xref: /linux/drivers/net/gtp.c (revision f85f5ae45ad945270a8884261de8249431e8b5a6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060
3  *
4  * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
5  * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
6  *
7  * Author: Harald Welte <hwelte@sysmocom.de>
8  *	   Pablo Neira Ayuso <pablo@netfilter.org>
9  *	   Andreas Schultz <aschultz@travelping.com>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/module.h>
15 #include <linux/skbuff.h>
16 #include <linux/udp.h>
17 #include <linux/rculist.h>
18 #include <linux/jhash.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/net.h>
21 #include <linux/file.h>
22 #include <linux/gtp.h>
23 
24 #include <net/net_namespace.h>
25 #include <net/protocol.h>
26 #include <net/ip.h>
27 #include <net/udp.h>
28 #include <net/udp_tunnel.h>
29 #include <net/icmp.h>
30 #include <net/xfrm.h>
31 #include <net/genetlink.h>
32 #include <net/netns/generic.h>
33 #include <net/gtp.h>
34 
35 /* An active session for the subscriber. */
36 struct pdp_ctx {
37 	struct hlist_node	hlist_tid;
38 	struct hlist_node	hlist_addr;
39 
40 	union {
41 		struct {
42 			u64	tid;
43 			u16	flow;
44 		} v0;
45 		struct {
46 			u32	i_tei;
47 			u32	o_tei;
48 		} v1;
49 	} u;
50 	u8			gtp_version;
51 	u16			af;
52 
53 	struct in_addr		ms_addr_ip4;
54 	struct in_addr		peer_addr_ip4;
55 
56 	struct sock		*sk;
57 	struct net_device       *dev;
58 
59 	atomic_t		tx_seq;
60 	struct rcu_head		rcu_head;
61 };
62 
63 /* One instance of the GTP device. */
64 struct gtp_dev {
65 	struct list_head	list;
66 
67 	struct sock		*sk0;
68 	struct sock		*sk1u;
69 	u8			sk_created;
70 
71 	struct net_device	*dev;
72 	struct net		*net;
73 
74 	unsigned int		role;
75 	unsigned int		hash_size;
76 	struct hlist_head	*tid_hash;
77 	struct hlist_head	*addr_hash;
78 
79 	u8			restart_count;
80 };
81 
82 struct echo_info {
83 	struct in_addr		ms_addr_ip4;
84 	struct in_addr		peer_addr_ip4;
85 	u8			gtp_version;
86 };
87 
88 static unsigned int gtp_net_id __read_mostly;
89 
90 struct gtp_net {
91 	struct list_head gtp_dev_list;
92 };
93 
94 static u32 gtp_h_initval;
95 
96 static struct genl_family gtp_genl_family;
97 
98 enum gtp_multicast_groups {
99 	GTP_GENL_MCGRP,
100 };
101 
102 static const struct genl_multicast_group gtp_genl_mcgrps[] = {
103 	[GTP_GENL_MCGRP] = { .name = GTP_GENL_MCGRP_NAME },
104 };
105 
106 static void pdp_context_delete(struct pdp_ctx *pctx);
107 
108 static inline u32 gtp0_hashfn(u64 tid)
109 {
110 	u32 *tid32 = (u32 *) &tid;
111 	return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
112 }
113 
114 static inline u32 gtp1u_hashfn(u32 tid)
115 {
116 	return jhash_1word(tid, gtp_h_initval);
117 }
118 
119 static inline u32 ipv4_hashfn(__be32 ip)
120 {
121 	return jhash_1word((__force u32)ip, gtp_h_initval);
122 }
123 
124 /* Resolve a PDP context structure based on the 64bit TID. */
125 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
126 {
127 	struct hlist_head *head;
128 	struct pdp_ctx *pdp;
129 
130 	head = &gtp->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
131 
132 	hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
133 		if (pdp->gtp_version == GTP_V0 &&
134 		    pdp->u.v0.tid == tid)
135 			return pdp;
136 	}
137 	return NULL;
138 }
139 
140 /* Resolve a PDP context structure based on the 32bit TEI. */
141 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
142 {
143 	struct hlist_head *head;
144 	struct pdp_ctx *pdp;
145 
146 	head = &gtp->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
147 
148 	hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
149 		if (pdp->gtp_version == GTP_V1 &&
150 		    pdp->u.v1.i_tei == tid)
151 			return pdp;
152 	}
153 	return NULL;
154 }
155 
156 /* Resolve a PDP context based on IPv4 address of MS. */
157 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
158 {
159 	struct hlist_head *head;
160 	struct pdp_ctx *pdp;
161 
162 	head = &gtp->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
163 
164 	hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
165 		if (pdp->af == AF_INET &&
166 		    pdp->ms_addr_ip4.s_addr == ms_addr)
167 			return pdp;
168 	}
169 
170 	return NULL;
171 }
172 
173 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
174 				  unsigned int hdrlen, unsigned int role)
175 {
176 	struct iphdr *iph;
177 
178 	if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
179 		return false;
180 
181 	iph = (struct iphdr *)(skb->data + hdrlen);
182 
183 	if (role == GTP_ROLE_SGSN)
184 		return iph->daddr == pctx->ms_addr_ip4.s_addr;
185 	else
186 		return iph->saddr == pctx->ms_addr_ip4.s_addr;
187 }
188 
189 /* Check if the inner IP address in this packet is assigned to any
190  * existing mobile subscriber.
191  */
192 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
193 			     unsigned int hdrlen, unsigned int role)
194 {
195 	switch (ntohs(skb->protocol)) {
196 	case ETH_P_IP:
197 		return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
198 	}
199 	return false;
200 }
201 
202 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
203 			unsigned int hdrlen, unsigned int role)
204 {
205 	if (!gtp_check_ms(skb, pctx, hdrlen, role)) {
206 		netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
207 		return 1;
208 	}
209 
210 	/* Get rid of the GTP + UDP headers. */
211 	if (iptunnel_pull_header(skb, hdrlen, skb->protocol,
212 			 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev)))) {
213 		pctx->dev->stats.rx_length_errors++;
214 		goto err;
215 	}
216 
217 	netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
218 
219 	/* Now that the UDP and the GTP header have been removed, set up the
220 	 * new network header. This is required by the upper layer to
221 	 * calculate the transport header.
222 	 */
223 	skb_reset_network_header(skb);
224 	skb_reset_mac_header(skb);
225 
226 	skb->dev = pctx->dev;
227 
228 	dev_sw_netstats_rx_add(pctx->dev, skb->len);
229 
230 	__netif_rx(skb);
231 	return 0;
232 
233 err:
234 	pctx->dev->stats.rx_dropped++;
235 	return -1;
236 }
237 
238 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
239 					   const struct sock *sk,
240 					   __be32 daddr, __be32 saddr)
241 {
242 	memset(fl4, 0, sizeof(*fl4));
243 	fl4->flowi4_oif		= sk->sk_bound_dev_if;
244 	fl4->daddr		= daddr;
245 	fl4->saddr		= saddr;
246 	fl4->flowi4_tos		= ip_sock_rt_tos(sk);
247 	fl4->flowi4_scope	= ip_sock_rt_scope(sk);
248 	fl4->flowi4_proto	= sk->sk_protocol;
249 
250 	return ip_route_output_key(sock_net(sk), fl4);
251 }
252 
253 /* GSM TS 09.60. 7.3
254  * In all Path Management messages:
255  * - TID: is not used and shall be set to 0.
256  * - Flow Label is not used and shall be set to 0
257  * In signalling messages:
258  * - number: this field is not yet used in signalling messages.
259  *   It shall be set to 255 by the sender and shall be ignored
260  *   by the receiver
261  * Returns true if the echo req was correct, false otherwise.
262  */
263 static bool gtp0_validate_echo_hdr(struct gtp0_header *gtp0)
264 {
265 	return !(gtp0->tid || (gtp0->flags ^ 0x1e) ||
266 		gtp0->number != 0xff || gtp0->flow);
267 }
268 
269 /* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
270 static void gtp0_build_echo_msg(struct gtp0_header *hdr, __u8 msg_type)
271 {
272 	int len_pkt, len_hdr;
273 
274 	hdr->flags = 0x1e; /* v0, GTP-non-prime. */
275 	hdr->type = msg_type;
276 	/* GSM TS 09.60. 7.3 In all Path Management Flow Label and TID
277 	 * are not used and shall be set to 0.
278 	 */
279 	hdr->flow = 0;
280 	hdr->tid = 0;
281 	hdr->number = 0xff;
282 	hdr->spare[0] = 0xff;
283 	hdr->spare[1] = 0xff;
284 	hdr->spare[2] = 0xff;
285 
286 	len_pkt = sizeof(struct gtp0_packet);
287 	len_hdr = sizeof(struct gtp0_header);
288 
289 	if (msg_type == GTP_ECHO_RSP)
290 		hdr->length = htons(len_pkt - len_hdr);
291 	else
292 		hdr->length = 0;
293 }
294 
295 static int gtp0_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
296 {
297 	struct gtp0_packet *gtp_pkt;
298 	struct gtp0_header *gtp0;
299 	struct rtable *rt;
300 	struct flowi4 fl4;
301 	struct iphdr *iph;
302 	__be16 seq;
303 
304 	gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
305 
306 	if (!gtp0_validate_echo_hdr(gtp0))
307 		return -1;
308 
309 	seq = gtp0->seq;
310 
311 	/* pull GTP and UDP headers */
312 	skb_pull_data(skb, sizeof(struct gtp0_header) + sizeof(struct udphdr));
313 
314 	gtp_pkt = skb_push(skb, sizeof(struct gtp0_packet));
315 	memset(gtp_pkt, 0, sizeof(struct gtp0_packet));
316 
317 	gtp0_build_echo_msg(&gtp_pkt->gtp0_h, GTP_ECHO_RSP);
318 
319 	/* GSM TS 09.60. 7.3 The Sequence Number in a signalling response
320 	 * message shall be copied from the signalling request message
321 	 * that the GSN is replying to.
322 	 */
323 	gtp_pkt->gtp0_h.seq = seq;
324 
325 	gtp_pkt->ie.tag = GTPIE_RECOVERY;
326 	gtp_pkt->ie.val = gtp->restart_count;
327 
328 	iph = ip_hdr(skb);
329 
330 	/* find route to the sender,
331 	 * src address becomes dst address and vice versa.
332 	 */
333 	rt = ip4_route_output_gtp(&fl4, gtp->sk0, iph->saddr, iph->daddr);
334 	if (IS_ERR(rt)) {
335 		netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
336 			   &iph->saddr);
337 		return -1;
338 	}
339 
340 	udp_tunnel_xmit_skb(rt, gtp->sk0, skb,
341 			    fl4.saddr, fl4.daddr,
342 			    iph->tos,
343 			    ip4_dst_hoplimit(&rt->dst),
344 			    0,
345 			    htons(GTP0_PORT), htons(GTP0_PORT),
346 			    !net_eq(sock_net(gtp->sk1u),
347 				    dev_net(gtp->dev)),
348 			    false);
349 	return 0;
350 }
351 
352 static int gtp_genl_fill_echo(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
353 			      int flags, u32 type, struct echo_info echo)
354 {
355 	void *genlh;
356 
357 	genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, flags,
358 			    type);
359 	if (!genlh)
360 		goto failure;
361 
362 	if (nla_put_u32(skb, GTPA_VERSION, echo.gtp_version) ||
363 	    nla_put_be32(skb, GTPA_PEER_ADDRESS, echo.peer_addr_ip4.s_addr) ||
364 	    nla_put_be32(skb, GTPA_MS_ADDRESS, echo.ms_addr_ip4.s_addr))
365 		goto failure;
366 
367 	genlmsg_end(skb, genlh);
368 	return 0;
369 
370 failure:
371 	genlmsg_cancel(skb, genlh);
372 	return -EMSGSIZE;
373 }
374 
375 static int gtp0_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
376 {
377 	struct gtp0_header *gtp0;
378 	struct echo_info echo;
379 	struct sk_buff *msg;
380 	struct iphdr *iph;
381 	int ret;
382 
383 	gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
384 
385 	if (!gtp0_validate_echo_hdr(gtp0))
386 		return -1;
387 
388 	iph = ip_hdr(skb);
389 	echo.ms_addr_ip4.s_addr = iph->daddr;
390 	echo.peer_addr_ip4.s_addr = iph->saddr;
391 	echo.gtp_version = GTP_V0;
392 
393 	msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
394 	if (!msg)
395 		return -ENOMEM;
396 
397 	ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
398 	if (ret < 0) {
399 		nlmsg_free(msg);
400 		return ret;
401 	}
402 
403 	return genlmsg_multicast_netns(&gtp_genl_family, dev_net(gtp->dev),
404 				       msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
405 }
406 
407 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
408 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
409 {
410 	unsigned int hdrlen = sizeof(struct udphdr) +
411 			      sizeof(struct gtp0_header);
412 	struct gtp0_header *gtp0;
413 	struct pdp_ctx *pctx;
414 
415 	if (!pskb_may_pull(skb, hdrlen))
416 		return -1;
417 
418 	gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
419 
420 	if ((gtp0->flags >> 5) != GTP_V0)
421 		return 1;
422 
423 	/* If the sockets were created in kernel, it means that
424 	 * there is no daemon running in userspace which would
425 	 * handle echo request.
426 	 */
427 	if (gtp0->type == GTP_ECHO_REQ && gtp->sk_created)
428 		return gtp0_send_echo_resp(gtp, skb);
429 
430 	if (gtp0->type == GTP_ECHO_RSP && gtp->sk_created)
431 		return gtp0_handle_echo_resp(gtp, skb);
432 
433 	if (gtp0->type != GTP_TPDU)
434 		return 1;
435 
436 	pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
437 	if (!pctx) {
438 		netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
439 		return 1;
440 	}
441 
442 	return gtp_rx(pctx, skb, hdrlen, gtp->role);
443 }
444 
445 /* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
446 static void gtp1u_build_echo_msg(struct gtp1_header_long *hdr, __u8 msg_type)
447 {
448 	int len_pkt, len_hdr;
449 
450 	/* S flag must be set to 1 */
451 	hdr->flags = 0x32; /* v1, GTP-non-prime. */
452 	hdr->type = msg_type;
453 	/* 3GPP TS 29.281 5.1 - TEID has to be set to 0 */
454 	hdr->tid = 0;
455 
456 	/* seq, npdu and next should be counted to the length of the GTP packet
457 	 * that's why szie of gtp1_header should be subtracted,
458 	 * not size of gtp1_header_long.
459 	 */
460 
461 	len_hdr = sizeof(struct gtp1_header);
462 
463 	if (msg_type == GTP_ECHO_RSP) {
464 		len_pkt = sizeof(struct gtp1u_packet);
465 		hdr->length = htons(len_pkt - len_hdr);
466 	} else {
467 		/* GTP_ECHO_REQ does not carry GTP Information Element,
468 		 * the why gtp1_header_long is used here.
469 		 */
470 		len_pkt = sizeof(struct gtp1_header_long);
471 		hdr->length = htons(len_pkt - len_hdr);
472 	}
473 }
474 
475 static int gtp1u_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
476 {
477 	struct gtp1_header_long *gtp1u;
478 	struct gtp1u_packet *gtp_pkt;
479 	struct rtable *rt;
480 	struct flowi4 fl4;
481 	struct iphdr *iph;
482 
483 	gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
484 
485 	/* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
486 	 * Error Indication and Supported Extension Headers Notification
487 	 * messages, the S flag shall be set to 1 and TEID shall be set to 0.
488 	 */
489 	if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
490 		return -1;
491 
492 	/* pull GTP and UDP headers */
493 	skb_pull_data(skb,
494 		      sizeof(struct gtp1_header_long) + sizeof(struct udphdr));
495 
496 	gtp_pkt = skb_push(skb, sizeof(struct gtp1u_packet));
497 	memset(gtp_pkt, 0, sizeof(struct gtp1u_packet));
498 
499 	gtp1u_build_echo_msg(&gtp_pkt->gtp1u_h, GTP_ECHO_RSP);
500 
501 	/* 3GPP TS 29.281 7.7.2 - The Restart Counter value in the
502 	 * Recovery information element shall not be used, i.e. it shall
503 	 * be set to zero by the sender and shall be ignored by the receiver.
504 	 * The Recovery information element is mandatory due to backwards
505 	 * compatibility reasons.
506 	 */
507 	gtp_pkt->ie.tag = GTPIE_RECOVERY;
508 	gtp_pkt->ie.val = 0;
509 
510 	iph = ip_hdr(skb);
511 
512 	/* find route to the sender,
513 	 * src address becomes dst address and vice versa.
514 	 */
515 	rt = ip4_route_output_gtp(&fl4, gtp->sk1u, iph->saddr, iph->daddr);
516 	if (IS_ERR(rt)) {
517 		netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
518 			   &iph->saddr);
519 		return -1;
520 	}
521 
522 	udp_tunnel_xmit_skb(rt, gtp->sk1u, skb,
523 			    fl4.saddr, fl4.daddr,
524 			    iph->tos,
525 			    ip4_dst_hoplimit(&rt->dst),
526 			    0,
527 			    htons(GTP1U_PORT), htons(GTP1U_PORT),
528 			    !net_eq(sock_net(gtp->sk1u),
529 				    dev_net(gtp->dev)),
530 			    false);
531 	return 0;
532 }
533 
534 static int gtp1u_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
535 {
536 	struct gtp1_header_long *gtp1u;
537 	struct echo_info echo;
538 	struct sk_buff *msg;
539 	struct iphdr *iph;
540 	int ret;
541 
542 	gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
543 
544 	/* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
545 	 * Error Indication and Supported Extension Headers Notification
546 	 * messages, the S flag shall be set to 1 and TEID shall be set to 0.
547 	 */
548 	if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
549 		return -1;
550 
551 	iph = ip_hdr(skb);
552 	echo.ms_addr_ip4.s_addr = iph->daddr;
553 	echo.peer_addr_ip4.s_addr = iph->saddr;
554 	echo.gtp_version = GTP_V1;
555 
556 	msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
557 	if (!msg)
558 		return -ENOMEM;
559 
560 	ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
561 	if (ret < 0) {
562 		nlmsg_free(msg);
563 		return ret;
564 	}
565 
566 	return genlmsg_multicast_netns(&gtp_genl_family, dev_net(gtp->dev),
567 				       msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
568 }
569 
570 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
571 {
572 	unsigned int hdrlen = sizeof(struct udphdr) +
573 			      sizeof(struct gtp1_header);
574 	struct gtp1_header *gtp1;
575 	struct pdp_ctx *pctx;
576 
577 	if (!pskb_may_pull(skb, hdrlen))
578 		return -1;
579 
580 	gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
581 
582 	if ((gtp1->flags >> 5) != GTP_V1)
583 		return 1;
584 
585 	/* If the sockets were created in kernel, it means that
586 	 * there is no daemon running in userspace which would
587 	 * handle echo request.
588 	 */
589 	if (gtp1->type == GTP_ECHO_REQ && gtp->sk_created)
590 		return gtp1u_send_echo_resp(gtp, skb);
591 
592 	if (gtp1->type == GTP_ECHO_RSP && gtp->sk_created)
593 		return gtp1u_handle_echo_resp(gtp, skb);
594 
595 	if (gtp1->type != GTP_TPDU)
596 		return 1;
597 
598 	/* From 29.060: "This field shall be present if and only if any one or
599 	 * more of the S, PN and E flags are set.".
600 	 *
601 	 * If any of the bit is set, then the remaining ones also have to be
602 	 * set.
603 	 */
604 	if (gtp1->flags & GTP1_F_MASK)
605 		hdrlen += 4;
606 
607 	/* Make sure the header is larger enough, including extensions. */
608 	if (!pskb_may_pull(skb, hdrlen))
609 		return -1;
610 
611 	gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
612 
613 	pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
614 	if (!pctx) {
615 		netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
616 		return 1;
617 	}
618 
619 	return gtp_rx(pctx, skb, hdrlen, gtp->role);
620 }
621 
622 static void __gtp_encap_destroy(struct sock *sk)
623 {
624 	struct gtp_dev *gtp;
625 
626 	lock_sock(sk);
627 	gtp = sk->sk_user_data;
628 	if (gtp) {
629 		if (gtp->sk0 == sk)
630 			gtp->sk0 = NULL;
631 		else
632 			gtp->sk1u = NULL;
633 		udp_sk(sk)->encap_type = 0;
634 		rcu_assign_sk_user_data(sk, NULL);
635 		release_sock(sk);
636 		sock_put(sk);
637 		return;
638 	}
639 	release_sock(sk);
640 }
641 
642 static void gtp_encap_destroy(struct sock *sk)
643 {
644 	rtnl_lock();
645 	__gtp_encap_destroy(sk);
646 	rtnl_unlock();
647 }
648 
649 static void gtp_encap_disable_sock(struct sock *sk)
650 {
651 	if (!sk)
652 		return;
653 
654 	__gtp_encap_destroy(sk);
655 }
656 
657 static void gtp_encap_disable(struct gtp_dev *gtp)
658 {
659 	if (gtp->sk_created) {
660 		udp_tunnel_sock_release(gtp->sk0->sk_socket);
661 		udp_tunnel_sock_release(gtp->sk1u->sk_socket);
662 		gtp->sk_created = false;
663 		gtp->sk0 = NULL;
664 		gtp->sk1u = NULL;
665 	} else {
666 		gtp_encap_disable_sock(gtp->sk0);
667 		gtp_encap_disable_sock(gtp->sk1u);
668 	}
669 }
670 
671 /* UDP encapsulation receive handler. See net/ipv4/udp.c.
672  * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
673  */
674 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
675 {
676 	struct gtp_dev *gtp;
677 	int ret = 0;
678 
679 	gtp = rcu_dereference_sk_user_data(sk);
680 	if (!gtp)
681 		return 1;
682 
683 	netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
684 
685 	switch (udp_sk(sk)->encap_type) {
686 	case UDP_ENCAP_GTP0:
687 		netdev_dbg(gtp->dev, "received GTP0 packet\n");
688 		ret = gtp0_udp_encap_recv(gtp, skb);
689 		break;
690 	case UDP_ENCAP_GTP1U:
691 		netdev_dbg(gtp->dev, "received GTP1U packet\n");
692 		ret = gtp1u_udp_encap_recv(gtp, skb);
693 		break;
694 	default:
695 		ret = -1; /* Shouldn't happen. */
696 	}
697 
698 	switch (ret) {
699 	case 1:
700 		netdev_dbg(gtp->dev, "pass up to the process\n");
701 		break;
702 	case 0:
703 		break;
704 	case -1:
705 		netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
706 		kfree_skb(skb);
707 		ret = 0;
708 		break;
709 	}
710 
711 	return ret;
712 }
713 
714 static int gtp_dev_init(struct net_device *dev)
715 {
716 	struct gtp_dev *gtp = netdev_priv(dev);
717 
718 	gtp->dev = dev;
719 
720 	dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
721 	if (!dev->tstats)
722 		return -ENOMEM;
723 
724 	return 0;
725 }
726 
727 static void gtp_dev_uninit(struct net_device *dev)
728 {
729 	struct gtp_dev *gtp = netdev_priv(dev);
730 
731 	gtp_encap_disable(gtp);
732 	free_percpu(dev->tstats);
733 }
734 
735 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
736 {
737 	int payload_len = skb->len;
738 	struct gtp0_header *gtp0;
739 
740 	gtp0 = skb_push(skb, sizeof(*gtp0));
741 
742 	gtp0->flags	= 0x1e; /* v0, GTP-non-prime. */
743 	gtp0->type	= GTP_TPDU;
744 	gtp0->length	= htons(payload_len);
745 	gtp0->seq	= htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
746 	gtp0->flow	= htons(pctx->u.v0.flow);
747 	gtp0->number	= 0xff;
748 	gtp0->spare[0]	= gtp0->spare[1] = gtp0->spare[2] = 0xff;
749 	gtp0->tid	= cpu_to_be64(pctx->u.v0.tid);
750 }
751 
752 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
753 {
754 	int payload_len = skb->len;
755 	struct gtp1_header *gtp1;
756 
757 	gtp1 = skb_push(skb, sizeof(*gtp1));
758 
759 	/* Bits    8  7  6  5  4  3  2	1
760 	 *	  +--+--+--+--+--+--+--+--+
761 	 *	  |version |PT| 0| E| S|PN|
762 	 *	  +--+--+--+--+--+--+--+--+
763 	 *	    0  0  1  1	1  0  0  0
764 	 */
765 	gtp1->flags	= 0x30; /* v1, GTP-non-prime. */
766 	gtp1->type	= GTP_TPDU;
767 	gtp1->length	= htons(payload_len);
768 	gtp1->tid	= htonl(pctx->u.v1.o_tei);
769 
770 	/* TODO: Support for extension header, sequence number and N-PDU.
771 	 *	 Update the length field if any of them is available.
772 	 */
773 }
774 
775 struct gtp_pktinfo {
776 	struct sock		*sk;
777 	struct iphdr		*iph;
778 	struct flowi4		fl4;
779 	struct rtable		*rt;
780 	struct pdp_ctx		*pctx;
781 	struct net_device	*dev;
782 	__be16			gtph_port;
783 };
784 
785 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
786 {
787 	switch (pktinfo->pctx->gtp_version) {
788 	case GTP_V0:
789 		pktinfo->gtph_port = htons(GTP0_PORT);
790 		gtp0_push_header(skb, pktinfo->pctx);
791 		break;
792 	case GTP_V1:
793 		pktinfo->gtph_port = htons(GTP1U_PORT);
794 		gtp1_push_header(skb, pktinfo->pctx);
795 		break;
796 	}
797 }
798 
799 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
800 					struct sock *sk, struct iphdr *iph,
801 					struct pdp_ctx *pctx, struct rtable *rt,
802 					struct flowi4 *fl4,
803 					struct net_device *dev)
804 {
805 	pktinfo->sk	= sk;
806 	pktinfo->iph	= iph;
807 	pktinfo->pctx	= pctx;
808 	pktinfo->rt	= rt;
809 	pktinfo->fl4	= *fl4;
810 	pktinfo->dev	= dev;
811 }
812 
813 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
814 			     struct gtp_pktinfo *pktinfo)
815 {
816 	struct gtp_dev *gtp = netdev_priv(dev);
817 	struct pdp_ctx *pctx;
818 	struct rtable *rt;
819 	struct flowi4 fl4;
820 	struct iphdr *iph;
821 	__be16 df;
822 	int mtu;
823 
824 	/* Read the IP destination address and resolve the PDP context.
825 	 * Prepend PDP header with TEI/TID from PDP ctx.
826 	 */
827 	iph = ip_hdr(skb);
828 	if (gtp->role == GTP_ROLE_SGSN)
829 		pctx = ipv4_pdp_find(gtp, iph->saddr);
830 	else
831 		pctx = ipv4_pdp_find(gtp, iph->daddr);
832 
833 	if (!pctx) {
834 		netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
835 			   &iph->daddr);
836 		return -ENOENT;
837 	}
838 	netdev_dbg(dev, "found PDP context %p\n", pctx);
839 
840 	rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr,
841 				  inet_sk(pctx->sk)->inet_saddr);
842 	if (IS_ERR(rt)) {
843 		netdev_dbg(dev, "no route to SSGN %pI4\n",
844 			   &pctx->peer_addr_ip4.s_addr);
845 		dev->stats.tx_carrier_errors++;
846 		goto err;
847 	}
848 
849 	if (rt->dst.dev == dev) {
850 		netdev_dbg(dev, "circular route to SSGN %pI4\n",
851 			   &pctx->peer_addr_ip4.s_addr);
852 		dev->stats.collisions++;
853 		goto err_rt;
854 	}
855 
856 	/* This is similar to tnl_update_pmtu(). */
857 	df = iph->frag_off;
858 	if (df) {
859 		mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
860 			sizeof(struct iphdr) - sizeof(struct udphdr);
861 		switch (pctx->gtp_version) {
862 		case GTP_V0:
863 			mtu -= sizeof(struct gtp0_header);
864 			break;
865 		case GTP_V1:
866 			mtu -= sizeof(struct gtp1_header);
867 			break;
868 		}
869 	} else {
870 		mtu = dst_mtu(&rt->dst);
871 	}
872 
873 	skb_dst_update_pmtu_no_confirm(skb, mtu);
874 
875 	if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) &&
876 	    mtu < ntohs(iph->tot_len)) {
877 		netdev_dbg(dev, "packet too big, fragmentation needed\n");
878 		icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
879 			      htonl(mtu));
880 		goto err_rt;
881 	}
882 
883 	gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev);
884 	gtp_push_header(skb, pktinfo);
885 
886 	return 0;
887 err_rt:
888 	ip_rt_put(rt);
889 err:
890 	return -EBADMSG;
891 }
892 
893 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
894 {
895 	unsigned int proto = ntohs(skb->protocol);
896 	struct gtp_pktinfo pktinfo;
897 	int err;
898 
899 	/* Ensure there is sufficient headroom. */
900 	if (skb_cow_head(skb, dev->needed_headroom))
901 		goto tx_err;
902 
903 	skb_reset_inner_headers(skb);
904 
905 	/* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
906 	rcu_read_lock();
907 	switch (proto) {
908 	case ETH_P_IP:
909 		err = gtp_build_skb_ip4(skb, dev, &pktinfo);
910 		break;
911 	default:
912 		err = -EOPNOTSUPP;
913 		break;
914 	}
915 	rcu_read_unlock();
916 
917 	if (err < 0)
918 		goto tx_err;
919 
920 	switch (proto) {
921 	case ETH_P_IP:
922 		netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
923 			   &pktinfo.iph->saddr, &pktinfo.iph->daddr);
924 		udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
925 				    pktinfo.fl4.saddr, pktinfo.fl4.daddr,
926 				    pktinfo.iph->tos,
927 				    ip4_dst_hoplimit(&pktinfo.rt->dst),
928 				    0,
929 				    pktinfo.gtph_port, pktinfo.gtph_port,
930 				    !net_eq(sock_net(pktinfo.pctx->sk),
931 					    dev_net(dev)),
932 				    false);
933 		break;
934 	}
935 
936 	return NETDEV_TX_OK;
937 tx_err:
938 	dev->stats.tx_errors++;
939 	dev_kfree_skb(skb);
940 	return NETDEV_TX_OK;
941 }
942 
943 static const struct net_device_ops gtp_netdev_ops = {
944 	.ndo_init		= gtp_dev_init,
945 	.ndo_uninit		= gtp_dev_uninit,
946 	.ndo_start_xmit		= gtp_dev_xmit,
947 	.ndo_get_stats64	= dev_get_tstats64,
948 };
949 
950 static const struct device_type gtp_type = {
951 	.name = "gtp",
952 };
953 
954 static void gtp_link_setup(struct net_device *dev)
955 {
956 	unsigned int max_gtp_header_len = sizeof(struct iphdr) +
957 					  sizeof(struct udphdr) +
958 					  sizeof(struct gtp0_header);
959 
960 	dev->netdev_ops		= &gtp_netdev_ops;
961 	dev->needs_free_netdev	= true;
962 	SET_NETDEV_DEVTYPE(dev, &gtp_type);
963 
964 	dev->hard_header_len = 0;
965 	dev->addr_len = 0;
966 	dev->mtu = ETH_DATA_LEN - max_gtp_header_len;
967 
968 	/* Zero header length. */
969 	dev->type = ARPHRD_NONE;
970 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
971 
972 	dev->priv_flags	|= IFF_NO_QUEUE;
973 	dev->features	|= NETIF_F_LLTX;
974 	netif_keep_dst(dev);
975 
976 	dev->needed_headroom	= LL_MAX_HEADER + max_gtp_header_len;
977 }
978 
979 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
980 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
981 
982 static void gtp_destructor(struct net_device *dev)
983 {
984 	struct gtp_dev *gtp = netdev_priv(dev);
985 
986 	kfree(gtp->addr_hash);
987 	kfree(gtp->tid_hash);
988 }
989 
990 static struct sock *gtp_create_sock(int type, struct gtp_dev *gtp)
991 {
992 	struct udp_tunnel_sock_cfg tuncfg = {};
993 	struct udp_port_cfg udp_conf = {
994 		.local_ip.s_addr	= htonl(INADDR_ANY),
995 		.family			= AF_INET,
996 	};
997 	struct net *net = gtp->net;
998 	struct socket *sock;
999 	int err;
1000 
1001 	if (type == UDP_ENCAP_GTP0)
1002 		udp_conf.local_udp_port = htons(GTP0_PORT);
1003 	else if (type == UDP_ENCAP_GTP1U)
1004 		udp_conf.local_udp_port = htons(GTP1U_PORT);
1005 	else
1006 		return ERR_PTR(-EINVAL);
1007 
1008 	err = udp_sock_create(net, &udp_conf, &sock);
1009 	if (err)
1010 		return ERR_PTR(err);
1011 
1012 	tuncfg.sk_user_data = gtp;
1013 	tuncfg.encap_type = type;
1014 	tuncfg.encap_rcv = gtp_encap_recv;
1015 	tuncfg.encap_destroy = NULL;
1016 
1017 	setup_udp_tunnel_sock(net, sock, &tuncfg);
1018 
1019 	return sock->sk;
1020 }
1021 
1022 static int gtp_create_sockets(struct gtp_dev *gtp, struct nlattr *data[])
1023 {
1024 	struct sock *sk1u = NULL;
1025 	struct sock *sk0 = NULL;
1026 
1027 	sk0 = gtp_create_sock(UDP_ENCAP_GTP0, gtp);
1028 	if (IS_ERR(sk0))
1029 		return PTR_ERR(sk0);
1030 
1031 	sk1u = gtp_create_sock(UDP_ENCAP_GTP1U, gtp);
1032 	if (IS_ERR(sk1u)) {
1033 		udp_tunnel_sock_release(sk0->sk_socket);
1034 		return PTR_ERR(sk1u);
1035 	}
1036 
1037 	gtp->sk_created = true;
1038 	gtp->sk0 = sk0;
1039 	gtp->sk1u = sk1u;
1040 
1041 	return 0;
1042 }
1043 
1044 static int gtp_newlink(struct net *src_net, struct net_device *dev,
1045 		       struct nlattr *tb[], struct nlattr *data[],
1046 		       struct netlink_ext_ack *extack)
1047 {
1048 	unsigned int role = GTP_ROLE_GGSN;
1049 	struct gtp_dev *gtp;
1050 	struct gtp_net *gn;
1051 	int hashsize, err;
1052 
1053 	gtp = netdev_priv(dev);
1054 
1055 	if (!data[IFLA_GTP_PDP_HASHSIZE]) {
1056 		hashsize = 1024;
1057 	} else {
1058 		hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
1059 		if (!hashsize)
1060 			hashsize = 1024;
1061 	}
1062 
1063 	if (data[IFLA_GTP_ROLE]) {
1064 		role = nla_get_u32(data[IFLA_GTP_ROLE]);
1065 		if (role > GTP_ROLE_SGSN)
1066 			return -EINVAL;
1067 	}
1068 	gtp->role = role;
1069 
1070 	if (!data[IFLA_GTP_RESTART_COUNT])
1071 		gtp->restart_count = 0;
1072 	else
1073 		gtp->restart_count = nla_get_u8(data[IFLA_GTP_RESTART_COUNT]);
1074 
1075 	gtp->net = src_net;
1076 
1077 	err = gtp_hashtable_new(gtp, hashsize);
1078 	if (err < 0)
1079 		return err;
1080 
1081 	if (data[IFLA_GTP_CREATE_SOCKETS])
1082 		err = gtp_create_sockets(gtp, data);
1083 	else
1084 		err = gtp_encap_enable(gtp, data);
1085 	if (err < 0)
1086 		goto out_hashtable;
1087 
1088 	err = register_netdevice(dev);
1089 	if (err < 0) {
1090 		netdev_dbg(dev, "failed to register new netdev %d\n", err);
1091 		goto out_encap;
1092 	}
1093 
1094 	gn = net_generic(dev_net(dev), gtp_net_id);
1095 	list_add_rcu(&gtp->list, &gn->gtp_dev_list);
1096 	dev->priv_destructor = gtp_destructor;
1097 
1098 	netdev_dbg(dev, "registered new GTP interface\n");
1099 
1100 	return 0;
1101 
1102 out_encap:
1103 	gtp_encap_disable(gtp);
1104 out_hashtable:
1105 	kfree(gtp->addr_hash);
1106 	kfree(gtp->tid_hash);
1107 	return err;
1108 }
1109 
1110 static void gtp_dellink(struct net_device *dev, struct list_head *head)
1111 {
1112 	struct gtp_dev *gtp = netdev_priv(dev);
1113 	struct pdp_ctx *pctx;
1114 	int i;
1115 
1116 	for (i = 0; i < gtp->hash_size; i++)
1117 		hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i], hlist_tid)
1118 			pdp_context_delete(pctx);
1119 
1120 	list_del_rcu(&gtp->list);
1121 	unregister_netdevice_queue(dev, head);
1122 }
1123 
1124 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
1125 	[IFLA_GTP_FD0]			= { .type = NLA_U32 },
1126 	[IFLA_GTP_FD1]			= { .type = NLA_U32 },
1127 	[IFLA_GTP_PDP_HASHSIZE]		= { .type = NLA_U32 },
1128 	[IFLA_GTP_ROLE]			= { .type = NLA_U32 },
1129 	[IFLA_GTP_CREATE_SOCKETS]	= { .type = NLA_U8 },
1130 	[IFLA_GTP_RESTART_COUNT]	= { .type = NLA_U8 },
1131 };
1132 
1133 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
1134 			struct netlink_ext_ack *extack)
1135 {
1136 	if (!data)
1137 		return -EINVAL;
1138 
1139 	return 0;
1140 }
1141 
1142 static size_t gtp_get_size(const struct net_device *dev)
1143 {
1144 	return nla_total_size(sizeof(__u32)) + /* IFLA_GTP_PDP_HASHSIZE */
1145 		nla_total_size(sizeof(__u32)) + /* IFLA_GTP_ROLE */
1146 		nla_total_size(sizeof(__u8)); /* IFLA_GTP_RESTART_COUNT */
1147 }
1148 
1149 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
1150 {
1151 	struct gtp_dev *gtp = netdev_priv(dev);
1152 
1153 	if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
1154 		goto nla_put_failure;
1155 	if (nla_put_u32(skb, IFLA_GTP_ROLE, gtp->role))
1156 		goto nla_put_failure;
1157 	if (nla_put_u8(skb, IFLA_GTP_RESTART_COUNT, gtp->restart_count))
1158 		goto nla_put_failure;
1159 
1160 	return 0;
1161 
1162 nla_put_failure:
1163 	return -EMSGSIZE;
1164 }
1165 
1166 static struct rtnl_link_ops gtp_link_ops __read_mostly = {
1167 	.kind		= "gtp",
1168 	.maxtype	= IFLA_GTP_MAX,
1169 	.policy		= gtp_policy,
1170 	.priv_size	= sizeof(struct gtp_dev),
1171 	.setup		= gtp_link_setup,
1172 	.validate	= gtp_validate,
1173 	.newlink	= gtp_newlink,
1174 	.dellink	= gtp_dellink,
1175 	.get_size	= gtp_get_size,
1176 	.fill_info	= gtp_fill_info,
1177 };
1178 
1179 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
1180 {
1181 	int i;
1182 
1183 	gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
1184 				       GFP_KERNEL | __GFP_NOWARN);
1185 	if (gtp->addr_hash == NULL)
1186 		return -ENOMEM;
1187 
1188 	gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
1189 				      GFP_KERNEL | __GFP_NOWARN);
1190 	if (gtp->tid_hash == NULL)
1191 		goto err1;
1192 
1193 	gtp->hash_size = hsize;
1194 
1195 	for (i = 0; i < hsize; i++) {
1196 		INIT_HLIST_HEAD(&gtp->addr_hash[i]);
1197 		INIT_HLIST_HEAD(&gtp->tid_hash[i]);
1198 	}
1199 	return 0;
1200 err1:
1201 	kfree(gtp->addr_hash);
1202 	return -ENOMEM;
1203 }
1204 
1205 static struct sock *gtp_encap_enable_socket(int fd, int type,
1206 					    struct gtp_dev *gtp)
1207 {
1208 	struct udp_tunnel_sock_cfg tuncfg = {NULL};
1209 	struct socket *sock;
1210 	struct sock *sk;
1211 	int err;
1212 
1213 	pr_debug("enable gtp on %d, %d\n", fd, type);
1214 
1215 	sock = sockfd_lookup(fd, &err);
1216 	if (!sock) {
1217 		pr_debug("gtp socket fd=%d not found\n", fd);
1218 		return NULL;
1219 	}
1220 
1221 	sk = sock->sk;
1222 	if (sk->sk_protocol != IPPROTO_UDP ||
1223 	    sk->sk_type != SOCK_DGRAM ||
1224 	    (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) {
1225 		pr_debug("socket fd=%d not UDP\n", fd);
1226 		sk = ERR_PTR(-EINVAL);
1227 		goto out_sock;
1228 	}
1229 
1230 	lock_sock(sk);
1231 	if (sk->sk_user_data) {
1232 		sk = ERR_PTR(-EBUSY);
1233 		goto out_rel_sock;
1234 	}
1235 
1236 	sock_hold(sk);
1237 
1238 	tuncfg.sk_user_data = gtp;
1239 	tuncfg.encap_type = type;
1240 	tuncfg.encap_rcv = gtp_encap_recv;
1241 	tuncfg.encap_destroy = gtp_encap_destroy;
1242 
1243 	setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
1244 
1245 out_rel_sock:
1246 	release_sock(sock->sk);
1247 out_sock:
1248 	sockfd_put(sock);
1249 	return sk;
1250 }
1251 
1252 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
1253 {
1254 	struct sock *sk1u = NULL;
1255 	struct sock *sk0 = NULL;
1256 
1257 	if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
1258 		return -EINVAL;
1259 
1260 	if (data[IFLA_GTP_FD0]) {
1261 		u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
1262 
1263 		sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
1264 		if (IS_ERR(sk0))
1265 			return PTR_ERR(sk0);
1266 	}
1267 
1268 	if (data[IFLA_GTP_FD1]) {
1269 		u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
1270 
1271 		sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
1272 		if (IS_ERR(sk1u)) {
1273 			gtp_encap_disable_sock(sk0);
1274 			return PTR_ERR(sk1u);
1275 		}
1276 	}
1277 
1278 	gtp->sk0 = sk0;
1279 	gtp->sk1u = sk1u;
1280 
1281 	return 0;
1282 }
1283 
1284 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
1285 {
1286 	struct gtp_dev *gtp = NULL;
1287 	struct net_device *dev;
1288 	struct net *net;
1289 
1290 	/* Examine the link attributes and figure out which network namespace
1291 	 * we are talking about.
1292 	 */
1293 	if (nla[GTPA_NET_NS_FD])
1294 		net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
1295 	else
1296 		net = get_net(src_net);
1297 
1298 	if (IS_ERR(net))
1299 		return NULL;
1300 
1301 	/* Check if there's an existing gtpX device to configure */
1302 	dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
1303 	if (dev && dev->netdev_ops == &gtp_netdev_ops)
1304 		gtp = netdev_priv(dev);
1305 
1306 	put_net(net);
1307 	return gtp;
1308 }
1309 
1310 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
1311 {
1312 	pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
1313 	pctx->af = AF_INET;
1314 	pctx->peer_addr_ip4.s_addr =
1315 		nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
1316 	pctx->ms_addr_ip4.s_addr =
1317 		nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1318 
1319 	switch (pctx->gtp_version) {
1320 	case GTP_V0:
1321 		/* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
1322 		 * label needs to be the same for uplink and downlink packets,
1323 		 * so let's annotate this.
1324 		 */
1325 		pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
1326 		pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
1327 		break;
1328 	case GTP_V1:
1329 		pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
1330 		pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
1331 		break;
1332 	default:
1333 		break;
1334 	}
1335 }
1336 
1337 static struct pdp_ctx *gtp_pdp_add(struct gtp_dev *gtp, struct sock *sk,
1338 				   struct genl_info *info)
1339 {
1340 	struct pdp_ctx *pctx, *pctx_tid = NULL;
1341 	struct net_device *dev = gtp->dev;
1342 	u32 hash_ms, hash_tid = 0;
1343 	unsigned int version;
1344 	bool found = false;
1345 	__be32 ms_addr;
1346 
1347 	ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1348 	hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
1349 	version = nla_get_u32(info->attrs[GTPA_VERSION]);
1350 
1351 	pctx = ipv4_pdp_find(gtp, ms_addr);
1352 	if (pctx)
1353 		found = true;
1354 	if (version == GTP_V0)
1355 		pctx_tid = gtp0_pdp_find(gtp,
1356 					 nla_get_u64(info->attrs[GTPA_TID]));
1357 	else if (version == GTP_V1)
1358 		pctx_tid = gtp1_pdp_find(gtp,
1359 					 nla_get_u32(info->attrs[GTPA_I_TEI]));
1360 	if (pctx_tid)
1361 		found = true;
1362 
1363 	if (found) {
1364 		if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
1365 			return ERR_PTR(-EEXIST);
1366 		if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
1367 			return ERR_PTR(-EOPNOTSUPP);
1368 
1369 		if (pctx && pctx_tid)
1370 			return ERR_PTR(-EEXIST);
1371 		if (!pctx)
1372 			pctx = pctx_tid;
1373 
1374 		ipv4_pdp_fill(pctx, info);
1375 
1376 		if (pctx->gtp_version == GTP_V0)
1377 			netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
1378 				   pctx->u.v0.tid, pctx);
1379 		else if (pctx->gtp_version == GTP_V1)
1380 			netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
1381 				   pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1382 
1383 		return pctx;
1384 
1385 	}
1386 
1387 	pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC);
1388 	if (pctx == NULL)
1389 		return ERR_PTR(-ENOMEM);
1390 
1391 	sock_hold(sk);
1392 	pctx->sk = sk;
1393 	pctx->dev = gtp->dev;
1394 	ipv4_pdp_fill(pctx, info);
1395 	atomic_set(&pctx->tx_seq, 0);
1396 
1397 	switch (pctx->gtp_version) {
1398 	case GTP_V0:
1399 		/* TS 09.60: "The flow label identifies unambiguously a GTP
1400 		 * flow.". We use the tid for this instead, I cannot find a
1401 		 * situation in which this doesn't unambiguosly identify the
1402 		 * PDP context.
1403 		 */
1404 		hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
1405 		break;
1406 	case GTP_V1:
1407 		hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
1408 		break;
1409 	}
1410 
1411 	hlist_add_head_rcu(&pctx->hlist_addr, &gtp->addr_hash[hash_ms]);
1412 	hlist_add_head_rcu(&pctx->hlist_tid, &gtp->tid_hash[hash_tid]);
1413 
1414 	switch (pctx->gtp_version) {
1415 	case GTP_V0:
1416 		netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1417 			   pctx->u.v0.tid, &pctx->peer_addr_ip4,
1418 			   &pctx->ms_addr_ip4, pctx);
1419 		break;
1420 	case GTP_V1:
1421 		netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1422 			   pctx->u.v1.i_tei, pctx->u.v1.o_tei,
1423 			   &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx);
1424 		break;
1425 	}
1426 
1427 	return pctx;
1428 }
1429 
1430 static void pdp_context_free(struct rcu_head *head)
1431 {
1432 	struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
1433 
1434 	sock_put(pctx->sk);
1435 	kfree(pctx);
1436 }
1437 
1438 static void pdp_context_delete(struct pdp_ctx *pctx)
1439 {
1440 	hlist_del_rcu(&pctx->hlist_tid);
1441 	hlist_del_rcu(&pctx->hlist_addr);
1442 	call_rcu(&pctx->rcu_head, pdp_context_free);
1443 }
1444 
1445 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation);
1446 
1447 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
1448 {
1449 	unsigned int version;
1450 	struct pdp_ctx *pctx;
1451 	struct gtp_dev *gtp;
1452 	struct sock *sk;
1453 	int err;
1454 
1455 	if (!info->attrs[GTPA_VERSION] ||
1456 	    !info->attrs[GTPA_LINK] ||
1457 	    !info->attrs[GTPA_PEER_ADDRESS] ||
1458 	    !info->attrs[GTPA_MS_ADDRESS])
1459 		return -EINVAL;
1460 
1461 	version = nla_get_u32(info->attrs[GTPA_VERSION]);
1462 
1463 	switch (version) {
1464 	case GTP_V0:
1465 		if (!info->attrs[GTPA_TID] ||
1466 		    !info->attrs[GTPA_FLOW])
1467 			return -EINVAL;
1468 		break;
1469 	case GTP_V1:
1470 		if (!info->attrs[GTPA_I_TEI] ||
1471 		    !info->attrs[GTPA_O_TEI])
1472 			return -EINVAL;
1473 		break;
1474 
1475 	default:
1476 		return -EINVAL;
1477 	}
1478 
1479 	rtnl_lock();
1480 
1481 	gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1482 	if (!gtp) {
1483 		err = -ENODEV;
1484 		goto out_unlock;
1485 	}
1486 
1487 	if (version == GTP_V0)
1488 		sk = gtp->sk0;
1489 	else if (version == GTP_V1)
1490 		sk = gtp->sk1u;
1491 	else
1492 		sk = NULL;
1493 
1494 	if (!sk) {
1495 		err = -ENODEV;
1496 		goto out_unlock;
1497 	}
1498 
1499 	pctx = gtp_pdp_add(gtp, sk, info);
1500 	if (IS_ERR(pctx)) {
1501 		err = PTR_ERR(pctx);
1502 	} else {
1503 		gtp_tunnel_notify(pctx, GTP_CMD_NEWPDP, GFP_KERNEL);
1504 		err = 0;
1505 	}
1506 
1507 out_unlock:
1508 	rtnl_unlock();
1509 	return err;
1510 }
1511 
1512 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
1513 					    struct nlattr *nla[])
1514 {
1515 	struct gtp_dev *gtp;
1516 
1517 	gtp = gtp_find_dev(net, nla);
1518 	if (!gtp)
1519 		return ERR_PTR(-ENODEV);
1520 
1521 	if (nla[GTPA_MS_ADDRESS]) {
1522 		__be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
1523 
1524 		return ipv4_pdp_find(gtp, ip);
1525 	} else if (nla[GTPA_VERSION]) {
1526 		u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
1527 
1528 		if (gtp_version == GTP_V0 && nla[GTPA_TID])
1529 			return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]));
1530 		else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI])
1531 			return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]));
1532 	}
1533 
1534 	return ERR_PTR(-EINVAL);
1535 }
1536 
1537 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
1538 {
1539 	struct pdp_ctx *pctx;
1540 
1541 	if (nla[GTPA_LINK])
1542 		pctx = gtp_find_pdp_by_link(net, nla);
1543 	else
1544 		pctx = ERR_PTR(-EINVAL);
1545 
1546 	if (!pctx)
1547 		pctx = ERR_PTR(-ENOENT);
1548 
1549 	return pctx;
1550 }
1551 
1552 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
1553 {
1554 	struct pdp_ctx *pctx;
1555 	int err = 0;
1556 
1557 	if (!info->attrs[GTPA_VERSION])
1558 		return -EINVAL;
1559 
1560 	rcu_read_lock();
1561 
1562 	pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1563 	if (IS_ERR(pctx)) {
1564 		err = PTR_ERR(pctx);
1565 		goto out_unlock;
1566 	}
1567 
1568 	if (pctx->gtp_version == GTP_V0)
1569 		netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1570 			   pctx->u.v0.tid, pctx);
1571 	else if (pctx->gtp_version == GTP_V1)
1572 		netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1573 			   pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1574 
1575 	gtp_tunnel_notify(pctx, GTP_CMD_DELPDP, GFP_ATOMIC);
1576 	pdp_context_delete(pctx);
1577 
1578 out_unlock:
1579 	rcu_read_unlock();
1580 	return err;
1581 }
1582 
1583 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
1584 			      int flags, u32 type, struct pdp_ctx *pctx)
1585 {
1586 	void *genlh;
1587 
1588 	genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, flags,
1589 			    type);
1590 	if (genlh == NULL)
1591 		goto nlmsg_failure;
1592 
1593 	if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
1594 	    nla_put_u32(skb, GTPA_LINK, pctx->dev->ifindex) ||
1595 	    nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) ||
1596 	    nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
1597 		goto nla_put_failure;
1598 
1599 	switch (pctx->gtp_version) {
1600 	case GTP_V0:
1601 		if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
1602 		    nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
1603 			goto nla_put_failure;
1604 		break;
1605 	case GTP_V1:
1606 		if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
1607 		    nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
1608 			goto nla_put_failure;
1609 		break;
1610 	}
1611 	genlmsg_end(skb, genlh);
1612 	return 0;
1613 
1614 nlmsg_failure:
1615 nla_put_failure:
1616 	genlmsg_cancel(skb, genlh);
1617 	return -EMSGSIZE;
1618 }
1619 
1620 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation)
1621 {
1622 	struct sk_buff *msg;
1623 	int ret;
1624 
1625 	msg = nlmsg_new(NLMSG_DEFAULT_SIZE, allocation);
1626 	if (!msg)
1627 		return -ENOMEM;
1628 
1629 	ret = gtp_genl_fill_info(msg, 0, 0, 0, cmd, pctx);
1630 	if (ret < 0) {
1631 		nlmsg_free(msg);
1632 		return ret;
1633 	}
1634 
1635 	ret = genlmsg_multicast_netns(&gtp_genl_family, dev_net(pctx->dev), msg,
1636 				      0, GTP_GENL_MCGRP, GFP_ATOMIC);
1637 	return ret;
1638 }
1639 
1640 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
1641 {
1642 	struct pdp_ctx *pctx = NULL;
1643 	struct sk_buff *skb2;
1644 	int err;
1645 
1646 	if (!info->attrs[GTPA_VERSION])
1647 		return -EINVAL;
1648 
1649 	rcu_read_lock();
1650 
1651 	pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1652 	if (IS_ERR(pctx)) {
1653 		err = PTR_ERR(pctx);
1654 		goto err_unlock;
1655 	}
1656 
1657 	skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
1658 	if (skb2 == NULL) {
1659 		err = -ENOMEM;
1660 		goto err_unlock;
1661 	}
1662 
1663 	err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, info->snd_seq,
1664 				 0, info->nlhdr->nlmsg_type, pctx);
1665 	if (err < 0)
1666 		goto err_unlock_free;
1667 
1668 	rcu_read_unlock();
1669 	return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
1670 
1671 err_unlock_free:
1672 	kfree_skb(skb2);
1673 err_unlock:
1674 	rcu_read_unlock();
1675 	return err;
1676 }
1677 
1678 static int gtp_genl_dump_pdp(struct sk_buff *skb,
1679 				struct netlink_callback *cb)
1680 {
1681 	struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
1682 	int i, j, bucket = cb->args[0], skip = cb->args[1];
1683 	struct net *net = sock_net(skb->sk);
1684 	struct pdp_ctx *pctx;
1685 	struct gtp_net *gn;
1686 
1687 	gn = net_generic(net, gtp_net_id);
1688 
1689 	if (cb->args[4])
1690 		return 0;
1691 
1692 	rcu_read_lock();
1693 	list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
1694 		if (last_gtp && last_gtp != gtp)
1695 			continue;
1696 		else
1697 			last_gtp = NULL;
1698 
1699 		for (i = bucket; i < gtp->hash_size; i++) {
1700 			j = 0;
1701 			hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i],
1702 						 hlist_tid) {
1703 				if (j >= skip &&
1704 				    gtp_genl_fill_info(skb,
1705 					    NETLINK_CB(cb->skb).portid,
1706 					    cb->nlh->nlmsg_seq,
1707 					    NLM_F_MULTI,
1708 					    cb->nlh->nlmsg_type, pctx)) {
1709 					cb->args[0] = i;
1710 					cb->args[1] = j;
1711 					cb->args[2] = (unsigned long)gtp;
1712 					goto out;
1713 				}
1714 				j++;
1715 			}
1716 			skip = 0;
1717 		}
1718 		bucket = 0;
1719 	}
1720 	cb->args[4] = 1;
1721 out:
1722 	rcu_read_unlock();
1723 	return skb->len;
1724 }
1725 
1726 static int gtp_genl_send_echo_req(struct sk_buff *skb, struct genl_info *info)
1727 {
1728 	struct sk_buff *skb_to_send;
1729 	__be32 src_ip, dst_ip;
1730 	unsigned int version;
1731 	struct gtp_dev *gtp;
1732 	struct flowi4 fl4;
1733 	struct rtable *rt;
1734 	struct sock *sk;
1735 	__be16 port;
1736 	int len;
1737 
1738 	if (!info->attrs[GTPA_VERSION] ||
1739 	    !info->attrs[GTPA_LINK] ||
1740 	    !info->attrs[GTPA_PEER_ADDRESS] ||
1741 	    !info->attrs[GTPA_MS_ADDRESS])
1742 		return -EINVAL;
1743 
1744 	version = nla_get_u32(info->attrs[GTPA_VERSION]);
1745 	dst_ip = nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
1746 	src_ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1747 
1748 	gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1749 	if (!gtp)
1750 		return -ENODEV;
1751 
1752 	if (!gtp->sk_created)
1753 		return -EOPNOTSUPP;
1754 	if (!(gtp->dev->flags & IFF_UP))
1755 		return -ENETDOWN;
1756 
1757 	if (version == GTP_V0) {
1758 		struct gtp0_header *gtp0_h;
1759 
1760 		len = LL_RESERVED_SPACE(gtp->dev) + sizeof(struct gtp0_header) +
1761 			sizeof(struct iphdr) + sizeof(struct udphdr);
1762 
1763 		skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
1764 		if (!skb_to_send)
1765 			return -ENOMEM;
1766 
1767 		sk = gtp->sk0;
1768 		port = htons(GTP0_PORT);
1769 
1770 		gtp0_h = skb_push(skb_to_send, sizeof(struct gtp0_header));
1771 		memset(gtp0_h, 0, sizeof(struct gtp0_header));
1772 		gtp0_build_echo_msg(gtp0_h, GTP_ECHO_REQ);
1773 	} else if (version == GTP_V1) {
1774 		struct gtp1_header_long *gtp1u_h;
1775 
1776 		len = LL_RESERVED_SPACE(gtp->dev) +
1777 			sizeof(struct gtp1_header_long) +
1778 			sizeof(struct iphdr) + sizeof(struct udphdr);
1779 
1780 		skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
1781 		if (!skb_to_send)
1782 			return -ENOMEM;
1783 
1784 		sk = gtp->sk1u;
1785 		port = htons(GTP1U_PORT);
1786 
1787 		gtp1u_h = skb_push(skb_to_send,
1788 				   sizeof(struct gtp1_header_long));
1789 		memset(gtp1u_h, 0, sizeof(struct gtp1_header_long));
1790 		gtp1u_build_echo_msg(gtp1u_h, GTP_ECHO_REQ);
1791 	} else {
1792 		return -ENODEV;
1793 	}
1794 
1795 	rt = ip4_route_output_gtp(&fl4, sk, dst_ip, src_ip);
1796 	if (IS_ERR(rt)) {
1797 		netdev_dbg(gtp->dev, "no route for echo request to %pI4\n",
1798 			   &dst_ip);
1799 		kfree_skb(skb_to_send);
1800 		return -ENODEV;
1801 	}
1802 
1803 	udp_tunnel_xmit_skb(rt, sk, skb_to_send,
1804 			    fl4.saddr, fl4.daddr,
1805 			    fl4.flowi4_tos,
1806 			    ip4_dst_hoplimit(&rt->dst),
1807 			    0,
1808 			    port, port,
1809 			    !net_eq(sock_net(sk),
1810 				    dev_net(gtp->dev)),
1811 			    false);
1812 	return 0;
1813 }
1814 
1815 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
1816 	[GTPA_LINK]		= { .type = NLA_U32, },
1817 	[GTPA_VERSION]		= { .type = NLA_U32, },
1818 	[GTPA_TID]		= { .type = NLA_U64, },
1819 	[GTPA_PEER_ADDRESS]	= { .type = NLA_U32, },
1820 	[GTPA_MS_ADDRESS]	= { .type = NLA_U32, },
1821 	[GTPA_FLOW]		= { .type = NLA_U16, },
1822 	[GTPA_NET_NS_FD]	= { .type = NLA_U32, },
1823 	[GTPA_I_TEI]		= { .type = NLA_U32, },
1824 	[GTPA_O_TEI]		= { .type = NLA_U32, },
1825 };
1826 
1827 static const struct genl_small_ops gtp_genl_ops[] = {
1828 	{
1829 		.cmd = GTP_CMD_NEWPDP,
1830 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1831 		.doit = gtp_genl_new_pdp,
1832 		.flags = GENL_ADMIN_PERM,
1833 	},
1834 	{
1835 		.cmd = GTP_CMD_DELPDP,
1836 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1837 		.doit = gtp_genl_del_pdp,
1838 		.flags = GENL_ADMIN_PERM,
1839 	},
1840 	{
1841 		.cmd = GTP_CMD_GETPDP,
1842 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1843 		.doit = gtp_genl_get_pdp,
1844 		.dumpit = gtp_genl_dump_pdp,
1845 		.flags = GENL_ADMIN_PERM,
1846 	},
1847 	{
1848 		.cmd = GTP_CMD_ECHOREQ,
1849 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1850 		.doit = gtp_genl_send_echo_req,
1851 		.flags = GENL_ADMIN_PERM,
1852 	},
1853 };
1854 
1855 static struct genl_family gtp_genl_family __ro_after_init = {
1856 	.name		= "gtp",
1857 	.version	= 0,
1858 	.hdrsize	= 0,
1859 	.maxattr	= GTPA_MAX,
1860 	.policy = gtp_genl_policy,
1861 	.netnsok	= true,
1862 	.module		= THIS_MODULE,
1863 	.small_ops	= gtp_genl_ops,
1864 	.n_small_ops	= ARRAY_SIZE(gtp_genl_ops),
1865 	.resv_start_op	= GTP_CMD_ECHOREQ + 1,
1866 	.mcgrps		= gtp_genl_mcgrps,
1867 	.n_mcgrps	= ARRAY_SIZE(gtp_genl_mcgrps),
1868 };
1869 
1870 static int __net_init gtp_net_init(struct net *net)
1871 {
1872 	struct gtp_net *gn = net_generic(net, gtp_net_id);
1873 
1874 	INIT_LIST_HEAD(&gn->gtp_dev_list);
1875 	return 0;
1876 }
1877 
1878 static void __net_exit gtp_net_exit(struct net *net)
1879 {
1880 	struct gtp_net *gn = net_generic(net, gtp_net_id);
1881 	struct gtp_dev *gtp;
1882 	LIST_HEAD(list);
1883 
1884 	rtnl_lock();
1885 	list_for_each_entry(gtp, &gn->gtp_dev_list, list)
1886 		gtp_dellink(gtp->dev, &list);
1887 
1888 	unregister_netdevice_many(&list);
1889 	rtnl_unlock();
1890 }
1891 
1892 static struct pernet_operations gtp_net_ops = {
1893 	.init	= gtp_net_init,
1894 	.exit	= gtp_net_exit,
1895 	.id	= &gtp_net_id,
1896 	.size	= sizeof(struct gtp_net),
1897 };
1898 
1899 static int __init gtp_init(void)
1900 {
1901 	int err;
1902 
1903 	get_random_bytes(&gtp_h_initval, sizeof(gtp_h_initval));
1904 
1905 	err = rtnl_link_register(&gtp_link_ops);
1906 	if (err < 0)
1907 		goto error_out;
1908 
1909 	err = genl_register_family(&gtp_genl_family);
1910 	if (err < 0)
1911 		goto unreg_rtnl_link;
1912 
1913 	err = register_pernet_subsys(&gtp_net_ops);
1914 	if (err < 0)
1915 		goto unreg_genl_family;
1916 
1917 	pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1918 		sizeof(struct pdp_ctx));
1919 	return 0;
1920 
1921 unreg_genl_family:
1922 	genl_unregister_family(&gtp_genl_family);
1923 unreg_rtnl_link:
1924 	rtnl_link_unregister(&gtp_link_ops);
1925 error_out:
1926 	pr_err("error loading GTP module loaded\n");
1927 	return err;
1928 }
1929 late_initcall(gtp_init);
1930 
1931 static void __exit gtp_fini(void)
1932 {
1933 	genl_unregister_family(&gtp_genl_family);
1934 	rtnl_link_unregister(&gtp_link_ops);
1935 	unregister_pernet_subsys(&gtp_net_ops);
1936 
1937 	pr_info("GTP module unloaded\n");
1938 }
1939 module_exit(gtp_fini);
1940 
1941 MODULE_LICENSE("GPL");
1942 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
1943 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
1944 MODULE_ALIAS_RTNL_LINK("gtp");
1945 MODULE_ALIAS_GENL_FAMILY("gtp");
1946