1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * File Name: 4 * skfddi.c 5 * 6 * Copyright Information: 7 * Copyright SysKonnect 1998,1999. 8 * 9 * The information in this file is provided "AS IS" without warranty. 10 * 11 * Abstract: 12 * A Linux device driver supporting the SysKonnect FDDI PCI controller 13 * familie. 14 * 15 * Maintainers: 16 * CG Christoph Goos (cgoos@syskonnect.de) 17 * 18 * Contributors: 19 * DM David S. Miller 20 * 21 * Address all question to: 22 * linux@syskonnect.de 23 * 24 * The technical manual for the adapters is available from SysKonnect's 25 * web pages: www.syskonnect.com 26 * Goto "Support" and search Knowledge Base for "manual". 27 * 28 * Driver Architecture: 29 * The driver architecture is based on the DEC FDDI driver by 30 * Lawrence V. Stefani and several ethernet drivers. 31 * I also used an existing Windows NT miniport driver. 32 * All hardware dependent functions are handled by the SysKonnect 33 * Hardware Module. 34 * The only headerfiles that are directly related to this source 35 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h. 36 * The others belong to the SysKonnect FDDI Hardware Module and 37 * should better not be changed. 38 * 39 * Modification History: 40 * Date Name Description 41 * 02-Mar-98 CG Created. 42 * 43 * 10-Mar-99 CG Support for 2.2.x added. 44 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC) 45 * 26-Oct-99 CG Fixed compilation error on 2.2.13 46 * 12-Nov-99 CG Source code release 47 * 22-Nov-99 CG Included in kernel source. 48 * 07-May-00 DM 64 bit fixes, new dma interface 49 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl 50 * Daniele Bellucci <bellucda@tiscali.it> 51 * 03-Dec-03 SH Convert to PCI device model 52 * 53 * Compilation options (-Dxxx): 54 * DRIVERDEBUG print lots of messages to log file 55 * DUMPPACKETS print received/transmitted packets to logfile 56 * 57 * Tested cpu architectures: 58 * - i386 59 * - sparc64 60 */ 61 62 /* Version information string - should be updated prior to */ 63 /* each new release!!! */ 64 #define VERSION "2.07" 65 66 static const char * const boot_msg = 67 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n" 68 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)"; 69 70 /* Include files */ 71 72 #include <linux/capability.h> 73 #include <linux/module.h> 74 #include <linux/kernel.h> 75 #include <linux/errno.h> 76 #include <linux/ioport.h> 77 #include <linux/interrupt.h> 78 #include <linux/pci.h> 79 #include <linux/netdevice.h> 80 #include <linux/fddidevice.h> 81 #include <linux/skbuff.h> 82 #include <linux/bitops.h> 83 #include <linux/gfp.h> 84 85 #include <asm/byteorder.h> 86 #include <asm/io.h> 87 #include <linux/uaccess.h> 88 89 #include "h/types.h" 90 #undef ADDR // undo Linux definition 91 #include "h/skfbi.h" 92 #include "h/fddi.h" 93 #include "h/smc.h" 94 #include "h/smtstate.h" 95 96 97 // Define module-wide (static) routines 98 static int skfp_driver_init(struct net_device *dev); 99 static int skfp_open(struct net_device *dev); 100 static int skfp_close(struct net_device *dev); 101 static irqreturn_t skfp_interrupt(int irq, void *dev_id); 102 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev); 103 static void skfp_ctl_set_multicast_list(struct net_device *dev); 104 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev); 105 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr); 106 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 107 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 108 struct net_device *dev); 109 static void send_queued_packets(struct s_smc *smc); 110 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr); 111 static void ResetAdapter(struct s_smc *smc); 112 113 114 // Functions needed by the hardware module 115 void *mac_drv_get_space(struct s_smc *smc, u_int size); 116 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size); 117 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt); 118 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag); 119 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, 120 int flag); 121 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd); 122 void llc_restart_tx(struct s_smc *smc); 123 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 124 int frag_count, int len); 125 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 126 int frag_count); 127 void mac_drv_fill_rxd(struct s_smc *smc); 128 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 129 int frag_count); 130 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead, 131 int la_len); 132 void dump_data(unsigned char *Data, int length); 133 134 // External functions from the hardware module 135 extern u_int mac_drv_check_space(void); 136 extern int mac_drv_init(struct s_smc *smc); 137 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys, 138 int len, int frame_status); 139 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, 140 int frame_len, int frame_status); 141 extern void fddi_isr(struct s_smc *smc); 142 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys, 143 int len, int frame_status); 144 extern void mac_drv_rx_mode(struct s_smc *smc, int mode); 145 extern void mac_drv_clear_rx_queue(struct s_smc *smc); 146 extern void enable_tx_irq(struct s_smc *smc, u_short queue); 147 148 static const struct pci_device_id skfddi_pci_tbl[] = { 149 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, }, 150 { } /* Terminating entry */ 151 }; 152 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl); 153 MODULE_LICENSE("GPL"); 154 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>"); 155 156 // Define module-wide (static) variables 157 158 static int num_boards; /* total number of adapters configured */ 159 160 static const struct net_device_ops skfp_netdev_ops = { 161 .ndo_open = skfp_open, 162 .ndo_stop = skfp_close, 163 .ndo_start_xmit = skfp_send_pkt, 164 .ndo_get_stats = skfp_ctl_get_stats, 165 .ndo_set_rx_mode = skfp_ctl_set_multicast_list, 166 .ndo_set_mac_address = skfp_ctl_set_mac_address, 167 .ndo_do_ioctl = skfp_ioctl, 168 }; 169 170 /* 171 * ================= 172 * = skfp_init_one = 173 * ================= 174 * 175 * Overview: 176 * Probes for supported FDDI PCI controllers 177 * 178 * Returns: 179 * Condition code 180 * 181 * Arguments: 182 * pdev - pointer to PCI device information 183 * 184 * Functional Description: 185 * This is now called by PCI driver registration process 186 * for each board found. 187 * 188 * Return Codes: 189 * 0 - This device (fddi0, fddi1, etc) configured successfully 190 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device 191 * present for this device name 192 * 193 * 194 * Side Effects: 195 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 196 * initialized and the board resources are read and stored in 197 * the device structure. 198 */ 199 static int skfp_init_one(struct pci_dev *pdev, 200 const struct pci_device_id *ent) 201 { 202 struct net_device *dev; 203 struct s_smc *smc; /* board pointer */ 204 void __iomem *mem; 205 int err; 206 207 pr_debug("entering skfp_init_one\n"); 208 209 if (num_boards == 0) 210 printk("%s\n", boot_msg); 211 212 err = pci_enable_device(pdev); 213 if (err) 214 return err; 215 216 err = pci_request_regions(pdev, "skfddi"); 217 if (err) 218 goto err_out1; 219 220 pci_set_master(pdev); 221 222 #ifdef MEM_MAPPED_IO 223 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 224 printk(KERN_ERR "skfp: region is not an MMIO resource\n"); 225 err = -EIO; 226 goto err_out2; 227 } 228 229 mem = ioremap(pci_resource_start(pdev, 0), 0x4000); 230 #else 231 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) { 232 printk(KERN_ERR "skfp: region is not PIO resource\n"); 233 err = -EIO; 234 goto err_out2; 235 } 236 237 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN); 238 #endif 239 if (!mem) { 240 printk(KERN_ERR "skfp: Unable to map register, " 241 "FDDI adapter will be disabled.\n"); 242 err = -EIO; 243 goto err_out2; 244 } 245 246 dev = alloc_fddidev(sizeof(struct s_smc)); 247 if (!dev) { 248 printk(KERN_ERR "skfp: Unable to allocate fddi device, " 249 "FDDI adapter will be disabled.\n"); 250 err = -ENOMEM; 251 goto err_out3; 252 } 253 254 dev->irq = pdev->irq; 255 dev->netdev_ops = &skfp_netdev_ops; 256 257 SET_NETDEV_DEV(dev, &pdev->dev); 258 259 /* Initialize board structure with bus-specific info */ 260 smc = netdev_priv(dev); 261 smc->os.dev = dev; 262 smc->os.bus_type = SK_BUS_TYPE_PCI; 263 smc->os.pdev = *pdev; 264 smc->os.QueueSkb = MAX_TX_QUEUE_LEN; 265 smc->os.MaxFrameSize = MAX_FRAME_SIZE; 266 smc->os.dev = dev; 267 smc->hw.slot = -1; 268 smc->hw.iop = mem; 269 smc->os.ResetRequested = FALSE; 270 skb_queue_head_init(&smc->os.SendSkbQueue); 271 272 dev->base_addr = (unsigned long)mem; 273 274 err = skfp_driver_init(dev); 275 if (err) 276 goto err_out4; 277 278 err = register_netdev(dev); 279 if (err) 280 goto err_out5; 281 282 ++num_boards; 283 pci_set_drvdata(pdev, dev); 284 285 if ((pdev->subsystem_device & 0xff00) == 0x5500 || 286 (pdev->subsystem_device & 0xff00) == 0x5800) 287 printk("%s: SysKonnect FDDI PCI adapter" 288 " found (SK-%04X)\n", dev->name, 289 pdev->subsystem_device); 290 else 291 printk("%s: FDDI PCI adapter found\n", dev->name); 292 293 return 0; 294 err_out5: 295 if (smc->os.SharedMemAddr) 296 dma_free_coherent(&pdev->dev, smc->os.SharedMemSize, 297 smc->os.SharedMemAddr, 298 smc->os.SharedMemDMA); 299 dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE, 300 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA); 301 err_out4: 302 free_netdev(dev); 303 err_out3: 304 #ifdef MEM_MAPPED_IO 305 iounmap(mem); 306 #else 307 ioport_unmap(mem); 308 #endif 309 err_out2: 310 pci_release_regions(pdev); 311 err_out1: 312 pci_disable_device(pdev); 313 return err; 314 } 315 316 /* 317 * Called for each adapter board from pci_unregister_driver 318 */ 319 static void skfp_remove_one(struct pci_dev *pdev) 320 { 321 struct net_device *p = pci_get_drvdata(pdev); 322 struct s_smc *lp = netdev_priv(p); 323 324 unregister_netdev(p); 325 326 if (lp->os.SharedMemAddr) { 327 dma_free_coherent(&pdev->dev, 328 lp->os.SharedMemSize, 329 lp->os.SharedMemAddr, 330 lp->os.SharedMemDMA); 331 lp->os.SharedMemAddr = NULL; 332 } 333 if (lp->os.LocalRxBuffer) { 334 dma_free_coherent(&pdev->dev, 335 MAX_FRAME_SIZE, 336 lp->os.LocalRxBuffer, 337 lp->os.LocalRxBufferDMA); 338 lp->os.LocalRxBuffer = NULL; 339 } 340 #ifdef MEM_MAPPED_IO 341 iounmap(lp->hw.iop); 342 #else 343 ioport_unmap(lp->hw.iop); 344 #endif 345 pci_release_regions(pdev); 346 free_netdev(p); 347 348 pci_disable_device(pdev); 349 } 350 351 /* 352 * ==================== 353 * = skfp_driver_init = 354 * ==================== 355 * 356 * Overview: 357 * Initializes remaining adapter board structure information 358 * and makes sure adapter is in a safe state prior to skfp_open(). 359 * 360 * Returns: 361 * Condition code 362 * 363 * Arguments: 364 * dev - pointer to device information 365 * 366 * Functional Description: 367 * This function allocates additional resources such as the host memory 368 * blocks needed by the adapter. 369 * The adapter is also reset. The OS must call skfp_open() to open 370 * the adapter and bring it on-line. 371 * 372 * Return Codes: 373 * 0 - initialization succeeded 374 * -1 - initialization failed 375 */ 376 static int skfp_driver_init(struct net_device *dev) 377 { 378 struct s_smc *smc = netdev_priv(dev); 379 skfddi_priv *bp = &smc->os; 380 int err = -EIO; 381 382 pr_debug("entering skfp_driver_init\n"); 383 384 // set the io address in private structures 385 bp->base_addr = dev->base_addr; 386 387 // Get the interrupt level from the PCI Configuration Table 388 smc->hw.irq = dev->irq; 389 390 spin_lock_init(&bp->DriverLock); 391 392 // Allocate invalid frame 393 bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE, 394 &bp->LocalRxBufferDMA, 395 GFP_ATOMIC); 396 if (!bp->LocalRxBuffer) { 397 printk("could not allocate mem for "); 398 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE); 399 goto fail; 400 } 401 402 // Determine the required size of the 'shared' memory area. 403 bp->SharedMemSize = mac_drv_check_space(); 404 pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize); 405 if (bp->SharedMemSize > 0) { 406 bp->SharedMemSize += 16; // for descriptor alignment 407 408 bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev, 409 bp->SharedMemSize, 410 &bp->SharedMemDMA, 411 GFP_ATOMIC); 412 if (!bp->SharedMemAddr) { 413 printk("could not allocate mem for "); 414 printk("hardware module: %ld byte\n", 415 bp->SharedMemSize); 416 goto fail; 417 } 418 419 } else { 420 bp->SharedMemAddr = NULL; 421 } 422 423 bp->SharedMemHeap = 0; 424 425 card_stop(smc); // Reset adapter. 426 427 pr_debug("mac_drv_init()..\n"); 428 if (mac_drv_init(smc) != 0) { 429 pr_debug("mac_drv_init() failed\n"); 430 goto fail; 431 } 432 read_address(smc, NULL); 433 pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a); 434 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); 435 436 smt_reset_defaults(smc, 0); 437 438 return 0; 439 440 fail: 441 if (bp->SharedMemAddr) { 442 dma_free_coherent(&bp->pdev.dev, 443 bp->SharedMemSize, 444 bp->SharedMemAddr, 445 bp->SharedMemDMA); 446 bp->SharedMemAddr = NULL; 447 } 448 if (bp->LocalRxBuffer) { 449 dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE, 450 bp->LocalRxBuffer, bp->LocalRxBufferDMA); 451 bp->LocalRxBuffer = NULL; 452 } 453 return err; 454 } // skfp_driver_init 455 456 457 /* 458 * ============= 459 * = skfp_open = 460 * ============= 461 * 462 * Overview: 463 * Opens the adapter 464 * 465 * Returns: 466 * Condition code 467 * 468 * Arguments: 469 * dev - pointer to device information 470 * 471 * Functional Description: 472 * This function brings the adapter to an operational state. 473 * 474 * Return Codes: 475 * 0 - Adapter was successfully opened 476 * -EAGAIN - Could not register IRQ 477 */ 478 static int skfp_open(struct net_device *dev) 479 { 480 struct s_smc *smc = netdev_priv(dev); 481 int err; 482 483 pr_debug("entering skfp_open\n"); 484 /* Register IRQ - support shared interrupts by passing device ptr */ 485 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED, 486 dev->name, dev); 487 if (err) 488 return err; 489 490 /* 491 * Set current address to factory MAC address 492 * 493 * Note: We've already done this step in skfp_driver_init. 494 * However, it's possible that a user has set a node 495 * address override, then closed and reopened the 496 * adapter. Unless we reset the device address field 497 * now, we'll continue to use the existing modified 498 * address. 499 */ 500 read_address(smc, NULL); 501 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); 502 503 init_smt(smc, NULL); 504 smt_online(smc, 1); 505 STI_FBI(); 506 507 /* Clear local multicast address tables */ 508 mac_clear_multicast(smc); 509 510 /* Disable promiscuous filter settings */ 511 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 512 513 netif_start_queue(dev); 514 return 0; 515 } // skfp_open 516 517 518 /* 519 * ============== 520 * = skfp_close = 521 * ============== 522 * 523 * Overview: 524 * Closes the device/module. 525 * 526 * Returns: 527 * Condition code 528 * 529 * Arguments: 530 * dev - pointer to device information 531 * 532 * Functional Description: 533 * This routine closes the adapter and brings it to a safe state. 534 * The interrupt service routine is deregistered with the OS. 535 * The adapter can be opened again with another call to skfp_open(). 536 * 537 * Return Codes: 538 * Always return 0. 539 * 540 * Assumptions: 541 * No further requests for this adapter are made after this routine is 542 * called. skfp_open() can be called to reset and reinitialize the 543 * adapter. 544 */ 545 static int skfp_close(struct net_device *dev) 546 { 547 struct s_smc *smc = netdev_priv(dev); 548 skfddi_priv *bp = &smc->os; 549 550 CLI_FBI(); 551 smt_reset_defaults(smc, 1); 552 card_stop(smc); 553 mac_drv_clear_tx_queue(smc); 554 mac_drv_clear_rx_queue(smc); 555 556 netif_stop_queue(dev); 557 /* Deregister (free) IRQ */ 558 free_irq(dev->irq, dev); 559 560 skb_queue_purge(&bp->SendSkbQueue); 561 bp->QueueSkb = MAX_TX_QUEUE_LEN; 562 563 return 0; 564 } // skfp_close 565 566 567 /* 568 * ================== 569 * = skfp_interrupt = 570 * ================== 571 * 572 * Overview: 573 * Interrupt processing routine 574 * 575 * Returns: 576 * None 577 * 578 * Arguments: 579 * irq - interrupt vector 580 * dev_id - pointer to device information 581 * 582 * Functional Description: 583 * This routine calls the interrupt processing routine for this adapter. It 584 * disables and reenables adapter interrupts, as appropriate. We can support 585 * shared interrupts since the incoming dev_id pointer provides our device 586 * structure context. All the real work is done in the hardware module. 587 * 588 * Return Codes: 589 * None 590 * 591 * Assumptions: 592 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC 593 * on Intel-based systems) is done by the operating system outside this 594 * routine. 595 * 596 * System interrupts are enabled through this call. 597 * 598 * Side Effects: 599 * Interrupts are disabled, then reenabled at the adapter. 600 */ 601 602 static irqreturn_t skfp_interrupt(int irq, void *dev_id) 603 { 604 struct net_device *dev = dev_id; 605 struct s_smc *smc; /* private board structure pointer */ 606 skfddi_priv *bp; 607 608 smc = netdev_priv(dev); 609 bp = &smc->os; 610 611 // IRQs enabled or disabled ? 612 if (inpd(ADDR(B0_IMSK)) == 0) { 613 // IRQs are disabled: must be shared interrupt 614 return IRQ_NONE; 615 } 616 // Note: At this point, IRQs are enabled. 617 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ? 618 // Adapter did not issue an IRQ: must be shared interrupt 619 return IRQ_NONE; 620 } 621 CLI_FBI(); // Disable IRQs from our adapter. 622 spin_lock(&bp->DriverLock); 623 624 // Call interrupt handler in hardware module (HWM). 625 fddi_isr(smc); 626 627 if (smc->os.ResetRequested) { 628 ResetAdapter(smc); 629 smc->os.ResetRequested = FALSE; 630 } 631 spin_unlock(&bp->DriverLock); 632 STI_FBI(); // Enable IRQs from our adapter. 633 634 return IRQ_HANDLED; 635 } // skfp_interrupt 636 637 638 /* 639 * ====================== 640 * = skfp_ctl_get_stats = 641 * ====================== 642 * 643 * Overview: 644 * Get statistics for FDDI adapter 645 * 646 * Returns: 647 * Pointer to FDDI statistics structure 648 * 649 * Arguments: 650 * dev - pointer to device information 651 * 652 * Functional Description: 653 * Gets current MIB objects from adapter, then 654 * returns FDDI statistics structure as defined 655 * in if_fddi.h. 656 * 657 * Note: Since the FDDI statistics structure is 658 * still new and the device structure doesn't 659 * have an FDDI-specific get statistics handler, 660 * we'll return the FDDI statistics structure as 661 * a pointer to an Ethernet statistics structure. 662 * That way, at least the first part of the statistics 663 * structure can be decoded properly. 664 * We'll have to pay attention to this routine as the 665 * device structure becomes more mature and LAN media 666 * independent. 667 * 668 */ 669 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev) 670 { 671 struct s_smc *bp = netdev_priv(dev); 672 673 /* Fill the bp->stats structure with driver-maintained counters */ 674 675 bp->os.MacStat.port_bs_flag[0] = 0x1234; 676 bp->os.MacStat.port_bs_flag[1] = 0x5678; 677 // goos: need to fill out fddi statistic 678 #if 0 679 /* Get FDDI SMT MIB objects */ 680 681 /* Fill the bp->stats structure with the SMT MIB object values */ 682 683 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); 684 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; 685 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; 686 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; 687 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); 688 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; 689 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; 690 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; 691 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; 692 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; 693 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; 694 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; 695 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; 696 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; 697 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; 698 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; 699 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; 700 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; 701 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; 702 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; 703 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; 704 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; 705 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; 706 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; 707 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; 708 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; 709 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; 710 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; 711 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; 712 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); 713 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); 714 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); 715 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); 716 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; 717 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; 718 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; 719 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); 720 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; 721 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; 722 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; 723 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; 724 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; 725 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; 726 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; 727 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; 728 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; 729 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; 730 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; 731 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; 732 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; 733 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; 734 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; 735 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; 736 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); 737 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; 738 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; 739 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; 740 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; 741 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; 742 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; 743 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; 744 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; 745 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; 746 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; 747 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); 748 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); 749 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; 750 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; 751 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; 752 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; 753 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; 754 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; 755 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; 756 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; 757 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; 758 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; 759 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; 760 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; 761 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; 762 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; 763 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; 764 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; 765 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; 766 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; 767 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; 768 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; 769 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; 770 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; 771 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; 772 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; 773 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; 774 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; 775 776 777 /* Fill the bp->stats structure with the FDDI counter values */ 778 779 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; 780 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; 781 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; 782 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; 783 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; 784 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; 785 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; 786 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; 787 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; 788 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; 789 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; 790 791 #endif 792 return (struct net_device_stats *)&bp->os.MacStat; 793 } // ctl_get_stat 794 795 796 /* 797 * ============================== 798 * = skfp_ctl_set_multicast_list = 799 * ============================== 800 * 801 * Overview: 802 * Enable/Disable LLC frame promiscuous mode reception 803 * on the adapter and/or update multicast address table. 804 * 805 * Returns: 806 * None 807 * 808 * Arguments: 809 * dev - pointer to device information 810 * 811 * Functional Description: 812 * This function acquires the driver lock and only calls 813 * skfp_ctl_set_multicast_list_wo_lock then. 814 * This routine follows a fairly simple algorithm for setting the 815 * adapter filters and CAM: 816 * 817 * if IFF_PROMISC flag is set 818 * enable promiscuous mode 819 * else 820 * disable promiscuous mode 821 * if number of multicast addresses <= max. multicast number 822 * add mc addresses to adapter table 823 * else 824 * enable promiscuous mode 825 * update adapter filters 826 * 827 * Assumptions: 828 * Multicast addresses are presented in canonical (LSB) format. 829 * 830 * Side Effects: 831 * On-board adapter filters are updated. 832 */ 833 static void skfp_ctl_set_multicast_list(struct net_device *dev) 834 { 835 struct s_smc *smc = netdev_priv(dev); 836 skfddi_priv *bp = &smc->os; 837 unsigned long Flags; 838 839 spin_lock_irqsave(&bp->DriverLock, Flags); 840 skfp_ctl_set_multicast_list_wo_lock(dev); 841 spin_unlock_irqrestore(&bp->DriverLock, Flags); 842 } // skfp_ctl_set_multicast_list 843 844 845 846 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev) 847 { 848 struct s_smc *smc = netdev_priv(dev); 849 struct netdev_hw_addr *ha; 850 851 /* Enable promiscuous mode, if necessary */ 852 if (dev->flags & IFF_PROMISC) { 853 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC); 854 pr_debug("PROMISCUOUS MODE ENABLED\n"); 855 } 856 /* Else, update multicast address table */ 857 else { 858 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); 859 pr_debug("PROMISCUOUS MODE DISABLED\n"); 860 861 // Reset all MC addresses 862 mac_clear_multicast(smc); 863 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI); 864 865 if (dev->flags & IFF_ALLMULTI) { 866 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 867 pr_debug("ENABLE ALL MC ADDRESSES\n"); 868 } else if (!netdev_mc_empty(dev)) { 869 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) { 870 /* use exact filtering */ 871 872 // point to first multicast addr 873 netdev_for_each_mc_addr(ha, dev) { 874 mac_add_multicast(smc, 875 (struct fddi_addr *)ha->addr, 876 1); 877 878 pr_debug("ENABLE MC ADDRESS: %pMF\n", 879 ha->addr); 880 } 881 882 } else { // more MC addresses than HW supports 883 884 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); 885 pr_debug("ENABLE ALL MC ADDRESSES\n"); 886 } 887 } else { // no MC addresses 888 889 pr_debug("DISABLE ALL MC ADDRESSES\n"); 890 } 891 892 /* Update adapter filters */ 893 mac_update_multicast(smc); 894 } 895 } // skfp_ctl_set_multicast_list_wo_lock 896 897 898 /* 899 * =========================== 900 * = skfp_ctl_set_mac_address = 901 * =========================== 902 * 903 * Overview: 904 * set new mac address on adapter and update dev_addr field in device table. 905 * 906 * Returns: 907 * None 908 * 909 * Arguments: 910 * dev - pointer to device information 911 * addr - pointer to sockaddr structure containing unicast address to set 912 * 913 * Assumptions: 914 * The address pointed to by addr->sa_data is a valid unicast 915 * address and is presented in canonical (LSB) format. 916 */ 917 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr) 918 { 919 struct s_smc *smc = netdev_priv(dev); 920 struct sockaddr *p_sockaddr = (struct sockaddr *) addr; 921 skfddi_priv *bp = &smc->os; 922 unsigned long Flags; 923 924 925 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); 926 spin_lock_irqsave(&bp->DriverLock, Flags); 927 ResetAdapter(smc); 928 spin_unlock_irqrestore(&bp->DriverLock, Flags); 929 930 return 0; /* always return zero */ 931 } // skfp_ctl_set_mac_address 932 933 934 /* 935 * ============== 936 * = skfp_ioctl = 937 * ============== 938 * 939 * Overview: 940 * 941 * Perform IOCTL call functions here. Some are privileged operations and the 942 * effective uid is checked in those cases. 943 * 944 * Returns: 945 * status value 946 * 0 - success 947 * other - failure 948 * 949 * Arguments: 950 * dev - pointer to device information 951 * rq - pointer to ioctl request structure 952 * cmd - ? 953 * 954 */ 955 956 957 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 958 { 959 struct s_smc *smc = netdev_priv(dev); 960 skfddi_priv *lp = &smc->os; 961 struct s_skfp_ioctl ioc; 962 int status = 0; 963 964 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl))) 965 return -EFAULT; 966 967 switch (ioc.cmd) { 968 case SKFP_GET_STATS: /* Get the driver statistics */ 969 ioc.len = sizeof(lp->MacStat); 970 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len) 971 ? -EFAULT : 0; 972 break; 973 case SKFP_CLR_STATS: /* Zero out the driver statistics */ 974 if (!capable(CAP_NET_ADMIN)) { 975 status = -EPERM; 976 } else { 977 memset(&lp->MacStat, 0, sizeof(lp->MacStat)); 978 } 979 break; 980 default: 981 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd); 982 status = -EOPNOTSUPP; 983 984 } // switch 985 986 return status; 987 } // skfp_ioctl 988 989 990 /* 991 * ===================== 992 * = skfp_send_pkt = 993 * ===================== 994 * 995 * Overview: 996 * Queues a packet for transmission and try to transmit it. 997 * 998 * Returns: 999 * Condition code 1000 * 1001 * Arguments: 1002 * skb - pointer to sk_buff to queue for transmission 1003 * dev - pointer to device information 1004 * 1005 * Functional Description: 1006 * Here we assume that an incoming skb transmit request 1007 * is contained in a single physically contiguous buffer 1008 * in which the virtual address of the start of packet 1009 * (skb->data) can be converted to a physical address 1010 * by using pci_map_single(). 1011 * 1012 * We have an internal queue for packets we can not send 1013 * immediately. Packets in this queue can be given to the 1014 * adapter if transmit buffers are freed. 1015 * 1016 * We can't free the skb until after it's been DMA'd 1017 * out by the adapter, so we'll keep it in the driver and 1018 * return it in mac_drv_tx_complete. 1019 * 1020 * Return Codes: 1021 * 0 - driver has queued and/or sent packet 1022 * 1 - caller should requeue the sk_buff for later transmission 1023 * 1024 * Assumptions: 1025 * The entire packet is stored in one physically 1026 * contiguous buffer which is not cached and whose 1027 * 32-bit physical address can be determined. 1028 * 1029 * It's vital that this routine is NOT reentered for the 1030 * same board and that the OS is not in another section of 1031 * code (eg. skfp_interrupt) for the same board on a 1032 * different thread. 1033 * 1034 * Side Effects: 1035 * None 1036 */ 1037 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, 1038 struct net_device *dev) 1039 { 1040 struct s_smc *smc = netdev_priv(dev); 1041 skfddi_priv *bp = &smc->os; 1042 1043 pr_debug("skfp_send_pkt\n"); 1044 1045 /* 1046 * Verify that incoming transmit request is OK 1047 * 1048 * Note: The packet size check is consistent with other 1049 * Linux device drivers, although the correct packet 1050 * size should be verified before calling the 1051 * transmit routine. 1052 */ 1053 1054 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) { 1055 bp->MacStat.gen.tx_errors++; /* bump error counter */ 1056 // dequeue packets from xmt queue and send them 1057 netif_start_queue(dev); 1058 dev_kfree_skb(skb); 1059 return NETDEV_TX_OK; /* return "success" */ 1060 } 1061 if (bp->QueueSkb == 0) { // return with tbusy set: queue full 1062 1063 netif_stop_queue(dev); 1064 return NETDEV_TX_BUSY; 1065 } 1066 bp->QueueSkb--; 1067 skb_queue_tail(&bp->SendSkbQueue, skb); 1068 send_queued_packets(netdev_priv(dev)); 1069 if (bp->QueueSkb == 0) { 1070 netif_stop_queue(dev); 1071 } 1072 return NETDEV_TX_OK; 1073 1074 } // skfp_send_pkt 1075 1076 1077 /* 1078 * ======================= 1079 * = send_queued_packets = 1080 * ======================= 1081 * 1082 * Overview: 1083 * Send packets from the driver queue as long as there are some and 1084 * transmit resources are available. 1085 * 1086 * Returns: 1087 * None 1088 * 1089 * Arguments: 1090 * smc - pointer to smc (adapter) structure 1091 * 1092 * Functional Description: 1093 * Take a packet from queue if there is any. If not, then we are done. 1094 * Check if there are resources to send the packet. If not, requeue it 1095 * and exit. 1096 * Set packet descriptor flags and give packet to adapter. 1097 * Check if any send resources can be freed (we do not use the 1098 * transmit complete interrupt). 1099 */ 1100 static void send_queued_packets(struct s_smc *smc) 1101 { 1102 skfddi_priv *bp = &smc->os; 1103 struct sk_buff *skb; 1104 unsigned char fc; 1105 int queue; 1106 struct s_smt_fp_txd *txd; // Current TxD. 1107 dma_addr_t dma_address; 1108 unsigned long Flags; 1109 1110 int frame_status; // HWM tx frame status. 1111 1112 pr_debug("send queued packets\n"); 1113 for (;;) { 1114 // send first buffer from queue 1115 skb = skb_dequeue(&bp->SendSkbQueue); 1116 1117 if (!skb) { 1118 pr_debug("queue empty\n"); 1119 return; 1120 } // queue empty ! 1121 1122 spin_lock_irqsave(&bp->DriverLock, Flags); 1123 fc = skb->data[0]; 1124 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0; 1125 #ifdef ESS 1126 // Check if the frame may/must be sent as a synchronous frame. 1127 1128 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) { 1129 // It's an LLC frame. 1130 if (!smc->ess.sync_bw_available) 1131 fc &= ~FC_SYNC_BIT; // No bandwidth available. 1132 1133 else { // Bandwidth is available. 1134 1135 if (smc->mib.fddiESSSynchTxMode) { 1136 // Send as sync. frame. 1137 fc |= FC_SYNC_BIT; 1138 } 1139 } 1140 } 1141 #endif // ESS 1142 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue); 1143 1144 if ((frame_status & (LOC_TX | LAN_TX)) == 0) { 1145 // Unable to send the frame. 1146 1147 if ((frame_status & RING_DOWN) != 0) { 1148 // Ring is down. 1149 pr_debug("Tx attempt while ring down.\n"); 1150 } else if ((frame_status & OUT_OF_TXD) != 0) { 1151 pr_debug("%s: out of TXDs.\n", bp->dev->name); 1152 } else { 1153 pr_debug("%s: out of transmit resources", 1154 bp->dev->name); 1155 } 1156 1157 // Note: We will retry the operation as soon as 1158 // transmit resources become available. 1159 skb_queue_head(&bp->SendSkbQueue, skb); 1160 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1161 return; // Packet has been queued. 1162 1163 } // if (unable to send frame) 1164 1165 bp->QueueSkb++; // one packet less in local queue 1166 1167 // source address in packet ? 1168 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a); 1169 1170 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue); 1171 1172 dma_address = pci_map_single(&bp->pdev, skb->data, 1173 skb->len, PCI_DMA_TODEVICE); 1174 if (frame_status & LAN_TX) { 1175 txd->txd_os.skb = skb; // save skb 1176 txd->txd_os.dma_addr = dma_address; // save dma mapping 1177 } 1178 hwm_tx_frag(smc, skb->data, dma_address, skb->len, 1179 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF); 1180 1181 if (!(frame_status & LAN_TX)) { // local only frame 1182 pci_unmap_single(&bp->pdev, dma_address, 1183 skb->len, PCI_DMA_TODEVICE); 1184 dev_kfree_skb_irq(skb); 1185 } 1186 spin_unlock_irqrestore(&bp->DriverLock, Flags); 1187 } // for 1188 1189 return; // never reached 1190 1191 } // send_queued_packets 1192 1193 1194 /************************ 1195 * 1196 * CheckSourceAddress 1197 * 1198 * Verify if the source address is set. Insert it if necessary. 1199 * 1200 ************************/ 1201 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr) 1202 { 1203 unsigned char SRBit; 1204 1205 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit 1206 1207 return; 1208 if ((unsigned short) frame[1 + 10] != 0) 1209 return; 1210 SRBit = frame[1 + 6] & 0x01; 1211 memcpy(&frame[1 + 6], hw_addr, ETH_ALEN); 1212 frame[8] |= SRBit; 1213 } // CheckSourceAddress 1214 1215 1216 /************************ 1217 * 1218 * ResetAdapter 1219 * 1220 * Reset the adapter and bring it back to operational mode. 1221 * Args 1222 * smc - A pointer to the SMT context struct. 1223 * Out 1224 * Nothing. 1225 * 1226 ************************/ 1227 static void ResetAdapter(struct s_smc *smc) 1228 { 1229 1230 pr_debug("[fddi: ResetAdapter]\n"); 1231 1232 // Stop the adapter. 1233 1234 card_stop(smc); // Stop all activity. 1235 1236 // Clear the transmit and receive descriptor queues. 1237 mac_drv_clear_tx_queue(smc); 1238 mac_drv_clear_rx_queue(smc); 1239 1240 // Restart the adapter. 1241 1242 smt_reset_defaults(smc, 1); // Initialize the SMT module. 1243 1244 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware. 1245 1246 smt_online(smc, 1); // Insert into the ring again. 1247 STI_FBI(); 1248 1249 // Restore original receive mode (multicasts, promiscuous, etc.). 1250 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev); 1251 } // ResetAdapter 1252 1253 1254 //--------------- functions called by hardware module ---------------- 1255 1256 /************************ 1257 * 1258 * llc_restart_tx 1259 * 1260 * The hardware driver calls this routine when the transmit complete 1261 * interrupt bits (end of frame) for the synchronous or asynchronous 1262 * queue is set. 1263 * 1264 * NOTE The hardware driver calls this function also if no packets are queued. 1265 * The routine must be able to handle this case. 1266 * Args 1267 * smc - A pointer to the SMT context struct. 1268 * Out 1269 * Nothing. 1270 * 1271 ************************/ 1272 void llc_restart_tx(struct s_smc *smc) 1273 { 1274 skfddi_priv *bp = &smc->os; 1275 1276 pr_debug("[llc_restart_tx]\n"); 1277 1278 // Try to send queued packets 1279 spin_unlock(&bp->DriverLock); 1280 send_queued_packets(smc); 1281 spin_lock(&bp->DriverLock); 1282 netif_start_queue(bp->dev);// system may send again if it was blocked 1283 1284 } // llc_restart_tx 1285 1286 1287 /************************ 1288 * 1289 * mac_drv_get_space 1290 * 1291 * The hardware module calls this function to allocate the memory 1292 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified. 1293 * Args 1294 * smc - A pointer to the SMT context struct. 1295 * 1296 * size - Size of memory in bytes to allocate. 1297 * Out 1298 * != 0 A pointer to the virtual address of the allocated memory. 1299 * == 0 Allocation error. 1300 * 1301 ************************/ 1302 void *mac_drv_get_space(struct s_smc *smc, unsigned int size) 1303 { 1304 void *virt; 1305 1306 pr_debug("mac_drv_get_space (%d bytes), ", size); 1307 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap); 1308 1309 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) { 1310 printk("Unexpected SMT memory size requested: %d\n", size); 1311 return NULL; 1312 } 1313 smc->os.SharedMemHeap += size; // Move heap pointer. 1314 1315 pr_debug("mac_drv_get_space end\n"); 1316 pr_debug("virt addr: %lx\n", (ulong) virt); 1317 pr_debug("bus addr: %lx\n", (ulong) 1318 (smc->os.SharedMemDMA + 1319 ((char *) virt - (char *)smc->os.SharedMemAddr))); 1320 return virt; 1321 } // mac_drv_get_space 1322 1323 1324 /************************ 1325 * 1326 * mac_drv_get_desc_mem 1327 * 1328 * This function is called by the hardware dependent module. 1329 * It allocates the memory for the RxD and TxD descriptors. 1330 * 1331 * This memory must be non-cached, non-movable and non-swappable. 1332 * This memory should start at a physical page boundary. 1333 * Args 1334 * smc - A pointer to the SMT context struct. 1335 * 1336 * size - Size of memory in bytes to allocate. 1337 * Out 1338 * != 0 A pointer to the virtual address of the allocated memory. 1339 * == 0 Allocation error. 1340 * 1341 ************************/ 1342 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size) 1343 { 1344 1345 char *virt; 1346 1347 pr_debug("mac_drv_get_desc_mem\n"); 1348 1349 // Descriptor memory must be aligned on 16-byte boundary. 1350 1351 virt = mac_drv_get_space(smc, size); 1352 1353 size = (u_int) (16 - (((unsigned long) virt) & 15UL)); 1354 size = size % 16; 1355 1356 pr_debug("Allocate %u bytes alignment gap ", size); 1357 pr_debug("for descriptor memory.\n"); 1358 1359 if (!mac_drv_get_space(smc, size)) { 1360 printk("fddi: Unable to align descriptor memory.\n"); 1361 return NULL; 1362 } 1363 return virt + size; 1364 } // mac_drv_get_desc_mem 1365 1366 1367 /************************ 1368 * 1369 * mac_drv_virt2phys 1370 * 1371 * Get the physical address of a given virtual address. 1372 * Args 1373 * smc - A pointer to the SMT context struct. 1374 * 1375 * virt - A (virtual) pointer into our 'shared' memory area. 1376 * Out 1377 * Physical address of the given virtual address. 1378 * 1379 ************************/ 1380 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt) 1381 { 1382 return smc->os.SharedMemDMA + 1383 ((char *) virt - (char *)smc->os.SharedMemAddr); 1384 } // mac_drv_virt2phys 1385 1386 1387 /************************ 1388 * 1389 * dma_master 1390 * 1391 * The HWM calls this function, when the driver leads through a DMA 1392 * transfer. If the OS-specific module must prepare the system hardware 1393 * for the DMA transfer, it should do it in this function. 1394 * 1395 * The hardware module calls this dma_master if it wants to send an SMT 1396 * frame. This means that the virt address passed in here is part of 1397 * the 'shared' memory area. 1398 * Args 1399 * smc - A pointer to the SMT context struct. 1400 * 1401 * virt - The virtual address of the data. 1402 * 1403 * len - The length in bytes of the data. 1404 * 1405 * flag - Indicates the transmit direction and the buffer type: 1406 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1407 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1408 * SMT_BUF (0x80) SMT buffer 1409 * 1410 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. << 1411 * Out 1412 * Returns the pyhsical address for the DMA transfer. 1413 * 1414 ************************/ 1415 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag) 1416 { 1417 return smc->os.SharedMemDMA + 1418 ((char *) virt - (char *)smc->os.SharedMemAddr); 1419 } // dma_master 1420 1421 1422 /************************ 1423 * 1424 * dma_complete 1425 * 1426 * The hardware module calls this routine when it has completed a DMA 1427 * transfer. If the operating system dependent module has set up the DMA 1428 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up 1429 * the DMA channel. 1430 * Args 1431 * smc - A pointer to the SMT context struct. 1432 * 1433 * descr - A pointer to a TxD or RxD, respectively. 1434 * 1435 * flag - Indicates the DMA transfer direction / SMT buffer: 1436 * DMA_RD (0x01) system RAM ==> adapter buffer memory 1437 * DMA_WR (0x02) adapter buffer memory ==> system RAM 1438 * SMT_BUF (0x80) SMT buffer (managed by HWM) 1439 * Out 1440 * Nothing. 1441 * 1442 ************************/ 1443 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag) 1444 { 1445 /* For TX buffers, there are two cases. If it is an SMT transmit 1446 * buffer, there is nothing to do since we use consistent memory 1447 * for the 'shared' memory area. The other case is for normal 1448 * transmit packets given to us by the networking stack, and in 1449 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete 1450 * below. 1451 * 1452 * For RX buffers, we have to unmap dynamic PCI DMA mappings here 1453 * because the hardware module is about to potentially look at 1454 * the contents of the buffer. If we did not call the PCI DMA 1455 * unmap first, the hardware module could read inconsistent data. 1456 */ 1457 if (flag & DMA_WR) { 1458 skfddi_priv *bp = &smc->os; 1459 volatile struct s_smt_fp_rxd *r = &descr->r; 1460 1461 /* If SKB is NULL, we used the local buffer. */ 1462 if (r->rxd_os.skb && r->rxd_os.dma_addr) { 1463 int MaxFrameSize = bp->MaxFrameSize; 1464 1465 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr, 1466 MaxFrameSize, PCI_DMA_FROMDEVICE); 1467 r->rxd_os.dma_addr = 0; 1468 } 1469 } 1470 } // dma_complete 1471 1472 1473 /************************ 1474 * 1475 * mac_drv_tx_complete 1476 * 1477 * Transmit of a packet is complete. Release the tx staging buffer. 1478 * 1479 * Args 1480 * smc - A pointer to the SMT context struct. 1481 * 1482 * txd - A pointer to the last TxD which is used by the frame. 1483 * Out 1484 * Returns nothing. 1485 * 1486 ************************/ 1487 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd) 1488 { 1489 struct sk_buff *skb; 1490 1491 pr_debug("entering mac_drv_tx_complete\n"); 1492 // Check if this TxD points to a skb 1493 1494 if (!(skb = txd->txd_os.skb)) { 1495 pr_debug("TXD with no skb assigned.\n"); 1496 return; 1497 } 1498 txd->txd_os.skb = NULL; 1499 1500 // release the DMA mapping 1501 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr, 1502 skb->len, PCI_DMA_TODEVICE); 1503 txd->txd_os.dma_addr = 0; 1504 1505 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets. 1506 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes 1507 1508 // free the skb 1509 dev_kfree_skb_irq(skb); 1510 1511 pr_debug("leaving mac_drv_tx_complete\n"); 1512 } // mac_drv_tx_complete 1513 1514 1515 /************************ 1516 * 1517 * dump packets to logfile 1518 * 1519 ************************/ 1520 #ifdef DUMPPACKETS 1521 void dump_data(unsigned char *Data, int length) 1522 { 1523 int i, j; 1524 unsigned char s[255], sh[10]; 1525 if (length > 64) { 1526 length = 64; 1527 } 1528 printk(KERN_INFO "---Packet start---\n"); 1529 for (i = 0, j = 0; i < length / 8; i++, j += 8) 1530 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n", 1531 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3], 1532 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]); 1533 strcpy(s, ""); 1534 for (i = 0; i < length % 8; i++) { 1535 sprintf(sh, "%02x ", Data[j + i]); 1536 strcat(s, sh); 1537 } 1538 printk(KERN_INFO "%s\n", s); 1539 printk(KERN_INFO "------------------\n"); 1540 } // dump_data 1541 #else 1542 #define dump_data(data,len) 1543 #endif // DUMPPACKETS 1544 1545 /************************ 1546 * 1547 * mac_drv_rx_complete 1548 * 1549 * The hardware module calls this function if an LLC frame is received 1550 * in a receive buffer. Also the SMT, NSA, and directed beacon frames 1551 * from the network will be passed to the LLC layer by this function 1552 * if passing is enabled. 1553 * 1554 * mac_drv_rx_complete forwards the frame to the LLC layer if it should 1555 * be received. It also fills the RxD ring with new receive buffers if 1556 * some can be queued. 1557 * Args 1558 * smc - A pointer to the SMT context struct. 1559 * 1560 * rxd - A pointer to the first RxD which is used by the receive frame. 1561 * 1562 * frag_count - Count of RxDs used by the received frame. 1563 * 1564 * len - Frame length. 1565 * Out 1566 * Nothing. 1567 * 1568 ************************/ 1569 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1570 int frag_count, int len) 1571 { 1572 skfddi_priv *bp = &smc->os; 1573 struct sk_buff *skb; 1574 unsigned char *virt, *cp; 1575 unsigned short ri; 1576 u_int RifLength; 1577 1578 pr_debug("entering mac_drv_rx_complete (len=%d)\n", len); 1579 if (frag_count != 1) { // This is not allowed to happen. 1580 1581 printk("fddi: Multi-fragment receive!\n"); 1582 goto RequeueRxd; // Re-use the given RXD(s). 1583 1584 } 1585 skb = rxd->rxd_os.skb; 1586 if (!skb) { 1587 pr_debug("No skb in rxd\n"); 1588 smc->os.MacStat.gen.rx_errors++; 1589 goto RequeueRxd; 1590 } 1591 virt = skb->data; 1592 1593 // The DMA mapping was released in dma_complete above. 1594 1595 dump_data(skb->data, len); 1596 1597 /* 1598 * FDDI Frame format: 1599 * +-------+-------+-------+------------+--------+------------+ 1600 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] | 1601 * +-------+-------+-------+------------+--------+------------+ 1602 * 1603 * FC = Frame Control 1604 * DA = Destination Address 1605 * SA = Source Address 1606 * RIF = Routing Information Field 1607 * LLC = Logical Link Control 1608 */ 1609 1610 // Remove Routing Information Field (RIF), if present. 1611 1612 if ((virt[1 + 6] & FDDI_RII) == 0) 1613 RifLength = 0; 1614 else { 1615 int n; 1616 // goos: RIF removal has still to be tested 1617 pr_debug("RIF found\n"); 1618 // Get RIF length from Routing Control (RC) field. 1619 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header. 1620 1621 ri = ntohs(*((__be16 *) cp)); 1622 RifLength = ri & FDDI_RCF_LEN_MASK; 1623 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) { 1624 printk("fddi: Invalid RIF.\n"); 1625 goto RequeueRxd; // Discard the frame. 1626 1627 } 1628 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit. 1629 // regions overlap 1630 1631 virt = cp + RifLength; 1632 for (n = FDDI_MAC_HDR_LEN; n; n--) 1633 *--virt = *--cp; 1634 // adjust sbd->data pointer 1635 skb_pull(skb, RifLength); 1636 len -= RifLength; 1637 RifLength = 0; 1638 } 1639 1640 // Count statistics. 1641 smc->os.MacStat.gen.rx_packets++; // Count indicated receive 1642 // packets. 1643 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes. 1644 1645 // virt points to header again 1646 if (virt[1] & 0x01) { // Check group (multicast) bit. 1647 1648 smc->os.MacStat.gen.multicast++; 1649 } 1650 1651 // deliver frame to system 1652 rxd->rxd_os.skb = NULL; 1653 skb_trim(skb, len); 1654 skb->protocol = fddi_type_trans(skb, bp->dev); 1655 1656 netif_rx(skb); 1657 1658 HWM_RX_CHECK(smc, RX_LOW_WATERMARK); 1659 return; 1660 1661 RequeueRxd: 1662 pr_debug("Rx: re-queue RXD.\n"); 1663 mac_drv_requeue_rxd(smc, rxd, frag_count); 1664 smc->os.MacStat.gen.rx_errors++; // Count receive packets 1665 // not indicated. 1666 1667 } // mac_drv_rx_complete 1668 1669 1670 /************************ 1671 * 1672 * mac_drv_requeue_rxd 1673 * 1674 * The hardware module calls this function to request the OS-specific 1675 * module to queue the receive buffer(s) represented by the pointer 1676 * to the RxD and the frag_count into the receive queue again. This 1677 * buffer was filled with an invalid frame or an SMT frame. 1678 * Args 1679 * smc - A pointer to the SMT context struct. 1680 * 1681 * rxd - A pointer to the first RxD which is used by the receive frame. 1682 * 1683 * frag_count - Count of RxDs used by the received frame. 1684 * Out 1685 * Nothing. 1686 * 1687 ************************/ 1688 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1689 int frag_count) 1690 { 1691 volatile struct s_smt_fp_rxd *next_rxd; 1692 volatile struct s_smt_fp_rxd *src_rxd; 1693 struct sk_buff *skb; 1694 int MaxFrameSize; 1695 unsigned char *v_addr; 1696 dma_addr_t b_addr; 1697 1698 if (frag_count != 1) // This is not allowed to happen. 1699 1700 printk("fddi: Multi-fragment requeue!\n"); 1701 1702 MaxFrameSize = smc->os.MaxFrameSize; 1703 src_rxd = rxd; 1704 for (; frag_count > 0; frag_count--) { 1705 next_rxd = src_rxd->rxd_next; 1706 rxd = HWM_GET_CURR_RXD(smc); 1707 1708 skb = src_rxd->rxd_os.skb; 1709 if (skb == NULL) { // this should not happen 1710 1711 pr_debug("Requeue with no skb in rxd!\n"); 1712 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1713 if (skb) { 1714 // we got a skb 1715 rxd->rxd_os.skb = skb; 1716 skb_reserve(skb, 3); 1717 skb_put(skb, MaxFrameSize); 1718 v_addr = skb->data; 1719 b_addr = pci_map_single(&smc->os.pdev, 1720 v_addr, 1721 MaxFrameSize, 1722 PCI_DMA_FROMDEVICE); 1723 rxd->rxd_os.dma_addr = b_addr; 1724 } else { 1725 // no skb available, use local buffer 1726 pr_debug("Queueing invalid buffer!\n"); 1727 rxd->rxd_os.skb = NULL; 1728 v_addr = smc->os.LocalRxBuffer; 1729 b_addr = smc->os.LocalRxBufferDMA; 1730 } 1731 } else { 1732 // we use skb from old rxd 1733 rxd->rxd_os.skb = skb; 1734 v_addr = skb->data; 1735 b_addr = pci_map_single(&smc->os.pdev, 1736 v_addr, 1737 MaxFrameSize, 1738 PCI_DMA_FROMDEVICE); 1739 rxd->rxd_os.dma_addr = b_addr; 1740 } 1741 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1742 FIRST_FRAG | LAST_FRAG); 1743 1744 src_rxd = next_rxd; 1745 } 1746 } // mac_drv_requeue_rxd 1747 1748 1749 /************************ 1750 * 1751 * mac_drv_fill_rxd 1752 * 1753 * The hardware module calls this function at initialization time 1754 * to fill the RxD ring with receive buffers. It is also called by 1755 * mac_drv_rx_complete if rx_free is large enough to queue some new 1756 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new 1757 * receive buffers as long as enough RxDs and receive buffers are 1758 * available. 1759 * Args 1760 * smc - A pointer to the SMT context struct. 1761 * Out 1762 * Nothing. 1763 * 1764 ************************/ 1765 void mac_drv_fill_rxd(struct s_smc *smc) 1766 { 1767 int MaxFrameSize; 1768 unsigned char *v_addr; 1769 unsigned long b_addr; 1770 struct sk_buff *skb; 1771 volatile struct s_smt_fp_rxd *rxd; 1772 1773 pr_debug("entering mac_drv_fill_rxd\n"); 1774 1775 // Walk through the list of free receive buffers, passing receive 1776 // buffers to the HWM as long as RXDs are available. 1777 1778 MaxFrameSize = smc->os.MaxFrameSize; 1779 // Check if there is any RXD left. 1780 while (HWM_GET_RX_FREE(smc) > 0) { 1781 pr_debug(".\n"); 1782 1783 rxd = HWM_GET_CURR_RXD(smc); 1784 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); 1785 if (skb) { 1786 // we got a skb 1787 skb_reserve(skb, 3); 1788 skb_put(skb, MaxFrameSize); 1789 v_addr = skb->data; 1790 b_addr = pci_map_single(&smc->os.pdev, 1791 v_addr, 1792 MaxFrameSize, 1793 PCI_DMA_FROMDEVICE); 1794 rxd->rxd_os.dma_addr = b_addr; 1795 } else { 1796 // no skb available, use local buffer 1797 // System has run out of buffer memory, but we want to 1798 // keep the receiver running in hope of better times. 1799 // Multiple descriptors may point to this local buffer, 1800 // so data in it must be considered invalid. 1801 pr_debug("Queueing invalid buffer!\n"); 1802 v_addr = smc->os.LocalRxBuffer; 1803 b_addr = smc->os.LocalRxBufferDMA; 1804 } 1805 1806 rxd->rxd_os.skb = skb; 1807 1808 // Pass receive buffer to HWM. 1809 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, 1810 FIRST_FRAG | LAST_FRAG); 1811 } 1812 pr_debug("leaving mac_drv_fill_rxd\n"); 1813 } // mac_drv_fill_rxd 1814 1815 1816 /************************ 1817 * 1818 * mac_drv_clear_rxd 1819 * 1820 * The hardware module calls this function to release unused 1821 * receive buffers. 1822 * Args 1823 * smc - A pointer to the SMT context struct. 1824 * 1825 * rxd - A pointer to the first RxD which is used by the receive buffer. 1826 * 1827 * frag_count - Count of RxDs used by the receive buffer. 1828 * Out 1829 * Nothing. 1830 * 1831 ************************/ 1832 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, 1833 int frag_count) 1834 { 1835 1836 struct sk_buff *skb; 1837 1838 pr_debug("entering mac_drv_clear_rxd\n"); 1839 1840 if (frag_count != 1) // This is not allowed to happen. 1841 1842 printk("fddi: Multi-fragment clear!\n"); 1843 1844 for (; frag_count > 0; frag_count--) { 1845 skb = rxd->rxd_os.skb; 1846 if (skb != NULL) { 1847 skfddi_priv *bp = &smc->os; 1848 int MaxFrameSize = bp->MaxFrameSize; 1849 1850 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr, 1851 MaxFrameSize, PCI_DMA_FROMDEVICE); 1852 1853 dev_kfree_skb(skb); 1854 rxd->rxd_os.skb = NULL; 1855 } 1856 rxd = rxd->rxd_next; // Next RXD. 1857 1858 } 1859 } // mac_drv_clear_rxd 1860 1861 1862 /************************ 1863 * 1864 * mac_drv_rx_init 1865 * 1866 * The hardware module calls this routine when an SMT or NSA frame of the 1867 * local SMT should be delivered to the LLC layer. 1868 * 1869 * It is necessary to have this function, because there is no other way to 1870 * copy the contents of SMT MBufs into receive buffers. 1871 * 1872 * mac_drv_rx_init allocates the required target memory for this frame, 1873 * and receives the frame fragment by fragment by calling mac_drv_rx_frag. 1874 * Args 1875 * smc - A pointer to the SMT context struct. 1876 * 1877 * len - The length (in bytes) of the received frame (FC, DA, SA, Data). 1878 * 1879 * fc - The Frame Control field of the received frame. 1880 * 1881 * look_ahead - A pointer to the lookahead data buffer (may be NULL). 1882 * 1883 * la_len - The length of the lookahead data stored in the lookahead 1884 * buffer (may be zero). 1885 * Out 1886 * Always returns zero (0). 1887 * 1888 ************************/ 1889 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, 1890 char *look_ahead, int la_len) 1891 { 1892 struct sk_buff *skb; 1893 1894 pr_debug("entering mac_drv_rx_init(len=%d)\n", len); 1895 1896 // "Received" a SMT or NSA frame of the local SMT. 1897 1898 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) { 1899 pr_debug("fddi: Discard invalid local SMT frame\n"); 1900 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n", 1901 len, la_len, (unsigned long) look_ahead); 1902 return 0; 1903 } 1904 skb = alloc_skb(len + 3, GFP_ATOMIC); 1905 if (!skb) { 1906 pr_debug("fddi: Local SMT: skb memory exhausted.\n"); 1907 return 0; 1908 } 1909 skb_reserve(skb, 3); 1910 skb_put(skb, len); 1911 skb_copy_to_linear_data(skb, look_ahead, len); 1912 1913 // deliver frame to system 1914 skb->protocol = fddi_type_trans(skb, smc->os.dev); 1915 netif_rx(skb); 1916 1917 return 0; 1918 } // mac_drv_rx_init 1919 1920 1921 /************************ 1922 * 1923 * smt_timer_poll 1924 * 1925 * This routine is called periodically by the SMT module to clean up the 1926 * driver. 1927 * 1928 * Return any queued frames back to the upper protocol layers if the ring 1929 * is down. 1930 * Args 1931 * smc - A pointer to the SMT context struct. 1932 * Out 1933 * Nothing. 1934 * 1935 ************************/ 1936 void smt_timer_poll(struct s_smc *smc) 1937 { 1938 } // smt_timer_poll 1939 1940 1941 /************************ 1942 * 1943 * ring_status_indication 1944 * 1945 * This function indicates a change of the ring state. 1946 * Args 1947 * smc - A pointer to the SMT context struct. 1948 * 1949 * status - The current ring status. 1950 * Out 1951 * Nothing. 1952 * 1953 ************************/ 1954 void ring_status_indication(struct s_smc *smc, u_long status) 1955 { 1956 pr_debug("ring_status_indication( "); 1957 if (status & RS_RES15) 1958 pr_debug("RS_RES15 "); 1959 if (status & RS_HARDERROR) 1960 pr_debug("RS_HARDERROR "); 1961 if (status & RS_SOFTERROR) 1962 pr_debug("RS_SOFTERROR "); 1963 if (status & RS_BEACON) 1964 pr_debug("RS_BEACON "); 1965 if (status & RS_PATHTEST) 1966 pr_debug("RS_PATHTEST "); 1967 if (status & RS_SELFTEST) 1968 pr_debug("RS_SELFTEST "); 1969 if (status & RS_RES9) 1970 pr_debug("RS_RES9 "); 1971 if (status & RS_DISCONNECT) 1972 pr_debug("RS_DISCONNECT "); 1973 if (status & RS_RES7) 1974 pr_debug("RS_RES7 "); 1975 if (status & RS_DUPADDR) 1976 pr_debug("RS_DUPADDR "); 1977 if (status & RS_NORINGOP) 1978 pr_debug("RS_NORINGOP "); 1979 if (status & RS_VERSION) 1980 pr_debug("RS_VERSION "); 1981 if (status & RS_STUCKBYPASSS) 1982 pr_debug("RS_STUCKBYPASSS "); 1983 if (status & RS_EVENT) 1984 pr_debug("RS_EVENT "); 1985 if (status & RS_RINGOPCHANGE) 1986 pr_debug("RS_RINGOPCHANGE "); 1987 if (status & RS_RES0) 1988 pr_debug("RS_RES0 "); 1989 pr_debug("]\n"); 1990 } // ring_status_indication 1991 1992 1993 /************************ 1994 * 1995 * smt_get_time 1996 * 1997 * Gets the current time from the system. 1998 * Args 1999 * None. 2000 * Out 2001 * The current time in TICKS_PER_SECOND. 2002 * 2003 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is 2004 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply 2005 * to the time returned by smt_get_time(). 2006 * 2007 ************************/ 2008 unsigned long smt_get_time(void) 2009 { 2010 return jiffies; 2011 } // smt_get_time 2012 2013 2014 /************************ 2015 * 2016 * smt_stat_counter 2017 * 2018 * Status counter update (ring_op, fifo full). 2019 * Args 2020 * smc - A pointer to the SMT context struct. 2021 * 2022 * stat - = 0: A ring operational change occurred. 2023 * = 1: The FORMAC FIFO buffer is full / FIFO overflow. 2024 * Out 2025 * Nothing. 2026 * 2027 ************************/ 2028 void smt_stat_counter(struct s_smc *smc, int stat) 2029 { 2030 // BOOLEAN RingIsUp ; 2031 2032 pr_debug("smt_stat_counter\n"); 2033 switch (stat) { 2034 case 0: 2035 pr_debug("Ring operational change.\n"); 2036 break; 2037 case 1: 2038 pr_debug("Receive fifo overflow.\n"); 2039 smc->os.MacStat.gen.rx_errors++; 2040 break; 2041 default: 2042 pr_debug("Unknown status (%d).\n", stat); 2043 break; 2044 } 2045 } // smt_stat_counter 2046 2047 2048 /************************ 2049 * 2050 * cfm_state_change 2051 * 2052 * Sets CFM state in custom statistics. 2053 * Args 2054 * smc - A pointer to the SMT context struct. 2055 * 2056 * c_state - Possible values are: 2057 * 2058 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST, 2059 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT 2060 * Out 2061 * Nothing. 2062 * 2063 ************************/ 2064 void cfm_state_change(struct s_smc *smc, int c_state) 2065 { 2066 #ifdef DRIVERDEBUG 2067 char *s; 2068 2069 switch (c_state) { 2070 case SC0_ISOLATED: 2071 s = "SC0_ISOLATED"; 2072 break; 2073 case SC1_WRAP_A: 2074 s = "SC1_WRAP_A"; 2075 break; 2076 case SC2_WRAP_B: 2077 s = "SC2_WRAP_B"; 2078 break; 2079 case SC4_THRU_A: 2080 s = "SC4_THRU_A"; 2081 break; 2082 case SC5_THRU_B: 2083 s = "SC5_THRU_B"; 2084 break; 2085 case SC7_WRAP_S: 2086 s = "SC7_WRAP_S"; 2087 break; 2088 case SC9_C_WRAP_A: 2089 s = "SC9_C_WRAP_A"; 2090 break; 2091 case SC10_C_WRAP_B: 2092 s = "SC10_C_WRAP_B"; 2093 break; 2094 case SC11_C_WRAP_S: 2095 s = "SC11_C_WRAP_S"; 2096 break; 2097 default: 2098 pr_debug("cfm_state_change: unknown %d\n", c_state); 2099 return; 2100 } 2101 pr_debug("cfm_state_change: %s\n", s); 2102 #endif // DRIVERDEBUG 2103 } // cfm_state_change 2104 2105 2106 /************************ 2107 * 2108 * ecm_state_change 2109 * 2110 * Sets ECM state in custom statistics. 2111 * Args 2112 * smc - A pointer to the SMT context struct. 2113 * 2114 * e_state - Possible values are: 2115 * 2116 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12), 2117 * SC5_THRU_B (7), SC7_WRAP_S (8) 2118 * Out 2119 * Nothing. 2120 * 2121 ************************/ 2122 void ecm_state_change(struct s_smc *smc, int e_state) 2123 { 2124 #ifdef DRIVERDEBUG 2125 char *s; 2126 2127 switch (e_state) { 2128 case EC0_OUT: 2129 s = "EC0_OUT"; 2130 break; 2131 case EC1_IN: 2132 s = "EC1_IN"; 2133 break; 2134 case EC2_TRACE: 2135 s = "EC2_TRACE"; 2136 break; 2137 case EC3_LEAVE: 2138 s = "EC3_LEAVE"; 2139 break; 2140 case EC4_PATH_TEST: 2141 s = "EC4_PATH_TEST"; 2142 break; 2143 case EC5_INSERT: 2144 s = "EC5_INSERT"; 2145 break; 2146 case EC6_CHECK: 2147 s = "EC6_CHECK"; 2148 break; 2149 case EC7_DEINSERT: 2150 s = "EC7_DEINSERT"; 2151 break; 2152 default: 2153 s = "unknown"; 2154 break; 2155 } 2156 pr_debug("ecm_state_change: %s\n", s); 2157 #endif //DRIVERDEBUG 2158 } // ecm_state_change 2159 2160 2161 /************************ 2162 * 2163 * rmt_state_change 2164 * 2165 * Sets RMT state in custom statistics. 2166 * Args 2167 * smc - A pointer to the SMT context struct. 2168 * 2169 * r_state - Possible values are: 2170 * 2171 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT, 2172 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE 2173 * Out 2174 * Nothing. 2175 * 2176 ************************/ 2177 void rmt_state_change(struct s_smc *smc, int r_state) 2178 { 2179 #ifdef DRIVERDEBUG 2180 char *s; 2181 2182 switch (r_state) { 2183 case RM0_ISOLATED: 2184 s = "RM0_ISOLATED"; 2185 break; 2186 case RM1_NON_OP: 2187 s = "RM1_NON_OP - not operational"; 2188 break; 2189 case RM2_RING_OP: 2190 s = "RM2_RING_OP - ring operational"; 2191 break; 2192 case RM3_DETECT: 2193 s = "RM3_DETECT - detect dupl addresses"; 2194 break; 2195 case RM4_NON_OP_DUP: 2196 s = "RM4_NON_OP_DUP - dupl. addr detected"; 2197 break; 2198 case RM5_RING_OP_DUP: 2199 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr"; 2200 break; 2201 case RM6_DIRECTED: 2202 s = "RM6_DIRECTED - sending directed beacons"; 2203 break; 2204 case RM7_TRACE: 2205 s = "RM7_TRACE - trace initiated"; 2206 break; 2207 default: 2208 s = "unknown"; 2209 break; 2210 } 2211 pr_debug("[rmt_state_change: %s]\n", s); 2212 #endif // DRIVERDEBUG 2213 } // rmt_state_change 2214 2215 2216 /************************ 2217 * 2218 * drv_reset_indication 2219 * 2220 * This function is called by the SMT when it has detected a severe 2221 * hardware problem. The driver should perform a reset on the adapter 2222 * as soon as possible, but not from within this function. 2223 * Args 2224 * smc - A pointer to the SMT context struct. 2225 * Out 2226 * Nothing. 2227 * 2228 ************************/ 2229 void drv_reset_indication(struct s_smc *smc) 2230 { 2231 pr_debug("entering drv_reset_indication\n"); 2232 2233 smc->os.ResetRequested = TRUE; // Set flag. 2234 2235 } // drv_reset_indication 2236 2237 static struct pci_driver skfddi_pci_driver = { 2238 .name = "skfddi", 2239 .id_table = skfddi_pci_tbl, 2240 .probe = skfp_init_one, 2241 .remove = skfp_remove_one, 2242 }; 2243 2244 module_pci_driver(skfddi_pci_driver); 2245