1 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060 2 * 3 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH 4 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org> 5 * 6 * Author: Harald Welte <hwelte@sysmocom.de> 7 * Pablo Neira Ayuso <pablo@netfilter.org> 8 * Andreas Schultz <aschultz@travelping.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/skbuff.h> 20 #include <linux/udp.h> 21 #include <linux/rculist.h> 22 #include <linux/jhash.h> 23 #include <linux/if_tunnel.h> 24 #include <linux/net.h> 25 #include <linux/file.h> 26 #include <linux/gtp.h> 27 28 #include <net/net_namespace.h> 29 #include <net/protocol.h> 30 #include <net/ip.h> 31 #include <net/udp.h> 32 #include <net/udp_tunnel.h> 33 #include <net/icmp.h> 34 #include <net/xfrm.h> 35 #include <net/genetlink.h> 36 #include <net/netns/generic.h> 37 #include <net/gtp.h> 38 39 /* An active session for the subscriber. */ 40 struct pdp_ctx { 41 struct hlist_node hlist_tid; 42 struct hlist_node hlist_addr; 43 44 union { 45 u64 tid; 46 struct { 47 u64 tid; 48 u16 flow; 49 } v0; 50 struct { 51 u32 i_tei; 52 u32 o_tei; 53 } v1; 54 } u; 55 u8 gtp_version; 56 u16 af; 57 58 struct in_addr ms_addr_ip4; 59 struct in_addr sgsn_addr_ip4; 60 61 atomic_t tx_seq; 62 struct rcu_head rcu_head; 63 }; 64 65 /* One instance of the GTP device. */ 66 struct gtp_dev { 67 struct list_head list; 68 69 struct socket *sock0; 70 struct socket *sock1u; 71 72 struct net *net; 73 struct net_device *dev; 74 75 unsigned int hash_size; 76 struct hlist_head *tid_hash; 77 struct hlist_head *addr_hash; 78 }; 79 80 static int gtp_net_id __read_mostly; 81 82 struct gtp_net { 83 struct list_head gtp_dev_list; 84 }; 85 86 static u32 gtp_h_initval; 87 88 static inline u32 gtp0_hashfn(u64 tid) 89 { 90 u32 *tid32 = (u32 *) &tid; 91 return jhash_2words(tid32[0], tid32[1], gtp_h_initval); 92 } 93 94 static inline u32 gtp1u_hashfn(u32 tid) 95 { 96 return jhash_1word(tid, gtp_h_initval); 97 } 98 99 static inline u32 ipv4_hashfn(__be32 ip) 100 { 101 return jhash_1word((__force u32)ip, gtp_h_initval); 102 } 103 104 /* Resolve a PDP context structure based on the 64bit TID. */ 105 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid) 106 { 107 struct hlist_head *head; 108 struct pdp_ctx *pdp; 109 110 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size]; 111 112 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 113 if (pdp->gtp_version == GTP_V0 && 114 pdp->u.v0.tid == tid) 115 return pdp; 116 } 117 return NULL; 118 } 119 120 /* Resolve a PDP context structure based on the 32bit TEI. */ 121 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid) 122 { 123 struct hlist_head *head; 124 struct pdp_ctx *pdp; 125 126 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size]; 127 128 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 129 if (pdp->gtp_version == GTP_V1 && 130 pdp->u.v1.i_tei == tid) 131 return pdp; 132 } 133 return NULL; 134 } 135 136 /* Resolve a PDP context based on IPv4 address of MS. */ 137 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr) 138 { 139 struct hlist_head *head; 140 struct pdp_ctx *pdp; 141 142 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size]; 143 144 hlist_for_each_entry_rcu(pdp, head, hlist_addr) { 145 if (pdp->af == AF_INET && 146 pdp->ms_addr_ip4.s_addr == ms_addr) 147 return pdp; 148 } 149 150 return NULL; 151 } 152 153 static bool gtp_check_src_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx, 154 unsigned int hdrlen) 155 { 156 struct iphdr *iph; 157 158 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr))) 159 return false; 160 161 iph = (struct iphdr *)(skb->data + hdrlen + sizeof(struct iphdr)); 162 163 return iph->saddr != pctx->ms_addr_ip4.s_addr; 164 } 165 166 /* Check if the inner IP source address in this packet is assigned to any 167 * existing mobile subscriber. 168 */ 169 static bool gtp_check_src_ms(struct sk_buff *skb, struct pdp_ctx *pctx, 170 unsigned int hdrlen) 171 { 172 switch (ntohs(skb->protocol)) { 173 case ETH_P_IP: 174 return gtp_check_src_ms_ipv4(skb, pctx, hdrlen); 175 } 176 return false; 177 } 178 179 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */ 180 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb, 181 bool xnet) 182 { 183 unsigned int hdrlen = sizeof(struct udphdr) + 184 sizeof(struct gtp0_header); 185 struct gtp0_header *gtp0; 186 struct pdp_ctx *pctx; 187 int ret = 0; 188 189 if (!pskb_may_pull(skb, hdrlen)) 190 return -1; 191 192 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr)); 193 194 if ((gtp0->flags >> 5) != GTP_V0) 195 return 1; 196 197 if (gtp0->type != GTP_TPDU) 198 return 1; 199 200 rcu_read_lock(); 201 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid)); 202 if (!pctx) { 203 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 204 ret = -1; 205 goto out_rcu; 206 } 207 208 if (!gtp_check_src_ms(skb, pctx, hdrlen)) { 209 netdev_dbg(gtp->dev, "No PDP ctx for this MS\n"); 210 ret = -1; 211 goto out_rcu; 212 } 213 rcu_read_unlock(); 214 215 /* Get rid of the GTP + UDP headers. */ 216 return iptunnel_pull_header(skb, hdrlen, skb->protocol, xnet); 217 out_rcu: 218 rcu_read_unlock(); 219 return ret; 220 } 221 222 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb, 223 bool xnet) 224 { 225 unsigned int hdrlen = sizeof(struct udphdr) + 226 sizeof(struct gtp1_header); 227 struct gtp1_header *gtp1; 228 struct pdp_ctx *pctx; 229 int ret = 0; 230 231 if (!pskb_may_pull(skb, hdrlen)) 232 return -1; 233 234 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 235 236 if ((gtp1->flags >> 5) != GTP_V1) 237 return 1; 238 239 if (gtp1->type != GTP_TPDU) 240 return 1; 241 242 /* From 29.060: "This field shall be present if and only if any one or 243 * more of the S, PN and E flags are set.". 244 * 245 * If any of the bit is set, then the remaining ones also have to be 246 * set. 247 */ 248 if (gtp1->flags & GTP1_F_MASK) 249 hdrlen += 4; 250 251 /* Make sure the header is larger enough, including extensions. */ 252 if (!pskb_may_pull(skb, hdrlen)) 253 return -1; 254 255 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 256 257 rcu_read_lock(); 258 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid)); 259 if (!pctx) { 260 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 261 ret = -1; 262 goto out_rcu; 263 } 264 265 if (!gtp_check_src_ms(skb, pctx, hdrlen)) { 266 netdev_dbg(gtp->dev, "No PDP ctx for this MS\n"); 267 ret = -1; 268 goto out_rcu; 269 } 270 rcu_read_unlock(); 271 272 /* Get rid of the GTP + UDP headers. */ 273 return iptunnel_pull_header(skb, hdrlen, skb->protocol, xnet); 274 out_rcu: 275 rcu_read_unlock(); 276 return ret; 277 } 278 279 static void gtp_encap_disable(struct gtp_dev *gtp) 280 { 281 if (gtp->sock0 && gtp->sock0->sk) { 282 udp_sk(gtp->sock0->sk)->encap_type = 0; 283 rcu_assign_sk_user_data(gtp->sock0->sk, NULL); 284 } 285 if (gtp->sock1u && gtp->sock1u->sk) { 286 udp_sk(gtp->sock1u->sk)->encap_type = 0; 287 rcu_assign_sk_user_data(gtp->sock1u->sk, NULL); 288 } 289 290 gtp->sock0 = NULL; 291 gtp->sock1u = NULL; 292 } 293 294 static void gtp_encap_destroy(struct sock *sk) 295 { 296 struct gtp_dev *gtp; 297 298 gtp = rcu_dereference_sk_user_data(sk); 299 if (gtp) 300 gtp_encap_disable(gtp); 301 } 302 303 /* UDP encapsulation receive handler. See net/ipv4/udp.c. 304 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket. 305 */ 306 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb) 307 { 308 struct pcpu_sw_netstats *stats; 309 struct gtp_dev *gtp; 310 bool xnet; 311 int ret; 312 313 gtp = rcu_dereference_sk_user_data(sk); 314 if (!gtp) 315 return 1; 316 317 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk); 318 319 xnet = !net_eq(gtp->net, dev_net(gtp->dev)); 320 321 switch (udp_sk(sk)->encap_type) { 322 case UDP_ENCAP_GTP0: 323 netdev_dbg(gtp->dev, "received GTP0 packet\n"); 324 ret = gtp0_udp_encap_recv(gtp, skb, xnet); 325 break; 326 case UDP_ENCAP_GTP1U: 327 netdev_dbg(gtp->dev, "received GTP1U packet\n"); 328 ret = gtp1u_udp_encap_recv(gtp, skb, xnet); 329 break; 330 default: 331 ret = -1; /* Shouldn't happen. */ 332 } 333 334 switch (ret) { 335 case 1: 336 netdev_dbg(gtp->dev, "pass up to the process\n"); 337 return 1; 338 case 0: 339 netdev_dbg(gtp->dev, "forwarding packet from GGSN to uplink\n"); 340 break; 341 case -1: 342 netdev_dbg(gtp->dev, "GTP packet has been dropped\n"); 343 kfree_skb(skb); 344 return 0; 345 } 346 347 /* Now that the UDP and the GTP header have been removed, set up the 348 * new network header. This is required by the upper layer to 349 * calculate the transport header. 350 */ 351 skb_reset_network_header(skb); 352 353 skb->dev = gtp->dev; 354 355 stats = this_cpu_ptr(gtp->dev->tstats); 356 u64_stats_update_begin(&stats->syncp); 357 stats->rx_packets++; 358 stats->rx_bytes += skb->len; 359 u64_stats_update_end(&stats->syncp); 360 361 netif_rx(skb); 362 363 return 0; 364 } 365 366 static int gtp_dev_init(struct net_device *dev) 367 { 368 struct gtp_dev *gtp = netdev_priv(dev); 369 370 gtp->dev = dev; 371 372 dev->tstats = alloc_percpu(struct pcpu_sw_netstats); 373 if (!dev->tstats) 374 return -ENOMEM; 375 376 return 0; 377 } 378 379 static void gtp_dev_uninit(struct net_device *dev) 380 { 381 struct gtp_dev *gtp = netdev_priv(dev); 382 383 gtp_encap_disable(gtp); 384 free_percpu(dev->tstats); 385 } 386 387 static struct rtable *ip4_route_output_gtp(struct net *net, struct flowi4 *fl4, 388 const struct sock *sk, __be32 daddr) 389 { 390 memset(fl4, 0, sizeof(*fl4)); 391 fl4->flowi4_oif = sk->sk_bound_dev_if; 392 fl4->daddr = daddr; 393 fl4->saddr = inet_sk(sk)->inet_saddr; 394 fl4->flowi4_tos = RT_CONN_FLAGS(sk); 395 fl4->flowi4_proto = sk->sk_protocol; 396 397 return ip_route_output_key(net, fl4); 398 } 399 400 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 401 { 402 int payload_len = skb->len; 403 struct gtp0_header *gtp0; 404 405 gtp0 = (struct gtp0_header *) skb_push(skb, sizeof(*gtp0)); 406 407 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */ 408 gtp0->type = GTP_TPDU; 409 gtp0->length = htons(payload_len); 410 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff); 411 gtp0->flow = htons(pctx->u.v0.flow); 412 gtp0->number = 0xff; 413 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff; 414 gtp0->tid = cpu_to_be64(pctx->u.v0.tid); 415 } 416 417 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 418 { 419 int payload_len = skb->len; 420 struct gtp1_header *gtp1; 421 422 gtp1 = (struct gtp1_header *) skb_push(skb, sizeof(*gtp1)); 423 424 /* Bits 8 7 6 5 4 3 2 1 425 * +--+--+--+--+--+--+--+--+ 426 * |version |PT| 1| E| S|PN| 427 * +--+--+--+--+--+--+--+--+ 428 * 0 0 1 1 1 0 0 0 429 */ 430 gtp1->flags = 0x38; /* v1, GTP-non-prime. */ 431 gtp1->type = GTP_TPDU; 432 gtp1->length = htons(payload_len); 433 gtp1->tid = htonl(pctx->u.v1.o_tei); 434 435 /* TODO: Suppport for extension header, sequence number and N-PDU. 436 * Update the length field if any of them is available. 437 */ 438 } 439 440 struct gtp_pktinfo { 441 struct sock *sk; 442 struct iphdr *iph; 443 struct flowi4 fl4; 444 struct rtable *rt; 445 struct pdp_ctx *pctx; 446 struct net_device *dev; 447 __be16 gtph_port; 448 }; 449 450 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo) 451 { 452 switch (pktinfo->pctx->gtp_version) { 453 case GTP_V0: 454 pktinfo->gtph_port = htons(GTP0_PORT); 455 gtp0_push_header(skb, pktinfo->pctx); 456 break; 457 case GTP_V1: 458 pktinfo->gtph_port = htons(GTP1U_PORT); 459 gtp1_push_header(skb, pktinfo->pctx); 460 break; 461 } 462 } 463 464 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo, 465 struct sock *sk, struct iphdr *iph, 466 struct pdp_ctx *pctx, struct rtable *rt, 467 struct flowi4 *fl4, 468 struct net_device *dev) 469 { 470 pktinfo->sk = sk; 471 pktinfo->iph = iph; 472 pktinfo->pctx = pctx; 473 pktinfo->rt = rt; 474 pktinfo->fl4 = *fl4; 475 pktinfo->dev = dev; 476 } 477 478 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev, 479 struct gtp_pktinfo *pktinfo) 480 { 481 struct gtp_dev *gtp = netdev_priv(dev); 482 struct pdp_ctx *pctx; 483 struct rtable *rt; 484 struct flowi4 fl4; 485 struct iphdr *iph; 486 struct sock *sk; 487 __be16 df; 488 int mtu; 489 490 /* Read the IP destination address and resolve the PDP context. 491 * Prepend PDP header with TEI/TID from PDP ctx. 492 */ 493 iph = ip_hdr(skb); 494 pctx = ipv4_pdp_find(gtp, iph->daddr); 495 if (!pctx) { 496 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n", 497 &iph->daddr); 498 return -ENOENT; 499 } 500 netdev_dbg(dev, "found PDP context %p\n", pctx); 501 502 switch (pctx->gtp_version) { 503 case GTP_V0: 504 if (gtp->sock0) 505 sk = gtp->sock0->sk; 506 else 507 sk = NULL; 508 break; 509 case GTP_V1: 510 if (gtp->sock1u) 511 sk = gtp->sock1u->sk; 512 else 513 sk = NULL; 514 break; 515 default: 516 return -ENOENT; 517 } 518 519 if (!sk) { 520 netdev_dbg(dev, "no userspace socket is available, skip\n"); 521 return -ENOENT; 522 } 523 524 rt = ip4_route_output_gtp(sock_net(sk), &fl4, gtp->sock0->sk, 525 pctx->sgsn_addr_ip4.s_addr); 526 if (IS_ERR(rt)) { 527 netdev_dbg(dev, "no route to SSGN %pI4\n", 528 &pctx->sgsn_addr_ip4.s_addr); 529 dev->stats.tx_carrier_errors++; 530 goto err; 531 } 532 533 if (rt->dst.dev == dev) { 534 netdev_dbg(dev, "circular route to SSGN %pI4\n", 535 &pctx->sgsn_addr_ip4.s_addr); 536 dev->stats.collisions++; 537 goto err_rt; 538 } 539 540 skb_dst_drop(skb); 541 542 /* This is similar to tnl_update_pmtu(). */ 543 df = iph->frag_off; 544 if (df) { 545 mtu = dst_mtu(&rt->dst) - dev->hard_header_len - 546 sizeof(struct iphdr) - sizeof(struct udphdr); 547 switch (pctx->gtp_version) { 548 case GTP_V0: 549 mtu -= sizeof(struct gtp0_header); 550 break; 551 case GTP_V1: 552 mtu -= sizeof(struct gtp1_header); 553 break; 554 } 555 } else { 556 mtu = dst_mtu(&rt->dst); 557 } 558 559 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu); 560 561 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) && 562 mtu < ntohs(iph->tot_len)) { 563 netdev_dbg(dev, "packet too big, fragmentation needed\n"); 564 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 565 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 566 htonl(mtu)); 567 goto err_rt; 568 } 569 570 gtp_set_pktinfo_ipv4(pktinfo, sk, iph, pctx, rt, &fl4, dev); 571 gtp_push_header(skb, pktinfo); 572 573 return 0; 574 err_rt: 575 ip_rt_put(rt); 576 err: 577 return -EBADMSG; 578 } 579 580 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev) 581 { 582 unsigned int proto = ntohs(skb->protocol); 583 struct gtp_pktinfo pktinfo; 584 int err; 585 586 /* Ensure there is sufficient headroom. */ 587 if (skb_cow_head(skb, dev->needed_headroom)) 588 goto tx_err; 589 590 skb_reset_inner_headers(skb); 591 592 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */ 593 rcu_read_lock(); 594 switch (proto) { 595 case ETH_P_IP: 596 err = gtp_build_skb_ip4(skb, dev, &pktinfo); 597 break; 598 default: 599 err = -EOPNOTSUPP; 600 break; 601 } 602 rcu_read_unlock(); 603 604 if (err < 0) 605 goto tx_err; 606 607 switch (proto) { 608 case ETH_P_IP: 609 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n", 610 &pktinfo.iph->saddr, &pktinfo.iph->daddr); 611 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb, 612 pktinfo.fl4.saddr, pktinfo.fl4.daddr, 613 pktinfo.iph->tos, 614 ip4_dst_hoplimit(&pktinfo.rt->dst), 615 htons(IP_DF), 616 pktinfo.gtph_port, pktinfo.gtph_port, 617 true, false); 618 break; 619 } 620 621 return NETDEV_TX_OK; 622 tx_err: 623 dev->stats.tx_errors++; 624 dev_kfree_skb(skb); 625 return NETDEV_TX_OK; 626 } 627 628 static const struct net_device_ops gtp_netdev_ops = { 629 .ndo_init = gtp_dev_init, 630 .ndo_uninit = gtp_dev_uninit, 631 .ndo_start_xmit = gtp_dev_xmit, 632 .ndo_get_stats64 = ip_tunnel_get_stats64, 633 }; 634 635 static void gtp_link_setup(struct net_device *dev) 636 { 637 dev->netdev_ops = >p_netdev_ops; 638 dev->destructor = free_netdev; 639 640 dev->hard_header_len = 0; 641 dev->addr_len = 0; 642 643 /* Zero header length. */ 644 dev->type = ARPHRD_NONE; 645 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 646 647 dev->priv_flags |= IFF_NO_QUEUE; 648 dev->features |= NETIF_F_LLTX; 649 netif_keep_dst(dev); 650 651 /* Assume largest header, ie. GTPv0. */ 652 dev->needed_headroom = LL_MAX_HEADER + 653 sizeof(struct iphdr) + 654 sizeof(struct udphdr) + 655 sizeof(struct gtp0_header); 656 } 657 658 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize); 659 static void gtp_hashtable_free(struct gtp_dev *gtp); 660 static int gtp_encap_enable(struct net_device *dev, struct gtp_dev *gtp, 661 int fd_gtp0, int fd_gtp1, struct net *src_net); 662 663 static int gtp_newlink(struct net *src_net, struct net_device *dev, 664 struct nlattr *tb[], struct nlattr *data[]) 665 { 666 int hashsize, err, fd0, fd1; 667 struct gtp_dev *gtp; 668 struct gtp_net *gn; 669 670 if (!data[IFLA_GTP_FD0] || !data[IFLA_GTP_FD1]) 671 return -EINVAL; 672 673 gtp = netdev_priv(dev); 674 675 fd0 = nla_get_u32(data[IFLA_GTP_FD0]); 676 fd1 = nla_get_u32(data[IFLA_GTP_FD1]); 677 678 err = gtp_encap_enable(dev, gtp, fd0, fd1, src_net); 679 if (err < 0) 680 goto out_err; 681 682 if (!data[IFLA_GTP_PDP_HASHSIZE]) 683 hashsize = 1024; 684 else 685 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]); 686 687 err = gtp_hashtable_new(gtp, hashsize); 688 if (err < 0) 689 goto out_encap; 690 691 err = register_netdevice(dev); 692 if (err < 0) { 693 netdev_dbg(dev, "failed to register new netdev %d\n", err); 694 goto out_hashtable; 695 } 696 697 gn = net_generic(dev_net(dev), gtp_net_id); 698 list_add_rcu(>p->list, &gn->gtp_dev_list); 699 700 netdev_dbg(dev, "registered new GTP interface\n"); 701 702 return 0; 703 704 out_hashtable: 705 gtp_hashtable_free(gtp); 706 out_encap: 707 gtp_encap_disable(gtp); 708 out_err: 709 return err; 710 } 711 712 static void gtp_dellink(struct net_device *dev, struct list_head *head) 713 { 714 struct gtp_dev *gtp = netdev_priv(dev); 715 716 gtp_encap_disable(gtp); 717 gtp_hashtable_free(gtp); 718 list_del_rcu(>p->list); 719 unregister_netdevice_queue(dev, head); 720 } 721 722 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = { 723 [IFLA_GTP_FD0] = { .type = NLA_U32 }, 724 [IFLA_GTP_FD1] = { .type = NLA_U32 }, 725 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 }, 726 }; 727 728 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[]) 729 { 730 if (!data) 731 return -EINVAL; 732 733 return 0; 734 } 735 736 static size_t gtp_get_size(const struct net_device *dev) 737 { 738 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */ 739 } 740 741 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev) 742 { 743 struct gtp_dev *gtp = netdev_priv(dev); 744 745 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size)) 746 goto nla_put_failure; 747 748 return 0; 749 750 nla_put_failure: 751 return -EMSGSIZE; 752 } 753 754 static struct rtnl_link_ops gtp_link_ops __read_mostly = { 755 .kind = "gtp", 756 .maxtype = IFLA_GTP_MAX, 757 .policy = gtp_policy, 758 .priv_size = sizeof(struct gtp_dev), 759 .setup = gtp_link_setup, 760 .validate = gtp_validate, 761 .newlink = gtp_newlink, 762 .dellink = gtp_dellink, 763 .get_size = gtp_get_size, 764 .fill_info = gtp_fill_info, 765 }; 766 767 static struct net *gtp_genl_get_net(struct net *src_net, struct nlattr *tb[]) 768 { 769 struct net *net; 770 771 /* Examine the link attributes and figure out which network namespace 772 * we are talking about. 773 */ 774 if (tb[GTPA_NET_NS_FD]) 775 net = get_net_ns_by_fd(nla_get_u32(tb[GTPA_NET_NS_FD])); 776 else 777 net = get_net(src_net); 778 779 return net; 780 } 781 782 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize) 783 { 784 int i; 785 786 gtp->addr_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL); 787 if (gtp->addr_hash == NULL) 788 return -ENOMEM; 789 790 gtp->tid_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL); 791 if (gtp->tid_hash == NULL) 792 goto err1; 793 794 gtp->hash_size = hsize; 795 796 for (i = 0; i < hsize; i++) { 797 INIT_HLIST_HEAD(>p->addr_hash[i]); 798 INIT_HLIST_HEAD(>p->tid_hash[i]); 799 } 800 return 0; 801 err1: 802 kfree(gtp->addr_hash); 803 return -ENOMEM; 804 } 805 806 static void gtp_hashtable_free(struct gtp_dev *gtp) 807 { 808 struct pdp_ctx *pctx; 809 int i; 810 811 for (i = 0; i < gtp->hash_size; i++) { 812 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) { 813 hlist_del_rcu(&pctx->hlist_tid); 814 hlist_del_rcu(&pctx->hlist_addr); 815 kfree_rcu(pctx, rcu_head); 816 } 817 } 818 synchronize_rcu(); 819 kfree(gtp->addr_hash); 820 kfree(gtp->tid_hash); 821 } 822 823 static int gtp_encap_enable(struct net_device *dev, struct gtp_dev *gtp, 824 int fd_gtp0, int fd_gtp1, struct net *src_net) 825 { 826 struct udp_tunnel_sock_cfg tuncfg = {NULL}; 827 struct socket *sock0, *sock1u; 828 int err; 829 830 netdev_dbg(dev, "enable gtp on %d, %d\n", fd_gtp0, fd_gtp1); 831 832 sock0 = sockfd_lookup(fd_gtp0, &err); 833 if (sock0 == NULL) { 834 netdev_dbg(dev, "socket fd=%d not found (gtp0)\n", fd_gtp0); 835 return -ENOENT; 836 } 837 838 if (sock0->sk->sk_protocol != IPPROTO_UDP) { 839 netdev_dbg(dev, "socket fd=%d not UDP\n", fd_gtp0); 840 err = -EINVAL; 841 goto err1; 842 } 843 844 sock1u = sockfd_lookup(fd_gtp1, &err); 845 if (sock1u == NULL) { 846 netdev_dbg(dev, "socket fd=%d not found (gtp1u)\n", fd_gtp1); 847 err = -ENOENT; 848 goto err1; 849 } 850 851 if (sock1u->sk->sk_protocol != IPPROTO_UDP) { 852 netdev_dbg(dev, "socket fd=%d not UDP\n", fd_gtp1); 853 err = -EINVAL; 854 goto err2; 855 } 856 857 netdev_dbg(dev, "enable gtp on %p, %p\n", sock0, sock1u); 858 859 gtp->sock0 = sock0; 860 gtp->sock1u = sock1u; 861 gtp->net = src_net; 862 863 tuncfg.sk_user_data = gtp; 864 tuncfg.encap_rcv = gtp_encap_recv; 865 tuncfg.encap_destroy = gtp_encap_destroy; 866 867 tuncfg.encap_type = UDP_ENCAP_GTP0; 868 setup_udp_tunnel_sock(sock_net(gtp->sock0->sk), gtp->sock0, &tuncfg); 869 870 tuncfg.encap_type = UDP_ENCAP_GTP1U; 871 setup_udp_tunnel_sock(sock_net(gtp->sock1u->sk), gtp->sock1u, &tuncfg); 872 873 err = 0; 874 err2: 875 sockfd_put(sock1u); 876 err1: 877 sockfd_put(sock0); 878 return err; 879 } 880 881 static struct net_device *gtp_find_dev(struct net *net, int ifindex) 882 { 883 struct gtp_net *gn = net_generic(net, gtp_net_id); 884 struct gtp_dev *gtp; 885 886 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 887 if (ifindex == gtp->dev->ifindex) 888 return gtp->dev; 889 } 890 return NULL; 891 } 892 893 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info) 894 { 895 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 896 pctx->af = AF_INET; 897 pctx->sgsn_addr_ip4.s_addr = 898 nla_get_be32(info->attrs[GTPA_SGSN_ADDRESS]); 899 pctx->ms_addr_ip4.s_addr = 900 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 901 902 switch (pctx->gtp_version) { 903 case GTP_V0: 904 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow 905 * label needs to be the same for uplink and downlink packets, 906 * so let's annotate this. 907 */ 908 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]); 909 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]); 910 break; 911 case GTP_V1: 912 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]); 913 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]); 914 break; 915 default: 916 break; 917 } 918 } 919 920 static int ipv4_pdp_add(struct net_device *dev, struct genl_info *info) 921 { 922 struct gtp_dev *gtp = netdev_priv(dev); 923 u32 hash_ms, hash_tid = 0; 924 struct pdp_ctx *pctx; 925 bool found = false; 926 __be32 ms_addr; 927 928 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 929 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size; 930 931 hlist_for_each_entry_rcu(pctx, >p->addr_hash[hash_ms], hlist_addr) { 932 if (pctx->ms_addr_ip4.s_addr == ms_addr) { 933 found = true; 934 break; 935 } 936 } 937 938 if (found) { 939 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) 940 return -EEXIST; 941 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE) 942 return -EOPNOTSUPP; 943 944 ipv4_pdp_fill(pctx, info); 945 946 if (pctx->gtp_version == GTP_V0) 947 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n", 948 pctx->u.v0.tid, pctx); 949 else if (pctx->gtp_version == GTP_V1) 950 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n", 951 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 952 953 return 0; 954 955 } 956 957 pctx = kmalloc(sizeof(struct pdp_ctx), GFP_KERNEL); 958 if (pctx == NULL) 959 return -ENOMEM; 960 961 ipv4_pdp_fill(pctx, info); 962 atomic_set(&pctx->tx_seq, 0); 963 964 switch (pctx->gtp_version) { 965 case GTP_V0: 966 /* TS 09.60: "The flow label identifies unambiguously a GTP 967 * flow.". We use the tid for this instead, I cannot find a 968 * situation in which this doesn't unambiguosly identify the 969 * PDP context. 970 */ 971 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size; 972 break; 973 case GTP_V1: 974 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size; 975 break; 976 } 977 978 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]); 979 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]); 980 981 switch (pctx->gtp_version) { 982 case GTP_V0: 983 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 984 pctx->u.v0.tid, &pctx->sgsn_addr_ip4, 985 &pctx->ms_addr_ip4, pctx); 986 break; 987 case GTP_V1: 988 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 989 pctx->u.v1.i_tei, pctx->u.v1.o_tei, 990 &pctx->sgsn_addr_ip4, &pctx->ms_addr_ip4, pctx); 991 break; 992 } 993 994 return 0; 995 } 996 997 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info) 998 { 999 struct net_device *dev; 1000 struct net *net; 1001 1002 if (!info->attrs[GTPA_VERSION] || 1003 !info->attrs[GTPA_LINK] || 1004 !info->attrs[GTPA_SGSN_ADDRESS] || 1005 !info->attrs[GTPA_MS_ADDRESS]) 1006 return -EINVAL; 1007 1008 switch (nla_get_u32(info->attrs[GTPA_VERSION])) { 1009 case GTP_V0: 1010 if (!info->attrs[GTPA_TID] || 1011 !info->attrs[GTPA_FLOW]) 1012 return -EINVAL; 1013 break; 1014 case GTP_V1: 1015 if (!info->attrs[GTPA_I_TEI] || 1016 !info->attrs[GTPA_O_TEI]) 1017 return -EINVAL; 1018 break; 1019 1020 default: 1021 return -EINVAL; 1022 } 1023 1024 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1025 if (IS_ERR(net)) 1026 return PTR_ERR(net); 1027 1028 /* Check if there's an existing gtpX device to configure */ 1029 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1030 if (dev == NULL) { 1031 put_net(net); 1032 return -ENODEV; 1033 } 1034 put_net(net); 1035 1036 return ipv4_pdp_add(dev, info); 1037 } 1038 1039 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info) 1040 { 1041 struct net_device *dev; 1042 struct pdp_ctx *pctx; 1043 struct gtp_dev *gtp; 1044 struct net *net; 1045 1046 if (!info->attrs[GTPA_VERSION] || 1047 !info->attrs[GTPA_LINK]) 1048 return -EINVAL; 1049 1050 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1051 if (IS_ERR(net)) 1052 return PTR_ERR(net); 1053 1054 /* Check if there's an existing gtpX device to configure */ 1055 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1056 if (dev == NULL) { 1057 put_net(net); 1058 return -ENODEV; 1059 } 1060 put_net(net); 1061 1062 gtp = netdev_priv(dev); 1063 1064 switch (nla_get_u32(info->attrs[GTPA_VERSION])) { 1065 case GTP_V0: 1066 if (!info->attrs[GTPA_TID]) 1067 return -EINVAL; 1068 pctx = gtp0_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_TID])); 1069 break; 1070 case GTP_V1: 1071 if (!info->attrs[GTPA_I_TEI]) 1072 return -EINVAL; 1073 pctx = gtp1_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_I_TEI])); 1074 break; 1075 1076 default: 1077 return -EINVAL; 1078 } 1079 1080 if (pctx == NULL) 1081 return -ENOENT; 1082 1083 if (pctx->gtp_version == GTP_V0) 1084 netdev_dbg(dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n", 1085 pctx->u.v0.tid, pctx); 1086 else if (pctx->gtp_version == GTP_V1) 1087 netdev_dbg(dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n", 1088 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 1089 1090 hlist_del_rcu(&pctx->hlist_tid); 1091 hlist_del_rcu(&pctx->hlist_addr); 1092 kfree_rcu(pctx, rcu_head); 1093 1094 return 0; 1095 } 1096 1097 static struct genl_family gtp_genl_family = { 1098 .id = GENL_ID_GENERATE, 1099 .name = "gtp", 1100 .version = 0, 1101 .hdrsize = 0, 1102 .maxattr = GTPA_MAX, 1103 .netnsok = true, 1104 }; 1105 1106 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq, 1107 u32 type, struct pdp_ctx *pctx) 1108 { 1109 void *genlh; 1110 1111 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, 0, 1112 type); 1113 if (genlh == NULL) 1114 goto nlmsg_failure; 1115 1116 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) || 1117 nla_put_be32(skb, GTPA_SGSN_ADDRESS, pctx->sgsn_addr_ip4.s_addr) || 1118 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr)) 1119 goto nla_put_failure; 1120 1121 switch (pctx->gtp_version) { 1122 case GTP_V0: 1123 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) || 1124 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow)) 1125 goto nla_put_failure; 1126 break; 1127 case GTP_V1: 1128 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) || 1129 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei)) 1130 goto nla_put_failure; 1131 break; 1132 } 1133 genlmsg_end(skb, genlh); 1134 return 0; 1135 1136 nlmsg_failure: 1137 nla_put_failure: 1138 genlmsg_cancel(skb, genlh); 1139 return -EMSGSIZE; 1140 } 1141 1142 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info) 1143 { 1144 struct pdp_ctx *pctx = NULL; 1145 struct net_device *dev; 1146 struct sk_buff *skb2; 1147 struct gtp_dev *gtp; 1148 u32 gtp_version; 1149 struct net *net; 1150 int err; 1151 1152 if (!info->attrs[GTPA_VERSION] || 1153 !info->attrs[GTPA_LINK]) 1154 return -EINVAL; 1155 1156 gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 1157 switch (gtp_version) { 1158 case GTP_V0: 1159 case GTP_V1: 1160 break; 1161 default: 1162 return -EINVAL; 1163 } 1164 1165 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1166 if (IS_ERR(net)) 1167 return PTR_ERR(net); 1168 1169 /* Check if there's an existing gtpX device to configure */ 1170 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1171 if (dev == NULL) { 1172 put_net(net); 1173 return -ENODEV; 1174 } 1175 put_net(net); 1176 1177 gtp = netdev_priv(dev); 1178 1179 rcu_read_lock(); 1180 if (gtp_version == GTP_V0 && 1181 info->attrs[GTPA_TID]) { 1182 u64 tid = nla_get_u64(info->attrs[GTPA_TID]); 1183 1184 pctx = gtp0_pdp_find(gtp, tid); 1185 } else if (gtp_version == GTP_V1 && 1186 info->attrs[GTPA_I_TEI]) { 1187 u32 tid = nla_get_u32(info->attrs[GTPA_I_TEI]); 1188 1189 pctx = gtp1_pdp_find(gtp, tid); 1190 } else if (info->attrs[GTPA_MS_ADDRESS]) { 1191 __be32 ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 1192 1193 pctx = ipv4_pdp_find(gtp, ip); 1194 } 1195 1196 if (pctx == NULL) { 1197 err = -ENOENT; 1198 goto err_unlock; 1199 } 1200 1201 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); 1202 if (skb2 == NULL) { 1203 err = -ENOMEM; 1204 goto err_unlock; 1205 } 1206 1207 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, 1208 info->snd_seq, info->nlhdr->nlmsg_type, pctx); 1209 if (err < 0) 1210 goto err_unlock_free; 1211 1212 rcu_read_unlock(); 1213 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid); 1214 1215 err_unlock_free: 1216 kfree_skb(skb2); 1217 err_unlock: 1218 rcu_read_unlock(); 1219 return err; 1220 } 1221 1222 static int gtp_genl_dump_pdp(struct sk_buff *skb, 1223 struct netlink_callback *cb) 1224 { 1225 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp; 1226 struct net *net = sock_net(skb->sk); 1227 struct gtp_net *gn = net_generic(net, gtp_net_id); 1228 unsigned long tid = cb->args[1]; 1229 int i, k = cb->args[0], ret; 1230 struct pdp_ctx *pctx; 1231 1232 if (cb->args[4]) 1233 return 0; 1234 1235 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 1236 if (last_gtp && last_gtp != gtp) 1237 continue; 1238 else 1239 last_gtp = NULL; 1240 1241 for (i = k; i < gtp->hash_size; i++) { 1242 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) { 1243 if (tid && tid != pctx->u.tid) 1244 continue; 1245 else 1246 tid = 0; 1247 1248 ret = gtp_genl_fill_info(skb, 1249 NETLINK_CB(cb->skb).portid, 1250 cb->nlh->nlmsg_seq, 1251 cb->nlh->nlmsg_type, pctx); 1252 if (ret < 0) { 1253 cb->args[0] = i; 1254 cb->args[1] = pctx->u.tid; 1255 cb->args[2] = (unsigned long)gtp; 1256 goto out; 1257 } 1258 } 1259 } 1260 } 1261 cb->args[4] = 1; 1262 out: 1263 return skb->len; 1264 } 1265 1266 static struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = { 1267 [GTPA_LINK] = { .type = NLA_U32, }, 1268 [GTPA_VERSION] = { .type = NLA_U32, }, 1269 [GTPA_TID] = { .type = NLA_U64, }, 1270 [GTPA_SGSN_ADDRESS] = { .type = NLA_U32, }, 1271 [GTPA_MS_ADDRESS] = { .type = NLA_U32, }, 1272 [GTPA_FLOW] = { .type = NLA_U16, }, 1273 [GTPA_NET_NS_FD] = { .type = NLA_U32, }, 1274 [GTPA_I_TEI] = { .type = NLA_U32, }, 1275 [GTPA_O_TEI] = { .type = NLA_U32, }, 1276 }; 1277 1278 static const struct genl_ops gtp_genl_ops[] = { 1279 { 1280 .cmd = GTP_CMD_NEWPDP, 1281 .doit = gtp_genl_new_pdp, 1282 .policy = gtp_genl_policy, 1283 .flags = GENL_ADMIN_PERM, 1284 }, 1285 { 1286 .cmd = GTP_CMD_DELPDP, 1287 .doit = gtp_genl_del_pdp, 1288 .policy = gtp_genl_policy, 1289 .flags = GENL_ADMIN_PERM, 1290 }, 1291 { 1292 .cmd = GTP_CMD_GETPDP, 1293 .doit = gtp_genl_get_pdp, 1294 .dumpit = gtp_genl_dump_pdp, 1295 .policy = gtp_genl_policy, 1296 .flags = GENL_ADMIN_PERM, 1297 }, 1298 }; 1299 1300 static int __net_init gtp_net_init(struct net *net) 1301 { 1302 struct gtp_net *gn = net_generic(net, gtp_net_id); 1303 1304 INIT_LIST_HEAD(&gn->gtp_dev_list); 1305 return 0; 1306 } 1307 1308 static void __net_exit gtp_net_exit(struct net *net) 1309 { 1310 struct gtp_net *gn = net_generic(net, gtp_net_id); 1311 struct gtp_dev *gtp; 1312 LIST_HEAD(list); 1313 1314 rtnl_lock(); 1315 list_for_each_entry(gtp, &gn->gtp_dev_list, list) 1316 gtp_dellink(gtp->dev, &list); 1317 1318 unregister_netdevice_many(&list); 1319 rtnl_unlock(); 1320 } 1321 1322 static struct pernet_operations gtp_net_ops = { 1323 .init = gtp_net_init, 1324 .exit = gtp_net_exit, 1325 .id = >p_net_id, 1326 .size = sizeof(struct gtp_net), 1327 }; 1328 1329 static int __init gtp_init(void) 1330 { 1331 int err; 1332 1333 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval)); 1334 1335 err = rtnl_link_register(>p_link_ops); 1336 if (err < 0) 1337 goto error_out; 1338 1339 err = genl_register_family_with_ops(>p_genl_family, gtp_genl_ops); 1340 if (err < 0) 1341 goto unreg_rtnl_link; 1342 1343 err = register_pernet_subsys(>p_net_ops); 1344 if (err < 0) 1345 goto unreg_genl_family; 1346 1347 pr_info("GTP module loaded (pdp ctx size %Zd bytes)\n", 1348 sizeof(struct pdp_ctx)); 1349 return 0; 1350 1351 unreg_genl_family: 1352 genl_unregister_family(>p_genl_family); 1353 unreg_rtnl_link: 1354 rtnl_link_unregister(>p_link_ops); 1355 error_out: 1356 pr_err("error loading GTP module loaded\n"); 1357 return err; 1358 } 1359 late_initcall(gtp_init); 1360 1361 static void __exit gtp_fini(void) 1362 { 1363 unregister_pernet_subsys(>p_net_ops); 1364 genl_unregister_family(>p_genl_family); 1365 rtnl_link_unregister(>p_link_ops); 1366 1367 pr_info("GTP module unloaded\n"); 1368 } 1369 module_exit(gtp_fini); 1370 1371 MODULE_LICENSE("GPL"); 1372 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>"); 1373 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic"); 1374 MODULE_ALIAS_RTNL_LINK("gtp"); 1375