1 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060 2 * 3 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH 4 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org> 5 * 6 * Author: Harald Welte <hwelte@sysmocom.de> 7 * Pablo Neira Ayuso <pablo@netfilter.org> 8 * Andreas Schultz <aschultz@travelping.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/skbuff.h> 20 #include <linux/udp.h> 21 #include <linux/rculist.h> 22 #include <linux/jhash.h> 23 #include <linux/if_tunnel.h> 24 #include <linux/net.h> 25 #include <linux/file.h> 26 #include <linux/gtp.h> 27 28 #include <net/net_namespace.h> 29 #include <net/protocol.h> 30 #include <net/ip.h> 31 #include <net/udp.h> 32 #include <net/udp_tunnel.h> 33 #include <net/icmp.h> 34 #include <net/xfrm.h> 35 #include <net/genetlink.h> 36 #include <net/netns/generic.h> 37 #include <net/gtp.h> 38 39 /* An active session for the subscriber. */ 40 struct pdp_ctx { 41 struct hlist_node hlist_tid; 42 struct hlist_node hlist_addr; 43 44 union { 45 u64 tid; 46 struct { 47 u64 tid; 48 u16 flow; 49 } v0; 50 struct { 51 u32 i_tei; 52 u32 o_tei; 53 } v1; 54 } u; 55 u8 gtp_version; 56 u16 af; 57 58 struct in_addr ms_addr_ip4; 59 struct in_addr sgsn_addr_ip4; 60 61 atomic_t tx_seq; 62 struct rcu_head rcu_head; 63 }; 64 65 /* One instance of the GTP device. */ 66 struct gtp_dev { 67 struct list_head list; 68 69 struct socket *sock0; 70 struct socket *sock1u; 71 72 struct net_device *dev; 73 74 unsigned int hash_size; 75 struct hlist_head *tid_hash; 76 struct hlist_head *addr_hash; 77 }; 78 79 static unsigned int gtp_net_id __read_mostly; 80 81 struct gtp_net { 82 struct list_head gtp_dev_list; 83 }; 84 85 static u32 gtp_h_initval; 86 87 static inline u32 gtp0_hashfn(u64 tid) 88 { 89 u32 *tid32 = (u32 *) &tid; 90 return jhash_2words(tid32[0], tid32[1], gtp_h_initval); 91 } 92 93 static inline u32 gtp1u_hashfn(u32 tid) 94 { 95 return jhash_1word(tid, gtp_h_initval); 96 } 97 98 static inline u32 ipv4_hashfn(__be32 ip) 99 { 100 return jhash_1word((__force u32)ip, gtp_h_initval); 101 } 102 103 /* Resolve a PDP context structure based on the 64bit TID. */ 104 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid) 105 { 106 struct hlist_head *head; 107 struct pdp_ctx *pdp; 108 109 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size]; 110 111 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 112 if (pdp->gtp_version == GTP_V0 && 113 pdp->u.v0.tid == tid) 114 return pdp; 115 } 116 return NULL; 117 } 118 119 /* Resolve a PDP context structure based on the 32bit TEI. */ 120 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid) 121 { 122 struct hlist_head *head; 123 struct pdp_ctx *pdp; 124 125 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size]; 126 127 hlist_for_each_entry_rcu(pdp, head, hlist_tid) { 128 if (pdp->gtp_version == GTP_V1 && 129 pdp->u.v1.i_tei == tid) 130 return pdp; 131 } 132 return NULL; 133 } 134 135 /* Resolve a PDP context based on IPv4 address of MS. */ 136 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr) 137 { 138 struct hlist_head *head; 139 struct pdp_ctx *pdp; 140 141 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size]; 142 143 hlist_for_each_entry_rcu(pdp, head, hlist_addr) { 144 if (pdp->af == AF_INET && 145 pdp->ms_addr_ip4.s_addr == ms_addr) 146 return pdp; 147 } 148 149 return NULL; 150 } 151 152 static bool gtp_check_src_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx, 153 unsigned int hdrlen) 154 { 155 struct iphdr *iph; 156 157 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr))) 158 return false; 159 160 iph = (struct iphdr *)(skb->data + hdrlen); 161 162 return iph->saddr == pctx->ms_addr_ip4.s_addr; 163 } 164 165 /* Check if the inner IP source address in this packet is assigned to any 166 * existing mobile subscriber. 167 */ 168 static bool gtp_check_src_ms(struct sk_buff *skb, struct pdp_ctx *pctx, 169 unsigned int hdrlen) 170 { 171 switch (ntohs(skb->protocol)) { 172 case ETH_P_IP: 173 return gtp_check_src_ms_ipv4(skb, pctx, hdrlen); 174 } 175 return false; 176 } 177 178 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */ 179 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb, 180 bool xnet) 181 { 182 unsigned int hdrlen = sizeof(struct udphdr) + 183 sizeof(struct gtp0_header); 184 struct gtp0_header *gtp0; 185 struct pdp_ctx *pctx; 186 int ret = 0; 187 188 if (!pskb_may_pull(skb, hdrlen)) 189 return -1; 190 191 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr)); 192 193 if ((gtp0->flags >> 5) != GTP_V0) 194 return 1; 195 196 if (gtp0->type != GTP_TPDU) 197 return 1; 198 199 rcu_read_lock(); 200 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid)); 201 if (!pctx) { 202 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 203 ret = -1; 204 goto out_rcu; 205 } 206 207 if (!gtp_check_src_ms(skb, pctx, hdrlen)) { 208 netdev_dbg(gtp->dev, "No PDP ctx for this MS\n"); 209 ret = -1; 210 goto out_rcu; 211 } 212 rcu_read_unlock(); 213 214 /* Get rid of the GTP + UDP headers. */ 215 return iptunnel_pull_header(skb, hdrlen, skb->protocol, xnet); 216 out_rcu: 217 rcu_read_unlock(); 218 return ret; 219 } 220 221 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb, 222 bool xnet) 223 { 224 unsigned int hdrlen = sizeof(struct udphdr) + 225 sizeof(struct gtp1_header); 226 struct gtp1_header *gtp1; 227 struct pdp_ctx *pctx; 228 int ret = 0; 229 230 if (!pskb_may_pull(skb, hdrlen)) 231 return -1; 232 233 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 234 235 if ((gtp1->flags >> 5) != GTP_V1) 236 return 1; 237 238 if (gtp1->type != GTP_TPDU) 239 return 1; 240 241 /* From 29.060: "This field shall be present if and only if any one or 242 * more of the S, PN and E flags are set.". 243 * 244 * If any of the bit is set, then the remaining ones also have to be 245 * set. 246 */ 247 if (gtp1->flags & GTP1_F_MASK) 248 hdrlen += 4; 249 250 /* Make sure the header is larger enough, including extensions. */ 251 if (!pskb_may_pull(skb, hdrlen)) 252 return -1; 253 254 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr)); 255 256 rcu_read_lock(); 257 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid)); 258 if (!pctx) { 259 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb); 260 ret = -1; 261 goto out_rcu; 262 } 263 264 if (!gtp_check_src_ms(skb, pctx, hdrlen)) { 265 netdev_dbg(gtp->dev, "No PDP ctx for this MS\n"); 266 ret = -1; 267 goto out_rcu; 268 } 269 rcu_read_unlock(); 270 271 /* Get rid of the GTP + UDP headers. */ 272 return iptunnel_pull_header(skb, hdrlen, skb->protocol, xnet); 273 out_rcu: 274 rcu_read_unlock(); 275 return ret; 276 } 277 278 static void gtp_encap_disable(struct gtp_dev *gtp) 279 { 280 if (gtp->sock0 && gtp->sock0->sk) { 281 udp_sk(gtp->sock0->sk)->encap_type = 0; 282 rcu_assign_sk_user_data(gtp->sock0->sk, NULL); 283 } 284 if (gtp->sock1u && gtp->sock1u->sk) { 285 udp_sk(gtp->sock1u->sk)->encap_type = 0; 286 rcu_assign_sk_user_data(gtp->sock1u->sk, NULL); 287 } 288 289 gtp->sock0 = NULL; 290 gtp->sock1u = NULL; 291 } 292 293 static void gtp_encap_destroy(struct sock *sk) 294 { 295 struct gtp_dev *gtp; 296 297 gtp = rcu_dereference_sk_user_data(sk); 298 if (gtp) 299 gtp_encap_disable(gtp); 300 } 301 302 /* UDP encapsulation receive handler. See net/ipv4/udp.c. 303 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket. 304 */ 305 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb) 306 { 307 struct pcpu_sw_netstats *stats; 308 struct gtp_dev *gtp; 309 bool xnet; 310 int ret; 311 312 gtp = rcu_dereference_sk_user_data(sk); 313 if (!gtp) 314 return 1; 315 316 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk); 317 318 xnet = !net_eq(sock_net(sk), dev_net(gtp->dev)); 319 320 switch (udp_sk(sk)->encap_type) { 321 case UDP_ENCAP_GTP0: 322 netdev_dbg(gtp->dev, "received GTP0 packet\n"); 323 ret = gtp0_udp_encap_recv(gtp, skb, xnet); 324 break; 325 case UDP_ENCAP_GTP1U: 326 netdev_dbg(gtp->dev, "received GTP1U packet\n"); 327 ret = gtp1u_udp_encap_recv(gtp, skb, xnet); 328 break; 329 default: 330 ret = -1; /* Shouldn't happen. */ 331 } 332 333 switch (ret) { 334 case 1: 335 netdev_dbg(gtp->dev, "pass up to the process\n"); 336 return 1; 337 case 0: 338 netdev_dbg(gtp->dev, "forwarding packet from GGSN to uplink\n"); 339 break; 340 case -1: 341 netdev_dbg(gtp->dev, "GTP packet has been dropped\n"); 342 kfree_skb(skb); 343 return 0; 344 } 345 346 /* Now that the UDP and the GTP header have been removed, set up the 347 * new network header. This is required by the upper layer to 348 * calculate the transport header. 349 */ 350 skb_reset_network_header(skb); 351 352 skb->dev = gtp->dev; 353 354 stats = this_cpu_ptr(gtp->dev->tstats); 355 u64_stats_update_begin(&stats->syncp); 356 stats->rx_packets++; 357 stats->rx_bytes += skb->len; 358 u64_stats_update_end(&stats->syncp); 359 360 netif_rx(skb); 361 362 return 0; 363 } 364 365 static int gtp_dev_init(struct net_device *dev) 366 { 367 struct gtp_dev *gtp = netdev_priv(dev); 368 369 gtp->dev = dev; 370 371 dev->tstats = alloc_percpu(struct pcpu_sw_netstats); 372 if (!dev->tstats) 373 return -ENOMEM; 374 375 return 0; 376 } 377 378 static void gtp_dev_uninit(struct net_device *dev) 379 { 380 struct gtp_dev *gtp = netdev_priv(dev); 381 382 gtp_encap_disable(gtp); 383 free_percpu(dev->tstats); 384 } 385 386 static struct rtable *ip4_route_output_gtp(struct net *net, struct flowi4 *fl4, 387 const struct sock *sk, __be32 daddr) 388 { 389 memset(fl4, 0, sizeof(*fl4)); 390 fl4->flowi4_oif = sk->sk_bound_dev_if; 391 fl4->daddr = daddr; 392 fl4->saddr = inet_sk(sk)->inet_saddr; 393 fl4->flowi4_tos = RT_CONN_FLAGS(sk); 394 fl4->flowi4_proto = sk->sk_protocol; 395 396 return ip_route_output_key(net, fl4); 397 } 398 399 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 400 { 401 int payload_len = skb->len; 402 struct gtp0_header *gtp0; 403 404 gtp0 = (struct gtp0_header *) skb_push(skb, sizeof(*gtp0)); 405 406 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */ 407 gtp0->type = GTP_TPDU; 408 gtp0->length = htons(payload_len); 409 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff); 410 gtp0->flow = htons(pctx->u.v0.flow); 411 gtp0->number = 0xff; 412 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff; 413 gtp0->tid = cpu_to_be64(pctx->u.v0.tid); 414 } 415 416 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx) 417 { 418 int payload_len = skb->len; 419 struct gtp1_header *gtp1; 420 421 gtp1 = (struct gtp1_header *) skb_push(skb, sizeof(*gtp1)); 422 423 /* Bits 8 7 6 5 4 3 2 1 424 * +--+--+--+--+--+--+--+--+ 425 * |version |PT| 0| E| S|PN| 426 * +--+--+--+--+--+--+--+--+ 427 * 0 0 1 1 1 0 0 0 428 */ 429 gtp1->flags = 0x30; /* v1, GTP-non-prime. */ 430 gtp1->type = GTP_TPDU; 431 gtp1->length = htons(payload_len); 432 gtp1->tid = htonl(pctx->u.v1.o_tei); 433 434 /* TODO: Suppport for extension header, sequence number and N-PDU. 435 * Update the length field if any of them is available. 436 */ 437 } 438 439 struct gtp_pktinfo { 440 struct sock *sk; 441 struct iphdr *iph; 442 struct flowi4 fl4; 443 struct rtable *rt; 444 struct pdp_ctx *pctx; 445 struct net_device *dev; 446 __be16 gtph_port; 447 }; 448 449 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo) 450 { 451 switch (pktinfo->pctx->gtp_version) { 452 case GTP_V0: 453 pktinfo->gtph_port = htons(GTP0_PORT); 454 gtp0_push_header(skb, pktinfo->pctx); 455 break; 456 case GTP_V1: 457 pktinfo->gtph_port = htons(GTP1U_PORT); 458 gtp1_push_header(skb, pktinfo->pctx); 459 break; 460 } 461 } 462 463 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo, 464 struct sock *sk, struct iphdr *iph, 465 struct pdp_ctx *pctx, struct rtable *rt, 466 struct flowi4 *fl4, 467 struct net_device *dev) 468 { 469 pktinfo->sk = sk; 470 pktinfo->iph = iph; 471 pktinfo->pctx = pctx; 472 pktinfo->rt = rt; 473 pktinfo->fl4 = *fl4; 474 pktinfo->dev = dev; 475 } 476 477 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev, 478 struct gtp_pktinfo *pktinfo) 479 { 480 struct gtp_dev *gtp = netdev_priv(dev); 481 struct pdp_ctx *pctx; 482 struct rtable *rt; 483 struct flowi4 fl4; 484 struct iphdr *iph; 485 struct sock *sk; 486 __be16 df; 487 int mtu; 488 489 /* Read the IP destination address and resolve the PDP context. 490 * Prepend PDP header with TEI/TID from PDP ctx. 491 */ 492 iph = ip_hdr(skb); 493 pctx = ipv4_pdp_find(gtp, iph->daddr); 494 if (!pctx) { 495 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n", 496 &iph->daddr); 497 return -ENOENT; 498 } 499 netdev_dbg(dev, "found PDP context %p\n", pctx); 500 501 switch (pctx->gtp_version) { 502 case GTP_V0: 503 if (gtp->sock0) 504 sk = gtp->sock0->sk; 505 else 506 sk = NULL; 507 break; 508 case GTP_V1: 509 if (gtp->sock1u) 510 sk = gtp->sock1u->sk; 511 else 512 sk = NULL; 513 break; 514 default: 515 return -ENOENT; 516 } 517 518 if (!sk) { 519 netdev_dbg(dev, "no userspace socket is available, skip\n"); 520 return -ENOENT; 521 } 522 523 rt = ip4_route_output_gtp(sock_net(sk), &fl4, gtp->sock0->sk, 524 pctx->sgsn_addr_ip4.s_addr); 525 if (IS_ERR(rt)) { 526 netdev_dbg(dev, "no route to SSGN %pI4\n", 527 &pctx->sgsn_addr_ip4.s_addr); 528 dev->stats.tx_carrier_errors++; 529 goto err; 530 } 531 532 if (rt->dst.dev == dev) { 533 netdev_dbg(dev, "circular route to SSGN %pI4\n", 534 &pctx->sgsn_addr_ip4.s_addr); 535 dev->stats.collisions++; 536 goto err_rt; 537 } 538 539 skb_dst_drop(skb); 540 541 /* This is similar to tnl_update_pmtu(). */ 542 df = iph->frag_off; 543 if (df) { 544 mtu = dst_mtu(&rt->dst) - dev->hard_header_len - 545 sizeof(struct iphdr) - sizeof(struct udphdr); 546 switch (pctx->gtp_version) { 547 case GTP_V0: 548 mtu -= sizeof(struct gtp0_header); 549 break; 550 case GTP_V1: 551 mtu -= sizeof(struct gtp1_header); 552 break; 553 } 554 } else { 555 mtu = dst_mtu(&rt->dst); 556 } 557 558 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu); 559 560 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) && 561 mtu < ntohs(iph->tot_len)) { 562 netdev_dbg(dev, "packet too big, fragmentation needed\n"); 563 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 564 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 565 htonl(mtu)); 566 goto err_rt; 567 } 568 569 gtp_set_pktinfo_ipv4(pktinfo, sk, iph, pctx, rt, &fl4, dev); 570 gtp_push_header(skb, pktinfo); 571 572 return 0; 573 err_rt: 574 ip_rt_put(rt); 575 err: 576 return -EBADMSG; 577 } 578 579 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev) 580 { 581 unsigned int proto = ntohs(skb->protocol); 582 struct gtp_pktinfo pktinfo; 583 int err; 584 585 /* Ensure there is sufficient headroom. */ 586 if (skb_cow_head(skb, dev->needed_headroom)) 587 goto tx_err; 588 589 skb_reset_inner_headers(skb); 590 591 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */ 592 rcu_read_lock(); 593 switch (proto) { 594 case ETH_P_IP: 595 err = gtp_build_skb_ip4(skb, dev, &pktinfo); 596 break; 597 default: 598 err = -EOPNOTSUPP; 599 break; 600 } 601 rcu_read_unlock(); 602 603 if (err < 0) 604 goto tx_err; 605 606 switch (proto) { 607 case ETH_P_IP: 608 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n", 609 &pktinfo.iph->saddr, &pktinfo.iph->daddr); 610 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb, 611 pktinfo.fl4.saddr, pktinfo.fl4.daddr, 612 pktinfo.iph->tos, 613 ip4_dst_hoplimit(&pktinfo.rt->dst), 614 0, 615 pktinfo.gtph_port, pktinfo.gtph_port, 616 true, false); 617 break; 618 } 619 620 return NETDEV_TX_OK; 621 tx_err: 622 dev->stats.tx_errors++; 623 dev_kfree_skb(skb); 624 return NETDEV_TX_OK; 625 } 626 627 static const struct net_device_ops gtp_netdev_ops = { 628 .ndo_init = gtp_dev_init, 629 .ndo_uninit = gtp_dev_uninit, 630 .ndo_start_xmit = gtp_dev_xmit, 631 .ndo_get_stats64 = ip_tunnel_get_stats64, 632 }; 633 634 static void gtp_link_setup(struct net_device *dev) 635 { 636 dev->netdev_ops = >p_netdev_ops; 637 dev->destructor = free_netdev; 638 639 dev->hard_header_len = 0; 640 dev->addr_len = 0; 641 642 /* Zero header length. */ 643 dev->type = ARPHRD_NONE; 644 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 645 646 dev->priv_flags |= IFF_NO_QUEUE; 647 dev->features |= NETIF_F_LLTX; 648 netif_keep_dst(dev); 649 650 /* Assume largest header, ie. GTPv0. */ 651 dev->needed_headroom = LL_MAX_HEADER + 652 sizeof(struct iphdr) + 653 sizeof(struct udphdr) + 654 sizeof(struct gtp0_header); 655 } 656 657 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize); 658 static void gtp_hashtable_free(struct gtp_dev *gtp); 659 static int gtp_encap_enable(struct net_device *dev, struct gtp_dev *gtp, 660 int fd_gtp0, int fd_gtp1); 661 662 static int gtp_newlink(struct net *src_net, struct net_device *dev, 663 struct nlattr *tb[], struct nlattr *data[]) 664 { 665 int hashsize, err, fd0, fd1; 666 struct gtp_dev *gtp; 667 struct gtp_net *gn; 668 669 if (!data[IFLA_GTP_FD0] || !data[IFLA_GTP_FD1]) 670 return -EINVAL; 671 672 gtp = netdev_priv(dev); 673 674 fd0 = nla_get_u32(data[IFLA_GTP_FD0]); 675 fd1 = nla_get_u32(data[IFLA_GTP_FD1]); 676 677 err = gtp_encap_enable(dev, gtp, fd0, fd1); 678 if (err < 0) 679 goto out_err; 680 681 if (!data[IFLA_GTP_PDP_HASHSIZE]) 682 hashsize = 1024; 683 else 684 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]); 685 686 err = gtp_hashtable_new(gtp, hashsize); 687 if (err < 0) 688 goto out_encap; 689 690 err = register_netdevice(dev); 691 if (err < 0) { 692 netdev_dbg(dev, "failed to register new netdev %d\n", err); 693 goto out_hashtable; 694 } 695 696 gn = net_generic(dev_net(dev), gtp_net_id); 697 list_add_rcu(>p->list, &gn->gtp_dev_list); 698 699 netdev_dbg(dev, "registered new GTP interface\n"); 700 701 return 0; 702 703 out_hashtable: 704 gtp_hashtable_free(gtp); 705 out_encap: 706 gtp_encap_disable(gtp); 707 out_err: 708 return err; 709 } 710 711 static void gtp_dellink(struct net_device *dev, struct list_head *head) 712 { 713 struct gtp_dev *gtp = netdev_priv(dev); 714 715 gtp_encap_disable(gtp); 716 gtp_hashtable_free(gtp); 717 list_del_rcu(>p->list); 718 unregister_netdevice_queue(dev, head); 719 } 720 721 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = { 722 [IFLA_GTP_FD0] = { .type = NLA_U32 }, 723 [IFLA_GTP_FD1] = { .type = NLA_U32 }, 724 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 }, 725 }; 726 727 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[]) 728 { 729 if (!data) 730 return -EINVAL; 731 732 return 0; 733 } 734 735 static size_t gtp_get_size(const struct net_device *dev) 736 { 737 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */ 738 } 739 740 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev) 741 { 742 struct gtp_dev *gtp = netdev_priv(dev); 743 744 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size)) 745 goto nla_put_failure; 746 747 return 0; 748 749 nla_put_failure: 750 return -EMSGSIZE; 751 } 752 753 static struct rtnl_link_ops gtp_link_ops __read_mostly = { 754 .kind = "gtp", 755 .maxtype = IFLA_GTP_MAX, 756 .policy = gtp_policy, 757 .priv_size = sizeof(struct gtp_dev), 758 .setup = gtp_link_setup, 759 .validate = gtp_validate, 760 .newlink = gtp_newlink, 761 .dellink = gtp_dellink, 762 .get_size = gtp_get_size, 763 .fill_info = gtp_fill_info, 764 }; 765 766 static struct net *gtp_genl_get_net(struct net *src_net, struct nlattr *tb[]) 767 { 768 struct net *net; 769 770 /* Examine the link attributes and figure out which network namespace 771 * we are talking about. 772 */ 773 if (tb[GTPA_NET_NS_FD]) 774 net = get_net_ns_by_fd(nla_get_u32(tb[GTPA_NET_NS_FD])); 775 else 776 net = get_net(src_net); 777 778 return net; 779 } 780 781 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize) 782 { 783 int i; 784 785 gtp->addr_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL); 786 if (gtp->addr_hash == NULL) 787 return -ENOMEM; 788 789 gtp->tid_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL); 790 if (gtp->tid_hash == NULL) 791 goto err1; 792 793 gtp->hash_size = hsize; 794 795 for (i = 0; i < hsize; i++) { 796 INIT_HLIST_HEAD(>p->addr_hash[i]); 797 INIT_HLIST_HEAD(>p->tid_hash[i]); 798 } 799 return 0; 800 err1: 801 kfree(gtp->addr_hash); 802 return -ENOMEM; 803 } 804 805 static void gtp_hashtable_free(struct gtp_dev *gtp) 806 { 807 struct pdp_ctx *pctx; 808 int i; 809 810 for (i = 0; i < gtp->hash_size; i++) { 811 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) { 812 hlist_del_rcu(&pctx->hlist_tid); 813 hlist_del_rcu(&pctx->hlist_addr); 814 kfree_rcu(pctx, rcu_head); 815 } 816 } 817 synchronize_rcu(); 818 kfree(gtp->addr_hash); 819 kfree(gtp->tid_hash); 820 } 821 822 static int gtp_encap_enable(struct net_device *dev, struct gtp_dev *gtp, 823 int fd_gtp0, int fd_gtp1) 824 { 825 struct udp_tunnel_sock_cfg tuncfg = {NULL}; 826 struct socket *sock0, *sock1u; 827 int err; 828 829 netdev_dbg(dev, "enable gtp on %d, %d\n", fd_gtp0, fd_gtp1); 830 831 sock0 = sockfd_lookup(fd_gtp0, &err); 832 if (sock0 == NULL) { 833 netdev_dbg(dev, "socket fd=%d not found (gtp0)\n", fd_gtp0); 834 return -ENOENT; 835 } 836 837 if (sock0->sk->sk_protocol != IPPROTO_UDP) { 838 netdev_dbg(dev, "socket fd=%d not UDP\n", fd_gtp0); 839 err = -EINVAL; 840 goto err1; 841 } 842 843 sock1u = sockfd_lookup(fd_gtp1, &err); 844 if (sock1u == NULL) { 845 netdev_dbg(dev, "socket fd=%d not found (gtp1u)\n", fd_gtp1); 846 err = -ENOENT; 847 goto err1; 848 } 849 850 if (sock1u->sk->sk_protocol != IPPROTO_UDP) { 851 netdev_dbg(dev, "socket fd=%d not UDP\n", fd_gtp1); 852 err = -EINVAL; 853 goto err2; 854 } 855 856 netdev_dbg(dev, "enable gtp on %p, %p\n", sock0, sock1u); 857 858 gtp->sock0 = sock0; 859 gtp->sock1u = sock1u; 860 861 tuncfg.sk_user_data = gtp; 862 tuncfg.encap_rcv = gtp_encap_recv; 863 tuncfg.encap_destroy = gtp_encap_destroy; 864 865 tuncfg.encap_type = UDP_ENCAP_GTP0; 866 setup_udp_tunnel_sock(sock_net(gtp->sock0->sk), gtp->sock0, &tuncfg); 867 868 tuncfg.encap_type = UDP_ENCAP_GTP1U; 869 setup_udp_tunnel_sock(sock_net(gtp->sock1u->sk), gtp->sock1u, &tuncfg); 870 871 err = 0; 872 err2: 873 sockfd_put(sock1u); 874 err1: 875 sockfd_put(sock0); 876 return err; 877 } 878 879 static struct net_device *gtp_find_dev(struct net *net, int ifindex) 880 { 881 struct gtp_net *gn = net_generic(net, gtp_net_id); 882 struct gtp_dev *gtp; 883 884 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 885 if (ifindex == gtp->dev->ifindex) 886 return gtp->dev; 887 } 888 return NULL; 889 } 890 891 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info) 892 { 893 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 894 pctx->af = AF_INET; 895 pctx->sgsn_addr_ip4.s_addr = 896 nla_get_be32(info->attrs[GTPA_SGSN_ADDRESS]); 897 pctx->ms_addr_ip4.s_addr = 898 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 899 900 switch (pctx->gtp_version) { 901 case GTP_V0: 902 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow 903 * label needs to be the same for uplink and downlink packets, 904 * so let's annotate this. 905 */ 906 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]); 907 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]); 908 break; 909 case GTP_V1: 910 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]); 911 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]); 912 break; 913 default: 914 break; 915 } 916 } 917 918 static int ipv4_pdp_add(struct net_device *dev, struct genl_info *info) 919 { 920 struct gtp_dev *gtp = netdev_priv(dev); 921 u32 hash_ms, hash_tid = 0; 922 struct pdp_ctx *pctx; 923 bool found = false; 924 __be32 ms_addr; 925 926 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 927 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size; 928 929 hlist_for_each_entry_rcu(pctx, >p->addr_hash[hash_ms], hlist_addr) { 930 if (pctx->ms_addr_ip4.s_addr == ms_addr) { 931 found = true; 932 break; 933 } 934 } 935 936 if (found) { 937 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) 938 return -EEXIST; 939 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE) 940 return -EOPNOTSUPP; 941 942 ipv4_pdp_fill(pctx, info); 943 944 if (pctx->gtp_version == GTP_V0) 945 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n", 946 pctx->u.v0.tid, pctx); 947 else if (pctx->gtp_version == GTP_V1) 948 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n", 949 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 950 951 return 0; 952 953 } 954 955 pctx = kmalloc(sizeof(struct pdp_ctx), GFP_KERNEL); 956 if (pctx == NULL) 957 return -ENOMEM; 958 959 ipv4_pdp_fill(pctx, info); 960 atomic_set(&pctx->tx_seq, 0); 961 962 switch (pctx->gtp_version) { 963 case GTP_V0: 964 /* TS 09.60: "The flow label identifies unambiguously a GTP 965 * flow.". We use the tid for this instead, I cannot find a 966 * situation in which this doesn't unambiguosly identify the 967 * PDP context. 968 */ 969 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size; 970 break; 971 case GTP_V1: 972 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size; 973 break; 974 } 975 976 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]); 977 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]); 978 979 switch (pctx->gtp_version) { 980 case GTP_V0: 981 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 982 pctx->u.v0.tid, &pctx->sgsn_addr_ip4, 983 &pctx->ms_addr_ip4, pctx); 984 break; 985 case GTP_V1: 986 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n", 987 pctx->u.v1.i_tei, pctx->u.v1.o_tei, 988 &pctx->sgsn_addr_ip4, &pctx->ms_addr_ip4, pctx); 989 break; 990 } 991 992 return 0; 993 } 994 995 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info) 996 { 997 struct net_device *dev; 998 struct net *net; 999 1000 if (!info->attrs[GTPA_VERSION] || 1001 !info->attrs[GTPA_LINK] || 1002 !info->attrs[GTPA_SGSN_ADDRESS] || 1003 !info->attrs[GTPA_MS_ADDRESS]) 1004 return -EINVAL; 1005 1006 switch (nla_get_u32(info->attrs[GTPA_VERSION])) { 1007 case GTP_V0: 1008 if (!info->attrs[GTPA_TID] || 1009 !info->attrs[GTPA_FLOW]) 1010 return -EINVAL; 1011 break; 1012 case GTP_V1: 1013 if (!info->attrs[GTPA_I_TEI] || 1014 !info->attrs[GTPA_O_TEI]) 1015 return -EINVAL; 1016 break; 1017 1018 default: 1019 return -EINVAL; 1020 } 1021 1022 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1023 if (IS_ERR(net)) 1024 return PTR_ERR(net); 1025 1026 /* Check if there's an existing gtpX device to configure */ 1027 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1028 if (dev == NULL) { 1029 put_net(net); 1030 return -ENODEV; 1031 } 1032 put_net(net); 1033 1034 return ipv4_pdp_add(dev, info); 1035 } 1036 1037 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info) 1038 { 1039 struct net_device *dev; 1040 struct pdp_ctx *pctx; 1041 struct gtp_dev *gtp; 1042 struct net *net; 1043 1044 if (!info->attrs[GTPA_VERSION] || 1045 !info->attrs[GTPA_LINK]) 1046 return -EINVAL; 1047 1048 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1049 if (IS_ERR(net)) 1050 return PTR_ERR(net); 1051 1052 /* Check if there's an existing gtpX device to configure */ 1053 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1054 if (dev == NULL) { 1055 put_net(net); 1056 return -ENODEV; 1057 } 1058 put_net(net); 1059 1060 gtp = netdev_priv(dev); 1061 1062 switch (nla_get_u32(info->attrs[GTPA_VERSION])) { 1063 case GTP_V0: 1064 if (!info->attrs[GTPA_TID]) 1065 return -EINVAL; 1066 pctx = gtp0_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_TID])); 1067 break; 1068 case GTP_V1: 1069 if (!info->attrs[GTPA_I_TEI]) 1070 return -EINVAL; 1071 pctx = gtp1_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_I_TEI])); 1072 break; 1073 1074 default: 1075 return -EINVAL; 1076 } 1077 1078 if (pctx == NULL) 1079 return -ENOENT; 1080 1081 if (pctx->gtp_version == GTP_V0) 1082 netdev_dbg(dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n", 1083 pctx->u.v0.tid, pctx); 1084 else if (pctx->gtp_version == GTP_V1) 1085 netdev_dbg(dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n", 1086 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx); 1087 1088 hlist_del_rcu(&pctx->hlist_tid); 1089 hlist_del_rcu(&pctx->hlist_addr); 1090 kfree_rcu(pctx, rcu_head); 1091 1092 return 0; 1093 } 1094 1095 static struct genl_family gtp_genl_family; 1096 1097 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq, 1098 u32 type, struct pdp_ctx *pctx) 1099 { 1100 void *genlh; 1101 1102 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, 0, 1103 type); 1104 if (genlh == NULL) 1105 goto nlmsg_failure; 1106 1107 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) || 1108 nla_put_be32(skb, GTPA_SGSN_ADDRESS, pctx->sgsn_addr_ip4.s_addr) || 1109 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr)) 1110 goto nla_put_failure; 1111 1112 switch (pctx->gtp_version) { 1113 case GTP_V0: 1114 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) || 1115 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow)) 1116 goto nla_put_failure; 1117 break; 1118 case GTP_V1: 1119 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) || 1120 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei)) 1121 goto nla_put_failure; 1122 break; 1123 } 1124 genlmsg_end(skb, genlh); 1125 return 0; 1126 1127 nlmsg_failure: 1128 nla_put_failure: 1129 genlmsg_cancel(skb, genlh); 1130 return -EMSGSIZE; 1131 } 1132 1133 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info) 1134 { 1135 struct pdp_ctx *pctx = NULL; 1136 struct net_device *dev; 1137 struct sk_buff *skb2; 1138 struct gtp_dev *gtp; 1139 u32 gtp_version; 1140 struct net *net; 1141 int err; 1142 1143 if (!info->attrs[GTPA_VERSION] || 1144 !info->attrs[GTPA_LINK]) 1145 return -EINVAL; 1146 1147 gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]); 1148 switch (gtp_version) { 1149 case GTP_V0: 1150 case GTP_V1: 1151 break; 1152 default: 1153 return -EINVAL; 1154 } 1155 1156 net = gtp_genl_get_net(sock_net(skb->sk), info->attrs); 1157 if (IS_ERR(net)) 1158 return PTR_ERR(net); 1159 1160 /* Check if there's an existing gtpX device to configure */ 1161 dev = gtp_find_dev(net, nla_get_u32(info->attrs[GTPA_LINK])); 1162 if (dev == NULL) { 1163 put_net(net); 1164 return -ENODEV; 1165 } 1166 put_net(net); 1167 1168 gtp = netdev_priv(dev); 1169 1170 rcu_read_lock(); 1171 if (gtp_version == GTP_V0 && 1172 info->attrs[GTPA_TID]) { 1173 u64 tid = nla_get_u64(info->attrs[GTPA_TID]); 1174 1175 pctx = gtp0_pdp_find(gtp, tid); 1176 } else if (gtp_version == GTP_V1 && 1177 info->attrs[GTPA_I_TEI]) { 1178 u32 tid = nla_get_u32(info->attrs[GTPA_I_TEI]); 1179 1180 pctx = gtp1_pdp_find(gtp, tid); 1181 } else if (info->attrs[GTPA_MS_ADDRESS]) { 1182 __be32 ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]); 1183 1184 pctx = ipv4_pdp_find(gtp, ip); 1185 } 1186 1187 if (pctx == NULL) { 1188 err = -ENOENT; 1189 goto err_unlock; 1190 } 1191 1192 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); 1193 if (skb2 == NULL) { 1194 err = -ENOMEM; 1195 goto err_unlock; 1196 } 1197 1198 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, 1199 info->snd_seq, info->nlhdr->nlmsg_type, pctx); 1200 if (err < 0) 1201 goto err_unlock_free; 1202 1203 rcu_read_unlock(); 1204 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid); 1205 1206 err_unlock_free: 1207 kfree_skb(skb2); 1208 err_unlock: 1209 rcu_read_unlock(); 1210 return err; 1211 } 1212 1213 static int gtp_genl_dump_pdp(struct sk_buff *skb, 1214 struct netlink_callback *cb) 1215 { 1216 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp; 1217 struct net *net = sock_net(skb->sk); 1218 struct gtp_net *gn = net_generic(net, gtp_net_id); 1219 unsigned long tid = cb->args[1]; 1220 int i, k = cb->args[0], ret; 1221 struct pdp_ctx *pctx; 1222 1223 if (cb->args[4]) 1224 return 0; 1225 1226 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) { 1227 if (last_gtp && last_gtp != gtp) 1228 continue; 1229 else 1230 last_gtp = NULL; 1231 1232 for (i = k; i < gtp->hash_size; i++) { 1233 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid) { 1234 if (tid && tid != pctx->u.tid) 1235 continue; 1236 else 1237 tid = 0; 1238 1239 ret = gtp_genl_fill_info(skb, 1240 NETLINK_CB(cb->skb).portid, 1241 cb->nlh->nlmsg_seq, 1242 cb->nlh->nlmsg_type, pctx); 1243 if (ret < 0) { 1244 cb->args[0] = i; 1245 cb->args[1] = pctx->u.tid; 1246 cb->args[2] = (unsigned long)gtp; 1247 goto out; 1248 } 1249 } 1250 } 1251 } 1252 cb->args[4] = 1; 1253 out: 1254 return skb->len; 1255 } 1256 1257 static struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = { 1258 [GTPA_LINK] = { .type = NLA_U32, }, 1259 [GTPA_VERSION] = { .type = NLA_U32, }, 1260 [GTPA_TID] = { .type = NLA_U64, }, 1261 [GTPA_SGSN_ADDRESS] = { .type = NLA_U32, }, 1262 [GTPA_MS_ADDRESS] = { .type = NLA_U32, }, 1263 [GTPA_FLOW] = { .type = NLA_U16, }, 1264 [GTPA_NET_NS_FD] = { .type = NLA_U32, }, 1265 [GTPA_I_TEI] = { .type = NLA_U32, }, 1266 [GTPA_O_TEI] = { .type = NLA_U32, }, 1267 }; 1268 1269 static const struct genl_ops gtp_genl_ops[] = { 1270 { 1271 .cmd = GTP_CMD_NEWPDP, 1272 .doit = gtp_genl_new_pdp, 1273 .policy = gtp_genl_policy, 1274 .flags = GENL_ADMIN_PERM, 1275 }, 1276 { 1277 .cmd = GTP_CMD_DELPDP, 1278 .doit = gtp_genl_del_pdp, 1279 .policy = gtp_genl_policy, 1280 .flags = GENL_ADMIN_PERM, 1281 }, 1282 { 1283 .cmd = GTP_CMD_GETPDP, 1284 .doit = gtp_genl_get_pdp, 1285 .dumpit = gtp_genl_dump_pdp, 1286 .policy = gtp_genl_policy, 1287 .flags = GENL_ADMIN_PERM, 1288 }, 1289 }; 1290 1291 static struct genl_family gtp_genl_family __ro_after_init = { 1292 .name = "gtp", 1293 .version = 0, 1294 .hdrsize = 0, 1295 .maxattr = GTPA_MAX, 1296 .netnsok = true, 1297 .module = THIS_MODULE, 1298 .ops = gtp_genl_ops, 1299 .n_ops = ARRAY_SIZE(gtp_genl_ops), 1300 }; 1301 1302 static int __net_init gtp_net_init(struct net *net) 1303 { 1304 struct gtp_net *gn = net_generic(net, gtp_net_id); 1305 1306 INIT_LIST_HEAD(&gn->gtp_dev_list); 1307 return 0; 1308 } 1309 1310 static void __net_exit gtp_net_exit(struct net *net) 1311 { 1312 struct gtp_net *gn = net_generic(net, gtp_net_id); 1313 struct gtp_dev *gtp; 1314 LIST_HEAD(list); 1315 1316 rtnl_lock(); 1317 list_for_each_entry(gtp, &gn->gtp_dev_list, list) 1318 gtp_dellink(gtp->dev, &list); 1319 1320 unregister_netdevice_many(&list); 1321 rtnl_unlock(); 1322 } 1323 1324 static struct pernet_operations gtp_net_ops = { 1325 .init = gtp_net_init, 1326 .exit = gtp_net_exit, 1327 .id = >p_net_id, 1328 .size = sizeof(struct gtp_net), 1329 }; 1330 1331 static int __init gtp_init(void) 1332 { 1333 int err; 1334 1335 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval)); 1336 1337 err = rtnl_link_register(>p_link_ops); 1338 if (err < 0) 1339 goto error_out; 1340 1341 err = genl_register_family(>p_genl_family); 1342 if (err < 0) 1343 goto unreg_rtnl_link; 1344 1345 err = register_pernet_subsys(>p_net_ops); 1346 if (err < 0) 1347 goto unreg_genl_family; 1348 1349 pr_info("GTP module loaded (pdp ctx size %Zd bytes)\n", 1350 sizeof(struct pdp_ctx)); 1351 return 0; 1352 1353 unreg_genl_family: 1354 genl_unregister_family(>p_genl_family); 1355 unreg_rtnl_link: 1356 rtnl_link_unregister(>p_link_ops); 1357 error_out: 1358 pr_err("error loading GTP module loaded\n"); 1359 return err; 1360 } 1361 late_initcall(gtp_init); 1362 1363 static void __exit gtp_fini(void) 1364 { 1365 unregister_pernet_subsys(>p_net_ops); 1366 genl_unregister_family(>p_genl_family); 1367 rtnl_link_unregister(>p_link_ops); 1368 1369 pr_info("GTP module unloaded\n"); 1370 } 1371 module_exit(gtp_fini); 1372 1373 MODULE_LICENSE("GPL"); 1374 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>"); 1375 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic"); 1376 MODULE_ALIAS_RTNL_LINK("gtp"); 1377 MODULE_ALIAS_GENL_FAMILY("gtp"); 1378