xref: /linux/drivers/net/fddi/skfp/skfddi.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  * File Name:
3  *   skfddi.c
4  *
5  * Copyright Information:
6  *   Copyright SysKonnect 1998,1999.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * The information in this file is provided "AS IS" without warranty.
14  *
15  * Abstract:
16  *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17  *   familie.
18  *
19  * Maintainers:
20  *   CG    Christoph Goos (cgoos@syskonnect.de)
21  *
22  * Contributors:
23  *   DM    David S. Miller
24  *
25  * Address all question to:
26  *   linux@syskonnect.de
27  *
28  * The technical manual for the adapters is available from SysKonnect's
29  * web pages: www.syskonnect.com
30  * Goto "Support" and search Knowledge Base for "manual".
31  *
32  * Driver Architecture:
33  *   The driver architecture is based on the DEC FDDI driver by
34  *   Lawrence V. Stefani and several ethernet drivers.
35  *   I also used an existing Windows NT miniport driver.
36  *   All hardware dependent functions are handled by the SysKonnect
37  *   Hardware Module.
38  *   The only headerfiles that are directly related to this source
39  *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40  *   The others belong to the SysKonnect FDDI Hardware Module and
41  *   should better not be changed.
42  *
43  * Modification History:
44  *              Date            Name    Description
45  *              02-Mar-98       CG	Created.
46  *
47  *		10-Mar-99	CG	Support for 2.2.x added.
48  *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
49  *		26-Oct-99	CG	Fixed compilation error on 2.2.13
50  *		12-Nov-99	CG	Source code release
51  *		22-Nov-99	CG	Included in kernel source.
52  *		07-May-00	DM	64 bit fixes, new dma interface
53  *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
54  *					  Daniele Bellucci <bellucda@tiscali.it>
55  *		03-Dec-03	SH	Convert to PCI device model
56  *
57  * Compilation options (-Dxxx):
58  *              DRIVERDEBUG     print lots of messages to log file
59  *              DUMPPACKETS     print received/transmitted packets to logfile
60  *
61  * Tested cpu architectures:
62  *	- i386
63  *	- sparc64
64  */
65 
66 /* Version information string - should be updated prior to */
67 /* each new release!!! */
68 #define VERSION		"2.07"
69 
70 static const char * const boot_msg =
71 	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73 
74 /* Include files */
75 
76 #include <linux/capability.h>
77 #include <linux/module.h>
78 #include <linux/kernel.h>
79 #include <linux/errno.h>
80 #include <linux/ioport.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/netdevice.h>
84 #include <linux/fddidevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/bitops.h>
87 #include <linux/gfp.h>
88 
89 #include <asm/byteorder.h>
90 #include <asm/io.h>
91 #include <linux/uaccess.h>
92 
93 #include	"h/types.h"
94 #undef ADDR			// undo Linux definition
95 #include	"h/skfbi.h"
96 #include	"h/fddi.h"
97 #include	"h/smc.h"
98 #include	"h/smtstate.h"
99 
100 
101 // Define module-wide (static) routines
102 static int skfp_driver_init(struct net_device *dev);
103 static int skfp_open(struct net_device *dev);
104 static int skfp_close(struct net_device *dev);
105 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107 static void skfp_ctl_set_multicast_list(struct net_device *dev);
108 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112 				       struct net_device *dev);
113 static void send_queued_packets(struct s_smc *smc);
114 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115 static void ResetAdapter(struct s_smc *smc);
116 
117 
118 // Functions needed by the hardware module
119 void *mac_drv_get_space(struct s_smc *smc, u_int size);
120 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124 		  int flag);
125 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126 void llc_restart_tx(struct s_smc *smc);
127 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 			 int frag_count, int len);
129 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130 			 int frag_count);
131 void mac_drv_fill_rxd(struct s_smc *smc);
132 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133 		       int frag_count);
134 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135 		    int la_len);
136 void dump_data(unsigned char *Data, int length);
137 
138 // External functions from the hardware module
139 extern u_int mac_drv_check_space(void);
140 extern int mac_drv_init(struct s_smc *smc);
141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 			int len, int frame_status);
143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 		       int frame_len, int frame_status);
145 extern void fddi_isr(struct s_smc *smc);
146 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147 			int len, int frame_status);
148 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151 
152 static const struct pci_device_id skfddi_pci_tbl[] = {
153 	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154 	{ }			/* Terminating entry */
155 };
156 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157 MODULE_LICENSE("GPL");
158 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159 
160 // Define module-wide (static) variables
161 
162 static int num_boards;	/* total number of adapters configured */
163 
164 static const struct net_device_ops skfp_netdev_ops = {
165 	.ndo_open		= skfp_open,
166 	.ndo_stop		= skfp_close,
167 	.ndo_start_xmit		= skfp_send_pkt,
168 	.ndo_get_stats		= skfp_ctl_get_stats,
169 	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
170 	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
171 	.ndo_do_ioctl		= skfp_ioctl,
172 };
173 
174 /*
175  * =================
176  * = skfp_init_one =
177  * =================
178  *
179  * Overview:
180  *   Probes for supported FDDI PCI controllers
181  *
182  * Returns:
183  *   Condition code
184  *
185  * Arguments:
186  *   pdev - pointer to PCI device information
187  *
188  * Functional Description:
189  *   This is now called by PCI driver registration process
190  *   for each board found.
191  *
192  * Return Codes:
193  *   0           - This device (fddi0, fddi1, etc) configured successfully
194  *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
195  *                         present for this device name
196  *
197  *
198  * Side Effects:
199  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
200  *   initialized and the board resources are read and stored in
201  *   the device structure.
202  */
203 static int skfp_init_one(struct pci_dev *pdev,
204 				const struct pci_device_id *ent)
205 {
206 	struct net_device *dev;
207 	struct s_smc *smc;	/* board pointer */
208 	void __iomem *mem;
209 	int err;
210 
211 	pr_debug("entering skfp_init_one\n");
212 
213 	if (num_boards == 0)
214 		printk("%s\n", boot_msg);
215 
216 	err = pci_enable_device(pdev);
217 	if (err)
218 		return err;
219 
220 	err = pci_request_regions(pdev, "skfddi");
221 	if (err)
222 		goto err_out1;
223 
224 	pci_set_master(pdev);
225 
226 #ifdef MEM_MAPPED_IO
227 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
228 		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
229 		err = -EIO;
230 		goto err_out2;
231 	}
232 
233 	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
234 #else
235 	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
236 		printk(KERN_ERR "skfp: region is not PIO resource\n");
237 		err = -EIO;
238 		goto err_out2;
239 	}
240 
241 	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
242 #endif
243 	if (!mem) {
244 		printk(KERN_ERR "skfp:  Unable to map register, "
245 				"FDDI adapter will be disabled.\n");
246 		err = -EIO;
247 		goto err_out2;
248 	}
249 
250 	dev = alloc_fddidev(sizeof(struct s_smc));
251 	if (!dev) {
252 		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
253 				"FDDI adapter will be disabled.\n");
254 		err = -ENOMEM;
255 		goto err_out3;
256 	}
257 
258 	dev->irq = pdev->irq;
259 	dev->netdev_ops = &skfp_netdev_ops;
260 
261 	SET_NETDEV_DEV(dev, &pdev->dev);
262 
263 	/* Initialize board structure with bus-specific info */
264 	smc = netdev_priv(dev);
265 	smc->os.dev = dev;
266 	smc->os.bus_type = SK_BUS_TYPE_PCI;
267 	smc->os.pdev = *pdev;
268 	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
269 	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
270 	smc->os.dev = dev;
271 	smc->hw.slot = -1;
272 	smc->hw.iop = mem;
273 	smc->os.ResetRequested = FALSE;
274 	skb_queue_head_init(&smc->os.SendSkbQueue);
275 
276 	dev->base_addr = (unsigned long)mem;
277 
278 	err = skfp_driver_init(dev);
279 	if (err)
280 		goto err_out4;
281 
282 	err = register_netdev(dev);
283 	if (err)
284 		goto err_out5;
285 
286 	++num_boards;
287 	pci_set_drvdata(pdev, dev);
288 
289 	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
290 	    (pdev->subsystem_device & 0xff00) == 0x5800)
291 		printk("%s: SysKonnect FDDI PCI adapter"
292 		       " found (SK-%04X)\n", dev->name,
293 		       pdev->subsystem_device);
294 	else
295 		printk("%s: FDDI PCI adapter found\n", dev->name);
296 
297 	return 0;
298 err_out5:
299 	if (smc->os.SharedMemAddr)
300 		pci_free_consistent(pdev, smc->os.SharedMemSize,
301 				    smc->os.SharedMemAddr,
302 				    smc->os.SharedMemDMA);
303 	pci_free_consistent(pdev, MAX_FRAME_SIZE,
304 			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
305 err_out4:
306 	free_netdev(dev);
307 err_out3:
308 #ifdef MEM_MAPPED_IO
309 	iounmap(mem);
310 #else
311 	ioport_unmap(mem);
312 #endif
313 err_out2:
314 	pci_release_regions(pdev);
315 err_out1:
316 	pci_disable_device(pdev);
317 	return err;
318 }
319 
320 /*
321  * Called for each adapter board from pci_unregister_driver
322  */
323 static void skfp_remove_one(struct pci_dev *pdev)
324 {
325 	struct net_device *p = pci_get_drvdata(pdev);
326 	struct s_smc *lp = netdev_priv(p);
327 
328 	unregister_netdev(p);
329 
330 	if (lp->os.SharedMemAddr) {
331 		pci_free_consistent(&lp->os.pdev,
332 				    lp->os.SharedMemSize,
333 				    lp->os.SharedMemAddr,
334 				    lp->os.SharedMemDMA);
335 		lp->os.SharedMemAddr = NULL;
336 	}
337 	if (lp->os.LocalRxBuffer) {
338 		pci_free_consistent(&lp->os.pdev,
339 				    MAX_FRAME_SIZE,
340 				    lp->os.LocalRxBuffer,
341 				    lp->os.LocalRxBufferDMA);
342 		lp->os.LocalRxBuffer = NULL;
343 	}
344 #ifdef MEM_MAPPED_IO
345 	iounmap(lp->hw.iop);
346 #else
347 	ioport_unmap(lp->hw.iop);
348 #endif
349 	pci_release_regions(pdev);
350 	free_netdev(p);
351 
352 	pci_disable_device(pdev);
353 }
354 
355 /*
356  * ====================
357  * = skfp_driver_init =
358  * ====================
359  *
360  * Overview:
361  *   Initializes remaining adapter board structure information
362  *   and makes sure adapter is in a safe state prior to skfp_open().
363  *
364  * Returns:
365  *   Condition code
366  *
367  * Arguments:
368  *   dev - pointer to device information
369  *
370  * Functional Description:
371  *   This function allocates additional resources such as the host memory
372  *   blocks needed by the adapter.
373  *   The adapter is also reset. The OS must call skfp_open() to open
374  *   the adapter and bring it on-line.
375  *
376  * Return Codes:
377  *    0 - initialization succeeded
378  *   -1 - initialization failed
379  */
380 static  int skfp_driver_init(struct net_device *dev)
381 {
382 	struct s_smc *smc = netdev_priv(dev);
383 	skfddi_priv *bp = &smc->os;
384 	int err = -EIO;
385 
386 	pr_debug("entering skfp_driver_init\n");
387 
388 	// set the io address in private structures
389 	bp->base_addr = dev->base_addr;
390 
391 	// Get the interrupt level from the PCI Configuration Table
392 	smc->hw.irq = dev->irq;
393 
394 	spin_lock_init(&bp->DriverLock);
395 
396 	// Allocate invalid frame
397 	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
398 	if (!bp->LocalRxBuffer) {
399 		printk("could not allocate mem for ");
400 		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
401 		goto fail;
402 	}
403 
404 	// Determine the required size of the 'shared' memory area.
405 	bp->SharedMemSize = mac_drv_check_space();
406 	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
407 	if (bp->SharedMemSize > 0) {
408 		bp->SharedMemSize += 16;	// for descriptor alignment
409 
410 		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
411 							 bp->SharedMemSize,
412 							 &bp->SharedMemDMA);
413 		if (!bp->SharedMemAddr) {
414 			printk("could not allocate mem for ");
415 			printk("hardware module: %ld byte\n",
416 			       bp->SharedMemSize);
417 			goto fail;
418 		}
419 		bp->SharedMemHeap = 0;	// Nothing used yet.
420 
421 	} else {
422 		bp->SharedMemAddr = NULL;
423 		bp->SharedMemHeap = 0;
424 	}			// SharedMemSize > 0
425 
426 	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
427 
428 	card_stop(smc);		// Reset adapter.
429 
430 	pr_debug("mac_drv_init()..\n");
431 	if (mac_drv_init(smc) != 0) {
432 		pr_debug("mac_drv_init() failed\n");
433 		goto fail;
434 	}
435 	read_address(smc, NULL);
436 	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
437 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
438 
439 	smt_reset_defaults(smc, 0);
440 
441 	return 0;
442 
443 fail:
444 	if (bp->SharedMemAddr) {
445 		pci_free_consistent(&bp->pdev,
446 				    bp->SharedMemSize,
447 				    bp->SharedMemAddr,
448 				    bp->SharedMemDMA);
449 		bp->SharedMemAddr = NULL;
450 	}
451 	if (bp->LocalRxBuffer) {
452 		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
453 				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
454 		bp->LocalRxBuffer = NULL;
455 	}
456 	return err;
457 }				// skfp_driver_init
458 
459 
460 /*
461  * =============
462  * = skfp_open =
463  * =============
464  *
465  * Overview:
466  *   Opens the adapter
467  *
468  * Returns:
469  *   Condition code
470  *
471  * Arguments:
472  *   dev - pointer to device information
473  *
474  * Functional Description:
475  *   This function brings the adapter to an operational state.
476  *
477  * Return Codes:
478  *   0           - Adapter was successfully opened
479  *   -EAGAIN - Could not register IRQ
480  */
481 static int skfp_open(struct net_device *dev)
482 {
483 	struct s_smc *smc = netdev_priv(dev);
484 	int err;
485 
486 	pr_debug("entering skfp_open\n");
487 	/* Register IRQ - support shared interrupts by passing device ptr */
488 	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
489 			  dev->name, dev);
490 	if (err)
491 		return err;
492 
493 	/*
494 	 * Set current address to factory MAC address
495 	 *
496 	 * Note: We've already done this step in skfp_driver_init.
497 	 *       However, it's possible that a user has set a node
498 	 *               address override, then closed and reopened the
499 	 *               adapter.  Unless we reset the device address field
500 	 *               now, we'll continue to use the existing modified
501 	 *               address.
502 	 */
503 	read_address(smc, NULL);
504 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
505 
506 	init_smt(smc, NULL);
507 	smt_online(smc, 1);
508 	STI_FBI();
509 
510 	/* Clear local multicast address tables */
511 	mac_clear_multicast(smc);
512 
513 	/* Disable promiscuous filter settings */
514 	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
515 
516 	netif_start_queue(dev);
517 	return 0;
518 }				// skfp_open
519 
520 
521 /*
522  * ==============
523  * = skfp_close =
524  * ==============
525  *
526  * Overview:
527  *   Closes the device/module.
528  *
529  * Returns:
530  *   Condition code
531  *
532  * Arguments:
533  *   dev - pointer to device information
534  *
535  * Functional Description:
536  *   This routine closes the adapter and brings it to a safe state.
537  *   The interrupt service routine is deregistered with the OS.
538  *   The adapter can be opened again with another call to skfp_open().
539  *
540  * Return Codes:
541  *   Always return 0.
542  *
543  * Assumptions:
544  *   No further requests for this adapter are made after this routine is
545  *   called.  skfp_open() can be called to reset and reinitialize the
546  *   adapter.
547  */
548 static int skfp_close(struct net_device *dev)
549 {
550 	struct s_smc *smc = netdev_priv(dev);
551 	skfddi_priv *bp = &smc->os;
552 
553 	CLI_FBI();
554 	smt_reset_defaults(smc, 1);
555 	card_stop(smc);
556 	mac_drv_clear_tx_queue(smc);
557 	mac_drv_clear_rx_queue(smc);
558 
559 	netif_stop_queue(dev);
560 	/* Deregister (free) IRQ */
561 	free_irq(dev->irq, dev);
562 
563 	skb_queue_purge(&bp->SendSkbQueue);
564 	bp->QueueSkb = MAX_TX_QUEUE_LEN;
565 
566 	return 0;
567 }				// skfp_close
568 
569 
570 /*
571  * ==================
572  * = skfp_interrupt =
573  * ==================
574  *
575  * Overview:
576  *   Interrupt processing routine
577  *
578  * Returns:
579  *   None
580  *
581  * Arguments:
582  *   irq        - interrupt vector
583  *   dev_id     - pointer to device information
584  *
585  * Functional Description:
586  *   This routine calls the interrupt processing routine for this adapter.  It
587  *   disables and reenables adapter interrupts, as appropriate.  We can support
588  *   shared interrupts since the incoming dev_id pointer provides our device
589  *   structure context. All the real work is done in the hardware module.
590  *
591  * Return Codes:
592  *   None
593  *
594  * Assumptions:
595  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
596  *   on Intel-based systems) is done by the operating system outside this
597  *   routine.
598  *
599  *       System interrupts are enabled through this call.
600  *
601  * Side Effects:
602  *   Interrupts are disabled, then reenabled at the adapter.
603  */
604 
605 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
606 {
607 	struct net_device *dev = dev_id;
608 	struct s_smc *smc;	/* private board structure pointer */
609 	skfddi_priv *bp;
610 
611 	smc = netdev_priv(dev);
612 	bp = &smc->os;
613 
614 	// IRQs enabled or disabled ?
615 	if (inpd(ADDR(B0_IMSK)) == 0) {
616 		// IRQs are disabled: must be shared interrupt
617 		return IRQ_NONE;
618 	}
619 	// Note: At this point, IRQs are enabled.
620 	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
621 		// Adapter did not issue an IRQ: must be shared interrupt
622 		return IRQ_NONE;
623 	}
624 	CLI_FBI();		// Disable IRQs from our adapter.
625 	spin_lock(&bp->DriverLock);
626 
627 	// Call interrupt handler in hardware module (HWM).
628 	fddi_isr(smc);
629 
630 	if (smc->os.ResetRequested) {
631 		ResetAdapter(smc);
632 		smc->os.ResetRequested = FALSE;
633 	}
634 	spin_unlock(&bp->DriverLock);
635 	STI_FBI();		// Enable IRQs from our adapter.
636 
637 	return IRQ_HANDLED;
638 }				// skfp_interrupt
639 
640 
641 /*
642  * ======================
643  * = skfp_ctl_get_stats =
644  * ======================
645  *
646  * Overview:
647  *   Get statistics for FDDI adapter
648  *
649  * Returns:
650  *   Pointer to FDDI statistics structure
651  *
652  * Arguments:
653  *   dev - pointer to device information
654  *
655  * Functional Description:
656  *   Gets current MIB objects from adapter, then
657  *   returns FDDI statistics structure as defined
658  *   in if_fddi.h.
659  *
660  *   Note: Since the FDDI statistics structure is
661  *   still new and the device structure doesn't
662  *   have an FDDI-specific get statistics handler,
663  *   we'll return the FDDI statistics structure as
664  *   a pointer to an Ethernet statistics structure.
665  *   That way, at least the first part of the statistics
666  *   structure can be decoded properly.
667  *   We'll have to pay attention to this routine as the
668  *   device structure becomes more mature and LAN media
669  *   independent.
670  *
671  */
672 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
673 {
674 	struct s_smc *bp = netdev_priv(dev);
675 
676 	/* Fill the bp->stats structure with driver-maintained counters */
677 
678 	bp->os.MacStat.port_bs_flag[0] = 0x1234;
679 	bp->os.MacStat.port_bs_flag[1] = 0x5678;
680 // goos: need to fill out fddi statistic
681 #if 0
682 	/* Get FDDI SMT MIB objects */
683 
684 /* Fill the bp->stats structure with the SMT MIB object values */
685 
686 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
687 	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
688 	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
689 	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
690 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
691 	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
692 	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
693 	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
694 	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
695 	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
696 	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
697 	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
698 	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
699 	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
700 	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
701 	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
702 	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
703 	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
704 	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
705 	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
706 	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
707 	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
708 	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
709 	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
710 	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
711 	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
712 	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
713 	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
714 	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
715 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
716 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
717 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
718 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
719 	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
720 	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
721 	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
722 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
723 	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
724 	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
725 	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
726 	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
727 	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
728 	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
729 	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
730 	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
731 	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
732 	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
733 	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
734 	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
735 	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
736 	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
737 	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
738 	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
739 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
740 	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
741 	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
742 	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
743 	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
744 	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
745 	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
746 	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
747 	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
748 	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
749 	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
750 	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
751 	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
752 	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
753 	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
754 	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
755 	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
756 	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
757 	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
758 	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
759 	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
760 	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
761 	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
762 	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
763 	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
764 	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
765 	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
766 	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
767 	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
768 	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
769 	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
770 	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
771 	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
772 	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
773 	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
774 	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
775 	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
776 	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
777 	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
778 
779 
780 	/* Fill the bp->stats structure with the FDDI counter values */
781 
782 	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
783 	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
784 	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
785 	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
786 	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
787 	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
788 	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
789 	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
790 	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
791 	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
792 	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
793 
794 #endif
795 	return (struct net_device_stats *)&bp->os.MacStat;
796 }				// ctl_get_stat
797 
798 
799 /*
800  * ==============================
801  * = skfp_ctl_set_multicast_list =
802  * ==============================
803  *
804  * Overview:
805  *   Enable/Disable LLC frame promiscuous mode reception
806  *   on the adapter and/or update multicast address table.
807  *
808  * Returns:
809  *   None
810  *
811  * Arguments:
812  *   dev - pointer to device information
813  *
814  * Functional Description:
815  *   This function acquires the driver lock and only calls
816  *   skfp_ctl_set_multicast_list_wo_lock then.
817  *   This routine follows a fairly simple algorithm for setting the
818  *   adapter filters and CAM:
819  *
820  *      if IFF_PROMISC flag is set
821  *              enable promiscuous mode
822  *      else
823  *              disable promiscuous mode
824  *              if number of multicast addresses <= max. multicast number
825  *                      add mc addresses to adapter table
826  *              else
827  *                      enable promiscuous mode
828  *              update adapter filters
829  *
830  * Assumptions:
831  *   Multicast addresses are presented in canonical (LSB) format.
832  *
833  * Side Effects:
834  *   On-board adapter filters are updated.
835  */
836 static void skfp_ctl_set_multicast_list(struct net_device *dev)
837 {
838 	struct s_smc *smc = netdev_priv(dev);
839 	skfddi_priv *bp = &smc->os;
840 	unsigned long Flags;
841 
842 	spin_lock_irqsave(&bp->DriverLock, Flags);
843 	skfp_ctl_set_multicast_list_wo_lock(dev);
844 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
845 }				// skfp_ctl_set_multicast_list
846 
847 
848 
849 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
850 {
851 	struct s_smc *smc = netdev_priv(dev);
852 	struct netdev_hw_addr *ha;
853 
854 	/* Enable promiscuous mode, if necessary */
855 	if (dev->flags & IFF_PROMISC) {
856 		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
857 		pr_debug("PROMISCUOUS MODE ENABLED\n");
858 	}
859 	/* Else, update multicast address table */
860 	else {
861 		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
862 		pr_debug("PROMISCUOUS MODE DISABLED\n");
863 
864 		// Reset all MC addresses
865 		mac_clear_multicast(smc);
866 		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
867 
868 		if (dev->flags & IFF_ALLMULTI) {
869 			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
870 			pr_debug("ENABLE ALL MC ADDRESSES\n");
871 		} else if (!netdev_mc_empty(dev)) {
872 			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
873 				/* use exact filtering */
874 
875 				// point to first multicast addr
876 				netdev_for_each_mc_addr(ha, dev) {
877 					mac_add_multicast(smc,
878 						(struct fddi_addr *)ha->addr,
879 						1);
880 
881 					pr_debug("ENABLE MC ADDRESS: %pMF\n",
882 						 ha->addr);
883 				}
884 
885 			} else {	// more MC addresses than HW supports
886 
887 				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
888 				pr_debug("ENABLE ALL MC ADDRESSES\n");
889 			}
890 		} else {	// no MC addresses
891 
892 			pr_debug("DISABLE ALL MC ADDRESSES\n");
893 		}
894 
895 		/* Update adapter filters */
896 		mac_update_multicast(smc);
897 	}
898 }				// skfp_ctl_set_multicast_list_wo_lock
899 
900 
901 /*
902  * ===========================
903  * = skfp_ctl_set_mac_address =
904  * ===========================
905  *
906  * Overview:
907  *   set new mac address on adapter and update dev_addr field in device table.
908  *
909  * Returns:
910  *   None
911  *
912  * Arguments:
913  *   dev  - pointer to device information
914  *   addr - pointer to sockaddr structure containing unicast address to set
915  *
916  * Assumptions:
917  *   The address pointed to by addr->sa_data is a valid unicast
918  *   address and is presented in canonical (LSB) format.
919  */
920 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
921 {
922 	struct s_smc *smc = netdev_priv(dev);
923 	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
924 	skfddi_priv *bp = &smc->os;
925 	unsigned long Flags;
926 
927 
928 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
929 	spin_lock_irqsave(&bp->DriverLock, Flags);
930 	ResetAdapter(smc);
931 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
932 
933 	return 0;		/* always return zero */
934 }				// skfp_ctl_set_mac_address
935 
936 
937 /*
938  * ==============
939  * = skfp_ioctl =
940  * ==============
941  *
942  * Overview:
943  *
944  * Perform IOCTL call functions here. Some are privileged operations and the
945  * effective uid is checked in those cases.
946  *
947  * Returns:
948  *   status value
949  *   0 - success
950  *   other - failure
951  *
952  * Arguments:
953  *   dev  - pointer to device information
954  *   rq - pointer to ioctl request structure
955  *   cmd - ?
956  *
957  */
958 
959 
960 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
961 {
962 	struct s_smc *smc = netdev_priv(dev);
963 	skfddi_priv *lp = &smc->os;
964 	struct s_skfp_ioctl ioc;
965 	int status = 0;
966 
967 	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
968 		return -EFAULT;
969 
970 	switch (ioc.cmd) {
971 	case SKFP_GET_STATS:	/* Get the driver statistics */
972 		ioc.len = sizeof(lp->MacStat);
973 		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
974 				? -EFAULT : 0;
975 		break;
976 	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
977 		if (!capable(CAP_NET_ADMIN)) {
978 			status = -EPERM;
979 		} else {
980 			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
981 		}
982 		break;
983 	default:
984 		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
985 		status = -EOPNOTSUPP;
986 
987 	}			// switch
988 
989 	return status;
990 }				// skfp_ioctl
991 
992 
993 /*
994  * =====================
995  * = skfp_send_pkt     =
996  * =====================
997  *
998  * Overview:
999  *   Queues a packet for transmission and try to transmit it.
1000  *
1001  * Returns:
1002  *   Condition code
1003  *
1004  * Arguments:
1005  *   skb - pointer to sk_buff to queue for transmission
1006  *   dev - pointer to device information
1007  *
1008  * Functional Description:
1009  *   Here we assume that an incoming skb transmit request
1010  *   is contained in a single physically contiguous buffer
1011  *   in which the virtual address of the start of packet
1012  *   (skb->data) can be converted to a physical address
1013  *   by using pci_map_single().
1014  *
1015  *   We have an internal queue for packets we can not send
1016  *   immediately. Packets in this queue can be given to the
1017  *   adapter if transmit buffers are freed.
1018  *
1019  *   We can't free the skb until after it's been DMA'd
1020  *   out by the adapter, so we'll keep it in the driver and
1021  *   return it in mac_drv_tx_complete.
1022  *
1023  * Return Codes:
1024  *   0 - driver has queued and/or sent packet
1025  *       1 - caller should requeue the sk_buff for later transmission
1026  *
1027  * Assumptions:
1028  *   The entire packet is stored in one physically
1029  *   contiguous buffer which is not cached and whose
1030  *   32-bit physical address can be determined.
1031  *
1032  *   It's vital that this routine is NOT reentered for the
1033  *   same board and that the OS is not in another section of
1034  *   code (eg. skfp_interrupt) for the same board on a
1035  *   different thread.
1036  *
1037  * Side Effects:
1038  *   None
1039  */
1040 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1041 				       struct net_device *dev)
1042 {
1043 	struct s_smc *smc = netdev_priv(dev);
1044 	skfddi_priv *bp = &smc->os;
1045 
1046 	pr_debug("skfp_send_pkt\n");
1047 
1048 	/*
1049 	 * Verify that incoming transmit request is OK
1050 	 *
1051 	 * Note: The packet size check is consistent with other
1052 	 *               Linux device drivers, although the correct packet
1053 	 *               size should be verified before calling the
1054 	 *               transmit routine.
1055 	 */
1056 
1057 	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1058 		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1059 		// dequeue packets from xmt queue and send them
1060 		netif_start_queue(dev);
1061 		dev_kfree_skb(skb);
1062 		return NETDEV_TX_OK;	/* return "success" */
1063 	}
1064 	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1065 
1066 		netif_stop_queue(dev);
1067 		return NETDEV_TX_BUSY;
1068 	}
1069 	bp->QueueSkb--;
1070 	skb_queue_tail(&bp->SendSkbQueue, skb);
1071 	send_queued_packets(netdev_priv(dev));
1072 	if (bp->QueueSkb == 0) {
1073 		netif_stop_queue(dev);
1074 	}
1075 	return NETDEV_TX_OK;
1076 
1077 }				// skfp_send_pkt
1078 
1079 
1080 /*
1081  * =======================
1082  * = send_queued_packets =
1083  * =======================
1084  *
1085  * Overview:
1086  *   Send packets from the driver queue as long as there are some and
1087  *   transmit resources are available.
1088  *
1089  * Returns:
1090  *   None
1091  *
1092  * Arguments:
1093  *   smc - pointer to smc (adapter) structure
1094  *
1095  * Functional Description:
1096  *   Take a packet from queue if there is any. If not, then we are done.
1097  *   Check if there are resources to send the packet. If not, requeue it
1098  *   and exit.
1099  *   Set packet descriptor flags and give packet to adapter.
1100  *   Check if any send resources can be freed (we do not use the
1101  *   transmit complete interrupt).
1102  */
1103 static void send_queued_packets(struct s_smc *smc)
1104 {
1105 	skfddi_priv *bp = &smc->os;
1106 	struct sk_buff *skb;
1107 	unsigned char fc;
1108 	int queue;
1109 	struct s_smt_fp_txd *txd;	// Current TxD.
1110 	dma_addr_t dma_address;
1111 	unsigned long Flags;
1112 
1113 	int frame_status;	// HWM tx frame status.
1114 
1115 	pr_debug("send queued packets\n");
1116 	for (;;) {
1117 		// send first buffer from queue
1118 		skb = skb_dequeue(&bp->SendSkbQueue);
1119 
1120 		if (!skb) {
1121 			pr_debug("queue empty\n");
1122 			return;
1123 		}		// queue empty !
1124 
1125 		spin_lock_irqsave(&bp->DriverLock, Flags);
1126 		fc = skb->data[0];
1127 		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1128 #ifdef ESS
1129 		// Check if the frame may/must be sent as a synchronous frame.
1130 
1131 		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1132 			// It's an LLC frame.
1133 			if (!smc->ess.sync_bw_available)
1134 				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1135 
1136 			else {	// Bandwidth is available.
1137 
1138 				if (smc->mib.fddiESSSynchTxMode) {
1139 					// Send as sync. frame.
1140 					fc |= FC_SYNC_BIT;
1141 				}
1142 			}
1143 		}
1144 #endif				// ESS
1145 		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1146 
1147 		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1148 			// Unable to send the frame.
1149 
1150 			if ((frame_status & RING_DOWN) != 0) {
1151 				// Ring is down.
1152 				pr_debug("Tx attempt while ring down.\n");
1153 			} else if ((frame_status & OUT_OF_TXD) != 0) {
1154 				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1155 			} else {
1156 				pr_debug("%s: out of transmit resources",
1157 					bp->dev->name);
1158 			}
1159 
1160 			// Note: We will retry the operation as soon as
1161 			// transmit resources become available.
1162 			skb_queue_head(&bp->SendSkbQueue, skb);
1163 			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1164 			return;	// Packet has been queued.
1165 
1166 		}		// if (unable to send frame)
1167 
1168 		bp->QueueSkb++;	// one packet less in local queue
1169 
1170 		// source address in packet ?
1171 		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1172 
1173 		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1174 
1175 		dma_address = pci_map_single(&bp->pdev, skb->data,
1176 					     skb->len, PCI_DMA_TODEVICE);
1177 		if (frame_status & LAN_TX) {
1178 			txd->txd_os.skb = skb;			// save skb
1179 			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1180 		}
1181 		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1182                       frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1183 
1184 		if (!(frame_status & LAN_TX)) {		// local only frame
1185 			pci_unmap_single(&bp->pdev, dma_address,
1186 					 skb->len, PCI_DMA_TODEVICE);
1187 			dev_kfree_skb_irq(skb);
1188 		}
1189 		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1190 	}			// for
1191 
1192 	return;			// never reached
1193 
1194 }				// send_queued_packets
1195 
1196 
1197 /************************
1198  *
1199  * CheckSourceAddress
1200  *
1201  * Verify if the source address is set. Insert it if necessary.
1202  *
1203  ************************/
1204 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1205 {
1206 	unsigned char SRBit;
1207 
1208 	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1209 
1210 		return;
1211 	if ((unsigned short) frame[1 + 10] != 0)
1212 		return;
1213 	SRBit = frame[1 + 6] & 0x01;
1214 	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1215 	frame[8] |= SRBit;
1216 }				// CheckSourceAddress
1217 
1218 
1219 /************************
1220  *
1221  *	ResetAdapter
1222  *
1223  *	Reset the adapter and bring it back to operational mode.
1224  * Args
1225  *	smc - A pointer to the SMT context struct.
1226  * Out
1227  *	Nothing.
1228  *
1229  ************************/
1230 static void ResetAdapter(struct s_smc *smc)
1231 {
1232 
1233 	pr_debug("[fddi: ResetAdapter]\n");
1234 
1235 	// Stop the adapter.
1236 
1237 	card_stop(smc);		// Stop all activity.
1238 
1239 	// Clear the transmit and receive descriptor queues.
1240 	mac_drv_clear_tx_queue(smc);
1241 	mac_drv_clear_rx_queue(smc);
1242 
1243 	// Restart the adapter.
1244 
1245 	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1246 
1247 	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1248 
1249 	smt_online(smc, 1);	// Insert into the ring again.
1250 	STI_FBI();
1251 
1252 	// Restore original receive mode (multicasts, promiscuous, etc.).
1253 	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1254 }				// ResetAdapter
1255 
1256 
1257 //--------------- functions called by hardware module ----------------
1258 
1259 /************************
1260  *
1261  *	llc_restart_tx
1262  *
1263  *	The hardware driver calls this routine when the transmit complete
1264  *	interrupt bits (end of frame) for the synchronous or asynchronous
1265  *	queue is set.
1266  *
1267  * NOTE The hardware driver calls this function also if no packets are queued.
1268  *	The routine must be able to handle this case.
1269  * Args
1270  *	smc - A pointer to the SMT context struct.
1271  * Out
1272  *	Nothing.
1273  *
1274  ************************/
1275 void llc_restart_tx(struct s_smc *smc)
1276 {
1277 	skfddi_priv *bp = &smc->os;
1278 
1279 	pr_debug("[llc_restart_tx]\n");
1280 
1281 	// Try to send queued packets
1282 	spin_unlock(&bp->DriverLock);
1283 	send_queued_packets(smc);
1284 	spin_lock(&bp->DriverLock);
1285 	netif_start_queue(bp->dev);// system may send again if it was blocked
1286 
1287 }				// llc_restart_tx
1288 
1289 
1290 /************************
1291  *
1292  *	mac_drv_get_space
1293  *
1294  *	The hardware module calls this function to allocate the memory
1295  *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1296  * Args
1297  *	smc - A pointer to the SMT context struct.
1298  *
1299  *	size - Size of memory in bytes to allocate.
1300  * Out
1301  *	!= 0	A pointer to the virtual address of the allocated memory.
1302  *	== 0	Allocation error.
1303  *
1304  ************************/
1305 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1306 {
1307 	void *virt;
1308 
1309 	pr_debug("mac_drv_get_space (%d bytes), ", size);
1310 	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1311 
1312 	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1313 		printk("Unexpected SMT memory size requested: %d\n", size);
1314 		return NULL;
1315 	}
1316 	smc->os.SharedMemHeap += size;	// Move heap pointer.
1317 
1318 	pr_debug("mac_drv_get_space end\n");
1319 	pr_debug("virt addr: %lx\n", (ulong) virt);
1320 	pr_debug("bus  addr: %lx\n", (ulong)
1321 	       (smc->os.SharedMemDMA +
1322 		((char *) virt - (char *)smc->os.SharedMemAddr)));
1323 	return virt;
1324 }				// mac_drv_get_space
1325 
1326 
1327 /************************
1328  *
1329  *	mac_drv_get_desc_mem
1330  *
1331  *	This function is called by the hardware dependent module.
1332  *	It allocates the memory for the RxD and TxD descriptors.
1333  *
1334  *	This memory must be non-cached, non-movable and non-swappable.
1335  *	This memory should start at a physical page boundary.
1336  * Args
1337  *	smc - A pointer to the SMT context struct.
1338  *
1339  *	size - Size of memory in bytes to allocate.
1340  * Out
1341  *	!= 0	A pointer to the virtual address of the allocated memory.
1342  *	== 0	Allocation error.
1343  *
1344  ************************/
1345 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1346 {
1347 
1348 	char *virt;
1349 
1350 	pr_debug("mac_drv_get_desc_mem\n");
1351 
1352 	// Descriptor memory must be aligned on 16-byte boundary.
1353 
1354 	virt = mac_drv_get_space(smc, size);
1355 
1356 	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1357 	size = size % 16;
1358 
1359 	pr_debug("Allocate %u bytes alignment gap ", size);
1360 	pr_debug("for descriptor memory.\n");
1361 
1362 	if (!mac_drv_get_space(smc, size)) {
1363 		printk("fddi: Unable to align descriptor memory.\n");
1364 		return NULL;
1365 	}
1366 	return virt + size;
1367 }				// mac_drv_get_desc_mem
1368 
1369 
1370 /************************
1371  *
1372  *	mac_drv_virt2phys
1373  *
1374  *	Get the physical address of a given virtual address.
1375  * Args
1376  *	smc - A pointer to the SMT context struct.
1377  *
1378  *	virt - A (virtual) pointer into our 'shared' memory area.
1379  * Out
1380  *	Physical address of the given virtual address.
1381  *
1382  ************************/
1383 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1384 {
1385 	return smc->os.SharedMemDMA +
1386 		((char *) virt - (char *)smc->os.SharedMemAddr);
1387 }				// mac_drv_virt2phys
1388 
1389 
1390 /************************
1391  *
1392  *	dma_master
1393  *
1394  *	The HWM calls this function, when the driver leads through a DMA
1395  *	transfer. If the OS-specific module must prepare the system hardware
1396  *	for the DMA transfer, it should do it in this function.
1397  *
1398  *	The hardware module calls this dma_master if it wants to send an SMT
1399  *	frame.  This means that the virt address passed in here is part of
1400  *      the 'shared' memory area.
1401  * Args
1402  *	smc - A pointer to the SMT context struct.
1403  *
1404  *	virt - The virtual address of the data.
1405  *
1406  *	len - The length in bytes of the data.
1407  *
1408  *	flag - Indicates the transmit direction and the buffer type:
1409  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1410  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1411  *		SMT_BUF (0x80)	SMT buffer
1412  *
1413  *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1414  * Out
1415  *	Returns the pyhsical address for the DMA transfer.
1416  *
1417  ************************/
1418 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1419 {
1420 	return smc->os.SharedMemDMA +
1421 		((char *) virt - (char *)smc->os.SharedMemAddr);
1422 }				// dma_master
1423 
1424 
1425 /************************
1426  *
1427  *	dma_complete
1428  *
1429  *	The hardware module calls this routine when it has completed a DMA
1430  *	transfer. If the operating system dependent module has set up the DMA
1431  *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1432  *	the DMA channel.
1433  * Args
1434  *	smc - A pointer to the SMT context struct.
1435  *
1436  *	descr - A pointer to a TxD or RxD, respectively.
1437  *
1438  *	flag - Indicates the DMA transfer direction / SMT buffer:
1439  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1440  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1441  *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1442  * Out
1443  *	Nothing.
1444  *
1445  ************************/
1446 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1447 {
1448 	/* For TX buffers, there are two cases.  If it is an SMT transmit
1449 	 * buffer, there is nothing to do since we use consistent memory
1450 	 * for the 'shared' memory area.  The other case is for normal
1451 	 * transmit packets given to us by the networking stack, and in
1452 	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1453 	 * below.
1454 	 *
1455 	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1456 	 * because the hardware module is about to potentially look at
1457 	 * the contents of the buffer.  If we did not call the PCI DMA
1458 	 * unmap first, the hardware module could read inconsistent data.
1459 	 */
1460 	if (flag & DMA_WR) {
1461 		skfddi_priv *bp = &smc->os;
1462 		volatile struct s_smt_fp_rxd *r = &descr->r;
1463 
1464 		/* If SKB is NULL, we used the local buffer. */
1465 		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1466 			int MaxFrameSize = bp->MaxFrameSize;
1467 
1468 			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1469 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1470 			r->rxd_os.dma_addr = 0;
1471 		}
1472 	}
1473 }				// dma_complete
1474 
1475 
1476 /************************
1477  *
1478  *	mac_drv_tx_complete
1479  *
1480  *	Transmit of a packet is complete. Release the tx staging buffer.
1481  *
1482  * Args
1483  *	smc - A pointer to the SMT context struct.
1484  *
1485  *	txd - A pointer to the last TxD which is used by the frame.
1486  * Out
1487  *	Returns nothing.
1488  *
1489  ************************/
1490 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1491 {
1492 	struct sk_buff *skb;
1493 
1494 	pr_debug("entering mac_drv_tx_complete\n");
1495 	// Check if this TxD points to a skb
1496 
1497 	if (!(skb = txd->txd_os.skb)) {
1498 		pr_debug("TXD with no skb assigned.\n");
1499 		return;
1500 	}
1501 	txd->txd_os.skb = NULL;
1502 
1503 	// release the DMA mapping
1504 	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1505 			 skb->len, PCI_DMA_TODEVICE);
1506 	txd->txd_os.dma_addr = 0;
1507 
1508 	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1509 	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1510 
1511 	// free the skb
1512 	dev_kfree_skb_irq(skb);
1513 
1514 	pr_debug("leaving mac_drv_tx_complete\n");
1515 }				// mac_drv_tx_complete
1516 
1517 
1518 /************************
1519  *
1520  * dump packets to logfile
1521  *
1522  ************************/
1523 #ifdef DUMPPACKETS
1524 void dump_data(unsigned char *Data, int length)
1525 {
1526 	int i, j;
1527 	unsigned char s[255], sh[10];
1528 	if (length > 64) {
1529 		length = 64;
1530 	}
1531 	printk(KERN_INFO "---Packet start---\n");
1532 	for (i = 0, j = 0; i < length / 8; i++, j += 8)
1533 		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1534 		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1535 		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1536 	strcpy(s, "");
1537 	for (i = 0; i < length % 8; i++) {
1538 		sprintf(sh, "%02x ", Data[j + i]);
1539 		strcat(s, sh);
1540 	}
1541 	printk(KERN_INFO "%s\n", s);
1542 	printk(KERN_INFO "------------------\n");
1543 }				// dump_data
1544 #else
1545 #define dump_data(data,len)
1546 #endif				// DUMPPACKETS
1547 
1548 /************************
1549  *
1550  *	mac_drv_rx_complete
1551  *
1552  *	The hardware module calls this function if an LLC frame is received
1553  *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1554  *	from the network will be passed to the LLC layer by this function
1555  *	if passing is enabled.
1556  *
1557  *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1558  *	be received. It also fills the RxD ring with new receive buffers if
1559  *	some can be queued.
1560  * Args
1561  *	smc - A pointer to the SMT context struct.
1562  *
1563  *	rxd - A pointer to the first RxD which is used by the receive frame.
1564  *
1565  *	frag_count - Count of RxDs used by the received frame.
1566  *
1567  *	len - Frame length.
1568  * Out
1569  *	Nothing.
1570  *
1571  ************************/
1572 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1573 			 int frag_count, int len)
1574 {
1575 	skfddi_priv *bp = &smc->os;
1576 	struct sk_buff *skb;
1577 	unsigned char *virt, *cp;
1578 	unsigned short ri;
1579 	u_int RifLength;
1580 
1581 	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1582 	if (frag_count != 1) {	// This is not allowed to happen.
1583 
1584 		printk("fddi: Multi-fragment receive!\n");
1585 		goto RequeueRxd;	// Re-use the given RXD(s).
1586 
1587 	}
1588 	skb = rxd->rxd_os.skb;
1589 	if (!skb) {
1590 		pr_debug("No skb in rxd\n");
1591 		smc->os.MacStat.gen.rx_errors++;
1592 		goto RequeueRxd;
1593 	}
1594 	virt = skb->data;
1595 
1596 	// The DMA mapping was released in dma_complete above.
1597 
1598 	dump_data(skb->data, len);
1599 
1600 	/*
1601 	 * FDDI Frame format:
1602 	 * +-------+-------+-------+------------+--------+------------+
1603 	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1604 	 * +-------+-------+-------+------------+--------+------------+
1605 	 *
1606 	 * FC = Frame Control
1607 	 * DA = Destination Address
1608 	 * SA = Source Address
1609 	 * RIF = Routing Information Field
1610 	 * LLC = Logical Link Control
1611 	 */
1612 
1613 	// Remove Routing Information Field (RIF), if present.
1614 
1615 	if ((virt[1 + 6] & FDDI_RII) == 0)
1616 		RifLength = 0;
1617 	else {
1618 		int n;
1619 // goos: RIF removal has still to be tested
1620 		pr_debug("RIF found\n");
1621 		// Get RIF length from Routing Control (RC) field.
1622 		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1623 
1624 		ri = ntohs(*((__be16 *) cp));
1625 		RifLength = ri & FDDI_RCF_LEN_MASK;
1626 		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1627 			printk("fddi: Invalid RIF.\n");
1628 			goto RequeueRxd;	// Discard the frame.
1629 
1630 		}
1631 		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1632 		// regions overlap
1633 
1634 		virt = cp + RifLength;
1635 		for (n = FDDI_MAC_HDR_LEN; n; n--)
1636 			*--virt = *--cp;
1637 		// adjust sbd->data pointer
1638 		skb_pull(skb, RifLength);
1639 		len -= RifLength;
1640 		RifLength = 0;
1641 	}
1642 
1643 	// Count statistics.
1644 	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1645 						// packets.
1646 	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1647 
1648 	// virt points to header again
1649 	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1650 
1651 		smc->os.MacStat.gen.multicast++;
1652 	}
1653 
1654 	// deliver frame to system
1655 	rxd->rxd_os.skb = NULL;
1656 	skb_trim(skb, len);
1657 	skb->protocol = fddi_type_trans(skb, bp->dev);
1658 
1659 	netif_rx(skb);
1660 
1661 	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1662 	return;
1663 
1664       RequeueRxd:
1665 	pr_debug("Rx: re-queue RXD.\n");
1666 	mac_drv_requeue_rxd(smc, rxd, frag_count);
1667 	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1668 						// not indicated.
1669 
1670 }				// mac_drv_rx_complete
1671 
1672 
1673 /************************
1674  *
1675  *	mac_drv_requeue_rxd
1676  *
1677  *	The hardware module calls this function to request the OS-specific
1678  *	module to queue the receive buffer(s) represented by the pointer
1679  *	to the RxD and the frag_count into the receive queue again. This
1680  *	buffer was filled with an invalid frame or an SMT frame.
1681  * Args
1682  *	smc - A pointer to the SMT context struct.
1683  *
1684  *	rxd - A pointer to the first RxD which is used by the receive frame.
1685  *
1686  *	frag_count - Count of RxDs used by the received frame.
1687  * Out
1688  *	Nothing.
1689  *
1690  ************************/
1691 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1692 			 int frag_count)
1693 {
1694 	volatile struct s_smt_fp_rxd *next_rxd;
1695 	volatile struct s_smt_fp_rxd *src_rxd;
1696 	struct sk_buff *skb;
1697 	int MaxFrameSize;
1698 	unsigned char *v_addr;
1699 	dma_addr_t b_addr;
1700 
1701 	if (frag_count != 1)	// This is not allowed to happen.
1702 
1703 		printk("fddi: Multi-fragment requeue!\n");
1704 
1705 	MaxFrameSize = smc->os.MaxFrameSize;
1706 	src_rxd = rxd;
1707 	for (; frag_count > 0; frag_count--) {
1708 		next_rxd = src_rxd->rxd_next;
1709 		rxd = HWM_GET_CURR_RXD(smc);
1710 
1711 		skb = src_rxd->rxd_os.skb;
1712 		if (skb == NULL) {	// this should not happen
1713 
1714 			pr_debug("Requeue with no skb in rxd!\n");
1715 			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1716 			if (skb) {
1717 				// we got a skb
1718 				rxd->rxd_os.skb = skb;
1719 				skb_reserve(skb, 3);
1720 				skb_put(skb, MaxFrameSize);
1721 				v_addr = skb->data;
1722 				b_addr = pci_map_single(&smc->os.pdev,
1723 							v_addr,
1724 							MaxFrameSize,
1725 							PCI_DMA_FROMDEVICE);
1726 				rxd->rxd_os.dma_addr = b_addr;
1727 			} else {
1728 				// no skb available, use local buffer
1729 				pr_debug("Queueing invalid buffer!\n");
1730 				rxd->rxd_os.skb = NULL;
1731 				v_addr = smc->os.LocalRxBuffer;
1732 				b_addr = smc->os.LocalRxBufferDMA;
1733 			}
1734 		} else {
1735 			// we use skb from old rxd
1736 			rxd->rxd_os.skb = skb;
1737 			v_addr = skb->data;
1738 			b_addr = pci_map_single(&smc->os.pdev,
1739 						v_addr,
1740 						MaxFrameSize,
1741 						PCI_DMA_FROMDEVICE);
1742 			rxd->rxd_os.dma_addr = b_addr;
1743 		}
1744 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1745 			    FIRST_FRAG | LAST_FRAG);
1746 
1747 		src_rxd = next_rxd;
1748 	}
1749 }				// mac_drv_requeue_rxd
1750 
1751 
1752 /************************
1753  *
1754  *	mac_drv_fill_rxd
1755  *
1756  *	The hardware module calls this function at initialization time
1757  *	to fill the RxD ring with receive buffers. It is also called by
1758  *	mac_drv_rx_complete if rx_free is large enough to queue some new
1759  *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1760  *	receive buffers as long as enough RxDs and receive buffers are
1761  *	available.
1762  * Args
1763  *	smc - A pointer to the SMT context struct.
1764  * Out
1765  *	Nothing.
1766  *
1767  ************************/
1768 void mac_drv_fill_rxd(struct s_smc *smc)
1769 {
1770 	int MaxFrameSize;
1771 	unsigned char *v_addr;
1772 	unsigned long b_addr;
1773 	struct sk_buff *skb;
1774 	volatile struct s_smt_fp_rxd *rxd;
1775 
1776 	pr_debug("entering mac_drv_fill_rxd\n");
1777 
1778 	// Walk through the list of free receive buffers, passing receive
1779 	// buffers to the HWM as long as RXDs are available.
1780 
1781 	MaxFrameSize = smc->os.MaxFrameSize;
1782 	// Check if there is any RXD left.
1783 	while (HWM_GET_RX_FREE(smc) > 0) {
1784 		pr_debug(".\n");
1785 
1786 		rxd = HWM_GET_CURR_RXD(smc);
1787 		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1788 		if (skb) {
1789 			// we got a skb
1790 			skb_reserve(skb, 3);
1791 			skb_put(skb, MaxFrameSize);
1792 			v_addr = skb->data;
1793 			b_addr = pci_map_single(&smc->os.pdev,
1794 						v_addr,
1795 						MaxFrameSize,
1796 						PCI_DMA_FROMDEVICE);
1797 			rxd->rxd_os.dma_addr = b_addr;
1798 		} else {
1799 			// no skb available, use local buffer
1800 			// System has run out of buffer memory, but we want to
1801 			// keep the receiver running in hope of better times.
1802 			// Multiple descriptors may point to this local buffer,
1803 			// so data in it must be considered invalid.
1804 			pr_debug("Queueing invalid buffer!\n");
1805 			v_addr = smc->os.LocalRxBuffer;
1806 			b_addr = smc->os.LocalRxBufferDMA;
1807 		}
1808 
1809 		rxd->rxd_os.skb = skb;
1810 
1811 		// Pass receive buffer to HWM.
1812 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1813 			    FIRST_FRAG | LAST_FRAG);
1814 	}
1815 	pr_debug("leaving mac_drv_fill_rxd\n");
1816 }				// mac_drv_fill_rxd
1817 
1818 
1819 /************************
1820  *
1821  *	mac_drv_clear_rxd
1822  *
1823  *	The hardware module calls this function to release unused
1824  *	receive buffers.
1825  * Args
1826  *	smc - A pointer to the SMT context struct.
1827  *
1828  *	rxd - A pointer to the first RxD which is used by the receive buffer.
1829  *
1830  *	frag_count - Count of RxDs used by the receive buffer.
1831  * Out
1832  *	Nothing.
1833  *
1834  ************************/
1835 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1836 		       int frag_count)
1837 {
1838 
1839 	struct sk_buff *skb;
1840 
1841 	pr_debug("entering mac_drv_clear_rxd\n");
1842 
1843 	if (frag_count != 1)	// This is not allowed to happen.
1844 
1845 		printk("fddi: Multi-fragment clear!\n");
1846 
1847 	for (; frag_count > 0; frag_count--) {
1848 		skb = rxd->rxd_os.skb;
1849 		if (skb != NULL) {
1850 			skfddi_priv *bp = &smc->os;
1851 			int MaxFrameSize = bp->MaxFrameSize;
1852 
1853 			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1854 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1855 
1856 			dev_kfree_skb(skb);
1857 			rxd->rxd_os.skb = NULL;
1858 		}
1859 		rxd = rxd->rxd_next;	// Next RXD.
1860 
1861 	}
1862 }				// mac_drv_clear_rxd
1863 
1864 
1865 /************************
1866  *
1867  *	mac_drv_rx_init
1868  *
1869  *	The hardware module calls this routine when an SMT or NSA frame of the
1870  *	local SMT should be delivered to the LLC layer.
1871  *
1872  *	It is necessary to have this function, because there is no other way to
1873  *	copy the contents of SMT MBufs into receive buffers.
1874  *
1875  *	mac_drv_rx_init allocates the required target memory for this frame,
1876  *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1877  * Args
1878  *	smc - A pointer to the SMT context struct.
1879  *
1880  *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1881  *
1882  *	fc - The Frame Control field of the received frame.
1883  *
1884  *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1885  *
1886  *	la_len - The length of the lookahead data stored in the lookahead
1887  *	buffer (may be zero).
1888  * Out
1889  *	Always returns zero (0).
1890  *
1891  ************************/
1892 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1893 		    char *look_ahead, int la_len)
1894 {
1895 	struct sk_buff *skb;
1896 
1897 	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1898 
1899 	// "Received" a SMT or NSA frame of the local SMT.
1900 
1901 	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1902 		pr_debug("fddi: Discard invalid local SMT frame\n");
1903 		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1904 		       len, la_len, (unsigned long) look_ahead);
1905 		return 0;
1906 	}
1907 	skb = alloc_skb(len + 3, GFP_ATOMIC);
1908 	if (!skb) {
1909 		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1910 		return 0;
1911 	}
1912 	skb_reserve(skb, 3);
1913 	skb_put(skb, len);
1914 	skb_copy_to_linear_data(skb, look_ahead, len);
1915 
1916 	// deliver frame to system
1917 	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1918 	netif_rx(skb);
1919 
1920 	return 0;
1921 }				// mac_drv_rx_init
1922 
1923 
1924 /************************
1925  *
1926  *	smt_timer_poll
1927  *
1928  *	This routine is called periodically by the SMT module to clean up the
1929  *	driver.
1930  *
1931  *	Return any queued frames back to the upper protocol layers if the ring
1932  *	is down.
1933  * Args
1934  *	smc - A pointer to the SMT context struct.
1935  * Out
1936  *	Nothing.
1937  *
1938  ************************/
1939 void smt_timer_poll(struct s_smc *smc)
1940 {
1941 }				// smt_timer_poll
1942 
1943 
1944 /************************
1945  *
1946  *	ring_status_indication
1947  *
1948  *	This function indicates a change of the ring state.
1949  * Args
1950  *	smc - A pointer to the SMT context struct.
1951  *
1952  *	status - The current ring status.
1953  * Out
1954  *	Nothing.
1955  *
1956  ************************/
1957 void ring_status_indication(struct s_smc *smc, u_long status)
1958 {
1959 	pr_debug("ring_status_indication( ");
1960 	if (status & RS_RES15)
1961 		pr_debug("RS_RES15 ");
1962 	if (status & RS_HARDERROR)
1963 		pr_debug("RS_HARDERROR ");
1964 	if (status & RS_SOFTERROR)
1965 		pr_debug("RS_SOFTERROR ");
1966 	if (status & RS_BEACON)
1967 		pr_debug("RS_BEACON ");
1968 	if (status & RS_PATHTEST)
1969 		pr_debug("RS_PATHTEST ");
1970 	if (status & RS_SELFTEST)
1971 		pr_debug("RS_SELFTEST ");
1972 	if (status & RS_RES9)
1973 		pr_debug("RS_RES9 ");
1974 	if (status & RS_DISCONNECT)
1975 		pr_debug("RS_DISCONNECT ");
1976 	if (status & RS_RES7)
1977 		pr_debug("RS_RES7 ");
1978 	if (status & RS_DUPADDR)
1979 		pr_debug("RS_DUPADDR ");
1980 	if (status & RS_NORINGOP)
1981 		pr_debug("RS_NORINGOP ");
1982 	if (status & RS_VERSION)
1983 		pr_debug("RS_VERSION ");
1984 	if (status & RS_STUCKBYPASSS)
1985 		pr_debug("RS_STUCKBYPASSS ");
1986 	if (status & RS_EVENT)
1987 		pr_debug("RS_EVENT ");
1988 	if (status & RS_RINGOPCHANGE)
1989 		pr_debug("RS_RINGOPCHANGE ");
1990 	if (status & RS_RES0)
1991 		pr_debug("RS_RES0 ");
1992 	pr_debug("]\n");
1993 }				// ring_status_indication
1994 
1995 
1996 /************************
1997  *
1998  *	smt_get_time
1999  *
2000  *	Gets the current time from the system.
2001  * Args
2002  *	None.
2003  * Out
2004  *	The current time in TICKS_PER_SECOND.
2005  *
2006  *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2007  *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2008  *	to the time returned by smt_get_time().
2009  *
2010  ************************/
2011 unsigned long smt_get_time(void)
2012 {
2013 	return jiffies;
2014 }				// smt_get_time
2015 
2016 
2017 /************************
2018  *
2019  *	smt_stat_counter
2020  *
2021  *	Status counter update (ring_op, fifo full).
2022  * Args
2023  *	smc - A pointer to the SMT context struct.
2024  *
2025  *	stat -	= 0: A ring operational change occurred.
2026  *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2027  * Out
2028  *	Nothing.
2029  *
2030  ************************/
2031 void smt_stat_counter(struct s_smc *smc, int stat)
2032 {
2033 //      BOOLEAN RingIsUp ;
2034 
2035 	pr_debug("smt_stat_counter\n");
2036 	switch (stat) {
2037 	case 0:
2038 		pr_debug("Ring operational change.\n");
2039 		break;
2040 	case 1:
2041 		pr_debug("Receive fifo overflow.\n");
2042 		smc->os.MacStat.gen.rx_errors++;
2043 		break;
2044 	default:
2045 		pr_debug("Unknown status (%d).\n", stat);
2046 		break;
2047 	}
2048 }				// smt_stat_counter
2049 
2050 
2051 /************************
2052  *
2053  *	cfm_state_change
2054  *
2055  *	Sets CFM state in custom statistics.
2056  * Args
2057  *	smc - A pointer to the SMT context struct.
2058  *
2059  *	c_state - Possible values are:
2060  *
2061  *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2062  *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2063  * Out
2064  *	Nothing.
2065  *
2066  ************************/
2067 void cfm_state_change(struct s_smc *smc, int c_state)
2068 {
2069 #ifdef DRIVERDEBUG
2070 	char *s;
2071 
2072 	switch (c_state) {
2073 	case SC0_ISOLATED:
2074 		s = "SC0_ISOLATED";
2075 		break;
2076 	case SC1_WRAP_A:
2077 		s = "SC1_WRAP_A";
2078 		break;
2079 	case SC2_WRAP_B:
2080 		s = "SC2_WRAP_B";
2081 		break;
2082 	case SC4_THRU_A:
2083 		s = "SC4_THRU_A";
2084 		break;
2085 	case SC5_THRU_B:
2086 		s = "SC5_THRU_B";
2087 		break;
2088 	case SC7_WRAP_S:
2089 		s = "SC7_WRAP_S";
2090 		break;
2091 	case SC9_C_WRAP_A:
2092 		s = "SC9_C_WRAP_A";
2093 		break;
2094 	case SC10_C_WRAP_B:
2095 		s = "SC10_C_WRAP_B";
2096 		break;
2097 	case SC11_C_WRAP_S:
2098 		s = "SC11_C_WRAP_S";
2099 		break;
2100 	default:
2101 		pr_debug("cfm_state_change: unknown %d\n", c_state);
2102 		return;
2103 	}
2104 	pr_debug("cfm_state_change: %s\n", s);
2105 #endif				// DRIVERDEBUG
2106 }				// cfm_state_change
2107 
2108 
2109 /************************
2110  *
2111  *	ecm_state_change
2112  *
2113  *	Sets ECM state in custom statistics.
2114  * Args
2115  *	smc - A pointer to the SMT context struct.
2116  *
2117  *	e_state - Possible values are:
2118  *
2119  *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2120  *		SC5_THRU_B (7), SC7_WRAP_S (8)
2121  * Out
2122  *	Nothing.
2123  *
2124  ************************/
2125 void ecm_state_change(struct s_smc *smc, int e_state)
2126 {
2127 #ifdef DRIVERDEBUG
2128 	char *s;
2129 
2130 	switch (e_state) {
2131 	case EC0_OUT:
2132 		s = "EC0_OUT";
2133 		break;
2134 	case EC1_IN:
2135 		s = "EC1_IN";
2136 		break;
2137 	case EC2_TRACE:
2138 		s = "EC2_TRACE";
2139 		break;
2140 	case EC3_LEAVE:
2141 		s = "EC3_LEAVE";
2142 		break;
2143 	case EC4_PATH_TEST:
2144 		s = "EC4_PATH_TEST";
2145 		break;
2146 	case EC5_INSERT:
2147 		s = "EC5_INSERT";
2148 		break;
2149 	case EC6_CHECK:
2150 		s = "EC6_CHECK";
2151 		break;
2152 	case EC7_DEINSERT:
2153 		s = "EC7_DEINSERT";
2154 		break;
2155 	default:
2156 		s = "unknown";
2157 		break;
2158 	}
2159 	pr_debug("ecm_state_change: %s\n", s);
2160 #endif				//DRIVERDEBUG
2161 }				// ecm_state_change
2162 
2163 
2164 /************************
2165  *
2166  *	rmt_state_change
2167  *
2168  *	Sets RMT state in custom statistics.
2169  * Args
2170  *	smc - A pointer to the SMT context struct.
2171  *
2172  *	r_state - Possible values are:
2173  *
2174  *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2175  *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2176  * Out
2177  *	Nothing.
2178  *
2179  ************************/
2180 void rmt_state_change(struct s_smc *smc, int r_state)
2181 {
2182 #ifdef DRIVERDEBUG
2183 	char *s;
2184 
2185 	switch (r_state) {
2186 	case RM0_ISOLATED:
2187 		s = "RM0_ISOLATED";
2188 		break;
2189 	case RM1_NON_OP:
2190 		s = "RM1_NON_OP - not operational";
2191 		break;
2192 	case RM2_RING_OP:
2193 		s = "RM2_RING_OP - ring operational";
2194 		break;
2195 	case RM3_DETECT:
2196 		s = "RM3_DETECT - detect dupl addresses";
2197 		break;
2198 	case RM4_NON_OP_DUP:
2199 		s = "RM4_NON_OP_DUP - dupl. addr detected";
2200 		break;
2201 	case RM5_RING_OP_DUP:
2202 		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2203 		break;
2204 	case RM6_DIRECTED:
2205 		s = "RM6_DIRECTED - sending directed beacons";
2206 		break;
2207 	case RM7_TRACE:
2208 		s = "RM7_TRACE - trace initiated";
2209 		break;
2210 	default:
2211 		s = "unknown";
2212 		break;
2213 	}
2214 	pr_debug("[rmt_state_change: %s]\n", s);
2215 #endif				// DRIVERDEBUG
2216 }				// rmt_state_change
2217 
2218 
2219 /************************
2220  *
2221  *	drv_reset_indication
2222  *
2223  *	This function is called by the SMT when it has detected a severe
2224  *	hardware problem. The driver should perform a reset on the adapter
2225  *	as soon as possible, but not from within this function.
2226  * Args
2227  *	smc - A pointer to the SMT context struct.
2228  * Out
2229  *	Nothing.
2230  *
2231  ************************/
2232 void drv_reset_indication(struct s_smc *smc)
2233 {
2234 	pr_debug("entering drv_reset_indication\n");
2235 
2236 	smc->os.ResetRequested = TRUE;	// Set flag.
2237 
2238 }				// drv_reset_indication
2239 
2240 static struct pci_driver skfddi_pci_driver = {
2241 	.name		= "skfddi",
2242 	.id_table	= skfddi_pci_tbl,
2243 	.probe		= skfp_init_one,
2244 	.remove		= skfp_remove_one,
2245 };
2246 
2247 module_pci_driver(skfddi_pci_driver);
2248