goto drop;
861 		case E_UNEXP_DATA:
862 			printk(KERN_WARNING "%s: Unexpected data error\n",
863 			       dev->name);
864 			goto drop;
865 		case E_LST_LNK_ERR:
866 			printk(KERN_WARNING "%s: Link lost error\n",
867 			       dev->name);
868 			goto drop;
869 		case E_FRM_ERR:
870 			printk(KERN_WARNING "%s: Framming Error\n",
871 			       dev->name);
872 			goto drop;
873 		case E_FLG_SYN_ERR:
874 			printk(KERN_WARNING "%s: Flag sync. lost during "
875 			       "packet\n", dev->name);
876 			goto drop;
877 		case E_RX_INV_BUF:
878 			printk(KERN_ERR "%s: Invalid receive buffer "
879 			       "address\n", dev->name);
880 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
881 			       &regs->HostCtrl);
882 			wmb();
883 			break;
884 		case E_RX_INV_DSC:
885 			printk(KERN_ERR "%s: Invalid receive descriptor "
886 			       "address\n", dev->name);
887 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
888 			       &regs->HostCtrl);
889 			wmb();
890 			break;
891 		case E_RNG_BLK:
892 			printk(KERN_ERR "%s: Invalid ring block\n",
893 			       dev->name);
894 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
895 			       &regs->HostCtrl);
896 			wmb();
897 			break;
898 		drop:
899 			/* Label packet to be dropped.
900 			 * Actual dropping occurs in rx
901 			 * handling.
902 			 *
903 			 * The index of packet we get to drop is
904 			 * the index of the packet following
905 			 * the bad packet. -kbf
906 			 */
907 			{
908 				u16 index = rrpriv->evt_ring[eidx].index;
909 				index = (index + (RX_RING_ENTRIES - 1)) %
910 					RX_RING_ENTRIES;
911 				rrpriv->rx_ring[index].mode |=
912 					(PACKET_BAD | PACKET_END);
913 			}
914 			break;
915 		default:
916 			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
917 			       dev->name, rrpriv->evt_ring[eidx].code);
918 		}
919 		eidx = (eidx + 1) % EVT_RING_ENTRIES;
920 	}
921 
922 	rrpriv->info->evt_ctrl.pi = eidx;
923 	wmb();
924 	return eidx;
925 }
926 
927 
928 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
929 {
930 	struct rr_private *rrpriv = netdev_priv(dev);
931 	struct rr_regs __iomem *regs = rrpriv->regs;
932 
933 	do {
934 		struct rx_desc *desc;
935 		u32 pkt_len;
936 
937 		desc = &(rrpriv->rx_ring[index]);
938 		pkt_len = desc->size;
939 #if (DEBUG > 2)
940 		printk("index %i, rxlimit %i\n", index, rxlimit);
941 		printk("len %x, mode %x\n", pkt_len, desc->mode);
942 #endif
943 		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
944 			dev->stats.rx_dropped++;
945 			goto defer;
946 		}
947 
948 		if (pkt_len > 0){
949 			struct sk_buff *skb, *rx_skb;
950 
951 			rx_skb = rrpriv->rx_skbuff[index];
952 
953 			if (pkt_len < PKT_COPY_THRESHOLD) {
954 				skb = alloc_skb(pkt_len, GFP_ATOMIC);
955 				if (skb == NULL){
956 					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
957 					dev->stats.rx_dropped++;
958 					goto defer;
959 				} else {
960 					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
961 								    desc->addr.addrlo,
962 								    pkt_len,
963 								    PCI_DMA_FROMDEVICE);
964 
965 					memcpy(skb_put(skb, pkt_len),
966 					       rx_skb->data, pkt_len);
967 
968 					pci_dma_sync_single_for_device(rrpriv->pci_dev,
969 								       desc->addr.addrlo,
970 								       pkt_len,
971 								       PCI_DMA_FROMDEVICE);
972 				}
973 			}else{
974 				struct sk_buff *newskb;
975 
976 				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
977 					GFP_ATOMIC);
978 				if (newskb){
979 					dma_addr_t addr;
980 
981 	        			pci_unmap_single(rrpriv->pci_dev,
982 						desc->addr.addrlo, dev->mtu +
983 						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
984 					skb = rx_skb;
985 					skb_put(skb, pkt_len);
986 					rrpriv->rx_skbuff[index] = newskb;
987 	        			addr = pci_map_single(rrpriv->pci_dev,
988 						newskb->data,
989 						dev->mtu + HIPPI_HLEN,
990 						PCI_DMA_FROMDEVICE);
991 					set_rraddr(&desc->addr, addr);
992 				} else {
993 					printk("%s: Out of memory, deferring "
994 					       "packet\n", dev->name);
995 					dev->stats.rx_dropped++;
996 					goto defer;
997 				}
998 			}
999 			skb->protocol = hippi_type_trans(skb, dev);
1000 
1001 			netif_rx(skb);		/* send it up */
1002 
1003 			dev->stats.rx_packets++;
1004 			dev->stats.rx_bytes += pkt_len;
1005 		}
1006 	defer:
1007 		desc->mode = 0;
1008 		desc->size = dev->mtu + HIPPI_HLEN;
1009 
1010 		if ((index & 7) == 7)
1011 			writel(index, &regs->IpRxPi);
1012 
1013 		index = (index + 1) % RX_RING_ENTRIES;
1014 	} while(index != rxlimit);
1015 
1016 	rrpriv->cur_rx = index;
1017 	wmb();
1018 }
1019 
1020 
1021 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022 {
1023 	struct rr_private *rrpriv;
1024 	struct rr_regs __iomem *regs;
1025 	struct net_device *dev = (struct net_device *)dev_id;
1026 	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027 
1028 	rrpriv = netdev_priv(dev);
1029 	regs = rrpriv->regs;
1030 
1031 	if (!(readl(&regs->HostCtrl) & RR_INT))
1032 		return IRQ_NONE;
1033 
1034 	spin_lock(&rrpriv->lock);
1035 
1036 	prodidx = readl(&regs->EvtPrd);
1037 	txcsmr = (prodidx >> 8) & 0xff;
1038 	rxlimit = (prodidx >> 16) & 0xff;
1039 	prodidx &= 0xff;
1040 
1041 #if (DEBUG > 2)
1042 	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043 	       prodidx, rrpriv->info->evt_ctrl.pi);
1044 #endif
1045 	/*
1046 	 * Order here is important.  We must handle events
1047 	 * before doing anything else in order to catch
1048 	 * such things as LLRC errors, etc -kbf
1049 	 */
1050 
1051 	eidx = rrpriv->info->evt_ctrl.pi;
1052 	if (prodidx != eidx)
1053 		eidx = rr_handle_event(dev, prodidx, eidx);
1054 
1055 	rxindex = rrpriv->cur_rx;
1056 	if (rxindex != rxlimit)
1057 		rx_int(dev, rxlimit, rxindex);
1058 
1059 	txcon = rrpriv->dirty_tx;
1060 	if (txcsmr != txcon) {
1061 		do {
1062 			/* Due to occational firmware TX producer/consumer out
1063 			 * of sync. error need to check entry in ring -kbf
1064 			 */
1065 			if(rrpriv->tx_skbuff[txcon]){
1066 				struct tx_desc *desc;
1067 				struct sk_buff *skb;
1068 
1069 				desc = &(rrpriv->tx_ring[txcon]);
1070 				skb = rrpriv->tx_skbuff[txcon];
1071 
1072 				dev->stats.tx_packets++;
1073 				dev->stats.tx_bytes += skb->len;
1074 
1075 				pci_unmap_single(rrpriv->pci_dev,
1076 						 desc->addr.addrlo, skb->len,
1077 						 PCI_DMA_TODEVICE);
1078 				dev_kfree_skb_irq(skb);
1079 
1080 				rrpriv->tx_skbuff[txcon] = NULL;
1081 				desc->size = 0;
1082 				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083 				desc->mode = 0;
1084 			}
1085 			txcon = (txcon + 1) % TX_RING_ENTRIES;
1086 		} while (txcsmr != txcon);
1087 		wmb();
1088 
1089 		rrpriv->dirty_tx = txcon;
1090 		if (rrpriv->tx_full && rr_if_busy(dev) &&
1091 		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092 		     != rrpriv->dirty_tx)){
1093 			rrpriv->tx_full = 0;
1094 			netif_wake_queue(dev);
1095 		}
1096 	}
1097 
1098 	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099 	writel(eidx, &regs->EvtCon);
1100 	wmb();
1101 
1102 	spin_unlock(&rrpriv->lock);
1103 	return IRQ_HANDLED;
1104 }
1105 
1106 static inline void rr_raz_tx(struct rr_private *rrpriv,
1107 			     struct net_device *dev)
1108 {
1109 	int i;
1110 
1111 	for (i = 0; i < TX_RING_ENTRIES; i++) {
1112 		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113 
1114 		if (skb) {
1115 			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116 
1117 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1118 				skb->len, PCI_DMA_TODEVICE);
1119 			desc->size = 0;
1120 			set_rraddr(&desc->addr, 0);
1121 			dev_kfree_skb(skb);
1122 			rrpriv->tx_skbuff[i] = NULL;
1123 		}
1124 	}
1125 }
1126 
1127 
1128 static inline void rr_raz_rx(struct rr_private *rrpriv,
1129 			     struct net_device *dev)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < RX_RING_ENTRIES; i++) {
1134 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1135 
1136 		if (skb) {
1137 			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1138 
1139 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1140 				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1141 			desc->size = 0;
1142 			set_rraddr(&desc->addr, 0);
1143 			dev_kfree_skb(skb);
1144 			rrpriv->rx_skbuff[i] = NULL;
1145 		}
1146 	}
1147 }
1148 
1149 static void rr_timer(unsigned long data)
1150 {
1151 	struct net_device *dev = (struct net_device *)data;
1152 	struct rr_private *rrpriv = netdev_priv(dev);
1153 	struct rr_regs __iomem *regs = rrpriv->regs;
1154 	unsigned long flags;
1155 
1156 	if (readl(&regs->HostCtrl) & NIC_HALTED){
1157 		printk("%s: Restarting nic\n", dev->name);
1158 		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1159 		memset(rrpriv->info, 0, sizeof(struct rr_info));
1160 		wmb();
1161 
1162 		rr_raz_tx(rrpriv, dev);
1163 		rr_raz_rx(rrpriv, dev);
1164 
1165 		if (rr_init1(dev)) {
1166 			spin_lock_irqsave(&rrpriv->lock, flags);
1167 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1168 			       &regs->HostCtrl);
1169 			spin_unlock_irqrestore(&rrpriv->lock, flags);
1170 		}
1171 	}
1172 	rrpriv->timer.expires = RUN_AT(5*HZ);
1173 	add_timer(&rrpriv->timer);
1174 }
1175 
1176 
1177 static int rr_open(struct net_device *dev)
1178 {
1179 	struct rr_private *rrpriv = netdev_priv(dev);
1180 	struct pci_dev *pdev = rrpriv->pci_dev;
1181 	struct rr_regs __iomem *regs;
1182 	int ecode = 0;
1183 	unsigned long flags;
1184 	dma_addr_t dma_addr;
1185 
1186 	regs = rrpriv->regs;
1187 
1188 	if (rrpriv->fw_rev < 0x00020000) {
1189 		printk(KERN_WARNING "%s: trying to configure device with "
1190 		       "obsolete firmware\n", dev->name);
1191 		ecode = -EBUSY;
1192 		goto error;
1193 	}
1194 
1195 	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1196 					       256 * sizeof(struct ring_ctrl),
1197 					       &dma_addr);
1198 	if (!rrpriv->rx_ctrl) {
1199 		ecode = -ENOMEM;
1200 		goto error;
1201 	}
1202 	rrpriv->rx_ctrl_dma = dma_addr;
1203 	memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1204 
1205 	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1206 					    &dma_addr);
1207 	if (!rrpriv->info) {
1208 		ecode = -ENOMEM;
1209 		goto error;
1210 	}
1211 	rrpriv->info_dma = dma_addr;
1212 	memset(rrpriv->info, 0, sizeof(struct rr_info));
1213 	wmb();
1214 
1215 	spin_lock_irqsave(&rrpriv->lock, flags);
1216 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1217 	readl(&regs->HostCtrl);
1218 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1219 
1220 	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1221 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1222 		       dev->name, pdev->irq);
1223 		ecode = -EAGAIN;
1224 		goto error;
1225 	}
1226 
1227 	if ((ecode = rr_init1(dev)))
1228 		goto error;
1229 
1230 	/* Set the timer to switch to check for link beat and perhaps switch
1231 	   to an alternate media type. */
1232 	init_timer(&rrpriv->timer);
1233 	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1234 	rrpriv->timer.data = (unsigned long)dev;
1235 	rrpriv->timer.function = rr_timer;               /* timer handler */
1236 	add_timer(&rrpriv->timer);
1237 
1238 	netif_start_queue(dev);
1239 
1240 	return ecode;
1241 
1242  error:
1243 	spin_lock_irqsave(&rrpriv->lock, flags);
1244 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1245 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1246 
1247 	if (rrpriv->info) {
1248 		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1249 				    rrpriv->info_dma);
1250 		rrpriv->info = NULL;
1251 	}
1252 	if (rrpriv->rx_ctrl) {
1253 		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1254 				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1255 		rrpriv->rx_ctrl = NULL;
1256 	}
1257 
1258 	netif_stop_queue(dev);
1259 
1260 	return ecode;
1261 }
1262 
1263 
1264 static void rr_dump(struct net_device *dev)
1265 {
1266 	struct rr_private *rrpriv;
1267 	struct rr_regs __iomem *regs;
1268 	u32 index, cons;
1269 	short i;
1270 	int len;
1271 
1272 	rrpriv = netdev_priv(dev);
1273 	regs = rrpriv->regs;
1274 
1275 	printk("%s: dumping NIC TX rings\n", dev->name);
1276 
1277 	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1278 	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1279 	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1280 	       rrpriv->info->tx_ctrl.pi);
1281 
1282 	printk("Error code 0x%x\n", readl(&regs->Fail1));
1283 
1284 	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1285 	cons = rrpriv->dirty_tx;
1286 	printk("TX ring index %i, TX consumer %i\n",
1287 	       index, cons);
1288 
1289 	if (rrpriv->tx_skbuff[index]){
1290 		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1291 		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1292 		for (i = 0; i < len; i++){
1293 			if (!(i & 7))
1294 				printk("\n");
1295 			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1296 		}
1297 		printk("\n");
1298 	}
1299 
1300 	if (rrpriv->tx_skbuff[cons]){
1301 		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1302 		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1303 		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1304 		       rrpriv->tx_ring[cons].mode,
1305 		       rrpriv->tx_ring[cons].size,
1306 		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1307 		       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1308 		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1309 		for (i = 0; i < len; i++){
1310 			if (!(i & 7))
1311 				printk("\n");
1312 			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1313 		}
1314 		printk("\n");
1315 	}
1316 
1317 	printk("dumping TX ring info:\n");
1318 	for (i = 0; i < TX_RING_ENTRIES; i++)
1319 		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1320 		       rrpriv->tx_ring[i].mode,
1321 		       rrpriv->tx_ring[i].size,
1322 		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1323 
1324 }
1325 
1326 
1327 static int rr_close(struct net_device *dev)
1328 {
1329 	struct rr_private *rrpriv = netdev_priv(dev);
1330 	struct rr_regs __iomem *regs = rrpriv->regs;
1331 	struct pci_dev *pdev = rrpriv->pci_dev;
1332 	unsigned long flags;
1333 	u32 tmp;
1334 	short i;
1335 
1336 	netif_stop_queue(dev);
1337 
1338 
1339 	/*
1340 	 * Lock to make sure we are not cleaning up while another CPU
1341 	 * is handling interrupts.
1342 	 */
1343 	spin_lock_irqsave(&rrpriv->lock, flags);
1344 
1345 	tmp = readl(&regs->HostCtrl);
1346 	if (tmp & NIC_HALTED){
1347 		printk("%s: NIC already halted\n", dev->name);
1348 		rr_dump(dev);
1349 	}else{
1350 		tmp |= HALT_NIC | RR_CLEAR_INT;
1351 		writel(tmp, &regs->HostCtrl);
1352 		readl(&regs->HostCtrl);
1353 	}
1354 
1355 	rrpriv->fw_running = 0;
1356 
1357 	del_timer_sync(&rrpriv->timer);
1358 
1359 	writel(0, &regs->TxPi);
1360 	writel(0, &regs->IpRxPi);
1361 
1362 	writel(0, &regs->EvtCon);
1363 	writel(0, &regs->EvtPrd);
1364 
1365 	for (i = 0; i < CMD_RING_ENTRIES; i++)
1366 		writel(0, &regs->CmdRing[i]);
1367 
1368 	rrpriv->info->tx_ctrl.entries = 0;
1369 	rrpriv->info->cmd_ctrl.pi = 0;
1370 	rrpriv->info->evt_ctrl.pi = 0;
1371 	rrpriv->rx_ctrl[4].entries = 0;
1372 
1373 	rr_raz_tx(rrpriv, dev);
1374 	rr_raz_rx(rrpriv, dev);
1375 
1376 	pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1377 			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1378 	rrpriv->rx_ctrl = NULL;
1379 
1380 	pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1381 			    rrpriv->info_dma);
1382 	rrpriv->info = NULL;
1383 
1384 	free_irq(pdev->irq, dev);
1385 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1386 
1387 	return 0;
1388 }
1389 
1390 
1391 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1392 				 struct net_device *dev)
1393 {
1394 	struct rr_private *rrpriv = netdev_priv(dev);
1395 	struct rr_regs __iomem *regs = rrpriv->regs;
1396 	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1397 	struct ring_ctrl *txctrl;
1398 	unsigned long flags;
1399 	u32 index, len = skb->len;
1400 	u32 *ifield;
1401 	struct sk_buff *new_skb;
1402 
1403 	if (readl(&regs->Mode) & FATAL_ERR)
1404 		printk("error codes Fail1 %02x, Fail2 %02x\n",
1405 		       readl(&regs->Fail1), readl(&regs->Fail2));
1406 
1407 	/*
1408 	 * We probably need to deal with tbusy here to prevent overruns.
1409 	 */
1410 
1411 	if (skb_headroom(skb) < 8){
1412 		printk("incoming skb too small - reallocating\n");
1413 		if (!(new_skb = dev_alloc_skb(len + 8))) {
1414 			dev_kfree_skb(skb);
1415 			netif_wake_queue(dev);
1416 			return NETDEV_TX_OK;
1417 		}
1418 		skb_reserve(new_skb, 8);
1419 		skb_put(new_skb, len);
1420 		skb_copy_from_linear_data(skb, new_skb->data, len);
1421 		dev_kfree_skb(skb);
1422 		skb = new_skb;
1423 	}
1424 
1425 	ifield = (u32 *)skb_push(skb, 8);
1426 
1427 	ifield[0] = 0;
1428 	ifield[1] = hcb->ifield;
1429 
1430 	/*
1431 	 * We don't need the lock before we are actually going to start
1432 	 * fiddling with the control blocks.
1433 	 */
1434 	spin_lock_irqsave(&rrpriv->lock, flags);
1435 
1436 	txctrl = &rrpriv->info->tx_ctrl;
1437 
1438 	index = txctrl->pi;
1439 
1440 	rrpriv->tx_skbuff[index] = skb;
1441 	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1442 		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1443 	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1444 	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1445 	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1446 	wmb();
1447 	writel(txctrl->pi, &regs->TxPi);
1448 
1449 	if (txctrl->pi == rrpriv->dirty_tx){
1450 		rrpriv->tx_full = 1;
1451 		netif_stop_queue(dev);
1452 	}
1453 
1454 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1455 
1456 	return NETDEV_TX_OK;
1457 }
1458 
1459 
1460 /*
1461  * Read the firmware out of the EEPROM and put it into the SRAM
1462  * (or from user space - later)
1463  *
1464  * This operation requires the NIC to be halted and is performed with
1465  * interrupts disabled and with the spinlock hold.
1466  */
1467 static int rr_load_firmware(struct net_device *dev)
1468 {
1469 	struct rr_private *rrpriv;
1470 	struct rr_regs __iomem *regs;
1471 	size_t eptr, segptr;
1472 	int i, j;
1473 	u32 localctrl, sptr, len, tmp;
1474 	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1475 
1476 	rrpriv = netdev_priv(dev);
1477 	regs = rrpriv->regs;
1478 
1479 	if (dev->flags & IFF_UP)
1480 		return -EBUSY;
1481 
1482 	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1483 		printk("%s: Trying to load firmware to a running NIC.\n",
1484 		       dev->name);
1485 		return -EBUSY;
1486 	}
1487 
1488 	localctrl = readl(&regs->LocalCtrl);
1489 	writel(0, &regs->LocalCtrl);
1490 
1491 	writel(0, &regs->EvtPrd);
1492 	writel(0, &regs->RxPrd);
1493 	writel(0, &regs->TxPrd);
1494 
1495 	/*
1496 	 * First wipe the entire SRAM, otherwise we might run into all
1497 	 * kinds of trouble ... sigh, this took almost all afternoon
1498 	 * to track down ;-(
1499 	 */
1500 	io = readl(&regs->ExtIo);
1501 	writel(0, &regs->ExtIo);
1502 	sram_size = rr_read_eeprom_word(rrpriv, 8);
1503 
1504 	for (i = 200; i < sram_size / 4; i++){
1505 		writel(i * 4, &regs->WinBase);
1506 		mb();
1507 		writel(0, &regs->WinData);
1508 		mb();
1509 	}
1510 	writel(io, &regs->ExtIo);
1511 	mb();
1512 
1513 	eptr = rr_read_eeprom_word(rrpriv,
1514 		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1515 	eptr = ((eptr & 0x1fffff) >> 3);
1516 
1517 	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1518 	p2len = (p2len << 2);
1519 	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1520 	p2size = ((p2size & 0x1fffff) >> 3);
1521 
1522 	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1523 		printk("%s: eptr is invalid\n", dev->name);
1524 		goto out;
1525 	}
1526 
1527 	revision = rr_read_eeprom_word(rrpriv,
1528 			offsetof(struct eeprom, manf.HeaderFmt));
1529 
1530 	if (revision != 1){
1531 		printk("%s: invalid firmware format (%i)\n",
1532 		       dev->name, revision);
1533 		goto out;
1534 	}
1535 
1536 	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1537 	eptr +=4;
1538 #if (DEBUG > 1)
1539 	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1540 #endif
1541 
1542 	for (i = 0; i < nr_seg; i++){
1543 		sptr = rr_read_eeprom_word(rrpriv, eptr);
1544 		eptr += 4;
1545 		len = rr_read_eeprom_word(rrpriv, eptr);
1546 		eptr += 4;
1547 		segptr = rr_read_eeprom_word(rrpriv, eptr);
1548 		segptr = ((segptr & 0x1fffff) >> 3);
1549 		eptr += 4;
1550 #if (DEBUG > 1)
1551 		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1552 		       dev->name, i, sptr, len, segptr);
1553 #endif
1554 		for (j = 0; j < len; j++){
1555 			tmp = rr_read_eeprom_word(rrpriv, segptr);
1556 			writel(sptr, &regs->WinBase);
1557 			mb();
1558 			writel(tmp, &regs->WinData);
1559 			mb();
1560 			segptr += 4;
1561 			sptr += 4;
1562 		}
1563 	}
1564 
1565 out:
1566 	writel(localctrl, &regs->LocalCtrl);
1567 	mb();
1568 	return 0;
1569 }
1570 
1571 
1572 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1573 {
1574 	struct rr_private *rrpriv;
1575 	unsigned char *image, *oldimage;
1576 	unsigned long flags;
1577 	unsigned int i;
1578 	int error = -EOPNOTSUPP;
1579 
1580 	rrpriv = netdev_priv(dev);
1581 
1582 	switch(cmd){
1583 	case SIOCRRGFW:
1584 		if (!capable(CAP_SYS_RAWIO)){
1585 			return -EPERM;
1586 		}
1587 
1588 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1589 		if (!image)
1590 			return -ENOMEM;
1591 
1592 		if (rrpriv->fw_running){
1593 			printk("%s: Firmware already running\n", dev->name);
1594 			error = -EPERM;
1595 			goto gf_out;
1596 		}
1597 
1598 		spin_lock_irqsave(&rrpriv->lock, flags);
1599 		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1600 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1601 		if (i != EEPROM_BYTES){
1602 			printk(KERN_ERR "%s: Error reading EEPROM\n",
1603 			       dev->name);
1604 			error = -EFAULT;
1605 			goto gf_out;
1606 		}
1607 		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1608 		if (error)
1609 			error = -EFAULT;
1610 	gf_out:
1611 		kfree(image);
1612 		return error;
1613 
1614 	case SIOCRRPFW:
1615 		if (!capable(CAP_SYS_RAWIO)){
1616 			return -EPERM;
1617 		}
1618 
1619 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1620 		oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1621 		if (!image || !oldimage) {
1622 			error = -ENOMEM;
1623 			goto wf_out;
1624 		}
1625 
1626 		error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1627 		if (error) {
1628 			error = -EFAULT;
1629 			goto wf_out;
1630 		}
1631 
1632 		if (rrpriv->fw_running){
1633 			printk("%s: Firmware already running\n", dev->name);
1634 			error = -EPERM;
1635 			goto wf_out;
1636 		}
1637 
1638 		printk("%s: Updating EEPROM firmware\n", dev->name);
1639 
1640 		spin_lock_irqsave(&rrpriv->lock, flags);
1641 		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1642 		if (error)
1643 			printk(KERN_ERR "%s: Error writing EEPROM\n",
1644 			       dev->name);
1645 
1646 		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1647 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1648 
1649 		if (i != EEPROM_BYTES)
1650 			printk(KERN_ERR "%s: Error reading back EEPROM "
1651 			       "image\n", dev->name);
1652 
1653 		error = memcmp(image, oldimage, EEPROM_BYTES);
1654 		if (error){
1655 			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1656 			       dev->name);
1657 			error = -EFAULT;
1658 		}
1659 	wf_out:
1660 		kfree(oldimage);
1661 		kfree(image);
1662 		return error;
1663 
1664 	case SIOCRRID:
1665 		return put_user(0x52523032, (int __user *)rq->ifr_data);
1666 	default:
1667 		return error;
1668 	}
1669 }
1670 
1671 static const struct pci_device_id rr_pci_tbl[] = {
1672 	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1673 		PCI_ANY_ID, PCI_ANY_ID, },
1674 	{ 0,}
1675 };
1676 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1677 
1678 static struct pci_driver rr_driver = {
1679 	.name		= "rrunner",
1680 	.id_table	= rr_pci_tbl,
1681 	.probe		= rr_init_one,
1682 	.remove		= rr_remove_one,
1683 };
1684 
1685 module_pci_driver(rr_driver);
1686