1 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060 2 * 3 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH 4 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org> 5 * 6 * Author: Harald Welte <hwelte@sysmocom.de> 7 * Pablo Neira Ayuso <pablo@netfilter.org> 8 * Andreas Schultz <aschultz@travelping.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/version.h> 20 #include <linux/skbuff.h> 21 #include <linux/udp.h> 22 #include <linux/rculist.h> 23 #include <linux/jhash.h> 24 #include <linux/if_tunnel.h> 25 #include <linux/net.h> 26 #include <linux/file.h> 27 #include <linux/gtp.h> 28 29 #include <net/net_namespace.h> 30 #include <net/protocol.h> 31 #include <net/ip.h> 32 #include <net/udp.h> 33 #include <net/udp_tunnel.h> 34 #include <net/icmp.h> 35 #include <net/xfrm.h> 36 #include <net/genetlink.h> 37 #include <net/netns/generic.h> 38 #include <net/gtp.h> 39 40 /* An active session for the subscriber. */ 41 struct pdp_ctx { 42 struct hlist_node hlist_tid; 43 struct hlist_node hlist_addr; 44 45 union { 46 u64 tid; 47 struct { 48 u64 tid; 49 u16 flow; 50 } v0; 51 struct { 52 u32 i_tei; 53 u32 o_tei; 54 } v1; 55 } u; 56 u8 gtp_version; 57 u16 af; 58 59 struct in_addr ms_addr_ip4; 60 struct in_addr sgsn_addr_ip4; 61 62 atomic_t tx_seq; 63 struct rcu_head rcu_head; 64 }; 65 66 /* One instance of the GTP device. */ 67 struct gtp_dev { 68 struct list_head list; 69 70 struct socket *sock0; 71 struct socket *sock1u; 72 73 struct net *net; 74 struct net_device *dev; 75 76 unsigned int hash_size; 77 struct hlist_head *tid_hash; 78 struct hlist_head *addr_hash; 79 }; 80 81 static int gtp_net_id __read_mostly; 82 83 struct gtp_net { 84 struct list_head gtp_dev_list; 85 }; 86 87 static u32 gtp_h_initval; 88 89 static inline u32 gtp0_hashfn(u64 tid) 90 { 91 u32 *tid32 = (u32 *) &tid; 92 return jhash_2words(tid32[0], tid32[1], gtp_h_initval); 93 } 94 95 static inline u32 gtp1u_hashfn(u32 tid) 96 { 97 return jhash_1word(tid, gtp_h_initval); 98 } 99 100 static inline u32 ipv4_hashfn(__be32 ip) 101 { 102 return jhash_1word((__force u32)ip, gtp_h_initval); 103 } 104 105 /* Resolve a PDP context structure based on the 64bit TID. */ 106 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid) 107 { 108 struct hlist_head *head; 109 struct pdp_ctx *pdp; 110 111 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size]; 112 113 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 114 if (pdp->gtp_version == GTP_V0 && 115 pdp->u.v0.tid == tid) 116 return pdp; 117 } 118 return NULL; 119 } 120 121 /* Resolve a PDP context structure based on the 32bit TEI. */ 122 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid) 123 { 124 struct hlist_head *head; 125 struct pdp_ctx *pdp; 126 127 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size]; 128 129 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 130 if (pdp->gtp_version == GTP_V1 && 131 pdp->u.v1.i_tei == tid) 132 return pdp; 133 } 134 return NULL; 135 } 136 137 /* Resolve a PDP context based on IPv4 address of MS. */ 138 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr) 139 { 140 struct hlist_head *head; 141 struct pdp_ctx *pdp; 142 143 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size]; 144 145 hlist_for_each_entry_rcu(pdp, head, hlist_addr) { 146 if (pdp->af == AF_INET && 147 pdp->ms_addr_ip4.s_addr == ms_addr) 148 return pdp; 149 } 150 151 return NULL; 152 } 153 154 static bool gtp_check_src_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx, 155 unsigned int hdrlen) 156 { 157 struct iphdr *iph; 158 159 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr))) 160 return false; 161 162 iph = (struct iphdr *)(skb->data + hdrlen + sizeof(struct iphdr)); 163 164 return iph->saddr != pctx->ms_addr_ip4.s_addr; 165 } 166 167 /* Check if the inner IP source address in this packet is assigned to any 168 * existing mobile subscriber. 169 */ 170 static bool gtp_check_src_ms(struct sk_buff *skb, struct pdp_ctx *pctx, 171 unsigned int hdrlen) 172 { 173 switch (ntohs(skb->protocol)) { 174 case ETH_P_IP: 175 return gtp_check_src_ms_ipv4(skb, pctx, hdrlen); 176 } 177 return false; 178 } 179 180 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */ 181 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb, 182 bool xnet) 183 { 184 unsigned int hdrlen = sizeof(struct udphdr) + 185 sizeof(struct gtp0_header); 186 struct gtp0_header *gtp0; 187 struct pdp_ctx *pctx; 188 int ret = 0; 189 190 if (!pskb_may_pull(skb, hdrlen)) 191 return -1; 192 193 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr)); 194 195 if ((gtp0->flags >> 5) != GTP_V0) 196 return 1; 197 198 if (gtp0->type != GTP_TPDU) 199 return 1; 200 201 rcu_read_lock(); 202 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid)); 203 if (!pctx) { 204 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 205 ret = -1; 206 goto out_rcu; 207 } 208 209 if (!gtp_check_src_ms(skb, pctx, hdrlen)) { 210 netdev_dbg(gtp->dev, "No PDP ctx for this MS\n"); 211 ret = -1; 212 goto out_rcu; 213 } 214 rcu_read_unlock(); 215 216 /* Get rid of the GTP + UDP headers. */ 217 return iptunnel_pull_header(skb, hdrlen, skb->protocol, xnet); 218 out_rcu: 219 rcu_read_unlock(); 220 return ret; 221 } 222 223 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb, 224 bool xnet) 225 { 226 unsigned int hdrlen = sizeof(struct udphdr) + 227 sizeof(struct gtp1_header); 228 struct gtp1_header *gtp1; 229 struct pdp_ctx *pctx; 230 int ret = 0; 231 232 if (!pskb_may_pull(skb, hdrlen)) 233 return -1; 234 235 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 236 237 if ((gtp1->flags >> 5) != GTP_V1) 238 return 1; 239 240 if (gtp1->type != GTP_TPDU) 241 return 1; 242 243 /* From 29.060: "This field shall be present if and only if any one or 244 * more of the S, PN and E flags are set.". 245 * 246 * If any of the bit is set, then the remaining ones also have to be 247 * set. 248 */ 249 if (gtp1->flags & GTP1_F_MASK) 250 hdrlen += 4; 251 252 /* Make sure the header is larger enough, including extensions. */ 253 if (!pskb_may_pull(skb, hdrlen)) 254 return -1; 255 256 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 257 258 rcu_read_lock(); 259 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid)); 260 if (!pctx) { 261 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 262 ret = -1; 263 goto out_rcu; 264 } 265 266 if (!gtp_check_src_ms(skb, pctx, hdrlen)) { 267 netdev_dbg(gtp->dev, "No PDP ctx for this MS\n"); 268 ret = -1; 269 goto out_rcu; 270 } 271 rcu_read_unlock(); 272 273 /* Get rid of the GTP + UDP headers. */ 274 return iptunnel_pull_header(skb, hdrlen, skb->protocol, xnet); 275 out_rcu: 276 rcu_read_unlock(); 277 return ret; 278 } 279 280 static void gtp_encap_disable(struct gtp_dev *gtp) 281 { 282 if (gtp->sock0 && gtp->sock0->sk) { 283 udp_sk(gtp->sock0->sk)->encap_type = 0; 284 rcu_assign_sk_user_data(gtp->sock0->sk, NULL); 285 } 286 if (gtp->sock1u && gtp->sock1u->sk) { 287 udp_sk(gtp->sock1u->sk)->encap_type = 0; 288 rcu_assign_sk_user_data(gtp->sock1u->sk, NULL); 289 } 290 291 gtp->sock0 = NULL; 292 gtp->sock1u = NULL; 293 } 294 295 static void gtp_encap_destroy(struct sock *sk) 296 { 297 struct gtp_dev *gtp; 298 299 gtp = rcu_dereference_sk_user_data(sk); 300 if (gtp) 301 gtp_encap_disable(gtp); 302 } 303 304 /* UDP encapsulation receive handler. See net/ipv4/udp.c. 305 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket. 306 */ 307 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb) 308 { 309 struct pcpu_sw_netstats *stats; 310 struct gtp_dev *gtp; 311 bool xnet; 312 int ret; 313 314 gtp = rcu_dereference_sk_user_data(sk); 315 if (!gtp) 316 return 1; 317 318 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk); 319 320 xnet = !net_eq(gtp->net, dev_net(gtp->dev)); 321 322 switch (udp_sk(sk)->encap_type) { 323 case UDP_ENCAP_GTP0: 324 netdev_dbg(gtp->dev, "received GTP0 packet\n"); 325 ret = gtp0_udp_encap_recv(gtp, skb, xnet); 326 break; 327 case UDP_ENCAP_GTP1U: 328 netdev_dbg(gtp->dev, "received GTP1U packet\n"); 329 ret = gtp1u_udp_encap_recv(gtp, skb, xnet); 330 break; 331 default: 332 ret = -1; /* Shouldn't happen. */ 333 } 334 335 switch (ret) { 336 case 1: 337 netdev_dbg(gtp->dev, "pass up to the process\n"); 338 return 1; 339 case 0: 340 netdev_dbg(gtp->dev, "forwarding packet from GGSN to uplink\n"); 341 break; 342 case -1: 343 netdev_dbg(gtp->dev, "GTP packet has been dropped\n"); 344 kfree_skb(skb); 345 return 0; 346 } 347 348 /* Now that the UDP and the GTP header have been removed, set up the 349 * new network header. This is required by the upper layer to 350 * calculate the transport header. 351 */ 352 skb_reset_network_header(skb); 353 354 skb->dev = gtp->dev; 355 356 stats = this_cpu_ptr(gtp->dev->tstats); 357 u64_stats_update_begin(&stats->syncp); 358 stats->rx_packets++; 359 stats->rx_bytes += skb->len; 360 u64_stats_update_end(&stats->syncp); 361 362 netif_rx(skb); 363 364 return 0; 365 } 366 367 static int gtp_dev_init(struct net_device *dev) 368 { 369 struct gtp_dev *gtp = netdev_priv(dev); 370 371 gtp->dev = dev; 372 373 dev->tstats = alloc_percpu(struct pcpu_sw_netstats); 374 if (!dev->tstats) 375 return -ENOMEM; 376 377 return 0; 378 } 379 380 static void gtp_dev_uninit(struct net_device *dev) 381 { 382 struct gtp_dev *gtp = netdev_priv(dev); 383 384 gtp_encap_disable(gtp); 385 free_percpu(dev->tstats); 386 } 387 388 static struct rtable *ip4_route_output_gtp(struct net *net, struct flowi4 *fl4, 389 const struct sock *sk, __be32 daddr) 390 { 391 memset(fl4, 0, sizeof(*fl4)); 392 fl4->flowi4_oif = sk->sk_bound_dev_if; 393 fl4->daddr = daddr; 394 fl4->saddr = inet_sk(sk)->inet_saddr; 395 fl4->flowi4_tos = RT_CONN_FLAGS(sk); 396 fl4->flowi4_proto = sk->sk_protocol; 397 398 return ip_route_output_key(net, fl4); 399 } 400 401 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 402 { 403 int payload_len = skb->len; 404 struct gtp0_header *gtp0; 405 406 gtp0 = (struct gtp0_header *) skb_push(skb, sizeof(*gtp0)); 407 408 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */ 409 gtp0->type = GTP_TPDU; 410 gtp0->length = htons(payload_len); 411 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff); 412 gtp0->flow = htons(pctx->u.v0.flow); 413 gtp0->number = 0xff; 414 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff; 415 gtp0->tid = cpu_to_be64(pctx->u.v0.tid); 416 } 417 418 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 419 { 420 int payload_len = skb->len; 421 struct gtp1_header *gtp1; 422 423 gtp1 = (struct gtp1_header *) skb_push(skb, sizeof(*gtp1)); 424 425 /* Bits 8 7 6 5 4 3 2 1 426 * +--+--+--+--+--+--+--+--+ 427 * |version |PT| 1| E| S|PN| 428 * +--+--+--+--+--+--+--+--+ 429 * 0 0 1 1 1 0 0 0 430 */ 431 gtp1->flags = 0x38; /* v1, GTP-non-prime. */ 432 gtp1->type = GTP_TPDU; 433 gtp1->length = htons(payload_len); 434 gtp1->tid = htonl(pctx->u.v1.o_tei); 435 436 /* TODO: Suppport for extension header, sequence number and N-PDU. 437 * Update the length field if any of them is available. 438 */ 439 } 440 441 struct gtp_pktinfo { 442 struct sock *sk; 443 struct iphdr *iph; 444 struct flowi4 fl4; 445 struct rtable *rt; 446 struct pdp_ctx *pctx; 447 struct net_device *dev; 448 __be16 gtph_port; 449 }; 450 451 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo) 452 { 453 switch (pktinfo->pctx->gtp_version) { 454 case GTP_V0: 455 pktinfo->gtph_port = htons(GTP0_PORT); 456 gtp0_push_header(skb, pktinfo->pctx); 457 break; 458 case GTP_V1: 459 pktinfo->gtph_port = htons(GTP1U_PORT); 460 gtp1_push_header(skb, pktinfo->pctx); 461 break; 462 } 463 } 464 465 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo, 466 struct sock *sk, struct iphdr *iph, 467 struct pdp_ctx *pctx, struct rtable *rt, 468 struct flowi4 *fl4, 469 struct net_device *dev) 470 { 471 pktinfo->sk = sk; 472 pktinfo->iph = iph; 473 pktinfo->pctx = pctx; 474 pktinfo->rt = rt; 475 pktinfo->fl4 = *fl4; 476 pktinfo->dev = dev; 477 } 478 479 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev, 480 struct gtp_pktinfo *pktinfo) 481 { 482 struct gtp_dev *gtp = netdev_priv(dev); 483 struct pdp_ctx *pctx; 484 struct rtable *rt; 485 struct flowi4 fl4; 486 struct iphdr *iph; 487 struct sock *sk; 488 __be16 df; 489 int mtu; 490 491 /* Read the IP destination address and resolve the PDP context. 492 * Prepend PDP header with TEI/TID from PDP ctx. 493 */ 494 iph = ip_hdr(skb); 495 pctx = ipv4_pdp_find(gtp, iph->daddr); 496 if (!pctx) { 497 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n", 498 &iph->daddr); 499 return -ENOENT; 500 } 501 netdev_dbg(dev, "found PDP context %p\n", pctx); 502 503 switch (pctx->gtp_version) { 504 case GTP_V0: 505 if (gtp->sock0) 506 sk = gtp->sock0->sk; 507 else 508 sk = NULL; 509 break; 510 case GTP_V1: 511 if (gtp->sock1u) 512 sk = gtp->sock1u->sk; 513 else 514 sk = NULL; 515 break; 516 default: 517 return -ENOENT; 518 } 519 520 if (!sk) { 521 netdev_dbg(dev, "no userspace socket is available, skip\n"); 522 return -ENOENT; 523 } 524 525 rt = ip4_route_output_gtp(sock_net(sk), &fl4, gtp->sock0->sk, 526 pctx->sgsn_addr_ip4.s_addr); 527 if (IS_ERR(rt)) { 528 netdev_dbg(dev, "no route to SSGN %pI4\n", 529 &pctx->sgsn_addr_ip4.s_addr); 530 dev->stats.tx_carrier_errors++; 531 goto err; 532 } 533 534 if (rt->dst.dev == dev) { 535 netdev_dbg(dev, "circular route to SSGN %pI4\n", 536 &pctx->sgsn_addr_ip4.s_addr); 537 dev->stats.collisions++; 538 goto err_rt; 539 } 540 541 skb_dst_drop(skb); 542 543 /* This is similar to tnl_update_pmtu(). */ 544 df = iph->frag_off; 545 if (df) { 546 mtu = dst_mtu(&rt->dst) - dev->hard_header_len - 547 sizeof(struct iphdr) - sizeof(struct udphdr); 548 switch (pctx->gtp_version) { 549 case GTP_V0: 550 mtu -= sizeof(struct gtp0_header); 551 break; 552 case GTP_V1: 553 mtu -= sizeof(struct gtp1_header); 554 break; 555 } 556 } else { 557 mtu = dst_mtu(&rt->dst); 558 } 559 560 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu); 561 562 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) && 563 mtu < ntohs(iph->tot_len)) { 564 netdev_dbg(dev, "packet too big, fragmentation needed\n"); 565 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 566 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 567 htonl(mtu)); 568 goto err_rt; 569 } 570 571 gtp_set_pktinfo_ipv4(pktinfo, sk, iph, pctx, rt, &fl4, dev); 572 gtp_push_header(skb, pktinfo); 573 574 return 0; 575 err_rt: 576 ip_rt_put(rt); 577 err: 578 return -EBADMSG; 579 } 580 581 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev) 582 { 583 unsigned int proto = ntohs(skb->protocol); 584 struct gtp_pktinfo pktinfo; 585 int err; 586 587 /* Ensure there is sufficient headroom. */ 588 if (skb_cow_head(skb, dev->needed_headroom)) 589 goto tx_err; 590 591 skb_reset_inner_headers(skb); 592 593 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */ 594 rcu_read_lock(); 595 switch (proto) { 596 case ETH_P_IP: 597 err = gtp_build_skb_ip4(skb, dev, &pktinfo); 598 break; 599 default: 600 err = -EOPNOTSUPP; 601 break; 602 } 603 rcu_read_unlock(); 604 605 if (err < 0) 606 goto tx_err; 607 608 switch (proto) { 609 case ETH_P_IP: 610 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n", 611 &pktinfo.iph->saddr, &pktinfo.iph->daddr); 612 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb, 613 pktinfo.fl4.saddr, pktinfo.fl4.daddr, 614 pktinfo.iph->tos, 615 ip4_dst_hoplimit(&pktinfo.rt->dst), 616 htons(IP_DF), 617 pktinfo.gtph_port, pktinfo.gtph_port, 618 true, false); 619 break; 620 } 621 622 return NETDEV_TX_OK; 623 tx_err: 624 dev->stats.tx_errors++; 625 dev_kfree_skb(skb); 626 return NETDEV_TX_OK; 627 } 628 629 static const struct net_device_ops gtp_netdev_ops = { 630 .ndo_init = gtp_dev_init, 631 .ndo_uninit = gtp_dev_uninit, 632 .ndo_start_xmit = gtp_dev_xmit, 633 .ndo_get_stats64 = ip_tunnel_get_stats64, 634 }; 635 636 static void gtp_link_setup(struct net_device *dev) 637 { 638 dev->netdev_ops = >p_netdev_ops; 639 dev->destructor = free_netdev; 640 641 dev->hard_header_len = 0; 642 dev->addr_len = 0; 643 644 /* Zero header length. */ 645 dev->type = ARPHRD_NONE; 646 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 647 648 dev->priv_flags |= IFF_NO_QUEUE; 649 dev->features |= NETIF_F_LLTX; 650 netif_keep_dst(dev); 651 652 /* Assume largest header, ie. GTPv0. */ 653 dev->needed_headroom = LL_MAX_HEADER + 654 sizeof(struct iphdr) + 655 sizeof(struct udphdr) + 656 sizeof(struct gtp0_header); 657 } 658 659 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize); 660 static void gtp_hashtable_free(struct gtp_dev *gtp); 661 static int gtp_encap_enable(struct net_device *dev, struct gtp_dev *gtp, 662 int fd_gtp0, int fd_gtp1, struct net *src_net); 663 664 static int gtp_newlink(struct net *src_net, struct net_device *dev, 665 struct nlattr *tb[], struct nlattr *data[]) 666 { 667 int hashsize, err, fd0, fd1; 668 struct gtp_dev *gtp; 669 struct gtp_net *gn; 670 671 if (!data[IFLA_GTP_FD0] || !data[IFLA_GTP_FD1]) 672 return -EINVAL; 673 674 gtp = netdev_priv(dev); 675 676 fd0 = nla_get_u32(data[IFLA_GTP_FD0]); 677 fd1 = nla_get_u32(data[IFLA_GTP_FD1]); 678 679 err = gtp_encap_enable(dev, gtp, fd0, fd1, src_net); 680 if (err < 0) 681 goto out_err; 682 683 if (!data[IFLA_GTP_PDP_HASHSIZE]) 684 hashsize = 1024; 685 else 686 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]); 687 688 err = gtp_hashtable_new(gtp, hashsize); 689 if (err < 0) 690 goto out_encap; 691 692 err = register_netdevice(dev); 693 if (err < 0) { 694 netdev_dbg(dev, "failed to register new netdev %d\n", err); 695 goto out_hashtable; 696 } 697 698 gn = net_generic(dev_net(dev), gtp_net_id); 699 list_add_rcu(>p->list, &gn->gtp_dev_list); 700 701 netdev_dbg(dev, "registered new GTP interface\n"); 702 703 return 0; 704 705 out_hashtable: 706 gtp_hashtable_free(gtp); 707 out_encap: 708 gtp_encap_disable(gtp); 709 out_err: 710 return err; 711 } 712 713 static void gtp_dellink(struct net_device *dev, struct list_head *head) 714 { 715 struct gtp_dev *gtp = netdev_priv(dev); 716 717 gtp_encap_disable(gtp); 718 gtp_hashtable_free(gtp); 719 list_del_rcu(>p->list); 720 unregister_netdevice_queue(dev, head); 721 } 722 723 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = { 724 [IFLA_GTP_FD0] = { .type = NLA_U32 }, 725 [IFLA_GTP_FD1] = { .type = NLA_U32 }, 726 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 }, 727 }; 728 729 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[]) 730 { 731 if (!data) 732 return -EINVAL; 733 734 return 0; 735 } 736 737 static size_t gtp_get_size(const struct net_device *dev) 738 { 739 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */ 740 } 741 742 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev) 743 { 744 struct gtp_dev *gtp = netdev_priv(dev); 745 746 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size)) 747 goto nla_put_failure; 748 749 return 0; 750 751 nla_put_failure: 752 return -EMSGSIZE; 753 } 754 755 static struct rtnl_link_ops gtp_link_ops __read_mostly = { 756 .kind = "gtp", 757 .maxtype = IFLA_GTP_MAX, 758 .policy = gtp_policy, 759 .priv_size = sizeof(struct gtp_dev), 760 .setup = gtp_link_setup, 761 .validate = gtp_validate, 762 .newlink = gtp_newlink, 763 .dellink = gtp_dellink, 764 .get_size = gtp_get_size, 765 .fill_info = gtp_fill_info, 766 }; 767 768 static struct net *gtp_genl_get_net(struct net *src_net, struct nlattr *tb[]) 769 { 770 struct net *net; 771 772 /* Examine the link attributes and figure out which network namespace 773 * we are talking about. 774 */ 775 if (tb[GTPA_NET_NS_FD]) 776 net = get_net_ns_by_fd(nla_get_u32(tb[GTPA_NET_NS_FD])); 777 else 778 net = get_net(src_net); 779 780 return net; 781 } 782 783 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize) 784 { 785 int i; 786 787 gtp->addr_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL); 788 if (gtp->addr_hash == NULL) 789 return -ENOMEM; 790 791 gtp->tid_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL); 792 if (gtp->tid_hash == NULL) 793 goto err1; 794 795 gtp->hash_size = hsize; 796 797 for (i = 0; i < hsize; i++) { 798 INIT_HLIST_HEAD(>p->addr_hash[i]); 799 INIT_HLIST_HEAD(>p->tid_hash[i]); 800 } 801 return 0; 802 err1: 803 kfree(gtp->addr_hash); 804 return -ENOMEM; 805 } 806 807 static void gtp_hashtable_free(struct gtp_dev *gtp) 808 { 809 struct pdp_ctx *pctx; 810 int i; 811 812 for (i = 0; i < gtp->hash_size; i++) { 813 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) { 814 hlist_del_rcu(&pctx->hlist_tid); 815 hlist_del_rcu(&pctx->hlist_addr); 816 kfree_rcu(pctx, rcu_head); 817 } 818 } 819 synchronize_rcu(); 820 kfree(gtp->addr_hash); 821 kfree(gtp->tid_hash); 822 } 823 824 static int gtp_encap_enable(struct net_device *dev, struct gtp_dev *gtp, 825 int fd_gtp0, int fd_gtp1, struct net *src_net) 826 { 827 struct udp_tunnel_sock_cfg tuncfg = {NULL}; 828 struct socket *sock0, *sock1u; 829 int err; 830 831 netdev_dbg(dev, "enable gtp on %d, %d\n", fd_gtp0, fd_gtp1); 832 833 sock0 = sockfd_lookup(fd_gtp0, &err); 834 if (sock0 == NULL) { 835 netdev_dbg(dev, "socket fd=%d not found (gtp0)\n", fd_gtp0); 836 return -ENOENT; 837 } 838 839 if (sock0->sk->sk_protocol != IPPROTO_UDP) { 840 netdev_dbg(dev, "socket fd=%d not UDP\n", fd_gtp0); 841 err = -EINVAL; 842 goto err1; 843 } 844 845 sock1u = sockfd_lookup(fd_gtp1, &err); 846 if (sock1u == NULL) { 847 netdev_dbg(dev, "socket fd=%d not found (gtp1u)\n", fd_gtp1); 848 err = -ENOENT; 849 goto err1; 850 } 851 852 if (sock1u->sk->sk_protocol != IPPROTO_UDP) { 853 netdev_dbg(dev, "socket fd=%d not UDP\n", fd_gtp1); 854 err = -EINVAL; 855 goto err2; 856 } 857 858 netdev_dbg(dev, "enable gtp on %p, %p\n", sock0, sock1u); 859 860 gtp->sock0 = sock0; 861 gtp->sock1u = sock1u; 862 gtp->net = src_net; 863 864 tuncfg.sk_user_data = gtp; 865 tuncfg.encap_rcv = gtp_encap_recv; 866 tuncfg.encap_destroy = gtp_encap_destroy; 867 868 tuncfg.encap_type = UDP_ENCAP_GTP0; 869 setup_udp_tunnel_sock(sock_net(gtp->sock0->sk), gtp->sock0, &tuncfg); 870 871 tuncfg.encap_type = UDP_ENCAP_GTP1U; 872 setup_udp_tunnel_sock(sock_net(gtp->sock1u->sk), gtp->sock1u, &tuncfg); 873 874 err = 0; 875 err2: 876 sockfd_put(sock1u); 877 err1: 878 sockfd_put(sock0); 879 return err; 880 } 881 882 static struct net_device *gtp_find_dev(struct net *net, int ifindex) 883 { 884 struct gtp_net *gn = net_generic(net, gtp_net_id); 885 struct gtp_dev *gtp; 886 887 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 888 if (ifindex == gtp->dev->ifindex) 889 return gtp->dev; 890 } 891 return NULL; 892 } 893 894 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info) 895 { 896 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 897 pctx->af = AF_INET; 898 pctx->sgsn_addr_ip4.s_addr = 899 nla_get_be32(info->attrs[GTPA_SGSN_ADDRESS]); 900 pctx->ms_addr_ip4.s_addr = 901 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 902 903 switch (pctx->gtp_version) { 904 case GTP_V0: 905 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow 906 * label needs to be the same for uplink and downlink packets, 907 * so let's annotate this. 908 */ 909 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]); 910 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]); 911 break; 912 case GTP_V1: 913 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]); 914 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]); 915 break; 916 default: 917 break; 918 } 919 } 920 921 static int ipv4_pdp_add(struct net_device *dev, struct genl_info *info) 922 { 923 struct gtp_dev *gtp = netdev_priv(dev); 924 u32 hash_ms, hash_tid = 0; 925 struct pdp_ctx *pctx; 926 bool found = false; 927 __be32 ms_addr; 928 929 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 930 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size; 931 932 hlist_for_each_entry_rcu(pctx, >p->addr_hash[hash_ms], hlist_addr) { 933 if (pctx->ms_addr_ip4.s_addr == ms_addr) { 934 found = true; 935 break; 936 } 937 } 938 939 if (found) { 940 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) 941 return -EEXIST; 942 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE) 943 return -EOPNOTSUPP; 944 945 ipv4_pdp_fill(pctx, info); 946 947 if (pctx->gtp_version == GTP_V0) 948 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n", 949 pctx->u.v0.tid, pctx); 950 else if (pctx->gtp_version == GTP_V1) 951 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n", 952 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 953 954 return 0; 955 956 } 957 958 pctx = kmalloc(sizeof(struct pdp_ctx), GFP_KERNEL); 959 if (pctx == NULL) 960 return -ENOMEM; 961 962 ipv4_pdp_fill(pctx, info); 963 atomic_set(&pctx->tx_seq, 0); 964 965 switch (pctx->gtp_version) { 966 case GTP_V0: 967 /* TS 09.60: "The flow label identifies unambiguously a GTP 968 * flow.". We use the tid for this instead, I cannot find a 969 * situation in which this doesn't unambiguosly identify the 970 * PDP context. 971 */ 972 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size; 973 break; 974 case GTP_V1: 975 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size; 976 break; 977 } 978 979 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]); 980 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]); 981 982 switch (pctx->gtp_version) { 983 case GTP_V0: 984 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 985 pctx->u.v0.tid, &pctx->sgsn_addr_ip4, 986 &pctx->ms_addr_ip4, pctx); 987 break; 988 case GTP_V1: 989 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 990 pctx->u.v1.i_tei, pctx->u.v1.o_tei, 991 &pctx->sgsn_addr_ip4, &pctx->ms_addr_ip4, pctx); 992 break; 993 } 994 995 return 0; 996 } 997 998 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info) 999 { 1000 struct net_device *dev; 1001 struct net *net; 1002 1003 if (!info->attrs[GTPA_VERSION] || 1004 !info->attrs[GTPA_LINK] || 1005 !info->attrs[GTPA_SGSN_ADDRESS] || 1006 !info->attrs[GTPA_MS_ADDRESS]) 1007 return -EINVAL; 1008 1009 switch (nla_get_u32(info->attrs[GTPA_VERSION])) { 1010 case GTP_V0: 1011 if (!info->attrs[GTPA_TID] || 1012 !info->attrs[GTPA_FLOW]) 1013 return -EINVAL; 1014 break; 1015 case GTP_V1: 1016 if (!info->attrs[GTPA_I_TEI] || 1017 !info->attrs[GTPA_O_TEI]) 1018 return -EINVAL; 1019 break; 1020 1021 default: 1022 return -EINVAL; 1023 } 1024 1025 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1026 if (IS_ERR(net)) 1027 return PTR_ERR(net); 1028 1029 /* Check if there's an existing gtpX device to configure */ 1030 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1031 if (dev == NULL) { 1032 put_net(net); 1033 return -ENODEV; 1034 } 1035 put_net(net); 1036 1037 return ipv4_pdp_add(dev, info); 1038 } 1039 1040 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info) 1041 { 1042 struct net_device *dev; 1043 struct pdp_ctx *pctx; 1044 struct gtp_dev *gtp; 1045 struct net *net; 1046 1047 if (!info->attrs[GTPA_VERSION] || 1048 !info->attrs[GTPA_LINK]) 1049 return -EINVAL; 1050 1051 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1052 if (IS_ERR(net)) 1053 return PTR_ERR(net); 1054 1055 /* Check if there's an existing gtpX device to configure */ 1056 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1057 if (dev == NULL) { 1058 put_net(net); 1059 return -ENODEV; 1060 } 1061 put_net(net); 1062 1063 gtp = netdev_priv(dev); 1064 1065 switch (nla_get_u32(info->attrs[GTPA_VERSION])) { 1066 case GTP_V0: 1067 if (!info->attrs[GTPA_TID]) 1068 return -EINVAL; 1069 pctx = gtp0_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_TID])); 1070 break; 1071 case GTP_V1: 1072 if (!info->attrs[GTPA_I_TEI]) 1073 return -EINVAL; 1074 pctx = gtp1_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_I_TEI])); 1075 break; 1076 1077 default: 1078 return -EINVAL; 1079 } 1080 1081 if (pctx == NULL) 1082 return -ENOENT; 1083 1084 if (pctx->gtp_version == GTP_V0) 1085 netdev_dbg(dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n", 1086 pctx->u.v0.tid, pctx); 1087 else if (pctx->gtp_version == GTP_V1) 1088 netdev_dbg(dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n", 1089 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 1090 1091 hlist_del_rcu(&pctx->hlist_tid); 1092 hlist_del_rcu(&pctx->hlist_addr); 1093 kfree_rcu(pctx, rcu_head); 1094 1095 return 0; 1096 } 1097 1098 static struct genl_family gtp_genl_family = { 1099 .id = GENL_ID_GENERATE, 1100 .name = "gtp", 1101 .version = 0, 1102 .hdrsize = 0, 1103 .maxattr = GTPA_MAX, 1104 .netnsok = true, 1105 }; 1106 1107 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq, 1108 u32 type, struct pdp_ctx *pctx) 1109 { 1110 void *genlh; 1111 1112 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, 0, 1113 type); 1114 if (genlh == NULL) 1115 goto nlmsg_failure; 1116 1117 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) || 1118 nla_put_be32(skb, GTPA_SGSN_ADDRESS, pctx->sgsn_addr_ip4.s_addr) || 1119 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr)) 1120 goto nla_put_failure; 1121 1122 switch (pctx->gtp_version) { 1123 case GTP_V0: 1124 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) || 1125 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow)) 1126 goto nla_put_failure; 1127 break; 1128 case GTP_V1: 1129 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) || 1130 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei)) 1131 goto nla_put_failure; 1132 break; 1133 } 1134 genlmsg_end(skb, genlh); 1135 return 0; 1136 1137 nlmsg_failure: 1138 nla_put_failure: 1139 genlmsg_cancel(skb, genlh); 1140 return -EMSGSIZE; 1141 } 1142 1143 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info) 1144 { 1145 struct pdp_ctx *pctx = NULL; 1146 struct net_device *dev; 1147 struct sk_buff *skb2; 1148 struct gtp_dev *gtp; 1149 u32 gtp_version; 1150 struct net *net; 1151 int err; 1152 1153 if (!info->attrs[GTPA_VERSION] || 1154 !info->attrs[GTPA_LINK]) 1155 return -EINVAL; 1156 1157 gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 1158 switch (gtp_version) { 1159 case GTP_V0: 1160 case GTP_V1: 1161 break; 1162 default: 1163 return -EINVAL; 1164 } 1165 1166 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1167 if (IS_ERR(net)) 1168 return PTR_ERR(net); 1169 1170 /* Check if there's an existing gtpX device to configure */ 1171 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1172 if (dev == NULL) { 1173 put_net(net); 1174 return -ENODEV; 1175 } 1176 put_net(net); 1177 1178 gtp = netdev_priv(dev); 1179 1180 rcu_read_lock(); 1181 if (gtp_version == GTP_V0 && 1182 info->attrs[GTPA_TID]) { 1183 u64 tid = nla_get_u64(info->attrs[GTPA_TID]); 1184 1185 pctx = gtp0_pdp_find(gtp, tid); 1186 } else if (gtp_version == GTP_V1 && 1187 info->attrs[GTPA_I_TEI]) { 1188 u32 tid = nla_get_u32(info->attrs[GTPA_I_TEI]); 1189 1190 pctx = gtp1_pdp_find(gtp, tid); 1191 } else if (info->attrs[GTPA_MS_ADDRESS]) { 1192 __be32 ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 1193 1194 pctx = ipv4_pdp_find(gtp, ip); 1195 } 1196 1197 if (pctx == NULL) { 1198 err = -ENOENT; 1199 goto err_unlock; 1200 } 1201 1202 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); 1203 if (skb2 == NULL) { 1204 err = -ENOMEM; 1205 goto err_unlock; 1206 } 1207 1208 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, 1209 info->snd_seq, info->nlhdr->nlmsg_type, pctx); 1210 if (err < 0) 1211 goto err_unlock_free; 1212 1213 rcu_read_unlock(); 1214 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid); 1215 1216 err_unlock_free: 1217 kfree_skb(skb2); 1218 err_unlock: 1219 rcu_read_unlock(); 1220 return err; 1221 } 1222 1223 static int gtp_genl_dump_pdp(struct sk_buff *skb, 1224 struct netlink_callback *cb) 1225 { 1226 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp; 1227 struct net *net = sock_net(skb->sk); 1228 struct gtp_net *gn = net_generic(net, gtp_net_id); 1229 unsigned long tid = cb->args[1]; 1230 int i, k = cb->args[0], ret; 1231 struct pdp_ctx *pctx; 1232 1233 if (cb->args[4]) 1234 return 0; 1235 1236 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 1237 if (last_gtp && last_gtp != gtp) 1238 continue; 1239 else 1240 last_gtp = NULL; 1241 1242 for (i = k; i < gtp->hash_size; i++) { 1243 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) { 1244 if (tid && tid != pctx->u.tid) 1245 continue; 1246 else 1247 tid = 0; 1248 1249 ret = gtp_genl_fill_info(skb, 1250 NETLINK_CB(cb->skb).portid, 1251 cb->nlh->nlmsg_seq, 1252 cb->nlh->nlmsg_type, pctx); 1253 if (ret < 0) { 1254 cb->args[0] = i; 1255 cb->args[1] = pctx->u.tid; 1256 cb->args[2] = (unsigned long)gtp; 1257 goto out; 1258 } 1259 } 1260 } 1261 } 1262 cb->args[4] = 1; 1263 out: 1264 return skb->len; 1265 } 1266 1267 static struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = { 1268 [GTPA_LINK] = { .type = NLA_U32, }, 1269 [GTPA_VERSION] = { .type = NLA_U32, }, 1270 [GTPA_TID] = { .type = NLA_U64, }, 1271 [GTPA_SGSN_ADDRESS] = { .type = NLA_U32, }, 1272 [GTPA_MS_ADDRESS] = { .type = NLA_U32, }, 1273 [GTPA_FLOW] = { .type = NLA_U16, }, 1274 [GTPA_NET_NS_FD] = { .type = NLA_U32, }, 1275 [GTPA_I_TEI] = { .type = NLA_U32, }, 1276 [GTPA_O_TEI] = { .type = NLA_U32, }, 1277 }; 1278 1279 static const struct genl_ops gtp_genl_ops[] = { 1280 { 1281 .cmd = GTP_CMD_NEWPDP, 1282 .doit = gtp_genl_new_pdp, 1283 .policy = gtp_genl_policy, 1284 .flags = GENL_ADMIN_PERM, 1285 }, 1286 { 1287 .cmd = GTP_CMD_DELPDP, 1288 .doit = gtp_genl_del_pdp, 1289 .policy = gtp_genl_policy, 1290 .flags = GENL_ADMIN_PERM, 1291 }, 1292 { 1293 .cmd = GTP_CMD_GETPDP, 1294 .doit = gtp_genl_get_pdp, 1295 .dumpit = gtp_genl_dump_pdp, 1296 .policy = gtp_genl_policy, 1297 .flags = GENL_ADMIN_PERM, 1298 }, 1299 }; 1300 1301 static int __net_init gtp_net_init(struct net *net) 1302 { 1303 struct gtp_net *gn = net_generic(net, gtp_net_id); 1304 1305 INIT_LIST_HEAD(&gn->gtp_dev_list); 1306 return 0; 1307 } 1308 1309 static void __net_exit gtp_net_exit(struct net *net) 1310 { 1311 struct gtp_net *gn = net_generic(net, gtp_net_id); 1312 struct gtp_dev *gtp; 1313 LIST_HEAD(list); 1314 1315 rtnl_lock(); 1316 list_for_each_entry(gtp, &gn->gtp_dev_list, list) 1317 gtp_dellink(gtp->dev, &list); 1318 1319 unregister_netdevice_many(&list); 1320 rtnl_unlock(); 1321 } 1322 1323 static struct pernet_operations gtp_net_ops = { 1324 .init = gtp_net_init, 1325 .exit = gtp_net_exit, 1326 .id = >p_net_id, 1327 .size = sizeof(struct gtp_net), 1328 }; 1329 1330 static int __init gtp_init(void) 1331 { 1332 int err; 1333 1334 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval)); 1335 1336 err = rtnl_link_register(>p_link_ops); 1337 if (err < 0) 1338 goto error_out; 1339 1340 err = genl_register_family_with_ops(>p_genl_family, gtp_genl_ops); 1341 if (err < 0) 1342 goto unreg_rtnl_link; 1343 1344 err = register_pernet_subsys(>p_net_ops); 1345 if (err < 0) 1346 goto unreg_genl_family; 1347 1348 pr_info("GTP module loaded (pdp ctx size %Zd bytes)\n", 1349 sizeof(struct pdp_ctx)); 1350 return 0; 1351 1352 unreg_genl_family: 1353 genl_unregister_family(>p_genl_family); 1354 unreg_rtnl_link: 1355 rtnl_link_unregister(>p_link_ops); 1356 error_out: 1357 pr_err("error loading GTP module loaded\n"); 1358 return err; 1359 } 1360 late_initcall(gtp_init); 1361 1362 static void __exit gtp_fini(void) 1363 { 1364 unregister_pernet_subsys(>p_net_ops); 1365 genl_unregister_family(>p_genl_family); 1366 rtnl_link_unregister(>p_link_ops); 1367 1368 pr_info("GTP module unloaded\n"); 1369 } 1370 module_exit(gtp_fini); 1371 1372 MODULE_LICENSE("GPL"); 1373 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>"); 1374 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic"); 1375 MODULE_ALIAS_RTNL_LINK("gtp"); 1376