xref: /linux/drivers/net/fddi/skfp/skfddi.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * File Name:
4  *   skfddi.c
5  *
6  * Copyright Information:
7  *   Copyright SysKonnect 1998,1999.
8  *
9  * The information in this file is provided "AS IS" without warranty.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the SysKonnect FDDI PCI controller
13  *   familie.
14  *
15  * Maintainers:
16  *   CG    Christoph Goos (cgoos@syskonnect.de)
17  *
18  * Contributors:
19  *   DM    David S. Miller
20  *
21  * Address all question to:
22  *   linux@syskonnect.de
23  *
24  * The technical manual for the adapters is available from SysKonnect's
25  * web pages: www.syskonnect.com
26  * Goto "Support" and search Knowledge Base for "manual".
27  *
28  * Driver Architecture:
29  *   The driver architecture is based on the DEC FDDI driver by
30  *   Lawrence V. Stefani and several ethernet drivers.
31  *   I also used an existing Windows NT miniport driver.
32  *   All hardware dependent functions are handled by the SysKonnect
33  *   Hardware Module.
34  *   The only headerfiles that are directly related to this source
35  *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
36  *   The others belong to the SysKonnect FDDI Hardware Module and
37  *   should better not be changed.
38  *
39  * Modification History:
40  *              Date            Name    Description
41  *              02-Mar-98       CG	Created.
42  *
43  *		10-Mar-99	CG	Support for 2.2.x added.
44  *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
45  *		26-Oct-99	CG	Fixed compilation error on 2.2.13
46  *		12-Nov-99	CG	Source code release
47  *		22-Nov-99	CG	Included in kernel source.
48  *		07-May-00	DM	64 bit fixes, new dma interface
49  *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
50  *					  Daniele Bellucci <bellucda@tiscali.it>
51  *		03-Dec-03	SH	Convert to PCI device model
52  *
53  * Compilation options (-Dxxx):
54  *              DRIVERDEBUG     print lots of messages to log file
55  *              DUMPPACKETS     print received/transmitted packets to logfile
56  *
57  * Tested cpu architectures:
58  *	- i386
59  *	- sparc64
60  */
61 
62 /* Version information string - should be updated prior to */
63 /* each new release!!! */
64 #define VERSION		"2.07"
65 
66 static const char * const boot_msg =
67 	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
68 	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
69 
70 /* Include files */
71 
72 #include <linux/capability.h>
73 #include <linux/compat.h>
74 #include <linux/module.h>
75 #include <linux/kernel.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/interrupt.h>
79 #include <linux/pci.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/fddidevice.h>
83 #include <linux/skbuff.h>
84 #include <linux/bitops.h>
85 #include <linux/gfp.h>
86 
87 #include <asm/byteorder.h>
88 #include <asm/io.h>
89 #include <linux/uaccess.h>
90 
91 #include	"h/types.h"
92 #undef ADDR			// undo Linux definition
93 #include	"h/skfbi.h"
94 #include	"h/fddi.h"
95 #include	"h/smc.h"
96 #include	"h/smtstate.h"
97 
98 
99 // Define module-wide (static) routines
100 static int skfp_driver_init(struct net_device *dev);
101 static int skfp_open(struct net_device *dev);
102 static int skfp_close(struct net_device *dev);
103 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
104 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
105 static void skfp_ctl_set_multicast_list(struct net_device *dev);
106 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
107 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
108 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq,
109 			       void __user *data, int cmd);
110 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
111 				       struct net_device *dev);
112 static void send_queued_packets(struct s_smc *smc);
113 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
114 static void ResetAdapter(struct s_smc *smc);
115 
116 
117 // Functions needed by the hardware module
118 void *mac_drv_get_space(struct s_smc *smc, u_int size);
119 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
120 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
121 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
122 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
123 		  int flag);
124 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
125 void llc_restart_tx(struct s_smc *smc);
126 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
127 			 int frag_count, int len);
128 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
129 			 int frag_count);
130 void mac_drv_fill_rxd(struct s_smc *smc);
131 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
132 		       int frag_count);
133 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
134 		    int la_len);
135 void dump_data(unsigned char *Data, int length);
136 
137 // External functions from the hardware module
138 extern u_int mac_drv_check_space(void);
139 extern int mac_drv_init(struct s_smc *smc);
140 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
141 			int len, int frame_status);
142 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
143 		       int frame_len, int frame_status);
144 extern void fddi_isr(struct s_smc *smc);
145 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
146 			int len, int frame_status);
147 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
148 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
149 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
150 
151 static const struct pci_device_id skfddi_pci_tbl[] = {
152 	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
153 	{ }			/* Terminating entry */
154 };
155 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
156 MODULE_DESCRIPTION("SysKonnect FDDI PCI driver");
157 MODULE_LICENSE("GPL");
158 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159 
160 // Define module-wide (static) variables
161 
162 static int num_boards;	/* total number of adapters configured */
163 
164 static const struct net_device_ops skfp_netdev_ops = {
165 	.ndo_open		= skfp_open,
166 	.ndo_stop		= skfp_close,
167 	.ndo_start_xmit		= skfp_send_pkt,
168 	.ndo_get_stats		= skfp_ctl_get_stats,
169 	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
170 	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
171 	.ndo_siocdevprivate	= skfp_siocdevprivate,
172 };
173 
174 /*
175  * =================
176  * = skfp_init_one =
177  * =================
178  *
179  * Overview:
180  *   Probes for supported FDDI PCI controllers
181  *
182  * Returns:
183  *   Condition code
184  *
185  * Arguments:
186  *   pdev - pointer to PCI device information
187  *
188  * Functional Description:
189  *   This is now called by PCI driver registration process
190  *   for each board found.
191  *
192  * Return Codes:
193  *   0           - This device (fddi0, fddi1, etc) configured successfully
194  *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
195  *                         present for this device name
196  *
197  *
198  * Side Effects:
199  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
200  *   initialized and the board resources are read and stored in
201  *   the device structure.
202  */
203 static int skfp_init_one(struct pci_dev *pdev,
204 				const struct pci_device_id *ent)
205 {
206 	struct net_device *dev;
207 	struct s_smc *smc;	/* board pointer */
208 	void __iomem *mem;
209 	int err;
210 
211 	pr_debug("entering skfp_init_one\n");
212 
213 	if (num_boards == 0)
214 		printk("%s\n", boot_msg);
215 
216 	err = pci_enable_device(pdev);
217 	if (err)
218 		return err;
219 
220 	err = pci_request_regions(pdev, "skfddi");
221 	if (err)
222 		goto err_out1;
223 
224 	pci_set_master(pdev);
225 
226 #ifdef MEM_MAPPED_IO
227 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
228 		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
229 		err = -EIO;
230 		goto err_out2;
231 	}
232 
233 	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
234 #else
235 	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
236 		printk(KERN_ERR "skfp: region is not PIO resource\n");
237 		err = -EIO;
238 		goto err_out2;
239 	}
240 
241 	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
242 #endif
243 	if (!mem) {
244 		printk(KERN_ERR "skfp:  Unable to map register, "
245 				"FDDI adapter will be disabled.\n");
246 		err = -EIO;
247 		goto err_out2;
248 	}
249 
250 	dev = alloc_fddidev(sizeof(struct s_smc));
251 	if (!dev) {
252 		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
253 				"FDDI adapter will be disabled.\n");
254 		err = -ENOMEM;
255 		goto err_out3;
256 	}
257 
258 	dev->irq = pdev->irq;
259 	dev->netdev_ops = &skfp_netdev_ops;
260 
261 	SET_NETDEV_DEV(dev, &pdev->dev);
262 
263 	/* Initialize board structure with bus-specific info */
264 	smc = netdev_priv(dev);
265 	smc->os.dev = dev;
266 	smc->os.bus_type = SK_BUS_TYPE_PCI;
267 	smc->os.pdev = *pdev;
268 	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
269 	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
270 	smc->os.dev = dev;
271 	smc->hw.slot = -1;
272 	smc->hw.iop = mem;
273 	smc->os.ResetRequested = FALSE;
274 	skb_queue_head_init(&smc->os.SendSkbQueue);
275 
276 	dev->base_addr = (unsigned long)mem;
277 
278 	err = skfp_driver_init(dev);
279 	if (err)
280 		goto err_out4;
281 
282 	err = register_netdev(dev);
283 	if (err)
284 		goto err_out5;
285 
286 	++num_boards;
287 	pci_set_drvdata(pdev, dev);
288 
289 	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
290 	    (pdev->subsystem_device & 0xff00) == 0x5800)
291 		printk("%s: SysKonnect FDDI PCI adapter"
292 		       " found (SK-%04X)\n", dev->name,
293 		       pdev->subsystem_device);
294 	else
295 		printk("%s: FDDI PCI adapter found\n", dev->name);
296 
297 	return 0;
298 err_out5:
299 	if (smc->os.SharedMemAddr)
300 		dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
301 				  smc->os.SharedMemAddr,
302 				  smc->os.SharedMemDMA);
303 	dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
304 			  smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
305 err_out4:
306 	free_netdev(dev);
307 err_out3:
308 #ifdef MEM_MAPPED_IO
309 	iounmap(mem);
310 #else
311 	ioport_unmap(mem);
312 #endif
313 err_out2:
314 	pci_release_regions(pdev);
315 err_out1:
316 	pci_disable_device(pdev);
317 	return err;
318 }
319 
320 /*
321  * Called for each adapter board from pci_unregister_driver
322  */
323 static void skfp_remove_one(struct pci_dev *pdev)
324 {
325 	struct net_device *p = pci_get_drvdata(pdev);
326 	struct s_smc *lp = netdev_priv(p);
327 
328 	unregister_netdev(p);
329 
330 	if (lp->os.SharedMemAddr) {
331 		dma_free_coherent(&pdev->dev,
332 				  lp->os.SharedMemSize,
333 				  lp->os.SharedMemAddr,
334 				  lp->os.SharedMemDMA);
335 		lp->os.SharedMemAddr = NULL;
336 	}
337 	if (lp->os.LocalRxBuffer) {
338 		dma_free_coherent(&pdev->dev,
339 				  MAX_FRAME_SIZE,
340 				  lp->os.LocalRxBuffer,
341 				  lp->os.LocalRxBufferDMA);
342 		lp->os.LocalRxBuffer = NULL;
343 	}
344 #ifdef MEM_MAPPED_IO
345 	iounmap(lp->hw.iop);
346 #else
347 	ioport_unmap(lp->hw.iop);
348 #endif
349 	pci_release_regions(pdev);
350 	free_netdev(p);
351 
352 	pci_disable_device(pdev);
353 }
354 
355 /*
356  * ====================
357  * = skfp_driver_init =
358  * ====================
359  *
360  * Overview:
361  *   Initializes remaining adapter board structure information
362  *   and makes sure adapter is in a safe state prior to skfp_open().
363  *
364  * Returns:
365  *   Condition code
366  *
367  * Arguments:
368  *   dev - pointer to device information
369  *
370  * Functional Description:
371  *   This function allocates additional resources such as the host memory
372  *   blocks needed by the adapter.
373  *   The adapter is also reset. The OS must call skfp_open() to open
374  *   the adapter and bring it on-line.
375  *
376  * Return Codes:
377  *    0 - initialization succeeded
378  *   -1 - initialization failed
379  */
380 static  int skfp_driver_init(struct net_device *dev)
381 {
382 	struct s_smc *smc = netdev_priv(dev);
383 	skfddi_priv *bp = &smc->os;
384 	int err = -EIO;
385 
386 	pr_debug("entering skfp_driver_init\n");
387 
388 	// set the io address in private structures
389 	bp->base_addr = dev->base_addr;
390 
391 	// Get the interrupt level from the PCI Configuration Table
392 	smc->hw.irq = dev->irq;
393 
394 	spin_lock_init(&bp->DriverLock);
395 
396 	// Allocate invalid frame
397 	bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
398 					       &bp->LocalRxBufferDMA,
399 					       GFP_ATOMIC);
400 	if (!bp->LocalRxBuffer) {
401 		printk("could not allocate mem for ");
402 		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403 		goto fail;
404 	}
405 
406 	// Determine the required size of the 'shared' memory area.
407 	bp->SharedMemSize = mac_drv_check_space();
408 	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
409 	if (bp->SharedMemSize > 0) {
410 		bp->SharedMemSize += 16;	// for descriptor alignment
411 
412 		bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
413 						       bp->SharedMemSize,
414 						       &bp->SharedMemDMA,
415 						       GFP_ATOMIC);
416 		if (!bp->SharedMemAddr) {
417 			printk("could not allocate mem for ");
418 			printk("hardware module: %ld byte\n",
419 			       bp->SharedMemSize);
420 			goto fail;
421 		}
422 
423 	} else {
424 		bp->SharedMemAddr = NULL;
425 	}
426 
427 	bp->SharedMemHeap = 0;
428 
429 	card_stop(smc);		// Reset adapter.
430 
431 	pr_debug("mac_drv_init()..\n");
432 	if (mac_drv_init(smc) != 0) {
433 		pr_debug("mac_drv_init() failed\n");
434 		goto fail;
435 	}
436 	read_address(smc, NULL);
437 	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
438 	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
439 
440 	smt_reset_defaults(smc, 0);
441 
442 	return 0;
443 
444 fail:
445 	if (bp->SharedMemAddr) {
446 		dma_free_coherent(&bp->pdev.dev,
447 				  bp->SharedMemSize,
448 				  bp->SharedMemAddr,
449 				  bp->SharedMemDMA);
450 		bp->SharedMemAddr = NULL;
451 	}
452 	if (bp->LocalRxBuffer) {
453 		dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
454 				  bp->LocalRxBuffer, bp->LocalRxBufferDMA);
455 		bp->LocalRxBuffer = NULL;
456 	}
457 	return err;
458 }				// skfp_driver_init
459 
460 
461 /*
462  * =============
463  * = skfp_open =
464  * =============
465  *
466  * Overview:
467  *   Opens the adapter
468  *
469  * Returns:
470  *   Condition code
471  *
472  * Arguments:
473  *   dev - pointer to device information
474  *
475  * Functional Description:
476  *   This function brings the adapter to an operational state.
477  *
478  * Return Codes:
479  *   0           - Adapter was successfully opened
480  *   -EAGAIN - Could not register IRQ
481  */
482 static int skfp_open(struct net_device *dev)
483 {
484 	struct s_smc *smc = netdev_priv(dev);
485 	int err;
486 
487 	pr_debug("entering skfp_open\n");
488 	/* Register IRQ - support shared interrupts by passing device ptr */
489 	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
490 			  dev->name, dev);
491 	if (err)
492 		return err;
493 
494 	/*
495 	 * Set current address to factory MAC address
496 	 *
497 	 * Note: We've already done this step in skfp_driver_init.
498 	 *       However, it's possible that a user has set a node
499 	 *               address override, then closed and reopened the
500 	 *               adapter.  Unless we reset the device address field
501 	 *               now, we'll continue to use the existing modified
502 	 *               address.
503 	 */
504 	read_address(smc, NULL);
505 	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
506 
507 	init_smt(smc, NULL);
508 	smt_online(smc, 1);
509 	STI_FBI();
510 
511 	/* Clear local multicast address tables */
512 	mac_clear_multicast(smc);
513 
514 	/* Disable promiscuous filter settings */
515 	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
516 
517 	netif_start_queue(dev);
518 	return 0;
519 }				// skfp_open
520 
521 
522 /*
523  * ==============
524  * = skfp_close =
525  * ==============
526  *
527  * Overview:
528  *   Closes the device/module.
529  *
530  * Returns:
531  *   Condition code
532  *
533  * Arguments:
534  *   dev - pointer to device information
535  *
536  * Functional Description:
537  *   This routine closes the adapter and brings it to a safe state.
538  *   The interrupt service routine is deregistered with the OS.
539  *   The adapter can be opened again with another call to skfp_open().
540  *
541  * Return Codes:
542  *   Always return 0.
543  *
544  * Assumptions:
545  *   No further requests for this adapter are made after this routine is
546  *   called.  skfp_open() can be called to reset and reinitialize the
547  *   adapter.
548  */
549 static int skfp_close(struct net_device *dev)
550 {
551 	struct s_smc *smc = netdev_priv(dev);
552 	skfddi_priv *bp = &smc->os;
553 
554 	CLI_FBI();
555 	smt_reset_defaults(smc, 1);
556 	card_stop(smc);
557 	mac_drv_clear_tx_queue(smc);
558 	mac_drv_clear_rx_queue(smc);
559 
560 	netif_stop_queue(dev);
561 	/* Deregister (free) IRQ */
562 	free_irq(dev->irq, dev);
563 
564 	skb_queue_purge(&bp->SendSkbQueue);
565 	bp->QueueSkb = MAX_TX_QUEUE_LEN;
566 
567 	return 0;
568 }				// skfp_close
569 
570 
571 /*
572  * ==================
573  * = skfp_interrupt =
574  * ==================
575  *
576  * Overview:
577  *   Interrupt processing routine
578  *
579  * Returns:
580  *   None
581  *
582  * Arguments:
583  *   irq        - interrupt vector
584  *   dev_id     - pointer to device information
585  *
586  * Functional Description:
587  *   This routine calls the interrupt processing routine for this adapter.  It
588  *   disables and reenables adapter interrupts, as appropriate.  We can support
589  *   shared interrupts since the incoming dev_id pointer provides our device
590  *   structure context. All the real work is done in the hardware module.
591  *
592  * Return Codes:
593  *   None
594  *
595  * Assumptions:
596  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
597  *   on Intel-based systems) is done by the operating system outside this
598  *   routine.
599  *
600  *       System interrupts are enabled through this call.
601  *
602  * Side Effects:
603  *   Interrupts are disabled, then reenabled at the adapter.
604  */
605 
606 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
607 {
608 	struct net_device *dev = dev_id;
609 	struct s_smc *smc;	/* private board structure pointer */
610 	skfddi_priv *bp;
611 
612 	smc = netdev_priv(dev);
613 	bp = &smc->os;
614 
615 	// IRQs enabled or disabled ?
616 	if (inpd(ADDR(B0_IMSK)) == 0) {
617 		// IRQs are disabled: must be shared interrupt
618 		return IRQ_NONE;
619 	}
620 	// Note: At this point, IRQs are enabled.
621 	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
622 		// Adapter did not issue an IRQ: must be shared interrupt
623 		return IRQ_NONE;
624 	}
625 	CLI_FBI();		// Disable IRQs from our adapter.
626 	spin_lock(&bp->DriverLock);
627 
628 	// Call interrupt handler in hardware module (HWM).
629 	fddi_isr(smc);
630 
631 	if (smc->os.ResetRequested) {
632 		ResetAdapter(smc);
633 		smc->os.ResetRequested = FALSE;
634 	}
635 	spin_unlock(&bp->DriverLock);
636 	STI_FBI();		// Enable IRQs from our adapter.
637 
638 	return IRQ_HANDLED;
639 }				// skfp_interrupt
640 
641 
642 /*
643  * ======================
644  * = skfp_ctl_get_stats =
645  * ======================
646  *
647  * Overview:
648  *   Get statistics for FDDI adapter
649  *
650  * Returns:
651  *   Pointer to FDDI statistics structure
652  *
653  * Arguments:
654  *   dev - pointer to device information
655  *
656  * Functional Description:
657  *   Gets current MIB objects from adapter, then
658  *   returns FDDI statistics structure as defined
659  *   in if_fddi.h.
660  *
661  *   Note: Since the FDDI statistics structure is
662  *   still new and the device structure doesn't
663  *   have an FDDI-specific get statistics handler,
664  *   we'll return the FDDI statistics structure as
665  *   a pointer to an Ethernet statistics structure.
666  *   That way, at least the first part of the statistics
667  *   structure can be decoded properly.
668  *   We'll have to pay attention to this routine as the
669  *   device structure becomes more mature and LAN media
670  *   independent.
671  *
672  */
673 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
674 {
675 	struct s_smc *bp = netdev_priv(dev);
676 
677 	/* Fill the bp->stats structure with driver-maintained counters */
678 
679 	bp->os.MacStat.port_bs_flag[0] = 0x1234;
680 	bp->os.MacStat.port_bs_flag[1] = 0x5678;
681 // goos: need to fill out fddi statistic
682 #if 0
683 	/* Get FDDI SMT MIB objects */
684 
685 /* Fill the bp->stats structure with the SMT MIB object values */
686 
687 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
688 	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
689 	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
690 	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
691 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
692 	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
693 	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
694 	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
695 	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
696 	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
697 	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
698 	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
699 	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
700 	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
701 	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
702 	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
703 	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
704 	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
705 	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
706 	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
707 	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
708 	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
709 	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
710 	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
711 	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
712 	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
713 	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
714 	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
715 	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
716 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
717 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
718 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
719 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
720 	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
721 	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
722 	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
723 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
724 	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
725 	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
726 	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
727 	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
728 	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
729 	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
730 	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
731 	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
732 	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
733 	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
734 	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
735 	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
736 	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
737 	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
738 	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
739 	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
740 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
741 	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
742 	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
743 	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
744 	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
745 	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
746 	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
747 	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
748 	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
749 	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
750 	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
751 	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
752 	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
753 	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
754 	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
755 	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
756 	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
757 	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
758 	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
759 	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
760 	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
761 	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
762 	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
763 	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
764 	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
765 	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
766 	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
767 	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
768 	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
769 	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
770 	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
771 	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
772 	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
773 	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
774 	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
775 	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
776 	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
777 	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
778 	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
779 
780 
781 	/* Fill the bp->stats structure with the FDDI counter values */
782 
783 	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
784 	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
785 	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
786 	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
787 	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
788 	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
789 	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
790 	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
791 	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
792 	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
793 	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
794 
795 #endif
796 	return (struct net_device_stats *)&bp->os.MacStat;
797 }				// ctl_get_stat
798 
799 
800 /*
801  * ==============================
802  * = skfp_ctl_set_multicast_list =
803  * ==============================
804  *
805  * Overview:
806  *   Enable/Disable LLC frame promiscuous mode reception
807  *   on the adapter and/or update multicast address table.
808  *
809  * Returns:
810  *   None
811  *
812  * Arguments:
813  *   dev - pointer to device information
814  *
815  * Functional Description:
816  *   This function acquires the driver lock and only calls
817  *   skfp_ctl_set_multicast_list_wo_lock then.
818  *   This routine follows a fairly simple algorithm for setting the
819  *   adapter filters and CAM:
820  *
821  *      if IFF_PROMISC flag is set
822  *              enable promiscuous mode
823  *      else
824  *              disable promiscuous mode
825  *              if number of multicast addresses <= max. multicast number
826  *                      add mc addresses to adapter table
827  *              else
828  *                      enable promiscuous mode
829  *              update adapter filters
830  *
831  * Assumptions:
832  *   Multicast addresses are presented in canonical (LSB) format.
833  *
834  * Side Effects:
835  *   On-board adapter filters are updated.
836  */
837 static void skfp_ctl_set_multicast_list(struct net_device *dev)
838 {
839 	struct s_smc *smc = netdev_priv(dev);
840 	skfddi_priv *bp = &smc->os;
841 	unsigned long Flags;
842 
843 	spin_lock_irqsave(&bp->DriverLock, Flags);
844 	skfp_ctl_set_multicast_list_wo_lock(dev);
845 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
846 }				// skfp_ctl_set_multicast_list
847 
848 
849 
850 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
851 {
852 	struct s_smc *smc = netdev_priv(dev);
853 	struct netdev_hw_addr *ha;
854 
855 	/* Enable promiscuous mode, if necessary */
856 	if (dev->flags & IFF_PROMISC) {
857 		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
858 		pr_debug("PROMISCUOUS MODE ENABLED\n");
859 	}
860 	/* Else, update multicast address table */
861 	else {
862 		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
863 		pr_debug("PROMISCUOUS MODE DISABLED\n");
864 
865 		// Reset all MC addresses
866 		mac_clear_multicast(smc);
867 		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
868 
869 		if (dev->flags & IFF_ALLMULTI) {
870 			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
871 			pr_debug("ENABLE ALL MC ADDRESSES\n");
872 		} else if (!netdev_mc_empty(dev)) {
873 			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
874 				/* use exact filtering */
875 
876 				// point to first multicast addr
877 				netdev_for_each_mc_addr(ha, dev) {
878 					mac_add_multicast(smc,
879 						(struct fddi_addr *)ha->addr,
880 						1);
881 
882 					pr_debug("ENABLE MC ADDRESS: %pMF\n",
883 						 ha->addr);
884 				}
885 
886 			} else {	// more MC addresses than HW supports
887 
888 				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
889 				pr_debug("ENABLE ALL MC ADDRESSES\n");
890 			}
891 		} else {	// no MC addresses
892 
893 			pr_debug("DISABLE ALL MC ADDRESSES\n");
894 		}
895 
896 		/* Update adapter filters */
897 		mac_update_multicast(smc);
898 	}
899 }				// skfp_ctl_set_multicast_list_wo_lock
900 
901 
902 /*
903  * ===========================
904  * = skfp_ctl_set_mac_address =
905  * ===========================
906  *
907  * Overview:
908  *   set new mac address on adapter and update dev_addr field in device table.
909  *
910  * Returns:
911  *   None
912  *
913  * Arguments:
914  *   dev  - pointer to device information
915  *   addr - pointer to sockaddr structure containing unicast address to set
916  *
917  * Assumptions:
918  *   The address pointed to by addr->sa_data is a valid unicast
919  *   address and is presented in canonical (LSB) format.
920  */
921 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
922 {
923 	struct s_smc *smc = netdev_priv(dev);
924 	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
925 	skfddi_priv *bp = &smc->os;
926 	unsigned long Flags;
927 
928 
929 	dev_addr_set(dev, p_sockaddr->sa_data);
930 	spin_lock_irqsave(&bp->DriverLock, Flags);
931 	ResetAdapter(smc);
932 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
933 
934 	return 0;		/* always return zero */
935 }				// skfp_ctl_set_mac_address
936 
937 
938 /*
939  * =======================
940  * = skfp_siocdevprivate =
941  * =======================
942  *
943  * Overview:
944  *
945  * Perform IOCTL call functions here. Some are privileged operations and the
946  * effective uid is checked in those cases.
947  *
948  * Returns:
949  *   status value
950  *   0 - success
951  *   other - failure
952  *
953  * Arguments:
954  *   dev  - pointer to device information
955  *   rq - pointer to ioctl request structure
956  *   cmd - ?
957  *
958  */
959 
960 
961 static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd)
962 {
963 	struct s_smc *smc = netdev_priv(dev);
964 	skfddi_priv *lp = &smc->os;
965 	struct s_skfp_ioctl ioc;
966 	int status = 0;
967 
968 	if (copy_from_user(&ioc, data, sizeof(struct s_skfp_ioctl)))
969 		return -EFAULT;
970 
971 	if (in_compat_syscall())
972 		return -EOPNOTSUPP;
973 
974 	switch (ioc.cmd) {
975 	case SKFP_GET_STATS:	/* Get the driver statistics */
976 		ioc.len = sizeof(lp->MacStat);
977 		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
978 				? -EFAULT : 0;
979 		break;
980 	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
981 		if (!capable(CAP_NET_ADMIN)) {
982 			status = -EPERM;
983 		} else {
984 			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
985 		}
986 		break;
987 	default:
988 		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
989 		status = -EOPNOTSUPP;
990 
991 	}			// switch
992 
993 	return status;
994 }				// skfp_ioctl
995 
996 
997 /*
998  * =====================
999  * = skfp_send_pkt     =
1000  * =====================
1001  *
1002  * Overview:
1003  *   Queues a packet for transmission and try to transmit it.
1004  *
1005  * Returns:
1006  *   Condition code
1007  *
1008  * Arguments:
1009  *   skb - pointer to sk_buff to queue for transmission
1010  *   dev - pointer to device information
1011  *
1012  * Functional Description:
1013  *   Here we assume that an incoming skb transmit request
1014  *   is contained in a single physically contiguous buffer
1015  *   in which the virtual address of the start of packet
1016  *   (skb->data) can be converted to a physical address
1017  *   by using dma_map_single().
1018  *
1019  *   We have an internal queue for packets we can not send
1020  *   immediately. Packets in this queue can be given to the
1021  *   adapter if transmit buffers are freed.
1022  *
1023  *   We can't free the skb until after it's been DMA'd
1024  *   out by the adapter, so we'll keep it in the driver and
1025  *   return it in mac_drv_tx_complete.
1026  *
1027  * Return Codes:
1028  *   0 - driver has queued and/or sent packet
1029  *       1 - caller should requeue the sk_buff for later transmission
1030  *
1031  * Assumptions:
1032  *   The entire packet is stored in one physically
1033  *   contiguous buffer which is not cached and whose
1034  *   32-bit physical address can be determined.
1035  *
1036  *   It's vital that this routine is NOT reentered for the
1037  *   same board and that the OS is not in another section of
1038  *   code (eg. skfp_interrupt) for the same board on a
1039  *   different thread.
1040  *
1041  * Side Effects:
1042  *   None
1043  */
1044 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1045 				       struct net_device *dev)
1046 {
1047 	struct s_smc *smc = netdev_priv(dev);
1048 	skfddi_priv *bp = &smc->os;
1049 
1050 	pr_debug("skfp_send_pkt\n");
1051 
1052 	/*
1053 	 * Verify that incoming transmit request is OK
1054 	 *
1055 	 * Note: The packet size check is consistent with other
1056 	 *               Linux device drivers, although the correct packet
1057 	 *               size should be verified before calling the
1058 	 *               transmit routine.
1059 	 */
1060 
1061 	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1062 		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1063 		// dequeue packets from xmt queue and send them
1064 		netif_start_queue(dev);
1065 		dev_kfree_skb(skb);
1066 		return NETDEV_TX_OK;	/* return "success" */
1067 	}
1068 	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1069 
1070 		netif_stop_queue(dev);
1071 		return NETDEV_TX_BUSY;
1072 	}
1073 	bp->QueueSkb--;
1074 	skb_queue_tail(&bp->SendSkbQueue, skb);
1075 	send_queued_packets(netdev_priv(dev));
1076 	if (bp->QueueSkb == 0) {
1077 		netif_stop_queue(dev);
1078 	}
1079 	return NETDEV_TX_OK;
1080 
1081 }				// skfp_send_pkt
1082 
1083 
1084 /*
1085  * =======================
1086  * = send_queued_packets =
1087  * =======================
1088  *
1089  * Overview:
1090  *   Send packets from the driver queue as long as there are some and
1091  *   transmit resources are available.
1092  *
1093  * Returns:
1094  *   None
1095  *
1096  * Arguments:
1097  *   smc - pointer to smc (adapter) structure
1098  *
1099  * Functional Description:
1100  *   Take a packet from queue if there is any. If not, then we are done.
1101  *   Check if there are resources to send the packet. If not, requeue it
1102  *   and exit.
1103  *   Set packet descriptor flags and give packet to adapter.
1104  *   Check if any send resources can be freed (we do not use the
1105  *   transmit complete interrupt).
1106  */
1107 static void send_queued_packets(struct s_smc *smc)
1108 {
1109 	skfddi_priv *bp = &smc->os;
1110 	struct sk_buff *skb;
1111 	unsigned char fc;
1112 	int queue;
1113 	struct s_smt_fp_txd *txd;	// Current TxD.
1114 	dma_addr_t dma_address;
1115 	unsigned long Flags;
1116 
1117 	int frame_status;	// HWM tx frame status.
1118 
1119 	pr_debug("send queued packets\n");
1120 	for (;;) {
1121 		// send first buffer from queue
1122 		skb = skb_dequeue(&bp->SendSkbQueue);
1123 
1124 		if (!skb) {
1125 			pr_debug("queue empty\n");
1126 			return;
1127 		}		// queue empty !
1128 
1129 		spin_lock_irqsave(&bp->DriverLock, Flags);
1130 		fc = skb->data[0];
1131 		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1132 #ifdef ESS
1133 		// Check if the frame may/must be sent as a synchronous frame.
1134 
1135 		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1136 			// It's an LLC frame.
1137 			if (!smc->ess.sync_bw_available)
1138 				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1139 
1140 			else {	// Bandwidth is available.
1141 
1142 				if (smc->mib.fddiESSSynchTxMode) {
1143 					// Send as sync. frame.
1144 					fc |= FC_SYNC_BIT;
1145 				}
1146 			}
1147 		}
1148 #endif				// ESS
1149 		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1150 
1151 		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1152 			// Unable to send the frame.
1153 
1154 			if ((frame_status & RING_DOWN) != 0) {
1155 				// Ring is down.
1156 				pr_debug("Tx attempt while ring down.\n");
1157 			} else if ((frame_status & OUT_OF_TXD) != 0) {
1158 				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1159 			} else {
1160 				pr_debug("%s: out of transmit resources",
1161 					bp->dev->name);
1162 			}
1163 
1164 			// Note: We will retry the operation as soon as
1165 			// transmit resources become available.
1166 			skb_queue_head(&bp->SendSkbQueue, skb);
1167 			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1168 			return;	// Packet has been queued.
1169 
1170 		}		// if (unable to send frame)
1171 
1172 		bp->QueueSkb++;	// one packet less in local queue
1173 
1174 		// source address in packet ?
1175 		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1176 
1177 		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1178 
1179 		dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data,
1180 					     skb->len, DMA_TO_DEVICE);
1181 		if (frame_status & LAN_TX) {
1182 			txd->txd_os.skb = skb;			// save skb
1183 			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1184 		}
1185 		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1186                       frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1187 
1188 		if (!(frame_status & LAN_TX)) {		// local only frame
1189 			dma_unmap_single(&(&bp->pdev)->dev, dma_address,
1190 					 skb->len, DMA_TO_DEVICE);
1191 			dev_kfree_skb_irq(skb);
1192 		}
1193 		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1194 	}			// for
1195 
1196 	return;			// never reached
1197 
1198 }				// send_queued_packets
1199 
1200 
1201 /************************
1202  *
1203  * CheckSourceAddress
1204  *
1205  * Verify if the source address is set. Insert it if necessary.
1206  *
1207  ************************/
1208 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1209 {
1210 	unsigned char SRBit;
1211 
1212 	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1213 
1214 		return;
1215 	if ((unsigned short) frame[1 + 10] != 0)
1216 		return;
1217 	SRBit = frame[1 + 6] & 0x01;
1218 	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1219 	frame[8] |= SRBit;
1220 }				// CheckSourceAddress
1221 
1222 
1223 /************************
1224  *
1225  *	ResetAdapter
1226  *
1227  *	Reset the adapter and bring it back to operational mode.
1228  * Args
1229  *	smc - A pointer to the SMT context struct.
1230  * Out
1231  *	Nothing.
1232  *
1233  ************************/
1234 static void ResetAdapter(struct s_smc *smc)
1235 {
1236 
1237 	pr_debug("[fddi: ResetAdapter]\n");
1238 
1239 	// Stop the adapter.
1240 
1241 	card_stop(smc);		// Stop all activity.
1242 
1243 	// Clear the transmit and receive descriptor queues.
1244 	mac_drv_clear_tx_queue(smc);
1245 	mac_drv_clear_rx_queue(smc);
1246 
1247 	// Restart the adapter.
1248 
1249 	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1250 
1251 	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1252 
1253 	smt_online(smc, 1);	// Insert into the ring again.
1254 	STI_FBI();
1255 
1256 	// Restore original receive mode (multicasts, promiscuous, etc.).
1257 	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1258 }				// ResetAdapter
1259 
1260 
1261 //--------------- functions called by hardware module ----------------
1262 
1263 /************************
1264  *
1265  *	llc_restart_tx
1266  *
1267  *	The hardware driver calls this routine when the transmit complete
1268  *	interrupt bits (end of frame) for the synchronous or asynchronous
1269  *	queue is set.
1270  *
1271  * NOTE The hardware driver calls this function also if no packets are queued.
1272  *	The routine must be able to handle this case.
1273  * Args
1274  *	smc - A pointer to the SMT context struct.
1275  * Out
1276  *	Nothing.
1277  *
1278  ************************/
1279 void llc_restart_tx(struct s_smc *smc)
1280 {
1281 	skfddi_priv *bp = &smc->os;
1282 
1283 	pr_debug("[llc_restart_tx]\n");
1284 
1285 	// Try to send queued packets
1286 	spin_unlock(&bp->DriverLock);
1287 	send_queued_packets(smc);
1288 	spin_lock(&bp->DriverLock);
1289 	netif_start_queue(bp->dev);// system may send again if it was blocked
1290 
1291 }				// llc_restart_tx
1292 
1293 
1294 /************************
1295  *
1296  *	mac_drv_get_space
1297  *
1298  *	The hardware module calls this function to allocate the memory
1299  *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1300  * Args
1301  *	smc - A pointer to the SMT context struct.
1302  *
1303  *	size - Size of memory in bytes to allocate.
1304  * Out
1305  *	!= 0	A pointer to the virtual address of the allocated memory.
1306  *	== 0	Allocation error.
1307  *
1308  ************************/
1309 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1310 {
1311 	void *virt;
1312 
1313 	pr_debug("mac_drv_get_space (%d bytes), ", size);
1314 	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1315 
1316 	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1317 		printk("Unexpected SMT memory size requested: %d\n", size);
1318 		return NULL;
1319 	}
1320 	smc->os.SharedMemHeap += size;	// Move heap pointer.
1321 
1322 	pr_debug("mac_drv_get_space end\n");
1323 	pr_debug("virt addr: %lx\n", (ulong) virt);
1324 	pr_debug("bus  addr: %lx\n", (ulong)
1325 	       (smc->os.SharedMemDMA +
1326 		((char *) virt - (char *)smc->os.SharedMemAddr)));
1327 	return virt;
1328 }				// mac_drv_get_space
1329 
1330 
1331 /************************
1332  *
1333  *	mac_drv_get_desc_mem
1334  *
1335  *	This function is called by the hardware dependent module.
1336  *	It allocates the memory for the RxD and TxD descriptors.
1337  *
1338  *	This memory must be non-cached, non-movable and non-swappable.
1339  *	This memory should start at a physical page boundary.
1340  * Args
1341  *	smc - A pointer to the SMT context struct.
1342  *
1343  *	size - Size of memory in bytes to allocate.
1344  * Out
1345  *	!= 0	A pointer to the virtual address of the allocated memory.
1346  *	== 0	Allocation error.
1347  *
1348  ************************/
1349 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1350 {
1351 
1352 	char *virt;
1353 
1354 	pr_debug("mac_drv_get_desc_mem\n");
1355 
1356 	// Descriptor memory must be aligned on 16-byte boundary.
1357 
1358 	virt = mac_drv_get_space(smc, size);
1359 
1360 	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1361 	size = size % 16;
1362 
1363 	pr_debug("Allocate %u bytes alignment gap ", size);
1364 	pr_debug("for descriptor memory.\n");
1365 
1366 	if (!mac_drv_get_space(smc, size)) {
1367 		printk("fddi: Unable to align descriptor memory.\n");
1368 		return NULL;
1369 	}
1370 	return virt + size;
1371 }				// mac_drv_get_desc_mem
1372 
1373 
1374 /************************
1375  *
1376  *	mac_drv_virt2phys
1377  *
1378  *	Get the physical address of a given virtual address.
1379  * Args
1380  *	smc - A pointer to the SMT context struct.
1381  *
1382  *	virt - A (virtual) pointer into our 'shared' memory area.
1383  * Out
1384  *	Physical address of the given virtual address.
1385  *
1386  ************************/
1387 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1388 {
1389 	return smc->os.SharedMemDMA +
1390 		((char *) virt - (char *)smc->os.SharedMemAddr);
1391 }				// mac_drv_virt2phys
1392 
1393 
1394 /************************
1395  *
1396  *	dma_master
1397  *
1398  *	The HWM calls this function, when the driver leads through a DMA
1399  *	transfer. If the OS-specific module must prepare the system hardware
1400  *	for the DMA transfer, it should do it in this function.
1401  *
1402  *	The hardware module calls this dma_master if it wants to send an SMT
1403  *	frame.  This means that the virt address passed in here is part of
1404  *      the 'shared' memory area.
1405  * Args
1406  *	smc - A pointer to the SMT context struct.
1407  *
1408  *	virt - The virtual address of the data.
1409  *
1410  *	len - The length in bytes of the data.
1411  *
1412  *	flag - Indicates the transmit direction and the buffer type:
1413  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1414  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1415  *		SMT_BUF (0x80)	SMT buffer
1416  *
1417  *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1418  * Out
1419  *	Returns the pyhsical address for the DMA transfer.
1420  *
1421  ************************/
1422 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1423 {
1424 	return smc->os.SharedMemDMA +
1425 		((char *) virt - (char *)smc->os.SharedMemAddr);
1426 }				// dma_master
1427 
1428 
1429 /************************
1430  *
1431  *	dma_complete
1432  *
1433  *	The hardware module calls this routine when it has completed a DMA
1434  *	transfer. If the operating system dependent module has set up the DMA
1435  *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1436  *	the DMA channel.
1437  * Args
1438  *	smc - A pointer to the SMT context struct.
1439  *
1440  *	descr - A pointer to a TxD or RxD, respectively.
1441  *
1442  *	flag - Indicates the DMA transfer direction / SMT buffer:
1443  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1444  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1445  *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1446  * Out
1447  *	Nothing.
1448  *
1449  ************************/
1450 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1451 {
1452 	/* For TX buffers, there are two cases.  If it is an SMT transmit
1453 	 * buffer, there is nothing to do since we use consistent memory
1454 	 * for the 'shared' memory area.  The other case is for normal
1455 	 * transmit packets given to us by the networking stack, and in
1456 	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1457 	 * below.
1458 	 *
1459 	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1460 	 * because the hardware module is about to potentially look at
1461 	 * the contents of the buffer.  If we did not call the PCI DMA
1462 	 * unmap first, the hardware module could read inconsistent data.
1463 	 */
1464 	if (flag & DMA_WR) {
1465 		skfddi_priv *bp = &smc->os;
1466 		volatile struct s_smt_fp_rxd *r = &descr->r;
1467 
1468 		/* If SKB is NULL, we used the local buffer. */
1469 		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1470 			int MaxFrameSize = bp->MaxFrameSize;
1471 
1472 			dma_unmap_single(&(&bp->pdev)->dev,
1473 					 r->rxd_os.dma_addr, MaxFrameSize,
1474 					 DMA_FROM_DEVICE);
1475 			r->rxd_os.dma_addr = 0;
1476 		}
1477 	}
1478 }				// dma_complete
1479 
1480 
1481 /************************
1482  *
1483  *	mac_drv_tx_complete
1484  *
1485  *	Transmit of a packet is complete. Release the tx staging buffer.
1486  *
1487  * Args
1488  *	smc - A pointer to the SMT context struct.
1489  *
1490  *	txd - A pointer to the last TxD which is used by the frame.
1491  * Out
1492  *	Returns nothing.
1493  *
1494  ************************/
1495 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1496 {
1497 	struct sk_buff *skb;
1498 
1499 	pr_debug("entering mac_drv_tx_complete\n");
1500 	// Check if this TxD points to a skb
1501 
1502 	if (!(skb = txd->txd_os.skb)) {
1503 		pr_debug("TXD with no skb assigned.\n");
1504 		return;
1505 	}
1506 	txd->txd_os.skb = NULL;
1507 
1508 	// release the DMA mapping
1509 	dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr,
1510 			 skb->len, DMA_TO_DEVICE);
1511 	txd->txd_os.dma_addr = 0;
1512 
1513 	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1514 	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1515 
1516 	// free the skb
1517 	dev_kfree_skb_irq(skb);
1518 
1519 	pr_debug("leaving mac_drv_tx_complete\n");
1520 }				// mac_drv_tx_complete
1521 
1522 
1523 /************************
1524  *
1525  * dump packets to logfile
1526  *
1527  ************************/
1528 #ifdef DUMPPACKETS
1529 void dump_data(unsigned char *Data, int length)
1530 {
1531 	printk(KERN_INFO "---Packet start---\n");
1532 	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
1533 	printk(KERN_INFO "------------------\n");
1534 }				// dump_data
1535 #else
1536 #define dump_data(data,len)
1537 #endif				// DUMPPACKETS
1538 
1539 /************************
1540  *
1541  *	mac_drv_rx_complete
1542  *
1543  *	The hardware module calls this function if an LLC frame is received
1544  *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1545  *	from the network will be passed to the LLC layer by this function
1546  *	if passing is enabled.
1547  *
1548  *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1549  *	be received. It also fills the RxD ring with new receive buffers if
1550  *	some can be queued.
1551  * Args
1552  *	smc - A pointer to the SMT context struct.
1553  *
1554  *	rxd - A pointer to the first RxD which is used by the receive frame.
1555  *
1556  *	frag_count - Count of RxDs used by the received frame.
1557  *
1558  *	len - Frame length.
1559  * Out
1560  *	Nothing.
1561  *
1562  ************************/
1563 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1564 			 int frag_count, int len)
1565 {
1566 	skfddi_priv *bp = &smc->os;
1567 	struct sk_buff *skb;
1568 	unsigned char *virt, *cp;
1569 	unsigned short ri;
1570 	u_int RifLength;
1571 
1572 	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1573 	if (frag_count != 1) {	// This is not allowed to happen.
1574 
1575 		printk("fddi: Multi-fragment receive!\n");
1576 		goto RequeueRxd;	// Re-use the given RXD(s).
1577 
1578 	}
1579 	skb = rxd->rxd_os.skb;
1580 	if (!skb) {
1581 		pr_debug("No skb in rxd\n");
1582 		smc->os.MacStat.gen.rx_errors++;
1583 		goto RequeueRxd;
1584 	}
1585 	virt = skb->data;
1586 
1587 	// The DMA mapping was released in dma_complete above.
1588 
1589 	dump_data(skb->data, len);
1590 
1591 	/*
1592 	 * FDDI Frame format:
1593 	 * +-------+-------+-------+------------+--------+------------+
1594 	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1595 	 * +-------+-------+-------+------------+--------+------------+
1596 	 *
1597 	 * FC = Frame Control
1598 	 * DA = Destination Address
1599 	 * SA = Source Address
1600 	 * RIF = Routing Information Field
1601 	 * LLC = Logical Link Control
1602 	 */
1603 
1604 	// Remove Routing Information Field (RIF), if present.
1605 
1606 	if ((virt[1 + 6] & FDDI_RII) == 0)
1607 		RifLength = 0;
1608 	else {
1609 		int n;
1610 // goos: RIF removal has still to be tested
1611 		pr_debug("RIF found\n");
1612 		// Get RIF length from Routing Control (RC) field.
1613 		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1614 
1615 		ri = ntohs(*((__be16 *) cp));
1616 		RifLength = ri & FDDI_RCF_LEN_MASK;
1617 		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1618 			printk("fddi: Invalid RIF.\n");
1619 			goto RequeueRxd;	// Discard the frame.
1620 
1621 		}
1622 		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1623 		// regions overlap
1624 
1625 		virt = cp + RifLength;
1626 		for (n = FDDI_MAC_HDR_LEN; n; n--)
1627 			*--virt = *--cp;
1628 		// adjust sbd->data pointer
1629 		skb_pull(skb, RifLength);
1630 		len -= RifLength;
1631 		RifLength = 0;
1632 	}
1633 
1634 	// Count statistics.
1635 	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1636 						// packets.
1637 	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1638 
1639 	// virt points to header again
1640 	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1641 
1642 		smc->os.MacStat.gen.multicast++;
1643 	}
1644 
1645 	// deliver frame to system
1646 	rxd->rxd_os.skb = NULL;
1647 	skb_trim(skb, len);
1648 	skb->protocol = fddi_type_trans(skb, bp->dev);
1649 
1650 	netif_rx(skb);
1651 
1652 	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1653 	return;
1654 
1655       RequeueRxd:
1656 	pr_debug("Rx: re-queue RXD.\n");
1657 	mac_drv_requeue_rxd(smc, rxd, frag_count);
1658 	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1659 						// not indicated.
1660 
1661 }				// mac_drv_rx_complete
1662 
1663 
1664 /************************
1665  *
1666  *	mac_drv_requeue_rxd
1667  *
1668  *	The hardware module calls this function to request the OS-specific
1669  *	module to queue the receive buffer(s) represented by the pointer
1670  *	to the RxD and the frag_count into the receive queue again. This
1671  *	buffer was filled with an invalid frame or an SMT frame.
1672  * Args
1673  *	smc - A pointer to the SMT context struct.
1674  *
1675  *	rxd - A pointer to the first RxD which is used by the receive frame.
1676  *
1677  *	frag_count - Count of RxDs used by the received frame.
1678  * Out
1679  *	Nothing.
1680  *
1681  ************************/
1682 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1683 			 int frag_count)
1684 {
1685 	volatile struct s_smt_fp_rxd *next_rxd;
1686 	volatile struct s_smt_fp_rxd *src_rxd;
1687 	struct sk_buff *skb;
1688 	int MaxFrameSize;
1689 	unsigned char *v_addr;
1690 	dma_addr_t b_addr;
1691 
1692 	if (frag_count != 1)	// This is not allowed to happen.
1693 
1694 		printk("fddi: Multi-fragment requeue!\n");
1695 
1696 	MaxFrameSize = smc->os.MaxFrameSize;
1697 	src_rxd = rxd;
1698 	for (; frag_count > 0; frag_count--) {
1699 		next_rxd = src_rxd->rxd_next;
1700 		rxd = HWM_GET_CURR_RXD(smc);
1701 
1702 		skb = src_rxd->rxd_os.skb;
1703 		if (skb == NULL) {	// this should not happen
1704 
1705 			pr_debug("Requeue with no skb in rxd!\n");
1706 			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1707 			if (skb) {
1708 				// we got a skb
1709 				rxd->rxd_os.skb = skb;
1710 				skb_reserve(skb, 3);
1711 				skb_put(skb, MaxFrameSize);
1712 				v_addr = skb->data;
1713 				b_addr = dma_map_single(&(&smc->os.pdev)->dev,
1714 							v_addr, MaxFrameSize,
1715 							DMA_FROM_DEVICE);
1716 				rxd->rxd_os.dma_addr = b_addr;
1717 			} else {
1718 				// no skb available, use local buffer
1719 				pr_debug("Queueing invalid buffer!\n");
1720 				rxd->rxd_os.skb = NULL;
1721 				v_addr = smc->os.LocalRxBuffer;
1722 				b_addr = smc->os.LocalRxBufferDMA;
1723 			}
1724 		} else {
1725 			// we use skb from old rxd
1726 			rxd->rxd_os.skb = skb;
1727 			v_addr = skb->data;
1728 			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1729 						MaxFrameSize, DMA_FROM_DEVICE);
1730 			rxd->rxd_os.dma_addr = b_addr;
1731 		}
1732 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1733 			    FIRST_FRAG | LAST_FRAG);
1734 
1735 		src_rxd = next_rxd;
1736 	}
1737 }				// mac_drv_requeue_rxd
1738 
1739 
1740 /************************
1741  *
1742  *	mac_drv_fill_rxd
1743  *
1744  *	The hardware module calls this function at initialization time
1745  *	to fill the RxD ring with receive buffers. It is also called by
1746  *	mac_drv_rx_complete if rx_free is large enough to queue some new
1747  *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1748  *	receive buffers as long as enough RxDs and receive buffers are
1749  *	available.
1750  * Args
1751  *	smc - A pointer to the SMT context struct.
1752  * Out
1753  *	Nothing.
1754  *
1755  ************************/
1756 void mac_drv_fill_rxd(struct s_smc *smc)
1757 {
1758 	int MaxFrameSize;
1759 	unsigned char *v_addr;
1760 	unsigned long b_addr;
1761 	struct sk_buff *skb;
1762 	volatile struct s_smt_fp_rxd *rxd;
1763 
1764 	pr_debug("entering mac_drv_fill_rxd\n");
1765 
1766 	// Walk through the list of free receive buffers, passing receive
1767 	// buffers to the HWM as long as RXDs are available.
1768 
1769 	MaxFrameSize = smc->os.MaxFrameSize;
1770 	// Check if there is any RXD left.
1771 	while (HWM_GET_RX_FREE(smc) > 0) {
1772 		pr_debug(".\n");
1773 
1774 		rxd = HWM_GET_CURR_RXD(smc);
1775 		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1776 		if (skb) {
1777 			// we got a skb
1778 			skb_reserve(skb, 3);
1779 			skb_put(skb, MaxFrameSize);
1780 			v_addr = skb->data;
1781 			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1782 						MaxFrameSize, DMA_FROM_DEVICE);
1783 			rxd->rxd_os.dma_addr = b_addr;
1784 		} else {
1785 			// no skb available, use local buffer
1786 			// System has run out of buffer memory, but we want to
1787 			// keep the receiver running in hope of better times.
1788 			// Multiple descriptors may point to this local buffer,
1789 			// so data in it must be considered invalid.
1790 			pr_debug("Queueing invalid buffer!\n");
1791 			v_addr = smc->os.LocalRxBuffer;
1792 			b_addr = smc->os.LocalRxBufferDMA;
1793 		}
1794 
1795 		rxd->rxd_os.skb = skb;
1796 
1797 		// Pass receive buffer to HWM.
1798 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1799 			    FIRST_FRAG | LAST_FRAG);
1800 	}
1801 	pr_debug("leaving mac_drv_fill_rxd\n");
1802 }				// mac_drv_fill_rxd
1803 
1804 
1805 /************************
1806  *
1807  *	mac_drv_clear_rxd
1808  *
1809  *	The hardware module calls this function to release unused
1810  *	receive buffers.
1811  * Args
1812  *	smc - A pointer to the SMT context struct.
1813  *
1814  *	rxd - A pointer to the first RxD which is used by the receive buffer.
1815  *
1816  *	frag_count - Count of RxDs used by the receive buffer.
1817  * Out
1818  *	Nothing.
1819  *
1820  ************************/
1821 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1822 		       int frag_count)
1823 {
1824 
1825 	struct sk_buff *skb;
1826 
1827 	pr_debug("entering mac_drv_clear_rxd\n");
1828 
1829 	if (frag_count != 1)	// This is not allowed to happen.
1830 
1831 		printk("fddi: Multi-fragment clear!\n");
1832 
1833 	for (; frag_count > 0; frag_count--) {
1834 		skb = rxd->rxd_os.skb;
1835 		if (skb != NULL) {
1836 			skfddi_priv *bp = &smc->os;
1837 			int MaxFrameSize = bp->MaxFrameSize;
1838 
1839 			dma_unmap_single(&(&bp->pdev)->dev,
1840 					 rxd->rxd_os.dma_addr, MaxFrameSize,
1841 					 DMA_FROM_DEVICE);
1842 
1843 			dev_kfree_skb(skb);
1844 			rxd->rxd_os.skb = NULL;
1845 		}
1846 		rxd = rxd->rxd_next;	// Next RXD.
1847 
1848 	}
1849 }				// mac_drv_clear_rxd
1850 
1851 
1852 /************************
1853  *
1854  *	mac_drv_rx_init
1855  *
1856  *	The hardware module calls this routine when an SMT or NSA frame of the
1857  *	local SMT should be delivered to the LLC layer.
1858  *
1859  *	It is necessary to have this function, because there is no other way to
1860  *	copy the contents of SMT MBufs into receive buffers.
1861  *
1862  *	mac_drv_rx_init allocates the required target memory for this frame,
1863  *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1864  * Args
1865  *	smc - A pointer to the SMT context struct.
1866  *
1867  *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1868  *
1869  *	fc - The Frame Control field of the received frame.
1870  *
1871  *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1872  *
1873  *	la_len - The length of the lookahead data stored in the lookahead
1874  *	buffer (may be zero).
1875  * Out
1876  *	Always returns zero (0).
1877  *
1878  ************************/
1879 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1880 		    char *look_ahead, int la_len)
1881 {
1882 	struct sk_buff *skb;
1883 
1884 	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1885 
1886 	// "Received" a SMT or NSA frame of the local SMT.
1887 
1888 	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1889 		pr_debug("fddi: Discard invalid local SMT frame\n");
1890 		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1891 		       len, la_len, (unsigned long) look_ahead);
1892 		return 0;
1893 	}
1894 	skb = alloc_skb(len + 3, GFP_ATOMIC);
1895 	if (!skb) {
1896 		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1897 		return 0;
1898 	}
1899 	skb_reserve(skb, 3);
1900 	skb_put(skb, len);
1901 	skb_copy_to_linear_data(skb, look_ahead, len);
1902 
1903 	// deliver frame to system
1904 	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1905 	netif_rx(skb);
1906 
1907 	return 0;
1908 }				// mac_drv_rx_init
1909 
1910 
1911 /************************
1912  *
1913  *	smt_timer_poll
1914  *
1915  *	This routine is called periodically by the SMT module to clean up the
1916  *	driver.
1917  *
1918  *	Return any queued frames back to the upper protocol layers if the ring
1919  *	is down.
1920  * Args
1921  *	smc - A pointer to the SMT context struct.
1922  * Out
1923  *	Nothing.
1924  *
1925  ************************/
1926 void smt_timer_poll(struct s_smc *smc)
1927 {
1928 }				// smt_timer_poll
1929 
1930 
1931 /************************
1932  *
1933  *	ring_status_indication
1934  *
1935  *	This function indicates a change of the ring state.
1936  * Args
1937  *	smc - A pointer to the SMT context struct.
1938  *
1939  *	status - The current ring status.
1940  * Out
1941  *	Nothing.
1942  *
1943  ************************/
1944 void ring_status_indication(struct s_smc *smc, u_long status)
1945 {
1946 	pr_debug("ring_status_indication( ");
1947 	if (status & RS_RES15)
1948 		pr_debug("RS_RES15 ");
1949 	if (status & RS_HARDERROR)
1950 		pr_debug("RS_HARDERROR ");
1951 	if (status & RS_SOFTERROR)
1952 		pr_debug("RS_SOFTERROR ");
1953 	if (status & RS_BEACON)
1954 		pr_debug("RS_BEACON ");
1955 	if (status & RS_PATHTEST)
1956 		pr_debug("RS_PATHTEST ");
1957 	if (status & RS_SELFTEST)
1958 		pr_debug("RS_SELFTEST ");
1959 	if (status & RS_RES9)
1960 		pr_debug("RS_RES9 ");
1961 	if (status & RS_DISCONNECT)
1962 		pr_debug("RS_DISCONNECT ");
1963 	if (status & RS_RES7)
1964 		pr_debug("RS_RES7 ");
1965 	if (status & RS_DUPADDR)
1966 		pr_debug("RS_DUPADDR ");
1967 	if (status & RS_NORINGOP)
1968 		pr_debug("RS_NORINGOP ");
1969 	if (status & RS_VERSION)
1970 		pr_debug("RS_VERSION ");
1971 	if (status & RS_STUCKBYPASSS)
1972 		pr_debug("RS_STUCKBYPASSS ");
1973 	if (status & RS_EVENT)
1974 		pr_debug("RS_EVENT ");
1975 	if (status & RS_RINGOPCHANGE)
1976 		pr_debug("RS_RINGOPCHANGE ");
1977 	if (status & RS_RES0)
1978 		pr_debug("RS_RES0 ");
1979 	pr_debug("]\n");
1980 }				// ring_status_indication
1981 
1982 
1983 /************************
1984  *
1985  *	smt_get_time
1986  *
1987  *	Gets the current time from the system.
1988  * Args
1989  *	None.
1990  * Out
1991  *	The current time in TICKS_PER_SECOND.
1992  *
1993  *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1994  *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1995  *	to the time returned by smt_get_time().
1996  *
1997  ************************/
1998 unsigned long smt_get_time(void)
1999 {
2000 	return jiffies;
2001 }				// smt_get_time
2002 
2003 
2004 /************************
2005  *
2006  *	smt_stat_counter
2007  *
2008  *	Status counter update (ring_op, fifo full).
2009  * Args
2010  *	smc - A pointer to the SMT context struct.
2011  *
2012  *	stat -	= 0: A ring operational change occurred.
2013  *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2014  * Out
2015  *	Nothing.
2016  *
2017  ************************/
2018 void smt_stat_counter(struct s_smc *smc, int stat)
2019 {
2020 //      BOOLEAN RingIsUp ;
2021 
2022 	pr_debug("smt_stat_counter\n");
2023 	switch (stat) {
2024 	case 0:
2025 		pr_debug("Ring operational change.\n");
2026 		break;
2027 	case 1:
2028 		pr_debug("Receive fifo overflow.\n");
2029 		smc->os.MacStat.gen.rx_errors++;
2030 		break;
2031 	default:
2032 		pr_debug("Unknown status (%d).\n", stat);
2033 		break;
2034 	}
2035 }				// smt_stat_counter
2036 
2037 
2038 /************************
2039  *
2040  *	cfm_state_change
2041  *
2042  *	Sets CFM state in custom statistics.
2043  * Args
2044  *	smc - A pointer to the SMT context struct.
2045  *
2046  *	c_state - Possible values are:
2047  *
2048  *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2049  *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2050  * Out
2051  *	Nothing.
2052  *
2053  ************************/
2054 void cfm_state_change(struct s_smc *smc, int c_state)
2055 {
2056 #ifdef DRIVERDEBUG
2057 	char *s;
2058 
2059 	switch (c_state) {
2060 	case SC0_ISOLATED:
2061 		s = "SC0_ISOLATED";
2062 		break;
2063 	case SC1_WRAP_A:
2064 		s = "SC1_WRAP_A";
2065 		break;
2066 	case SC2_WRAP_B:
2067 		s = "SC2_WRAP_B";
2068 		break;
2069 	case SC4_THRU_A:
2070 		s = "SC4_THRU_A";
2071 		break;
2072 	case SC5_THRU_B:
2073 		s = "SC5_THRU_B";
2074 		break;
2075 	case SC7_WRAP_S:
2076 		s = "SC7_WRAP_S";
2077 		break;
2078 	case SC9_C_WRAP_A:
2079 		s = "SC9_C_WRAP_A";
2080 		break;
2081 	case SC10_C_WRAP_B:
2082 		s = "SC10_C_WRAP_B";
2083 		break;
2084 	case SC11_C_WRAP_S:
2085 		s = "SC11_C_WRAP_S";
2086 		break;
2087 	default:
2088 		pr_debug("cfm_state_change: unknown %d\n", c_state);
2089 		return;
2090 	}
2091 	pr_debug("cfm_state_change: %s\n", s);
2092 #endif				// DRIVERDEBUG
2093 }				// cfm_state_change
2094 
2095 
2096 /************************
2097  *
2098  *	ecm_state_change
2099  *
2100  *	Sets ECM state in custom statistics.
2101  * Args
2102  *	smc - A pointer to the SMT context struct.
2103  *
2104  *	e_state - Possible values are:
2105  *
2106  *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2107  *		SC5_THRU_B (7), SC7_WRAP_S (8)
2108  * Out
2109  *	Nothing.
2110  *
2111  ************************/
2112 void ecm_state_change(struct s_smc *smc, int e_state)
2113 {
2114 #ifdef DRIVERDEBUG
2115 	char *s;
2116 
2117 	switch (e_state) {
2118 	case EC0_OUT:
2119 		s = "EC0_OUT";
2120 		break;
2121 	case EC1_IN:
2122 		s = "EC1_IN";
2123 		break;
2124 	case EC2_TRACE:
2125 		s = "EC2_TRACE";
2126 		break;
2127 	case EC3_LEAVE:
2128 		s = "EC3_LEAVE";
2129 		break;
2130 	case EC4_PATH_TEST:
2131 		s = "EC4_PATH_TEST";
2132 		break;
2133 	case EC5_INSERT:
2134 		s = "EC5_INSERT";
2135 		break;
2136 	case EC6_CHECK:
2137 		s = "EC6_CHECK";
2138 		break;
2139 	case EC7_DEINSERT:
2140 		s = "EC7_DEINSERT";
2141 		break;
2142 	default:
2143 		s = "unknown";
2144 		break;
2145 	}
2146 	pr_debug("ecm_state_change: %s\n", s);
2147 #endif				//DRIVERDEBUG
2148 }				// ecm_state_change
2149 
2150 
2151 /************************
2152  *
2153  *	rmt_state_change
2154  *
2155  *	Sets RMT state in custom statistics.
2156  * Args
2157  *	smc - A pointer to the SMT context struct.
2158  *
2159  *	r_state - Possible values are:
2160  *
2161  *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2162  *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2163  * Out
2164  *	Nothing.
2165  *
2166  ************************/
2167 void rmt_state_change(struct s_smc *smc, int r_state)
2168 {
2169 #ifdef DRIVERDEBUG
2170 	char *s;
2171 
2172 	switch (r_state) {
2173 	case RM0_ISOLATED:
2174 		s = "RM0_ISOLATED";
2175 		break;
2176 	case RM1_NON_OP:
2177 		s = "RM1_NON_OP - not operational";
2178 		break;
2179 	case RM2_RING_OP:
2180 		s = "RM2_RING_OP - ring operational";
2181 		break;
2182 	case RM3_DETECT:
2183 		s = "RM3_DETECT - detect dupl addresses";
2184 		break;
2185 	case RM4_NON_OP_DUP:
2186 		s = "RM4_NON_OP_DUP - dupl. addr detected";
2187 		break;
2188 	case RM5_RING_OP_DUP:
2189 		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2190 		break;
2191 	case RM6_DIRECTED:
2192 		s = "RM6_DIRECTED - sending directed beacons";
2193 		break;
2194 	case RM7_TRACE:
2195 		s = "RM7_TRACE - trace initiated";
2196 		break;
2197 	default:
2198 		s = "unknown";
2199 		break;
2200 	}
2201 	pr_debug("[rmt_state_change: %s]\n", s);
2202 #endif				// DRIVERDEBUG
2203 }				// rmt_state_change
2204 
2205 
2206 /************************
2207  *
2208  *	drv_reset_indication
2209  *
2210  *	This function is called by the SMT when it has detected a severe
2211  *	hardware problem. The driver should perform a reset on the adapter
2212  *	as soon as possible, but not from within this function.
2213  * Args
2214  *	smc - A pointer to the SMT context struct.
2215  * Out
2216  *	Nothing.
2217  *
2218  ************************/
2219 void drv_reset_indication(struct s_smc *smc)
2220 {
2221 	pr_debug("entering drv_reset_indication\n");
2222 
2223 	smc->os.ResetRequested = TRUE;	// Set flag.
2224 
2225 }				// drv_reset_indication
2226 
2227 static struct pci_driver skfddi_pci_driver = {
2228 	.name		= "skfddi",
2229 	.id_table	= skfddi_pci_tbl,
2230 	.probe		= skfp_init_one,
2231 	.remove		= skfp_remove_one,
2232 };
2233 
2234 module_pci_driver(skfddi_pci_driver);
2235