xref: /linux/drivers/net/fddi/defxx.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *		DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *		DEC FDDIcontroller/EISA         (DEFEA)
18  *		DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro	Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *		The driver scans for supported EISA adapters by reading the
42  *		SLOT ID register for each EISA slot and making a match
43  *		against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *		This driver currently supports both EISA and PCI controller
47  *		families.  While the custom DMA chip and FDDI logic is similar
48  *		or identical, the bus logic is very different.  After
49  *		initialization, the	only bus-specific differences is in how the
50  *		driver enables and disables interrupts.  Other than that, the
51  *		run-time critical code behaves the same on both families.
52  *		It's important to note that both adapter families are configured
53  *		to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *		In the driver open routine, the driver ISR (interrupt service
57  *		routine) is registered and the adapter is brought to an
58  *		operational state.  In the driver close routine, the opposite
59  *		occurs; the driver ISR is deregistered and the adapter is
60  *		brought to a safe, but closed state.  Users may use consecutive
61  *		commands to bring the adapter up and down as in the following
62  *		example:
63  *					ifconfig fddi0 up
64  *					ifconfig fddi0 down
65  *					ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *		Apparently, there is no shutdown or halt routine support under
69  *		Linux.  This routine would be called during "reboot" or
70  *		"shutdown" to allow the driver to place the adapter in a safe
71  *		state before a warm reboot occurs.  To be really safe, the user
72  *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *		to ensure that the adapter DMA engine is taken off-line.  However,
74  *		the current driver code anticipates this problem and always issues
75  *		a soft reset of the adapter	at the beginning of driver initialization.
76  *		A future driver enhancement in this area may occur in 2.1.X where
77  *		Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *		The driver supports shared interrupts, so the ISR is registered for
81  *		each board with the appropriate flag and the pointer to that board's
82  *		device structure.  This provides the context during interrupt
83  *		processing to support shared interrupts and multiple boards.
84  *
85  *		Interrupt enabling/disabling can occur at many levels.  At the host
86  *		end, you can disable system interrupts, or disable interrupts at the
87  *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *		have a bus-logic chip interrupt enable/disable as well as a DMA
89  *		controller interrupt enable/disable.
90  *
91  *		The driver currently enables and disables adapter interrupts at the
92  *		bus-logic chip and assumes that Linux will take care of clearing or
93  *		acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *		Control functions are those used to support functions such as adding
97  *		or deleting multicast addresses, enabling or disabling packet
98  *		reception filters, or other custom/proprietary commands.  Presently,
99  *		the driver supports the "get statistics", "set multicast list", and
100  *		"set mac address" functions defined by Linux.  A list of possible
101  *		enhancements include:
102  *
103  *				- Custom ioctl interface for executing port interface commands
104  *				- Custom ioctl interface for adding unicast addresses to
105  *				  adapter CAM (to support bridge functions).
106  *				- Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *		The driver function names that start with "dfx_hw_" represent
110  *		low-level port interface routines that are called frequently.  They
111  *		include issuing a DMA or port control command to the adapter,
112  *		resetting the adapter, or reading the adapter state.  Since the
113  *		driver initialization and run-time code must make calls into the
114  *		port interface, these routines were written to be as generic and
115  *		usable as possible.
116  *
117  *   Receive Path -
118  *		The adapter DMA engine supports a 256 entry receive descriptor block
119  *		of which up to 255 entries can be used at any given time.  The
120  *		architecture is a standard producer, consumer, completion model in
121  *		which the driver "produces" receive buffers to the adapter, the
122  *		adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *		and the driver "completes" the receive buffers by servicing the
124  *		incoming packet, then "produces" a new buffer and starts the cycle
125  *		again.  Receive buffers can be fragmented in up to 16 fragments
126  *		(descriptor	entries).  For simplicity, this driver posts
127  *		single-fragment receive buffers of 4608 bytes, then allocates a
128  *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *		utilization, a better approach would be to pass up the receive
130  *		buffer (no extra copy) then allocate and post a replacement buffer.
131  *		This is a performance enhancement that should be looked into at
132  *		some point.
133  *
134  *   Transmit Path -
135  *		Like the receive path, the adapter DMA engine supports a 256 entry
136  *		transmit descriptor block of which up to 255 entries can be used at
137  *		any	given time.  Transmit buffers can be fragmented	in up to 255
138  *		fragments (descriptor entries).  This driver always posts one
139  *		fragment per transmit packet request.
140  *
141  *		The fragment contains the entire packet from FC to end of data.
142  *		Before posting the buffer to the adapter, the driver sets a three-byte
143  *		packet request header (PRH) which is required by the Motorola MAC chip
144  *		used on the adapters.  The PRH tells the MAC the type of token to
145  *		receive/send, whether or not to generate and append the CRC, whether
146  *		synchronous or asynchronous framing is used, etc.  Since the PRH
147  *		definition is not necessarily consistent across all FDDI chipsets,
148  *		the driver, rather than the common FDDI packet handler routines,
149  *		sets these bytes.
150  *
151  *		To reduce the amount of descriptor fetches needed per transmit request,
152  *		the driver takes advantage of the fact that there are at least three
153  *		bytes available before the skb->data field on the outgoing transmit
154  *		request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *		bytes which we'll use to store the PRH.
158  *
159  *		There's a subtle advantage to adding these pad bytes to the
160  *		hard_header_len, it ensures that the data portion of the packet for
161  *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *		implementations may not need the extra padding and can start copying
163  *		or DMAing directly from the FC byte which starts at skb->data.  Should
164  *		another driver implementation need ADDITIONAL padding, the net_init.c
165  *		module should be updated and dev->hard_header_len should be increased.
166  *		NOTE: To maintain the alignment on the data portion of the packet,
167  *		dev->hard_header_len should always be evenly divisible by 4 and at
168  *		least 24 bytes in size.
169  *
170  * Modification History:
171  *		Date		Name	Description
172  *		16-Aug-96	LVS		Created.
173  *		20-Aug-96	LVS		Updated dfx_probe so that version information
174  *							string is only displayed if 1 or more cards are
175  *							found.  Changed dfx_rcv_queue_process to copy
176  *							3 NULL bytes before FC to ensure that data is
177  *							longword aligned in receive buffer.
178  *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
179  *							LLC group promiscuous mode if multicast list
180  *							is too large.  LLC individual/group promiscuous
181  *							mode is now disabled if IFF_PROMISC flag not set.
182  *							dfx_xmt_queue_pkt no longer checks for NULL skb
183  *							on Alan Cox recommendation.  Added node address
184  *							override support.
185  *		12-Sep-96	LVS		Reset current address to factory address during
186  *							device open.  Updated transmit path to post a
187  *							single fragment which includes PRH->end of data.
188  *		Mar 2000	AC		Did various cleanups for 2.3.x
189  *		Jun 2000	jgarzik		PCI and resource alloc cleanups
190  *		Jul 2000	tjeerd		Much cleanup and some bug fixes
191  *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
192  *		Feb 2001			Skb allocation fixes
193  *		Feb 2001	davej		PCI enable cleanups.
194  *		04 Aug 2003	macro		Converted to the DMA API.
195  *		14 Aug 2004	macro		Fix device names reported.
196  *		14 Jun 2005	macro		Use irqreturn_t.
197  *		23 Oct 2006	macro		Big-endian host support.
198  *		14 Dec 2006	macro		TURBOchannel support.
199  */
200 
201 /* Include files */
202 #include <linux/bitops.h>
203 #include <linux/compiler.h>
204 #include <linux/delay.h>
205 #include <linux/dma-mapping.h>
206 #include <linux/eisa.h>
207 #include <linux/errno.h>
208 #include <linux/fddidevice.h>
209 #include <linux/init.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220 
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223 
224 #include "defxx.h"
225 
226 /* Version information string should be updated prior to each new release!  */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.10"
229 #define DRV_RELDATE "2006/12/14"
230 
231 static char version[] =
232 	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 	"  Lawrence V. Stefani and others\n";
234 
235 #define DYNAMIC_BUFFERS 1
236 
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240  * alignment for compatibility with old EISA boards.
241  */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243 
244 #ifdef CONFIG_PCI
245 #define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
246 #else
247 #define DFX_BUS_PCI(dev) 0
248 #endif
249 
250 #ifdef CONFIG_EISA
251 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
252 #else
253 #define DFX_BUS_EISA(dev) 0
254 #endif
255 
256 #ifdef CONFIG_TC
257 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
258 #else
259 #define DFX_BUS_TC(dev) 0
260 #endif
261 
262 #ifdef CONFIG_DEFXX_MMIO
263 #define DFX_MMIO 1
264 #else
265 #define DFX_MMIO 0
266 #endif
267 
268 /* Define module-wide (static) routines */
269 
270 static void		dfx_bus_init(struct net_device *dev);
271 static void		dfx_bus_uninit(struct net_device *dev);
272 static void		dfx_bus_config_check(DFX_board_t *bp);
273 
274 static int		dfx_driver_init(struct net_device *dev,
275 					const char *print_name,
276 					resource_size_t bar_start);
277 static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
278 
279 static int		dfx_open(struct net_device *dev);
280 static int		dfx_close(struct net_device *dev);
281 
282 static void		dfx_int_pr_halt_id(DFX_board_t *bp);
283 static void		dfx_int_type_0_process(DFX_board_t *bp);
284 static void		dfx_int_common(struct net_device *dev);
285 static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
286 
287 static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288 static void		dfx_ctl_set_multicast_list(struct net_device *dev);
289 static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290 static int		dfx_ctl_update_cam(DFX_board_t *bp);
291 static int		dfx_ctl_update_filters(DFX_board_t *bp);
292 
293 static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
294 static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295 static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296 static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
297 static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
298 
299 static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300 static void		dfx_rcv_queue_process(DFX_board_t *bp);
301 static void		dfx_rcv_flush(DFX_board_t *bp);
302 
303 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
304 				     struct net_device *dev);
305 static int		dfx_xmt_done(DFX_board_t *bp);
306 static void		dfx_xmt_flush(DFX_board_t *bp);
307 
308 /* Define module-wide (static) variables */
309 
310 static struct pci_driver dfx_pci_driver;
311 static struct eisa_driver dfx_eisa_driver;
312 static struct tc_driver dfx_tc_driver;
313 
314 
315 /*
316  * =======================
317  * = dfx_port_write_long =
318  * = dfx_port_read_long  =
319  * =======================
320  *
321  * Overview:
322  *   Routines for reading and writing values from/to adapter
323  *
324  * Returns:
325  *   None
326  *
327  * Arguments:
328  *   bp		- pointer to board information
329  *   offset	- register offset from base I/O address
330  *   data	- for dfx_port_write_long, this is a value to write;
331  *		  for dfx_port_read_long, this is a pointer to store
332  *		  the read value
333  *
334  * Functional Description:
335  *   These routines perform the correct operation to read or write
336  *   the adapter register.
337  *
338  *   EISA port block base addresses are based on the slot number in which the
339  *   controller is installed.  For example, if the EISA controller is installed
340  *   in slot 4, the port block base address is 0x4000.  If the controller is
341  *   installed in slot 2, the port block base address is 0x2000, and so on.
342  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
343  *   registers using the register offsets defined in DEFXX.H.
344  *
345  *   PCI port block base addresses are assigned by the PCI BIOS or system
346  *   firmware.  There is one 128 byte port block which can be accessed.  It
347  *   allows for I/O mapping of both PDQ and PFI registers using the register
348  *   offsets defined in DEFXX.H.
349  *
350  * Return Codes:
351  *   None
352  *
353  * Assumptions:
354  *   bp->base is a valid base I/O address for this adapter.
355  *   offset is a valid register offset for this adapter.
356  *
357  * Side Effects:
358  *   Rather than produce macros for these functions, these routines
359  *   are defined using "inline" to ensure that the compiler will
360  *   generate inline code and not waste a procedure call and return.
361  *   This provides all the benefits of macros, but with the
362  *   advantage of strict data type checking.
363  */
364 
365 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
366 {
367 	writel(data, bp->base.mem + offset);
368 	mb();
369 }
370 
371 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
372 {
373 	outl(data, bp->base.port + offset);
374 }
375 
376 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
377 {
378 	struct device __maybe_unused *bdev = bp->bus_dev;
379 	int dfx_bus_tc = DFX_BUS_TC(bdev);
380 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
381 
382 	if (dfx_use_mmio)
383 		dfx_writel(bp, offset, data);
384 	else
385 		dfx_outl(bp, offset, data);
386 }
387 
388 
389 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
390 {
391 	mb();
392 	*data = readl(bp->base.mem + offset);
393 }
394 
395 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
396 {
397 	*data = inl(bp->base.port + offset);
398 }
399 
400 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
401 {
402 	struct device __maybe_unused *bdev = bp->bus_dev;
403 	int dfx_bus_tc = DFX_BUS_TC(bdev);
404 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
405 
406 	if (dfx_use_mmio)
407 		dfx_readl(bp, offset, data);
408 	else
409 		dfx_inl(bp, offset, data);
410 }
411 
412 
413 /*
414  * ================
415  * = dfx_get_bars =
416  * ================
417  *
418  * Overview:
419  *   Retrieves the address range used to access control and status
420  *   registers.
421  *
422  * Returns:
423  *   None
424  *
425  * Arguments:
426  *   bdev	- pointer to device information
427  *   bar_start	- pointer to store the start address
428  *   bar_len	- pointer to store the length of the area
429  *
430  * Assumptions:
431  *   I am sure there are some.
432  *
433  * Side Effects:
434  *   None
435  */
436 static void dfx_get_bars(struct device *bdev,
437 			 resource_size_t *bar_start, resource_size_t *bar_len)
438 {
439 	int dfx_bus_pci = DFX_BUS_PCI(bdev);
440 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
441 	int dfx_bus_tc = DFX_BUS_TC(bdev);
442 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
443 
444 	if (dfx_bus_pci) {
445 		int num = dfx_use_mmio ? 0 : 1;
446 
447 		*bar_start = pci_resource_start(to_pci_dev(bdev), num);
448 		*bar_len = pci_resource_len(to_pci_dev(bdev), num);
449 	}
450 	if (dfx_bus_eisa) {
451 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452 		resource_size_t bar;
453 
454 		if (dfx_use_mmio) {
455 			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
456 			bar <<= 8;
457 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
458 			bar <<= 8;
459 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
460 			bar <<= 16;
461 			*bar_start = bar;
462 			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
463 			bar <<= 8;
464 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
465 			bar <<= 8;
466 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
467 			bar <<= 16;
468 			*bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
469 		} else {
470 			*bar_start = base_addr;
471 			*bar_len = PI_ESIC_K_CSR_IO_LEN;
472 		}
473 	}
474 	if (dfx_bus_tc) {
475 		*bar_start = to_tc_dev(bdev)->resource.start +
476 			     PI_TC_K_CSR_OFFSET;
477 		*bar_len = PI_TC_K_CSR_LEN;
478 	}
479 }
480 
481 static const struct net_device_ops dfx_netdev_ops = {
482 	.ndo_open		= dfx_open,
483 	.ndo_stop		= dfx_close,
484 	.ndo_start_xmit		= dfx_xmt_queue_pkt,
485 	.ndo_get_stats		= dfx_ctl_get_stats,
486 	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
487 	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
488 };
489 
490 /*
491  * ================
492  * = dfx_register =
493  * ================
494  *
495  * Overview:
496  *   Initializes a supported FDDI controller
497  *
498  * Returns:
499  *   Condition code
500  *
501  * Arguments:
502  *   bdev - pointer to device information
503  *
504  * Functional Description:
505  *
506  * Return Codes:
507  *   0		 - This device (fddi0, fddi1, etc) configured successfully
508  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
509  *
510  * Assumptions:
511  *   It compiles so it should work :-( (PCI cards do :-)
512  *
513  * Side Effects:
514  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
515  *   initialized and the board resources are read and stored in
516  *   the device structure.
517  */
518 static int dfx_register(struct device *bdev)
519 {
520 	static int version_disp;
521 	int dfx_bus_pci = DFX_BUS_PCI(bdev);
522 	int dfx_bus_tc = DFX_BUS_TC(bdev);
523 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
524 	const char *print_name = dev_name(bdev);
525 	struct net_device *dev;
526 	DFX_board_t	  *bp;			/* board pointer */
527 	resource_size_t bar_start = 0;		/* pointer to port */
528 	resource_size_t bar_len = 0;		/* resource length */
529 	int alloc_size;				/* total buffer size used */
530 	struct resource *region;
531 	int err = 0;
532 
533 	if (!version_disp) {	/* display version info if adapter is found */
534 		version_disp = 1;	/* set display flag to TRUE so that */
535 		printk(version);	/* we only display this string ONCE */
536 	}
537 
538 	dev = alloc_fddidev(sizeof(*bp));
539 	if (!dev) {
540 		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
541 		       print_name);
542 		return -ENOMEM;
543 	}
544 
545 	/* Enable PCI device. */
546 	if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
547 		printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
548 		       print_name);
549 		goto err_out;
550 	}
551 
552 	SET_NETDEV_DEV(dev, bdev);
553 
554 	bp = netdev_priv(dev);
555 	bp->bus_dev = bdev;
556 	dev_set_drvdata(bdev, dev);
557 
558 	dfx_get_bars(bdev, &bar_start, &bar_len);
559 
560 	if (dfx_use_mmio)
561 		region = request_mem_region(bar_start, bar_len, print_name);
562 	else
563 		region = request_region(bar_start, bar_len, print_name);
564 	if (!region) {
565 		printk(KERN_ERR "%s: Cannot reserve I/O resource "
566 		       "0x%lx @ 0x%lx, aborting\n",
567 		       print_name, (long)bar_len, (long)bar_start);
568 		err = -EBUSY;
569 		goto err_out_disable;
570 	}
571 
572 	/* Set up I/O base address. */
573 	if (dfx_use_mmio) {
574 		bp->base.mem = ioremap_nocache(bar_start, bar_len);
575 		if (!bp->base.mem) {
576 			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
577 			err = -ENOMEM;
578 			goto err_out_region;
579 		}
580 	} else {
581 		bp->base.port = bar_start;
582 		dev->base_addr = bar_start;
583 	}
584 
585 	/* Initialize new device structure */
586 	dev->netdev_ops			= &dfx_netdev_ops;
587 
588 	if (dfx_bus_pci)
589 		pci_set_master(to_pci_dev(bdev));
590 
591 	if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
592 		err = -ENODEV;
593 		goto err_out_unmap;
594 	}
595 
596 	err = register_netdev(dev);
597 	if (err)
598 		goto err_out_kfree;
599 
600 	printk("%s: registered as %s\n", print_name, dev->name);
601 	return 0;
602 
603 err_out_kfree:
604 	alloc_size = sizeof(PI_DESCR_BLOCK) +
605 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
606 #ifndef DYNAMIC_BUFFERS
607 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
608 #endif
609 		     sizeof(PI_CONSUMER_BLOCK) +
610 		     (PI_ALIGN_K_DESC_BLK - 1);
611 	if (bp->kmalloced)
612 		dma_free_coherent(bdev, alloc_size,
613 				  bp->kmalloced, bp->kmalloced_dma);
614 
615 err_out_unmap:
616 	if (dfx_use_mmio)
617 		iounmap(bp->base.mem);
618 
619 err_out_region:
620 	if (dfx_use_mmio)
621 		release_mem_region(bar_start, bar_len);
622 	else
623 		release_region(bar_start, bar_len);
624 
625 err_out_disable:
626 	if (dfx_bus_pci)
627 		pci_disable_device(to_pci_dev(bdev));
628 
629 err_out:
630 	free_netdev(dev);
631 	return err;
632 }
633 
634 
635 /*
636  * ================
637  * = dfx_bus_init =
638  * ================
639  *
640  * Overview:
641  *   Initializes the bus-specific controller logic.
642  *
643  * Returns:
644  *   None
645  *
646  * Arguments:
647  *   dev - pointer to device information
648  *
649  * Functional Description:
650  *   Determine and save adapter IRQ in device table,
651  *   then perform bus-specific logic initialization.
652  *
653  * Return Codes:
654  *   None
655  *
656  * Assumptions:
657  *   bp->base has already been set with the proper
658  *	 base I/O address for this device.
659  *
660  * Side Effects:
661  *   Interrupts are enabled at the adapter bus-specific logic.
662  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
663  *   enabled yet.
664  */
665 
666 static void dfx_bus_init(struct net_device *dev)
667 {
668 	DFX_board_t *bp = netdev_priv(dev);
669 	struct device *bdev = bp->bus_dev;
670 	int dfx_bus_pci = DFX_BUS_PCI(bdev);
671 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
672 	int dfx_bus_tc = DFX_BUS_TC(bdev);
673 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
674 	u8 val;
675 
676 	DBG_printk("In dfx_bus_init...\n");
677 
678 	/* Initialize a pointer back to the net_device struct */
679 	bp->dev = dev;
680 
681 	/* Initialize adapter based on bus type */
682 
683 	if (dfx_bus_tc)
684 		dev->irq = to_tc_dev(bdev)->interrupt;
685 	if (dfx_bus_eisa) {
686 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
687 
688 		/* Get the interrupt level from the ESIC chip.  */
689 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
690 		val &= PI_CONFIG_STAT_0_M_IRQ;
691 		val >>= PI_CONFIG_STAT_0_V_IRQ;
692 
693 		switch (val) {
694 		case PI_CONFIG_STAT_0_IRQ_K_9:
695 			dev->irq = 9;
696 			break;
697 
698 		case PI_CONFIG_STAT_0_IRQ_K_10:
699 			dev->irq = 10;
700 			break;
701 
702 		case PI_CONFIG_STAT_0_IRQ_K_11:
703 			dev->irq = 11;
704 			break;
705 
706 		case PI_CONFIG_STAT_0_IRQ_K_15:
707 			dev->irq = 15;
708 			break;
709 		}
710 
711 		/*
712 		 * Enable memory decoding (MEMCS0) and/or port decoding
713 		 * (IOCS1/IOCS0) as appropriate in Function Control
714 		 * Register.  One of the port chip selects seems to be
715 		 * used for the Burst Holdoff register, but this bit of
716 		 * documentation is missing and as yet it has not been
717 		 * determined which of the two.  This is also the reason
718 		 * the size of the decoded port range is twice as large
719 		 * as one required by the PDQ.
720 		 */
721 
722 		/* Set the decode range of the board.  */
723 		val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
724 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
725 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
726 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
727 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
728 		val = PI_ESIC_K_CSR_IO_LEN - 1;
729 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
730 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
731 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
732 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
733 
734 		/* Enable the decoders.  */
735 		val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
736 		if (dfx_use_mmio)
737 			val |= PI_FUNCTION_CNTRL_M_MEMCS0;
738 		outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
739 
740 		/*
741 		 * Enable access to the rest of the module
742 		 * (including PDQ and packet memory).
743 		 */
744 		val = PI_SLOT_CNTRL_M_ENB;
745 		outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
746 
747 		/*
748 		 * Map PDQ registers into memory or port space.  This is
749 		 * done with a bit in the Burst Holdoff register.
750 		 */
751 		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
752 		if (dfx_use_mmio)
753 			val |= PI_BURST_HOLDOFF_V_MEM_MAP;
754 		else
755 			val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
756 		outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
757 
758 		/* Enable interrupts at EISA bus interface chip (ESIC) */
759 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
760 		val |= PI_CONFIG_STAT_0_M_INT_ENB;
761 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
762 	}
763 	if (dfx_bus_pci) {
764 		struct pci_dev *pdev = to_pci_dev(bdev);
765 
766 		/* Get the interrupt level from the PCI Configuration Table */
767 
768 		dev->irq = pdev->irq;
769 
770 		/* Check Latency Timer and set if less than minimal */
771 
772 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
773 		if (val < PFI_K_LAT_TIMER_MIN) {
774 			val = PFI_K_LAT_TIMER_DEF;
775 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
776 		}
777 
778 		/* Enable interrupts at PCI bus interface chip (PFI) */
779 		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
780 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
781 	}
782 }
783 
784 /*
785  * ==================
786  * = dfx_bus_uninit =
787  * ==================
788  *
789  * Overview:
790  *   Uninitializes the bus-specific controller logic.
791  *
792  * Returns:
793  *   None
794  *
795  * Arguments:
796  *   dev - pointer to device information
797  *
798  * Functional Description:
799  *   Perform bus-specific logic uninitialization.
800  *
801  * Return Codes:
802  *   None
803  *
804  * Assumptions:
805  *   bp->base has already been set with the proper
806  *	 base I/O address for this device.
807  *
808  * Side Effects:
809  *   Interrupts are disabled at the adapter bus-specific logic.
810  */
811 
812 static void dfx_bus_uninit(struct net_device *dev)
813 {
814 	DFX_board_t *bp = netdev_priv(dev);
815 	struct device *bdev = bp->bus_dev;
816 	int dfx_bus_pci = DFX_BUS_PCI(bdev);
817 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
818 	u8 val;
819 
820 	DBG_printk("In dfx_bus_uninit...\n");
821 
822 	/* Uninitialize adapter based on bus type */
823 
824 	if (dfx_bus_eisa) {
825 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
826 
827 		/* Disable interrupts at EISA bus interface chip (ESIC) */
828 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
829 		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
830 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
831 	}
832 	if (dfx_bus_pci) {
833 		/* Disable interrupts at PCI bus interface chip (PFI) */
834 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
835 	}
836 }
837 
838 
839 /*
840  * ========================
841  * = dfx_bus_config_check =
842  * ========================
843  *
844  * Overview:
845  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
846  *   are illegal, then this routine will set new defaults.
847  *
848  * Returns:
849  *   None
850  *
851  * Arguments:
852  *   bp - pointer to board information
853  *
854  * Functional Description:
855  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
856  *   PDQ, and all FDDI PCI controllers, all values are legal.
857  *
858  * Return Codes:
859  *   None
860  *
861  * Assumptions:
862  *   dfx_adap_init has NOT been called yet so burst size and other items have
863  *   not been set.
864  *
865  * Side Effects:
866  *   None
867  */
868 
869 static void dfx_bus_config_check(DFX_board_t *bp)
870 {
871 	struct device __maybe_unused *bdev = bp->bus_dev;
872 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
873 	int	status;				/* return code from adapter port control call */
874 	u32	host_data;			/* LW data returned from port control call */
875 
876 	DBG_printk("In dfx_bus_config_check...\n");
877 
878 	/* Configuration check only valid for EISA adapter */
879 
880 	if (dfx_bus_eisa) {
881 		/*
882 		 * First check if revision 2 EISA controller.  Rev. 1 cards used
883 		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
884 		 * cards used PDQ revision E, so no workaround needed in this
885 		 * case, either.  Only Rev. 2 cards used either Rev. D or E
886 		 * chips, so we must verify the chip revision on Rev. 2 cards.
887 		 */
888 		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
889 			/*
890 			 * Revision 2 FDDI EISA controller found,
891 			 * so let's check PDQ revision of adapter.
892 			 */
893 			status = dfx_hw_port_ctrl_req(bp,
894 											PI_PCTRL_M_SUB_CMD,
895 											PI_SUB_CMD_K_PDQ_REV_GET,
896 											0,
897 											&host_data);
898 			if ((status != DFX_K_SUCCESS) || (host_data == 2))
899 				{
900 				/*
901 				 * Either we couldn't determine the PDQ revision, or
902 				 * we determined that it is at revision D.  In either case,
903 				 * we need to implement the workaround.
904 				 */
905 
906 				/* Ensure that the burst size is set to 8 longwords or less */
907 
908 				switch (bp->burst_size)
909 					{
910 					case PI_PDATA_B_DMA_BURST_SIZE_32:
911 					case PI_PDATA_B_DMA_BURST_SIZE_16:
912 						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
913 						break;
914 
915 					default:
916 						break;
917 					}
918 
919 				/* Ensure that full-duplex mode is not enabled */
920 
921 				bp->full_duplex_enb = PI_SNMP_K_FALSE;
922 				}
923 			}
924 		}
925 	}
926 
927 
928 /*
929  * ===================
930  * = dfx_driver_init =
931  * ===================
932  *
933  * Overview:
934  *   Initializes remaining adapter board structure information
935  *   and makes sure adapter is in a safe state prior to dfx_open().
936  *
937  * Returns:
938  *   Condition code
939  *
940  * Arguments:
941  *   dev - pointer to device information
942  *   print_name - printable device name
943  *
944  * Functional Description:
945  *   This function allocates additional resources such as the host memory
946  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
947  *	 Remaining bus initialization steps are also completed.  The adapter
948  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
949  *   must call dfx_open() to open the adapter and bring it on-line.
950  *
951  * Return Codes:
952  *   DFX_K_SUCCESS	- initialization succeeded
953  *   DFX_K_FAILURE	- initialization failed - could not allocate memory
954  *						or read adapter MAC address
955  *
956  * Assumptions:
957  *   Memory allocated from pci_alloc_consistent() call is physically
958  *   contiguous, locked memory.
959  *
960  * Side Effects:
961  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
962  *   returning from this routine.
963  */
964 
965 static int dfx_driver_init(struct net_device *dev, const char *print_name,
966 			   resource_size_t bar_start)
967 {
968 	DFX_board_t *bp = netdev_priv(dev);
969 	struct device *bdev = bp->bus_dev;
970 	int dfx_bus_pci = DFX_BUS_PCI(bdev);
971 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
972 	int dfx_bus_tc = DFX_BUS_TC(bdev);
973 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
974 	int alloc_size;			/* total buffer size needed */
975 	char *top_v, *curr_v;		/* virtual addrs into memory block */
976 	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
977 	u32 data;			/* host data register value */
978 	__le32 le32;
979 	char *board_name = NULL;
980 
981 	DBG_printk("In dfx_driver_init...\n");
982 
983 	/* Initialize bus-specific hardware registers */
984 
985 	dfx_bus_init(dev);
986 
987 	/*
988 	 * Initialize default values for configurable parameters
989 	 *
990 	 * Note: All of these parameters are ones that a user may
991 	 *       want to customize.  It'd be nice to break these
992 	 *		 out into Space.c or someplace else that's more
993 	 *		 accessible/understandable than this file.
994 	 */
995 
996 	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
997 	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
998 	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
999 	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1000 
1001 	/*
1002 	 * Ensure that HW configuration is OK
1003 	 *
1004 	 * Note: Depending on the hardware revision, we may need to modify
1005 	 *       some of the configurable parameters to workaround hardware
1006 	 *       limitations.  We'll perform this configuration check AFTER
1007 	 *       setting the parameters to their default values.
1008 	 */
1009 
1010 	dfx_bus_config_check(bp);
1011 
1012 	/* Disable PDQ interrupts first */
1013 
1014 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1015 
1016 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1017 
1018 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1019 
1020 	/*  Read the factory MAC address from the adapter then save it */
1021 
1022 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1023 				 &data) != DFX_K_SUCCESS) {
1024 		printk("%s: Could not read adapter factory MAC address!\n",
1025 		       print_name);
1026 		return DFX_K_FAILURE;
1027 	}
1028 	le32 = cpu_to_le32(data);
1029 	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1030 
1031 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1032 				 &data) != DFX_K_SUCCESS) {
1033 		printk("%s: Could not read adapter factory MAC address!\n",
1034 		       print_name);
1035 		return DFX_K_FAILURE;
1036 	}
1037 	le32 = cpu_to_le32(data);
1038 	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1039 
1040 	/*
1041 	 * Set current address to factory address
1042 	 *
1043 	 * Note: Node address override support is handled through
1044 	 *       dfx_ctl_set_mac_address.
1045 	 */
1046 
1047 	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1048 	if (dfx_bus_tc)
1049 		board_name = "DEFTA";
1050 	if (dfx_bus_eisa)
1051 		board_name = "DEFEA";
1052 	if (dfx_bus_pci)
1053 		board_name = "DEFPA";
1054 	pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1055 		print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1056 		(long long)bar_start, dev->irq, dev->dev_addr);
1057 
1058 	/*
1059 	 * Get memory for descriptor block, consumer block, and other buffers
1060 	 * that need to be DMA read or written to by the adapter.
1061 	 */
1062 
1063 	alloc_size = sizeof(PI_DESCR_BLOCK) +
1064 					PI_CMD_REQ_K_SIZE_MAX +
1065 					PI_CMD_RSP_K_SIZE_MAX +
1066 #ifndef DYNAMIC_BUFFERS
1067 					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1068 #endif
1069 					sizeof(PI_CONSUMER_BLOCK) +
1070 					(PI_ALIGN_K_DESC_BLK - 1);
1071 	bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1072 						   &bp->kmalloced_dma,
1073 						   GFP_ATOMIC);
1074 	if (top_v == NULL) {
1075 		printk("%s: Could not allocate memory for host buffers "
1076 		       "and structures!\n", print_name);
1077 		return DFX_K_FAILURE;
1078 	}
1079 	memset(top_v, 0, alloc_size);	/* zero out memory before continuing */
1080 	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1081 
1082 	/*
1083 	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1084 	 *  plus the amount of memory needed was allocated.  The physical address
1085 	 *	is now 8K aligned.  By carving up the memory in a specific order,
1086 	 *  we'll guarantee the alignment requirements for all other structures.
1087 	 *
1088 	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1089 	 *		  physically contiguous nature of the memory block or the address
1090 	 *		  alignments, then we'll need to implement a different algorithm
1091 	 *		  for allocating the needed memory.
1092 	 */
1093 
1094 	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1095 	curr_v = top_v + (curr_p - top_p);
1096 
1097 	/* Reserve space for descriptor block */
1098 
1099 	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1100 	bp->descr_block_phys = curr_p;
1101 	curr_v += sizeof(PI_DESCR_BLOCK);
1102 	curr_p += sizeof(PI_DESCR_BLOCK);
1103 
1104 	/* Reserve space for command request buffer */
1105 
1106 	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1107 	bp->cmd_req_phys = curr_p;
1108 	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1109 	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1110 
1111 	/* Reserve space for command response buffer */
1112 
1113 	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1114 	bp->cmd_rsp_phys = curr_p;
1115 	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1116 	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1117 
1118 	/* Reserve space for the LLC host receive queue buffers */
1119 
1120 	bp->rcv_block_virt = curr_v;
1121 	bp->rcv_block_phys = curr_p;
1122 
1123 #ifndef DYNAMIC_BUFFERS
1124 	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1125 	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1126 #endif
1127 
1128 	/* Reserve space for the consumer block */
1129 
1130 	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1131 	bp->cons_block_phys = curr_p;
1132 
1133 	/* Display virtual and physical addresses if debug driver */
1134 
1135 	DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1136 		   print_name,
1137 		   (long)bp->descr_block_virt, bp->descr_block_phys);
1138 	DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1139 		   print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1140 	DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1141 		   print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1142 	DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1143 		   print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1144 	DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1145 		   print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1146 
1147 	return DFX_K_SUCCESS;
1148 }
1149 
1150 
1151 /*
1152  * =================
1153  * = dfx_adap_init =
1154  * =================
1155  *
1156  * Overview:
1157  *   Brings the adapter to the link avail/link unavailable state.
1158  *
1159  * Returns:
1160  *   Condition code
1161  *
1162  * Arguments:
1163  *   bp - pointer to board information
1164  *   get_buffers - non-zero if buffers to be allocated
1165  *
1166  * Functional Description:
1167  *   Issues the low-level firmware/hardware calls necessary to bring
1168  *   the adapter up, or to properly reset and restore adapter during
1169  *   run-time.
1170  *
1171  * Return Codes:
1172  *   DFX_K_SUCCESS - Adapter brought up successfully
1173  *   DFX_K_FAILURE - Adapter initialization failed
1174  *
1175  * Assumptions:
1176  *   bp->reset_type should be set to a valid reset type value before
1177  *   calling this routine.
1178  *
1179  * Side Effects:
1180  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1181  *   upon a successful return of this routine.
1182  */
1183 
1184 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1185 	{
1186 	DBG_printk("In dfx_adap_init...\n");
1187 
1188 	/* Disable PDQ interrupts first */
1189 
1190 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1191 
1192 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1193 
1194 	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1195 		{
1196 		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1197 		return DFX_K_FAILURE;
1198 		}
1199 
1200 	/*
1201 	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1202 	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1203 	 */
1204 
1205 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1206 
1207 	/*
1208 	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1209 	 *
1210 	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1211 	 *       takes care of the on-board register values.
1212 	 */
1213 
1214 	bp->cmd_req_reg.lword	= 0;
1215 	bp->cmd_rsp_reg.lword	= 0;
1216 	bp->rcv_xmt_reg.lword	= 0;
1217 
1218 	/* Clear consumer block before going to DMA_AVAILABLE state */
1219 
1220 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1221 
1222 	/* Initialize the DMA Burst Size */
1223 
1224 	if (dfx_hw_port_ctrl_req(bp,
1225 							PI_PCTRL_M_SUB_CMD,
1226 							PI_SUB_CMD_K_BURST_SIZE_SET,
1227 							bp->burst_size,
1228 							NULL) != DFX_K_SUCCESS)
1229 		{
1230 		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1231 		return DFX_K_FAILURE;
1232 		}
1233 
1234 	/*
1235 	 * Set base address of Consumer Block
1236 	 *
1237 	 * Assumption: 32-bit physical address of consumer block is 64 byte
1238 	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1239 	 */
1240 
1241 	if (dfx_hw_port_ctrl_req(bp,
1242 							PI_PCTRL_M_CONS_BLOCK,
1243 							bp->cons_block_phys,
1244 							0,
1245 							NULL) != DFX_K_SUCCESS)
1246 		{
1247 		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1248 		return DFX_K_FAILURE;
1249 		}
1250 
1251 	/*
1252 	 * Set the base address of Descriptor Block and bring adapter
1253 	 * to DMA_AVAILABLE state.
1254 	 *
1255 	 * Note: We also set the literal and data swapping requirements
1256 	 *       in this command.
1257 	 *
1258 	 * Assumption: 32-bit physical address of descriptor block
1259 	 *       is 8Kbyte aligned.
1260 	 */
1261 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1262 				 (u32)(bp->descr_block_phys |
1263 				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1264 				 0, NULL) != DFX_K_SUCCESS) {
1265 		printk("%s: Could not set descriptor block address!\n",
1266 		       bp->dev->name);
1267 		return DFX_K_FAILURE;
1268 	}
1269 
1270 	/* Set transmit flush timeout value */
1271 
1272 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1273 	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1274 	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1275 	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1276 	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1277 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1278 		{
1279 		printk("%s: DMA command request failed!\n", bp->dev->name);
1280 		return DFX_K_FAILURE;
1281 		}
1282 
1283 	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1284 
1285 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1286 	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1287 	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1288 	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1289 	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1290 	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1291 	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1292 	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1293 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1294 		{
1295 		printk("%s: DMA command request failed!\n", bp->dev->name);
1296 		return DFX_K_FAILURE;
1297 		}
1298 
1299 	/* Initialize adapter CAM */
1300 
1301 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1302 		{
1303 		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1304 		return DFX_K_FAILURE;
1305 		}
1306 
1307 	/* Initialize adapter filters */
1308 
1309 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1310 		{
1311 		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1312 		return DFX_K_FAILURE;
1313 		}
1314 
1315 	/*
1316 	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1317 	 * reinitialized)
1318 	 */
1319 
1320 	if (get_buffers)
1321 		dfx_rcv_flush(bp);
1322 
1323 	/* Initialize receive descriptor block and produce buffers */
1324 
1325 	if (dfx_rcv_init(bp, get_buffers))
1326 	        {
1327 		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1328 		if (get_buffers)
1329 			dfx_rcv_flush(bp);
1330 		return DFX_K_FAILURE;
1331 		}
1332 
1333 	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1334 
1335 	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1336 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1337 		{
1338 		printk("%s: Start command failed\n", bp->dev->name);
1339 		if (get_buffers)
1340 			dfx_rcv_flush(bp);
1341 		return DFX_K_FAILURE;
1342 		}
1343 
1344 	/* Initialization succeeded, reenable PDQ interrupts */
1345 
1346 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1347 	return DFX_K_SUCCESS;
1348 	}
1349 
1350 
1351 /*
1352  * ============
1353  * = dfx_open =
1354  * ============
1355  *
1356  * Overview:
1357  *   Opens the adapter
1358  *
1359  * Returns:
1360  *   Condition code
1361  *
1362  * Arguments:
1363  *   dev - pointer to device information
1364  *
1365  * Functional Description:
1366  *   This function brings the adapter to an operational state.
1367  *
1368  * Return Codes:
1369  *   0		 - Adapter was successfully opened
1370  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1371  *
1372  * Assumptions:
1373  *   This routine should only be called for a device that was
1374  *   initialized successfully.
1375  *
1376  * Side Effects:
1377  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1378  *   if the open is successful.
1379  */
1380 
1381 static int dfx_open(struct net_device *dev)
1382 {
1383 	DFX_board_t *bp = netdev_priv(dev);
1384 	int ret;
1385 
1386 	DBG_printk("In dfx_open...\n");
1387 
1388 	/* Register IRQ - support shared interrupts by passing device ptr */
1389 
1390 	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1391 			  dev);
1392 	if (ret) {
1393 		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1394 		return ret;
1395 	}
1396 
1397 	/*
1398 	 * Set current address to factory MAC address
1399 	 *
1400 	 * Note: We've already done this step in dfx_driver_init.
1401 	 *       However, it's possible that a user has set a node
1402 	 *		 address override, then closed and reopened the
1403 	 *		 adapter.  Unless we reset the device address field
1404 	 *		 now, we'll continue to use the existing modified
1405 	 *		 address.
1406 	 */
1407 
1408 	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1409 
1410 	/* Clear local unicast/multicast address tables and counts */
1411 
1412 	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1413 	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1414 	bp->uc_count = 0;
1415 	bp->mc_count = 0;
1416 
1417 	/* Disable promiscuous filter settings */
1418 
1419 	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1420 	bp->group_prom		= PI_FSTATE_K_BLOCK;
1421 
1422 	spin_lock_init(&bp->lock);
1423 
1424 	/* Reset and initialize adapter */
1425 
1426 	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1427 	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1428 	{
1429 		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1430 		free_irq(dev->irq, dev);
1431 		return -EAGAIN;
1432 	}
1433 
1434 	/* Set device structure info */
1435 	netif_start_queue(dev);
1436 	return 0;
1437 }
1438 
1439 
1440 /*
1441  * =============
1442  * = dfx_close =
1443  * =============
1444  *
1445  * Overview:
1446  *   Closes the device/module.
1447  *
1448  * Returns:
1449  *   Condition code
1450  *
1451  * Arguments:
1452  *   dev - pointer to device information
1453  *
1454  * Functional Description:
1455  *   This routine closes the adapter and brings it to a safe state.
1456  *   The interrupt service routine is deregistered with the OS.
1457  *   The adapter can be opened again with another call to dfx_open().
1458  *
1459  * Return Codes:
1460  *   Always return 0.
1461  *
1462  * Assumptions:
1463  *   No further requests for this adapter are made after this routine is
1464  *   called.  dfx_open() can be called to reset and reinitialize the
1465  *   adapter.
1466  *
1467  * Side Effects:
1468  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1469  *   routine.
1470  */
1471 
1472 static int dfx_close(struct net_device *dev)
1473 {
1474 	DFX_board_t *bp = netdev_priv(dev);
1475 
1476 	DBG_printk("In dfx_close...\n");
1477 
1478 	/* Disable PDQ interrupts first */
1479 
1480 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1481 
1482 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1483 
1484 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1485 
1486 	/*
1487 	 * Flush any pending transmit buffers
1488 	 *
1489 	 * Note: It's important that we flush the transmit buffers
1490 	 *		 BEFORE we clear our copy of the Type 2 register.
1491 	 *		 Otherwise, we'll have no idea how many buffers
1492 	 *		 we need to free.
1493 	 */
1494 
1495 	dfx_xmt_flush(bp);
1496 
1497 	/*
1498 	 * Clear Type 1 and Type 2 registers after adapter reset
1499 	 *
1500 	 * Note: Even though we're closing the adapter, it's
1501 	 *       possible that an interrupt will occur after
1502 	 *		 dfx_close is called.  Without some assurance to
1503 	 *		 the contrary we want to make sure that we don't
1504 	 *		 process receive and transmit LLC frames and update
1505 	 *		 the Type 2 register with bad information.
1506 	 */
1507 
1508 	bp->cmd_req_reg.lword	= 0;
1509 	bp->cmd_rsp_reg.lword	= 0;
1510 	bp->rcv_xmt_reg.lword	= 0;
1511 
1512 	/* Clear consumer block for the same reason given above */
1513 
1514 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1515 
1516 	/* Release all dynamically allocate skb in the receive ring. */
1517 
1518 	dfx_rcv_flush(bp);
1519 
1520 	/* Clear device structure flags */
1521 
1522 	netif_stop_queue(dev);
1523 
1524 	/* Deregister (free) IRQ */
1525 
1526 	free_irq(dev->irq, dev);
1527 
1528 	return 0;
1529 }
1530 
1531 
1532 /*
1533  * ======================
1534  * = dfx_int_pr_halt_id =
1535  * ======================
1536  *
1537  * Overview:
1538  *   Displays halt id's in string form.
1539  *
1540  * Returns:
1541  *   None
1542  *
1543  * Arguments:
1544  *   bp - pointer to board information
1545  *
1546  * Functional Description:
1547  *   Determine current halt id and display appropriate string.
1548  *
1549  * Return Codes:
1550  *   None
1551  *
1552  * Assumptions:
1553  *   None
1554  *
1555  * Side Effects:
1556  *   None
1557  */
1558 
1559 static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1560 	{
1561 	PI_UINT32	port_status;			/* PDQ port status register value */
1562 	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1563 
1564 	/* Read the latest port status */
1565 
1566 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1567 
1568 	/* Display halt state transition information */
1569 
1570 	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1571 	switch (halt_id)
1572 		{
1573 		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1574 			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1575 			break;
1576 
1577 		case PI_HALT_ID_K_PARITY_ERROR:
1578 			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1579 			break;
1580 
1581 		case PI_HALT_ID_K_HOST_DIR_HALT:
1582 			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1583 			break;
1584 
1585 		case PI_HALT_ID_K_SW_FAULT:
1586 			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1587 			break;
1588 
1589 		case PI_HALT_ID_K_HW_FAULT:
1590 			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1591 			break;
1592 
1593 		case PI_HALT_ID_K_PC_TRACE:
1594 			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1595 			break;
1596 
1597 		case PI_HALT_ID_K_DMA_ERROR:
1598 			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1599 			break;
1600 
1601 		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1602 			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1603 			break;
1604 
1605 		case PI_HALT_ID_K_BUS_EXCEPTION:
1606 			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1607 			break;
1608 
1609 		default:
1610 			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1611 			break;
1612 		}
1613 	}
1614 
1615 
1616 /*
1617  * ==========================
1618  * = dfx_int_type_0_process =
1619  * ==========================
1620  *
1621  * Overview:
1622  *   Processes Type 0 interrupts.
1623  *
1624  * Returns:
1625  *   None
1626  *
1627  * Arguments:
1628  *   bp - pointer to board information
1629  *
1630  * Functional Description:
1631  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1632  *   is a serious fault on the adapter, then an error message is displayed
1633  *   and the adapter is reset.
1634  *
1635  *   One tricky potential timing window is the rapid succession of "link avail"
1636  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1637  *   interrupt must be done before reading the state from the Port Status
1638  *   register.  This is true because a state change could occur after reading
1639  *   the data, but before acknowledging the interrupt.  If this state change
1640  *   does happen, it would be lost because the driver is using the old state,
1641  *   and it will never know about the new state because it subsequently
1642  *   acknowledges the state change interrupt.
1643  *
1644  *          INCORRECT                                      CORRECT
1645  *      read type 0 int reasons                   read type 0 int reasons
1646  *      read adapter state                        ack type 0 interrupts
1647  *      ack type 0 interrupts                     read adapter state
1648  *      ... process interrupt ...                 ... process interrupt ...
1649  *
1650  * Return Codes:
1651  *   None
1652  *
1653  * Assumptions:
1654  *   None
1655  *
1656  * Side Effects:
1657  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1658  *   or if the port status indicates that the adapter is halted.  The driver
1659  *   is responsible for reinitializing the adapter with the current CAM
1660  *   contents and adapter filter settings.
1661  */
1662 
1663 static void dfx_int_type_0_process(DFX_board_t	*bp)
1664 
1665 	{
1666 	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1667 	PI_UINT32	state;				/* current adap state (from port status) */
1668 
1669 	/*
1670 	 * Read host interrupt Type 0 register to determine which Type 0
1671 	 * interrupts are pending.  Immediately write it back out to clear
1672 	 * those interrupts.
1673 	 */
1674 
1675 	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1676 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1677 
1678 	/* Check for Type 0 error interrupts */
1679 
1680 	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1681 							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1682 							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1683 		{
1684 		/* Check for Non-Existent Memory error */
1685 
1686 		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1687 			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1688 
1689 		/* Check for Packet Memory Parity error */
1690 
1691 		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1692 			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1693 
1694 		/* Check for Host Bus Parity error */
1695 
1696 		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1697 			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1698 
1699 		/* Reset adapter and bring it back on-line */
1700 
1701 		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1702 		bp->reset_type = 0;					/* rerun on-board diagnostics */
1703 		printk("%s: Resetting adapter...\n", bp->dev->name);
1704 		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1705 			{
1706 			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1707 			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1708 			return;
1709 			}
1710 		printk("%s: Adapter reset successful!\n", bp->dev->name);
1711 		return;
1712 		}
1713 
1714 	/* Check for transmit flush interrupt */
1715 
1716 	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1717 		{
1718 		/* Flush any pending xmt's and acknowledge the flush interrupt */
1719 
1720 		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1721 		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1722 		(void) dfx_hw_port_ctrl_req(bp,
1723 									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1724 									0,
1725 									0,
1726 									NULL);
1727 		}
1728 
1729 	/* Check for adapter state change */
1730 
1731 	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1732 		{
1733 		/* Get latest adapter state */
1734 
1735 		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1736 		if (state == PI_STATE_K_HALTED)
1737 			{
1738 			/*
1739 			 * Adapter has transitioned to HALTED state, try to reset
1740 			 * adapter to bring it back on-line.  If reset fails,
1741 			 * leave the adapter in the broken state.
1742 			 */
1743 
1744 			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1745 			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1746 
1747 			/* Reset adapter and bring it back on-line */
1748 
1749 			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1750 			bp->reset_type = 0;					/* rerun on-board diagnostics */
1751 			printk("%s: Resetting adapter...\n", bp->dev->name);
1752 			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1753 				{
1754 				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1755 				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1756 				return;
1757 				}
1758 			printk("%s: Adapter reset successful!\n", bp->dev->name);
1759 			}
1760 		else if (state == PI_STATE_K_LINK_AVAIL)
1761 			{
1762 			bp->link_available = PI_K_TRUE;		/* set link available flag */
1763 			}
1764 		}
1765 	}
1766 
1767 
1768 /*
1769  * ==================
1770  * = dfx_int_common =
1771  * ==================
1772  *
1773  * Overview:
1774  *   Interrupt service routine (ISR)
1775  *
1776  * Returns:
1777  *   None
1778  *
1779  * Arguments:
1780  *   bp - pointer to board information
1781  *
1782  * Functional Description:
1783  *   This is the ISR which processes incoming adapter interrupts.
1784  *
1785  * Return Codes:
1786  *   None
1787  *
1788  * Assumptions:
1789  *   This routine assumes PDQ interrupts have not been disabled.
1790  *   When interrupts are disabled at the PDQ, the Port Status register
1791  *   is automatically cleared.  This routine uses the Port Status
1792  *   register value to determine whether a Type 0 interrupt occurred,
1793  *   so it's important that adapter interrupts are not normally
1794  *   enabled/disabled at the PDQ.
1795  *
1796  *   It's vital that this routine is NOT reentered for the
1797  *   same board and that the OS is not in another section of
1798  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1799  *   different thread.
1800  *
1801  * Side Effects:
1802  *   Pending interrupts are serviced.  Depending on the type of
1803  *   interrupt, acknowledging and clearing the interrupt at the
1804  *   PDQ involves writing a register to clear the interrupt bit
1805  *   or updating completion indices.
1806  */
1807 
1808 static void dfx_int_common(struct net_device *dev)
1809 {
1810 	DFX_board_t *bp = netdev_priv(dev);
1811 	PI_UINT32	port_status;		/* Port Status register */
1812 
1813 	/* Process xmt interrupts - frequent case, so always call this routine */
1814 
1815 	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1816 		netif_wake_queue(dev);
1817 
1818 	/* Process rcv interrupts - frequent case, so always call this routine */
1819 
1820 	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1821 
1822 	/*
1823 	 * Transmit and receive producer and completion indices are updated on the
1824 	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1825 	 * case is that we'll be processing either LLC transmit or receive buffers,
1826 	 * we'll optimize I/O writes by doing a single register write here.
1827 	 */
1828 
1829 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1830 
1831 	/* Read PDQ Port Status register to find out which interrupts need processing */
1832 
1833 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1834 
1835 	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1836 
1837 	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1838 		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1839 	}
1840 
1841 
1842 /*
1843  * =================
1844  * = dfx_interrupt =
1845  * =================
1846  *
1847  * Overview:
1848  *   Interrupt processing routine
1849  *
1850  * Returns:
1851  *   Whether a valid interrupt was seen.
1852  *
1853  * Arguments:
1854  *   irq	- interrupt vector
1855  *   dev_id	- pointer to device information
1856  *
1857  * Functional Description:
1858  *   This routine calls the interrupt processing routine for this adapter.  It
1859  *   disables and reenables adapter interrupts, as appropriate.  We can support
1860  *   shared interrupts since the incoming dev_id pointer provides our device
1861  *   structure context.
1862  *
1863  * Return Codes:
1864  *   IRQ_HANDLED - an IRQ was handled.
1865  *   IRQ_NONE    - no IRQ was handled.
1866  *
1867  * Assumptions:
1868  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1869  *   on Intel-based systems) is done by the operating system outside this
1870  *   routine.
1871  *
1872  *	 System interrupts are enabled through this call.
1873  *
1874  * Side Effects:
1875  *   Interrupts are disabled, then reenabled at the adapter.
1876  */
1877 
1878 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1879 {
1880 	struct net_device *dev = dev_id;
1881 	DFX_board_t *bp = netdev_priv(dev);
1882 	struct device *bdev = bp->bus_dev;
1883 	int dfx_bus_pci = DFX_BUS_PCI(bdev);
1884 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1885 	int dfx_bus_tc = DFX_BUS_TC(bdev);
1886 
1887 	/* Service adapter interrupts */
1888 
1889 	if (dfx_bus_pci) {
1890 		u32 status;
1891 
1892 		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1893 		if (!(status & PFI_STATUS_M_PDQ_INT))
1894 			return IRQ_NONE;
1895 
1896 		spin_lock(&bp->lock);
1897 
1898 		/* Disable PDQ-PFI interrupts at PFI */
1899 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1900 				    PFI_MODE_M_DMA_ENB);
1901 
1902 		/* Call interrupt service routine for this adapter */
1903 		dfx_int_common(dev);
1904 
1905 		/* Clear PDQ interrupt status bit and reenable interrupts */
1906 		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1907 				    PFI_STATUS_M_PDQ_INT);
1908 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1909 				    (PFI_MODE_M_PDQ_INT_ENB |
1910 				     PFI_MODE_M_DMA_ENB));
1911 
1912 		spin_unlock(&bp->lock);
1913 	}
1914 	if (dfx_bus_eisa) {
1915 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1916 		u8 status;
1917 
1918 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1919 		if (!(status & PI_CONFIG_STAT_0_M_PEND))
1920 			return IRQ_NONE;
1921 
1922 		spin_lock(&bp->lock);
1923 
1924 		/* Disable interrupts at the ESIC */
1925 		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1926 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1927 
1928 		/* Call interrupt service routine for this adapter */
1929 		dfx_int_common(dev);
1930 
1931 		/* Reenable interrupts at the ESIC */
1932 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1933 		status |= PI_CONFIG_STAT_0_M_INT_ENB;
1934 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1935 
1936 		spin_unlock(&bp->lock);
1937 	}
1938 	if (dfx_bus_tc) {
1939 		u32 status;
1940 
1941 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1942 		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1943 				PI_PSTATUS_M_XMT_DATA_PENDING |
1944 				PI_PSTATUS_M_SMT_HOST_PENDING |
1945 				PI_PSTATUS_M_UNSOL_PENDING |
1946 				PI_PSTATUS_M_CMD_RSP_PENDING |
1947 				PI_PSTATUS_M_CMD_REQ_PENDING |
1948 				PI_PSTATUS_M_TYPE_0_PENDING)))
1949 			return IRQ_NONE;
1950 
1951 		spin_lock(&bp->lock);
1952 
1953 		/* Call interrupt service routine for this adapter */
1954 		dfx_int_common(dev);
1955 
1956 		spin_unlock(&bp->lock);
1957 	}
1958 
1959 	return IRQ_HANDLED;
1960 }
1961 
1962 
1963 /*
1964  * =====================
1965  * = dfx_ctl_get_stats =
1966  * =====================
1967  *
1968  * Overview:
1969  *   Get statistics for FDDI adapter
1970  *
1971  * Returns:
1972  *   Pointer to FDDI statistics structure
1973  *
1974  * Arguments:
1975  *   dev - pointer to device information
1976  *
1977  * Functional Description:
1978  *   Gets current MIB objects from adapter, then
1979  *   returns FDDI statistics structure as defined
1980  *   in if_fddi.h.
1981  *
1982  *   Note: Since the FDDI statistics structure is
1983  *   still new and the device structure doesn't
1984  *   have an FDDI-specific get statistics handler,
1985  *   we'll return the FDDI statistics structure as
1986  *   a pointer to an Ethernet statistics structure.
1987  *   That way, at least the first part of the statistics
1988  *   structure can be decoded properly, and it allows
1989  *   "smart" applications to perform a second cast to
1990  *   decode the FDDI-specific statistics.
1991  *
1992  *   We'll have to pay attention to this routine as the
1993  *   device structure becomes more mature and LAN media
1994  *   independent.
1995  *
1996  * Return Codes:
1997  *   None
1998  *
1999  * Assumptions:
2000  *   None
2001  *
2002  * Side Effects:
2003  *   None
2004  */
2005 
2006 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2007 	{
2008 	DFX_board_t *bp = netdev_priv(dev);
2009 
2010 	/* Fill the bp->stats structure with driver-maintained counters */
2011 
2012 	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2013 	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2014 	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2015 	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2016 	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2017 				   bp->rcv_frame_status_errors +
2018 				   bp->rcv_length_errors;
2019 	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2020 	bp->stats.gen.rx_dropped = bp->rcv_discards;
2021 	bp->stats.gen.tx_dropped = bp->xmt_discards;
2022 	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2023 	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2024 
2025 	/* Get FDDI SMT MIB objects */
2026 
2027 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2028 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2029 		return (struct net_device_stats *)&bp->stats;
2030 
2031 	/* Fill the bp->stats structure with the SMT MIB object values */
2032 
2033 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2034 	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2035 	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2036 	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2037 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2038 	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2039 	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2040 	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2041 	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2042 	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2043 	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2044 	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2045 	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2046 	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2047 	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2048 	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2049 	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2050 	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2051 	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2052 	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2053 	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2054 	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2055 	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2056 	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2057 	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2058 	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2059 	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2060 	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2061 	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2062 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2063 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2064 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2065 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2066 	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2067 	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2068 	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2069 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2070 	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2071 	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2072 	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2073 	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2074 	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2075 	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2076 	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2077 	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2078 	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2079 	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2080 	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2081 	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2082 	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2083 	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2084 	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2085 	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2086 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2087 	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2088 	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2089 	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2090 	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2091 	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2092 	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2093 	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2094 	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2095 	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2096 	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2097 	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2098 	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2099 	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2100 	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2101 	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2102 	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2103 	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2104 	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2105 	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2106 	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2107 	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2108 	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2109 	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2110 	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2111 	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2112 	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2113 	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2114 	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2115 	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2116 	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2117 	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2118 	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2119 	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2120 	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2121 	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2122 	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2123 	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2124 	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2125 
2126 	/* Get FDDI counters */
2127 
2128 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2129 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2130 		return (struct net_device_stats *)&bp->stats;
2131 
2132 	/* Fill the bp->stats structure with the FDDI counter values */
2133 
2134 	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2135 	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2136 	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2137 	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2138 	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2139 	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2140 	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2141 	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2142 	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2143 	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2144 	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2145 
2146 	return (struct net_device_stats *)&bp->stats;
2147 	}
2148 
2149 
2150 /*
2151  * ==============================
2152  * = dfx_ctl_set_multicast_list =
2153  * ==============================
2154  *
2155  * Overview:
2156  *   Enable/Disable LLC frame promiscuous mode reception
2157  *   on the adapter and/or update multicast address table.
2158  *
2159  * Returns:
2160  *   None
2161  *
2162  * Arguments:
2163  *   dev - pointer to device information
2164  *
2165  * Functional Description:
2166  *   This routine follows a fairly simple algorithm for setting the
2167  *   adapter filters and CAM:
2168  *
2169  *		if IFF_PROMISC flag is set
2170  *			enable LLC individual/group promiscuous mode
2171  *		else
2172  *			disable LLC individual/group promiscuous mode
2173  *			if number of incoming multicast addresses >
2174  *					(CAM max size - number of unicast addresses in CAM)
2175  *				enable LLC group promiscuous mode
2176  *				set driver-maintained multicast address count to zero
2177  *			else
2178  *				disable LLC group promiscuous mode
2179  *				set driver-maintained multicast address count to incoming count
2180  *			update adapter CAM
2181  *		update adapter filters
2182  *
2183  * Return Codes:
2184  *   None
2185  *
2186  * Assumptions:
2187  *   Multicast addresses are presented in canonical (LSB) format.
2188  *
2189  * Side Effects:
2190  *   On-board adapter CAM and filters are updated.
2191  */
2192 
2193 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2194 {
2195 	DFX_board_t *bp = netdev_priv(dev);
2196 	int					i;			/* used as index in for loop */
2197 	struct netdev_hw_addr *ha;
2198 
2199 	/* Enable LLC frame promiscuous mode, if necessary */
2200 
2201 	if (dev->flags & IFF_PROMISC)
2202 		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2203 
2204 	/* Else, update multicast address table */
2205 
2206 	else
2207 		{
2208 		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2209 		/*
2210 		 * Check whether incoming multicast address count exceeds table size
2211 		 *
2212 		 * Note: The adapters utilize an on-board 64 entry CAM for
2213 		 *       supporting perfect filtering of multicast packets
2214 		 *		 and bridge functions when adding unicast addresses.
2215 		 *		 There is no hash function available.  To support
2216 		 *		 additional multicast addresses, the all multicast
2217 		 *		 filter (LLC group promiscuous mode) must be enabled.
2218 		 *
2219 		 *		 The firmware reserves two CAM entries for SMT-related
2220 		 *		 multicast addresses, which leaves 62 entries available.
2221 		 *		 The following code ensures that we're not being asked
2222 		 *		 to add more than 62 addresses to the CAM.  If we are,
2223 		 *		 the driver will enable the all multicast filter.
2224 		 *		 Should the number of multicast addresses drop below
2225 		 *		 the high water mark, the filter will be disabled and
2226 		 *		 perfect filtering will be used.
2227 		 */
2228 
2229 		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2230 			{
2231 			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2232 			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2233 			}
2234 		else
2235 			{
2236 			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2237 			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2238 			}
2239 
2240 		/* Copy addresses to multicast address table, then update adapter CAM */
2241 
2242 		i = 0;
2243 		netdev_for_each_mc_addr(ha, dev)
2244 			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2245 			       ha->addr, FDDI_K_ALEN);
2246 
2247 		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2248 			{
2249 			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2250 			}
2251 		else
2252 			{
2253 			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2254 			}
2255 		}
2256 
2257 	/* Update adapter filters */
2258 
2259 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2260 		{
2261 		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2262 		}
2263 	else
2264 		{
2265 		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2266 		}
2267 	}
2268 
2269 
2270 /*
2271  * ===========================
2272  * = dfx_ctl_set_mac_address =
2273  * ===========================
2274  *
2275  * Overview:
2276  *   Add node address override (unicast address) to adapter
2277  *   CAM and update dev_addr field in device table.
2278  *
2279  * Returns:
2280  *   None
2281  *
2282  * Arguments:
2283  *   dev  - pointer to device information
2284  *   addr - pointer to sockaddr structure containing unicast address to add
2285  *
2286  * Functional Description:
2287  *   The adapter supports node address overrides by adding one or more
2288  *   unicast addresses to the adapter CAM.  This is similar to adding
2289  *   multicast addresses.  In this routine we'll update the driver and
2290  *   device structures with the new address, then update the adapter CAM
2291  *   to ensure that the adapter will copy and strip frames destined and
2292  *   sourced by that address.
2293  *
2294  * Return Codes:
2295  *   Always returns zero.
2296  *
2297  * Assumptions:
2298  *   The address pointed to by addr->sa_data is a valid unicast
2299  *   address and is presented in canonical (LSB) format.
2300  *
2301  * Side Effects:
2302  *   On-board adapter CAM is updated.  On-board adapter filters
2303  *   may be updated.
2304  */
2305 
2306 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2307 	{
2308 	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2309 	DFX_board_t *bp = netdev_priv(dev);
2310 
2311 	/* Copy unicast address to driver-maintained structs and update count */
2312 
2313 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2314 	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2315 	bp->uc_count = 1;
2316 
2317 	/*
2318 	 * Verify we're not exceeding the CAM size by adding unicast address
2319 	 *
2320 	 * Note: It's possible that before entering this routine we've
2321 	 *       already filled the CAM with 62 multicast addresses.
2322 	 *		 Since we need to place the node address override into
2323 	 *		 the CAM, we have to check to see that we're not
2324 	 *		 exceeding the CAM size.  If we are, we have to enable
2325 	 *		 the LLC group (multicast) promiscuous mode filter as
2326 	 *		 in dfx_ctl_set_multicast_list.
2327 	 */
2328 
2329 	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2330 		{
2331 		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2332 		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2333 
2334 		/* Update adapter filters */
2335 
2336 		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2337 			{
2338 			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2339 			}
2340 		else
2341 			{
2342 			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2343 			}
2344 		}
2345 
2346 	/* Update adapter CAM with new unicast address */
2347 
2348 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2349 		{
2350 		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2351 		}
2352 	else
2353 		{
2354 		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2355 		}
2356 	return 0;			/* always return zero */
2357 	}
2358 
2359 
2360 /*
2361  * ======================
2362  * = dfx_ctl_update_cam =
2363  * ======================
2364  *
2365  * Overview:
2366  *   Procedure to update adapter CAM (Content Addressable Memory)
2367  *   with desired unicast and multicast address entries.
2368  *
2369  * Returns:
2370  *   Condition code
2371  *
2372  * Arguments:
2373  *   bp - pointer to board information
2374  *
2375  * Functional Description:
2376  *   Updates adapter CAM with current contents of board structure
2377  *   unicast and multicast address tables.  Since there are only 62
2378  *   free entries in CAM, this routine ensures that the command
2379  *   request buffer is not overrun.
2380  *
2381  * Return Codes:
2382  *   DFX_K_SUCCESS - Request succeeded
2383  *   DFX_K_FAILURE - Request failed
2384  *
2385  * Assumptions:
2386  *   All addresses being added (unicast and multicast) are in canonical
2387  *   order.
2388  *
2389  * Side Effects:
2390  *   On-board adapter CAM is updated.
2391  */
2392 
2393 static int dfx_ctl_update_cam(DFX_board_t *bp)
2394 	{
2395 	int			i;				/* used as index */
2396 	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2397 
2398 	/*
2399 	 * Fill in command request information
2400 	 *
2401 	 * Note: Even though both the unicast and multicast address
2402 	 *       table entries are stored as contiguous 6 byte entries,
2403 	 *		 the firmware address filter set command expects each
2404 	 *		 entry to be two longwords (8 bytes total).  We must be
2405 	 *		 careful to only copy the six bytes of each unicast and
2406 	 *		 multicast table entry into each command entry.  This
2407 	 *		 is also why we must first clear the entire command
2408 	 *		 request buffer.
2409 	 */
2410 
2411 	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2412 	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2413 	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2414 
2415 	/* Now add unicast addresses to command request buffer, if any */
2416 
2417 	for (i=0; i < (int)bp->uc_count; i++)
2418 		{
2419 		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2420 			{
2421 			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2422 			p_addr++;			/* point to next command entry */
2423 			}
2424 		}
2425 
2426 	/* Now add multicast addresses to command request buffer, if any */
2427 
2428 	for (i=0; i < (int)bp->mc_count; i++)
2429 		{
2430 		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2431 			{
2432 			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2433 			p_addr++;			/* point to next command entry */
2434 			}
2435 		}
2436 
2437 	/* Issue command to update adapter CAM, then return */
2438 
2439 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2440 		return DFX_K_FAILURE;
2441 	return DFX_K_SUCCESS;
2442 	}
2443 
2444 
2445 /*
2446  * ==========================
2447  * = dfx_ctl_update_filters =
2448  * ==========================
2449  *
2450  * Overview:
2451  *   Procedure to update adapter filters with desired
2452  *   filter settings.
2453  *
2454  * Returns:
2455  *   Condition code
2456  *
2457  * Arguments:
2458  *   bp - pointer to board information
2459  *
2460  * Functional Description:
2461  *   Enables or disables filter using current filter settings.
2462  *
2463  * Return Codes:
2464  *   DFX_K_SUCCESS - Request succeeded.
2465  *   DFX_K_FAILURE - Request failed.
2466  *
2467  * Assumptions:
2468  *   We must always pass up packets destined to the broadcast
2469  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2470  *   broadcast filter enabled.
2471  *
2472  * Side Effects:
2473  *   On-board adapter filters are updated.
2474  */
2475 
2476 static int dfx_ctl_update_filters(DFX_board_t *bp)
2477 	{
2478 	int	i = 0;					/* used as index */
2479 
2480 	/* Fill in command request information */
2481 
2482 	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2483 
2484 	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2485 
2486 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2487 	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2488 
2489 	/* Initialize LLC Individual/Group Promiscuous filter */
2490 
2491 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2492 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2493 
2494 	/* Initialize LLC Group Promiscuous filter */
2495 
2496 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2497 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2498 
2499 	/* Terminate the item code list */
2500 
2501 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2502 
2503 	/* Issue command to update adapter filters, then return */
2504 
2505 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2506 		return DFX_K_FAILURE;
2507 	return DFX_K_SUCCESS;
2508 	}
2509 
2510 
2511 /*
2512  * ======================
2513  * = dfx_hw_dma_cmd_req =
2514  * ======================
2515  *
2516  * Overview:
2517  *   Sends PDQ DMA command to adapter firmware
2518  *
2519  * Returns:
2520  *   Condition code
2521  *
2522  * Arguments:
2523  *   bp - pointer to board information
2524  *
2525  * Functional Description:
2526  *   The command request and response buffers are posted to the adapter in the manner
2527  *   described in the PDQ Port Specification:
2528  *
2529  *		1. Command Response Buffer is posted to adapter.
2530  *		2. Command Request Buffer is posted to adapter.
2531  *		3. Command Request consumer index is polled until it indicates that request
2532  *         buffer has been DMA'd to adapter.
2533  *		4. Command Response consumer index is polled until it indicates that response
2534  *         buffer has been DMA'd from adapter.
2535  *
2536  *   This ordering ensures that a response buffer is already available for the firmware
2537  *   to use once it's done processing the request buffer.
2538  *
2539  * Return Codes:
2540  *   DFX_K_SUCCESS	  - DMA command succeeded
2541  * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2542  *   DFX_K_HW_TIMEOUT - DMA command timed out
2543  *
2544  * Assumptions:
2545  *   Command request buffer has already been filled with desired DMA command.
2546  *
2547  * Side Effects:
2548  *   None
2549  */
2550 
2551 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2552 	{
2553 	int status;			/* adapter status */
2554 	int timeout_cnt;	/* used in for loops */
2555 
2556 	/* Make sure the adapter is in a state that we can issue the DMA command in */
2557 
2558 	status = dfx_hw_adap_state_rd(bp);
2559 	if ((status == PI_STATE_K_RESET)		||
2560 		(status == PI_STATE_K_HALTED)		||
2561 		(status == PI_STATE_K_DMA_UNAVAIL)	||
2562 		(status == PI_STATE_K_UPGRADE))
2563 		return DFX_K_OUTSTATE;
2564 
2565 	/* Put response buffer on the command response queue */
2566 
2567 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2568 			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2569 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2570 
2571 	/* Bump (and wrap) the producer index and write out to register */
2572 
2573 	bp->cmd_rsp_reg.index.prod += 1;
2574 	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2575 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2576 
2577 	/* Put request buffer on the command request queue */
2578 
2579 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2580 			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2581 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2582 
2583 	/* Bump (and wrap) the producer index and write out to register */
2584 
2585 	bp->cmd_req_reg.index.prod += 1;
2586 	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2587 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2588 
2589 	/*
2590 	 * Here we wait for the command request consumer index to be equal
2591 	 * to the producer, indicating that the adapter has DMAed the request.
2592 	 */
2593 
2594 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2595 		{
2596 		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2597 			break;
2598 		udelay(100);			/* wait for 100 microseconds */
2599 		}
2600 	if (timeout_cnt == 0)
2601 		return DFX_K_HW_TIMEOUT;
2602 
2603 	/* Bump (and wrap) the completion index and write out to register */
2604 
2605 	bp->cmd_req_reg.index.comp += 1;
2606 	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2607 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2608 
2609 	/*
2610 	 * Here we wait for the command response consumer index to be equal
2611 	 * to the producer, indicating that the adapter has DMAed the response.
2612 	 */
2613 
2614 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2615 		{
2616 		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2617 			break;
2618 		udelay(100);			/* wait for 100 microseconds */
2619 		}
2620 	if (timeout_cnt == 0)
2621 		return DFX_K_HW_TIMEOUT;
2622 
2623 	/* Bump (and wrap) the completion index and write out to register */
2624 
2625 	bp->cmd_rsp_reg.index.comp += 1;
2626 	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2627 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2628 	return DFX_K_SUCCESS;
2629 	}
2630 
2631 
2632 /*
2633  * ========================
2634  * = dfx_hw_port_ctrl_req =
2635  * ========================
2636  *
2637  * Overview:
2638  *   Sends PDQ port control command to adapter firmware
2639  *
2640  * Returns:
2641  *   Host data register value in host_data if ptr is not NULL
2642  *
2643  * Arguments:
2644  *   bp			- pointer to board information
2645  *	 command	- port control command
2646  *	 data_a		- port data A register value
2647  *	 data_b		- port data B register value
2648  *	 host_data	- ptr to host data register value
2649  *
2650  * Functional Description:
2651  *   Send generic port control command to adapter by writing
2652  *   to various PDQ port registers, then polling for completion.
2653  *
2654  * Return Codes:
2655  *   DFX_K_SUCCESS	  - port control command succeeded
2656  *   DFX_K_HW_TIMEOUT - port control command timed out
2657  *
2658  * Assumptions:
2659  *   None
2660  *
2661  * Side Effects:
2662  *   None
2663  */
2664 
2665 static int dfx_hw_port_ctrl_req(
2666 	DFX_board_t	*bp,
2667 	PI_UINT32	command,
2668 	PI_UINT32	data_a,
2669 	PI_UINT32	data_b,
2670 	PI_UINT32	*host_data
2671 	)
2672 
2673 	{
2674 	PI_UINT32	port_cmd;		/* Port Control command register value */
2675 	int			timeout_cnt;	/* used in for loops */
2676 
2677 	/* Set Command Error bit in command longword */
2678 
2679 	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2680 
2681 	/* Issue port command to the adapter */
2682 
2683 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2684 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2685 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2686 
2687 	/* Now wait for command to complete */
2688 
2689 	if (command == PI_PCTRL_M_BLAST_FLASH)
2690 		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2691 	else
2692 		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2693 
2694 	for (; timeout_cnt > 0; timeout_cnt--)
2695 		{
2696 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2697 		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2698 			break;
2699 		udelay(100);			/* wait for 100 microseconds */
2700 		}
2701 	if (timeout_cnt == 0)
2702 		return DFX_K_HW_TIMEOUT;
2703 
2704 	/*
2705 	 * If the address of host_data is non-zero, assume caller has supplied a
2706 	 * non NULL pointer, and return the contents of the HOST_DATA register in
2707 	 * it.
2708 	 */
2709 
2710 	if (host_data != NULL)
2711 		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2712 	return DFX_K_SUCCESS;
2713 	}
2714 
2715 
2716 /*
2717  * =====================
2718  * = dfx_hw_adap_reset =
2719  * =====================
2720  *
2721  * Overview:
2722  *   Resets adapter
2723  *
2724  * Returns:
2725  *   None
2726  *
2727  * Arguments:
2728  *   bp   - pointer to board information
2729  *   type - type of reset to perform
2730  *
2731  * Functional Description:
2732  *   Issue soft reset to adapter by writing to PDQ Port Reset
2733  *   register.  Use incoming reset type to tell adapter what
2734  *   kind of reset operation to perform.
2735  *
2736  * Return Codes:
2737  *   None
2738  *
2739  * Assumptions:
2740  *   This routine merely issues a soft reset to the adapter.
2741  *   It is expected that after this routine returns, the caller
2742  *   will appropriately poll the Port Status register for the
2743  *   adapter to enter the proper state.
2744  *
2745  * Side Effects:
2746  *   Internal adapter registers are cleared.
2747  */
2748 
2749 static void dfx_hw_adap_reset(
2750 	DFX_board_t	*bp,
2751 	PI_UINT32	type
2752 	)
2753 
2754 	{
2755 	/* Set Reset type and assert reset */
2756 
2757 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2758 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2759 
2760 	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2761 
2762 	udelay(20);
2763 
2764 	/* Deassert reset */
2765 
2766 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2767 	}
2768 
2769 
2770 /*
2771  * ========================
2772  * = dfx_hw_adap_state_rd =
2773  * ========================
2774  *
2775  * Overview:
2776  *   Returns current adapter state
2777  *
2778  * Returns:
2779  *   Adapter state per PDQ Port Specification
2780  *
2781  * Arguments:
2782  *   bp - pointer to board information
2783  *
2784  * Functional Description:
2785  *   Reads PDQ Port Status register and returns adapter state.
2786  *
2787  * Return Codes:
2788  *   None
2789  *
2790  * Assumptions:
2791  *   None
2792  *
2793  * Side Effects:
2794  *   None
2795  */
2796 
2797 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2798 	{
2799 	PI_UINT32 port_status;		/* Port Status register value */
2800 
2801 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2802 	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2803 	}
2804 
2805 
2806 /*
2807  * =====================
2808  * = dfx_hw_dma_uninit =
2809  * =====================
2810  *
2811  * Overview:
2812  *   Brings adapter to DMA_UNAVAILABLE state
2813  *
2814  * Returns:
2815  *   Condition code
2816  *
2817  * Arguments:
2818  *   bp   - pointer to board information
2819  *   type - type of reset to perform
2820  *
2821  * Functional Description:
2822  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2823  *		1. Set reset type bit in Port Data A Register then reset adapter.
2824  *		2. Check that adapter is in DMA_UNAVAILABLE state.
2825  *
2826  * Return Codes:
2827  *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2828  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2829  *
2830  * Assumptions:
2831  *   None
2832  *
2833  * Side Effects:
2834  *   Internal adapter registers are cleared.
2835  */
2836 
2837 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2838 	{
2839 	int timeout_cnt;	/* used in for loops */
2840 
2841 	/* Set reset type bit and reset adapter */
2842 
2843 	dfx_hw_adap_reset(bp, type);
2844 
2845 	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2846 
2847 	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2848 		{
2849 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2850 			break;
2851 		udelay(100);					/* wait for 100 microseconds */
2852 		}
2853 	if (timeout_cnt == 0)
2854 		return DFX_K_HW_TIMEOUT;
2855 	return DFX_K_SUCCESS;
2856 	}
2857 
2858 /*
2859  *	Align an sk_buff to a boundary power of 2
2860  *
2861  */
2862 
2863 static void my_skb_align(struct sk_buff *skb, int n)
2864 {
2865 	unsigned long x = (unsigned long)skb->data;
2866 	unsigned long v;
2867 
2868 	v = ALIGN(x, n);	/* Where we want to be */
2869 
2870 	skb_reserve(skb, v - x);
2871 }
2872 
2873 
2874 /*
2875  * ================
2876  * = dfx_rcv_init =
2877  * ================
2878  *
2879  * Overview:
2880  *   Produces buffers to adapter LLC Host receive descriptor block
2881  *
2882  * Returns:
2883  *   None
2884  *
2885  * Arguments:
2886  *   bp - pointer to board information
2887  *   get_buffers - non-zero if buffers to be allocated
2888  *
2889  * Functional Description:
2890  *   This routine can be called during dfx_adap_init() or during an adapter
2891  *	 reset.  It initializes the descriptor block and produces all allocated
2892  *   LLC Host queue receive buffers.
2893  *
2894  * Return Codes:
2895  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2896  *   dynamic buffer allocation). If the buffer allocation failed, the
2897  *   already allocated buffers will not be released and the caller should do
2898  *   this.
2899  *
2900  * Assumptions:
2901  *   The PDQ has been reset and the adapter and driver maintained Type 2
2902  *   register indices are cleared.
2903  *
2904  * Side Effects:
2905  *   Receive buffers are posted to the adapter LLC queue and the adapter
2906  *   is notified.
2907  */
2908 
2909 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2910 	{
2911 	int	i, j;					/* used in for loop */
2912 
2913 	/*
2914 	 *  Since each receive buffer is a single fragment of same length, initialize
2915 	 *  first longword in each receive descriptor for entire LLC Host descriptor
2916 	 *  block.  Also initialize second longword in each receive descriptor with
2917 	 *  physical address of receive buffer.  We'll always allocate receive
2918 	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2919 	 *  block and produce new receive buffers by simply updating the receive
2920 	 *  producer index.
2921 	 *
2922 	 * 	Assumptions:
2923 	 *		To support all shipping versions of PDQ, the receive buffer size
2924 	 *		must be mod 128 in length and the physical address must be 128 byte
2925 	 *		aligned.  In other words, bits 0-6 of the length and address must
2926 	 *		be zero for the following descriptor field entries to be correct on
2927 	 *		all PDQ-based boards.  We guaranteed both requirements during
2928 	 *		driver initialization when we allocated memory for the receive buffers.
2929 	 */
2930 
2931 	if (get_buffers) {
2932 #ifdef DYNAMIC_BUFFERS
2933 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2934 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2935 		{
2936 			struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
2937 			if (!newskb)
2938 				return -ENOMEM;
2939 			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2940 				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2941 			/*
2942 			 * align to 128 bytes for compatibility with
2943 			 * the old EISA boards.
2944 			 */
2945 
2946 			my_skb_align(newskb, 128);
2947 			bp->descr_block_virt->rcv_data[i + j].long_1 =
2948 				(u32)dma_map_single(bp->bus_dev, newskb->data,
2949 						    NEW_SKB_SIZE,
2950 						    DMA_FROM_DEVICE);
2951 			/*
2952 			 * p_rcv_buff_va is only used inside the
2953 			 * kernel so we put the skb pointer here.
2954 			 */
2955 			bp->p_rcv_buff_va[i+j] = (char *) newskb;
2956 		}
2957 #else
2958 	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2959 		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2960 			{
2961 			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2962 				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2963 			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2964 			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2965 			}
2966 #endif
2967 	}
2968 
2969 	/* Update receive producer and Type 2 register */
2970 
2971 	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2972 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2973 	return 0;
2974 	}
2975 
2976 
2977 /*
2978  * =========================
2979  * = dfx_rcv_queue_process =
2980  * =========================
2981  *
2982  * Overview:
2983  *   Process received LLC frames.
2984  *
2985  * Returns:
2986  *   None
2987  *
2988  * Arguments:
2989  *   bp - pointer to board information
2990  *
2991  * Functional Description:
2992  *   Received LLC frames are processed until there are no more consumed frames.
2993  *   Once all frames are processed, the receive buffers are returned to the
2994  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2995  *   in this routine, because there are a fixed number of receive buffers to
2996  *   process and buffers are not produced until this routine exits and returns
2997  *   to the ISR.
2998  *
2999  * Return Codes:
3000  *   None
3001  *
3002  * Assumptions:
3003  *   None
3004  *
3005  * Side Effects:
3006  *   None
3007  */
3008 
3009 static void dfx_rcv_queue_process(
3010 	DFX_board_t *bp
3011 	)
3012 
3013 	{
3014 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3015 	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3016 	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3017 	struct sk_buff		*skb;				/* pointer to a sk_buff to hold incoming packet data */
3018 
3019 	/* Service all consumed LLC receive frames */
3020 
3021 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3022 	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3023 		{
3024 		/* Process any errors */
3025 
3026 		int entry;
3027 
3028 		entry = bp->rcv_xmt_reg.index.rcv_comp;
3029 #ifdef DYNAMIC_BUFFERS
3030 		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3031 #else
3032 		p_buff = bp->p_rcv_buff_va[entry];
3033 #endif
3034 		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3035 
3036 		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3037 			{
3038 			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3039 				bp->rcv_crc_errors++;
3040 			else
3041 				bp->rcv_frame_status_errors++;
3042 			}
3043 		else
3044 		{
3045 			int rx_in_place = 0;
3046 
3047 			/* The frame was received without errors - verify packet length */
3048 
3049 			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3050 			pkt_len -= 4;				/* subtract 4 byte CRC */
3051 			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3052 				bp->rcv_length_errors++;
3053 			else{
3054 #ifdef DYNAMIC_BUFFERS
3055 				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3056 					struct sk_buff *newskb;
3057 
3058 					newskb = dev_alloc_skb(NEW_SKB_SIZE);
3059 					if (newskb){
3060 						rx_in_place = 1;
3061 
3062 						my_skb_align(newskb, 128);
3063 						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3064 						dma_unmap_single(bp->bus_dev,
3065 							bp->descr_block_virt->rcv_data[entry].long_1,
3066 							NEW_SKB_SIZE,
3067 							DMA_FROM_DEVICE);
3068 						skb_reserve(skb, RCV_BUFF_K_PADDING);
3069 						bp->p_rcv_buff_va[entry] = (char *)newskb;
3070 						bp->descr_block_virt->rcv_data[entry].long_1 =
3071 							(u32)dma_map_single(bp->bus_dev,
3072 								newskb->data,
3073 								NEW_SKB_SIZE,
3074 								DMA_FROM_DEVICE);
3075 					} else
3076 						skb = NULL;
3077 				} else
3078 #endif
3079 					skb = dev_alloc_skb(pkt_len+3);	/* alloc new buffer to pass up, add room for PRH */
3080 				if (skb == NULL)
3081 					{
3082 					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3083 					bp->rcv_discards++;
3084 					break;
3085 					}
3086 				else {
3087 #ifndef DYNAMIC_BUFFERS
3088 					if (! rx_in_place)
3089 #endif
3090 					{
3091 						/* Receive buffer allocated, pass receive packet up */
3092 
3093 						skb_copy_to_linear_data(skb,
3094 							       p_buff + RCV_BUFF_K_PADDING,
3095 							       pkt_len + 3);
3096 					}
3097 
3098 					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3099 					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3100 					skb->protocol = fddi_type_trans(skb, bp->dev);
3101 					bp->rcv_total_bytes += skb->len;
3102 					netif_rx(skb);
3103 
3104 					/* Update the rcv counters */
3105 					bp->rcv_total_frames++;
3106 					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3107 						bp->rcv_multicast_frames++;
3108 				}
3109 			}
3110 			}
3111 
3112 		/*
3113 		 * Advance the producer (for recycling) and advance the completion
3114 		 * (for servicing received frames).  Note that it is okay to
3115 		 * advance the producer without checking that it passes the
3116 		 * completion index because they are both advanced at the same
3117 		 * rate.
3118 		 */
3119 
3120 		bp->rcv_xmt_reg.index.rcv_prod += 1;
3121 		bp->rcv_xmt_reg.index.rcv_comp += 1;
3122 		}
3123 	}
3124 
3125 
3126 /*
3127  * =====================
3128  * = dfx_xmt_queue_pkt =
3129  * =====================
3130  *
3131  * Overview:
3132  *   Queues packets for transmission
3133  *
3134  * Returns:
3135  *   Condition code
3136  *
3137  * Arguments:
3138  *   skb - pointer to sk_buff to queue for transmission
3139  *   dev - pointer to device information
3140  *
3141  * Functional Description:
3142  *   Here we assume that an incoming skb transmit request
3143  *   is contained in a single physically contiguous buffer
3144  *   in which the virtual address of the start of packet
3145  *   (skb->data) can be converted to a physical address
3146  *   by using pci_map_single().
3147  *
3148  *   Since the adapter architecture requires a three byte
3149  *   packet request header to prepend the start of packet,
3150  *   we'll write the three byte field immediately prior to
3151  *   the FC byte.  This assumption is valid because we've
3152  *   ensured that dev->hard_header_len includes three pad
3153  *   bytes.  By posting a single fragment to the adapter,
3154  *   we'll reduce the number of descriptor fetches and
3155  *   bus traffic needed to send the request.
3156  *
3157  *   Also, we can't free the skb until after it's been DMA'd
3158  *   out by the adapter, so we'll queue it in the driver and
3159  *   return it in dfx_xmt_done.
3160  *
3161  * Return Codes:
3162  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3163  *	 1 - caller should requeue the sk_buff for later transmission
3164  *
3165  * Assumptions:
3166  *	 First and foremost, we assume the incoming skb pointer
3167  *   is NOT NULL and is pointing to a valid sk_buff structure.
3168  *
3169  *   The outgoing packet is complete, starting with the
3170  *   frame control byte including the last byte of data,
3171  *   but NOT including the 4 byte CRC.  We'll let the
3172  *   adapter hardware generate and append the CRC.
3173  *
3174  *   The entire packet is stored in one physically
3175  *   contiguous buffer which is not cached and whose
3176  *   32-bit physical address can be determined.
3177  *
3178  *   It's vital that this routine is NOT reentered for the
3179  *   same board and that the OS is not in another section of
3180  *   code (eg. dfx_int_common) for the same board on a
3181  *   different thread.
3182  *
3183  * Side Effects:
3184  *   None
3185  */
3186 
3187 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3188 				     struct net_device *dev)
3189 	{
3190 	DFX_board_t		*bp = netdev_priv(dev);
3191 	u8			prod;				/* local transmit producer index */
3192 	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3193 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3194 	unsigned long		flags;
3195 
3196 	netif_stop_queue(dev);
3197 
3198 	/*
3199 	 * Verify that incoming transmit request is OK
3200 	 *
3201 	 * Note: The packet size check is consistent with other
3202 	 *		 Linux device drivers, although the correct packet
3203 	 *		 size should be verified before calling the
3204 	 *		 transmit routine.
3205 	 */
3206 
3207 	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3208 	{
3209 		printk("%s: Invalid packet length - %u bytes\n",
3210 			dev->name, skb->len);
3211 		bp->xmt_length_errors++;		/* bump error counter */
3212 		netif_wake_queue(dev);
3213 		dev_kfree_skb(skb);
3214 		return NETDEV_TX_OK;			/* return "success" */
3215 	}
3216 	/*
3217 	 * See if adapter link is available, if not, free buffer
3218 	 *
3219 	 * Note: If the link isn't available, free buffer and return 0
3220 	 *		 rather than tell the upper layer to requeue the packet.
3221 	 *		 The methodology here is that by the time the link
3222 	 *		 becomes available, the packet to be sent will be
3223 	 *		 fairly stale.  By simply dropping the packet, the
3224 	 *		 higher layer protocols will eventually time out
3225 	 *		 waiting for response packets which it won't receive.
3226 	 */
3227 
3228 	if (bp->link_available == PI_K_FALSE)
3229 		{
3230 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3231 			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3232 		else
3233 			{
3234 			bp->xmt_discards++;					/* bump error counter */
3235 			dev_kfree_skb(skb);		/* free sk_buff now */
3236 			netif_wake_queue(dev);
3237 			return NETDEV_TX_OK;		/* return "success" */
3238 			}
3239 		}
3240 
3241 	spin_lock_irqsave(&bp->lock, flags);
3242 
3243 	/* Get the current producer and the next free xmt data descriptor */
3244 
3245 	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3246 	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3247 
3248 	/*
3249 	 * Get pointer to auxiliary queue entry to contain information
3250 	 * for this packet.
3251 	 *
3252 	 * Note: The current xmt producer index will become the
3253 	 *	 current xmt completion index when we complete this
3254 	 *	 packet later on.  So, we'll get the pointer to the
3255 	 *	 next auxiliary queue entry now before we bump the
3256 	 *	 producer index.
3257 	 */
3258 
3259 	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3260 
3261 	/* Write the three PRH bytes immediately before the FC byte */
3262 
3263 	skb_push(skb,3);
3264 	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3265 	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3266 	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3267 
3268 	/*
3269 	 * Write the descriptor with buffer info and bump producer
3270 	 *
3271 	 * Note: Since we need to start DMA from the packet request
3272 	 *		 header, we'll add 3 bytes to the DMA buffer length,
3273 	 *		 and we'll determine the physical address of the
3274 	 *		 buffer from the PRH, not skb->data.
3275 	 *
3276 	 * Assumptions:
3277 	 *		 1. Packet starts with the frame control (FC) byte
3278 	 *		    at skb->data.
3279 	 *		 2. The 4-byte CRC is not appended to the buffer or
3280 	 *			included in the length.
3281 	 *		 3. Packet length (skb->len) is from FC to end of
3282 	 *			data, inclusive.
3283 	 *		 4. The packet length does not exceed the maximum
3284 	 *			FDDI LLC frame length of 4491 bytes.
3285 	 *		 5. The entire packet is contained in a physically
3286 	 *			contiguous, non-cached, locked memory space
3287 	 *			comprised of a single buffer pointed to by
3288 	 *			skb->data.
3289 	 *		 6. The physical address of the start of packet
3290 	 *			can be determined from the virtual address
3291 	 *			by using pci_map_single() and is only 32-bits
3292 	 *			wide.
3293 	 */
3294 
3295 	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3296 	p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3297 						  skb->len, DMA_TO_DEVICE);
3298 
3299 	/*
3300 	 * Verify that descriptor is actually available
3301 	 *
3302 	 * Note: If descriptor isn't available, return 1 which tells
3303 	 *	 the upper layer to requeue the packet for later
3304 	 *	 transmission.
3305 	 *
3306 	 *       We need to ensure that the producer never reaches the
3307 	 *	 completion, except to indicate that the queue is empty.
3308 	 */
3309 
3310 	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3311 	{
3312 		skb_pull(skb,3);
3313 		spin_unlock_irqrestore(&bp->lock, flags);
3314 		return NETDEV_TX_BUSY;	/* requeue packet for later */
3315 	}
3316 
3317 	/*
3318 	 * Save info for this packet for xmt done indication routine
3319 	 *
3320 	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3321 	 * structure so that we'd have it handy when we complete this
3322 	 * packet later (in dfx_xmt_done).  However, since the current
3323 	 * transmit architecture guarantees a single fragment for the
3324 	 * entire packet, we can simply bump the completion index by
3325 	 * one (1) for each completed packet.
3326 	 *
3327 	 * Note: If this assumption changes and we're presented with
3328 	 *	 an inconsistent number of transmit fragments for packet
3329 	 *	 data, we'll need to modify this code to save the current
3330 	 *	 transmit producer index.
3331 	 */
3332 
3333 	p_xmt_drv_descr->p_skb = skb;
3334 
3335 	/* Update Type 2 register */
3336 
3337 	bp->rcv_xmt_reg.index.xmt_prod = prod;
3338 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3339 	spin_unlock_irqrestore(&bp->lock, flags);
3340 	netif_wake_queue(dev);
3341 	return NETDEV_TX_OK;	/* packet queued to adapter */
3342 	}
3343 
3344 
3345 /*
3346  * ================
3347  * = dfx_xmt_done =
3348  * ================
3349  *
3350  * Overview:
3351  *   Processes all frames that have been transmitted.
3352  *
3353  * Returns:
3354  *   None
3355  *
3356  * Arguments:
3357  *   bp - pointer to board information
3358  *
3359  * Functional Description:
3360  *   For all consumed transmit descriptors that have not
3361  *   yet been completed, we'll free the skb we were holding
3362  *   onto using dev_kfree_skb and bump the appropriate
3363  *   counters.
3364  *
3365  * Return Codes:
3366  *   None
3367  *
3368  * Assumptions:
3369  *   The Type 2 register is not updated in this routine.  It is
3370  *   assumed that it will be updated in the ISR when dfx_xmt_done
3371  *   returns.
3372  *
3373  * Side Effects:
3374  *   None
3375  */
3376 
3377 static int dfx_xmt_done(DFX_board_t *bp)
3378 	{
3379 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3380 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3381 	u8			comp;			/* local transmit completion index */
3382 	int 			freed = 0;		/* buffers freed */
3383 
3384 	/* Service all consumed transmit frames */
3385 
3386 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3387 	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3388 		{
3389 		/* Get pointer to the transmit driver descriptor block information */
3390 
3391 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3392 
3393 		/* Increment transmit counters */
3394 
3395 		bp->xmt_total_frames++;
3396 		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3397 
3398 		/* Return skb to operating system */
3399 		comp = bp->rcv_xmt_reg.index.xmt_comp;
3400 		dma_unmap_single(bp->bus_dev,
3401 				 bp->descr_block_virt->xmt_data[comp].long_1,
3402 				 p_xmt_drv_descr->p_skb->len,
3403 				 DMA_TO_DEVICE);
3404 		dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3405 
3406 		/*
3407 		 * Move to start of next packet by updating completion index
3408 		 *
3409 		 * Here we assume that a transmit packet request is always
3410 		 * serviced by posting one fragment.  We can therefore
3411 		 * simplify the completion code by incrementing the
3412 		 * completion index by one.  This code will need to be
3413 		 * modified if this assumption changes.  See comments
3414 		 * in dfx_xmt_queue_pkt for more details.
3415 		 */
3416 
3417 		bp->rcv_xmt_reg.index.xmt_comp += 1;
3418 		freed++;
3419 		}
3420 	return freed;
3421 	}
3422 
3423 
3424 /*
3425  * =================
3426  * = dfx_rcv_flush =
3427  * =================
3428  *
3429  * Overview:
3430  *   Remove all skb's in the receive ring.
3431  *
3432  * Returns:
3433  *   None
3434  *
3435  * Arguments:
3436  *   bp - pointer to board information
3437  *
3438  * Functional Description:
3439  *   Free's all the dynamically allocated skb's that are
3440  *   currently attached to the device receive ring. This
3441  *   function is typically only used when the device is
3442  *   initialized or reinitialized.
3443  *
3444  * Return Codes:
3445  *   None
3446  *
3447  * Side Effects:
3448  *   None
3449  */
3450 #ifdef DYNAMIC_BUFFERS
3451 static void dfx_rcv_flush( DFX_board_t *bp )
3452 	{
3453 	int i, j;
3454 
3455 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3456 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3457 		{
3458 			struct sk_buff *skb;
3459 			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3460 			if (skb)
3461 				dev_kfree_skb(skb);
3462 			bp->p_rcv_buff_va[i+j] = NULL;
3463 		}
3464 
3465 	}
3466 #else
3467 static inline void dfx_rcv_flush( DFX_board_t *bp )
3468 {
3469 }
3470 #endif /* DYNAMIC_BUFFERS */
3471 
3472 /*
3473  * =================
3474  * = dfx_xmt_flush =
3475  * =================
3476  *
3477  * Overview:
3478  *   Processes all frames whether they've been transmitted
3479  *   or not.
3480  *
3481  * Returns:
3482  *   None
3483  *
3484  * Arguments:
3485  *   bp - pointer to board information
3486  *
3487  * Functional Description:
3488  *   For all produced transmit descriptors that have not
3489  *   yet been completed, we'll free the skb we were holding
3490  *   onto using dev_kfree_skb and bump the appropriate
3491  *   counters.  Of course, it's possible that some of
3492  *   these transmit requests actually did go out, but we
3493  *   won't make that distinction here.  Finally, we'll
3494  *   update the consumer index to match the producer.
3495  *
3496  * Return Codes:
3497  *   None
3498  *
3499  * Assumptions:
3500  *   This routine does NOT update the Type 2 register.  It
3501  *   is assumed that this routine is being called during a
3502  *   transmit flush interrupt, or a shutdown or close routine.
3503  *
3504  * Side Effects:
3505  *   None
3506  */
3507 
3508 static void dfx_xmt_flush( DFX_board_t *bp )
3509 	{
3510 	u32			prod_cons;		/* rcv/xmt consumer block longword */
3511 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3512 	u8			comp;			/* local transmit completion index */
3513 
3514 	/* Flush all outstanding transmit frames */
3515 
3516 	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3517 		{
3518 		/* Get pointer to the transmit driver descriptor block information */
3519 
3520 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3521 
3522 		/* Return skb to operating system */
3523 		comp = bp->rcv_xmt_reg.index.xmt_comp;
3524 		dma_unmap_single(bp->bus_dev,
3525 				 bp->descr_block_virt->xmt_data[comp].long_1,
3526 				 p_xmt_drv_descr->p_skb->len,
3527 				 DMA_TO_DEVICE);
3528 		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3529 
3530 		/* Increment transmit error counter */
3531 
3532 		bp->xmt_discards++;
3533 
3534 		/*
3535 		 * Move to start of next packet by updating completion index
3536 		 *
3537 		 * Here we assume that a transmit packet request is always
3538 		 * serviced by posting one fragment.  We can therefore
3539 		 * simplify the completion code by incrementing the
3540 		 * completion index by one.  This code will need to be
3541 		 * modified if this assumption changes.  See comments
3542 		 * in dfx_xmt_queue_pkt for more details.
3543 		 */
3544 
3545 		bp->rcv_xmt_reg.index.xmt_comp += 1;
3546 		}
3547 
3548 	/* Update the transmit consumer index in the consumer block */
3549 
3550 	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3551 	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3552 	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3553 	}
3554 
3555 /*
3556  * ==================
3557  * = dfx_unregister =
3558  * ==================
3559  *
3560  * Overview:
3561  *   Shuts down an FDDI controller
3562  *
3563  * Returns:
3564  *   Condition code
3565  *
3566  * Arguments:
3567  *   bdev - pointer to device information
3568  *
3569  * Functional Description:
3570  *
3571  * Return Codes:
3572  *   None
3573  *
3574  * Assumptions:
3575  *   It compiles so it should work :-( (PCI cards do :-)
3576  *
3577  * Side Effects:
3578  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3579  *   freed.
3580  */
3581 static void dfx_unregister(struct device *bdev)
3582 {
3583 	struct net_device *dev = dev_get_drvdata(bdev);
3584 	DFX_board_t *bp = netdev_priv(dev);
3585 	int dfx_bus_pci = DFX_BUS_PCI(bdev);
3586 	int dfx_bus_tc = DFX_BUS_TC(bdev);
3587 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3588 	resource_size_t bar_start = 0;		/* pointer to port */
3589 	resource_size_t bar_len = 0;		/* resource length */
3590 	int		alloc_size;		/* total buffer size used */
3591 
3592 	unregister_netdev(dev);
3593 
3594 	alloc_size = sizeof(PI_DESCR_BLOCK) +
3595 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3596 #ifndef DYNAMIC_BUFFERS
3597 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3598 #endif
3599 		     sizeof(PI_CONSUMER_BLOCK) +
3600 		     (PI_ALIGN_K_DESC_BLK - 1);
3601 	if (bp->kmalloced)
3602 		dma_free_coherent(bdev, alloc_size,
3603 				  bp->kmalloced, bp->kmalloced_dma);
3604 
3605 	dfx_bus_uninit(dev);
3606 
3607 	dfx_get_bars(bdev, &bar_start, &bar_len);
3608 	if (dfx_use_mmio) {
3609 		iounmap(bp->base.mem);
3610 		release_mem_region(bar_start, bar_len);
3611 	} else
3612 		release_region(bar_start, bar_len);
3613 
3614 	if (dfx_bus_pci)
3615 		pci_disable_device(to_pci_dev(bdev));
3616 
3617 	free_netdev(dev);
3618 }
3619 
3620 
3621 static int __maybe_unused dfx_dev_register(struct device *);
3622 static int __maybe_unused dfx_dev_unregister(struct device *);
3623 
3624 #ifdef CONFIG_PCI
3625 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3626 static void dfx_pci_unregister(struct pci_dev *);
3627 
3628 static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
3629 	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3630 	{ }
3631 };
3632 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3633 
3634 static struct pci_driver dfx_pci_driver = {
3635 	.name		= "defxx",
3636 	.id_table	= dfx_pci_table,
3637 	.probe		= dfx_pci_register,
3638 	.remove		= dfx_pci_unregister,
3639 };
3640 
3641 static int dfx_pci_register(struct pci_dev *pdev,
3642 			    const struct pci_device_id *ent)
3643 {
3644 	return dfx_register(&pdev->dev);
3645 }
3646 
3647 static void dfx_pci_unregister(struct pci_dev *pdev)
3648 {
3649 	dfx_unregister(&pdev->dev);
3650 }
3651 #endif /* CONFIG_PCI */
3652 
3653 #ifdef CONFIG_EISA
3654 static struct eisa_device_id dfx_eisa_table[] = {
3655         { "DEC3001", DEFEA_PROD_ID_1 },
3656         { "DEC3002", DEFEA_PROD_ID_2 },
3657         { "DEC3003", DEFEA_PROD_ID_3 },
3658         { "DEC3004", DEFEA_PROD_ID_4 },
3659         { }
3660 };
3661 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3662 
3663 static struct eisa_driver dfx_eisa_driver = {
3664 	.id_table	= dfx_eisa_table,
3665 	.driver		= {
3666 		.name	= "defxx",
3667 		.bus	= &eisa_bus_type,
3668 		.probe	= dfx_dev_register,
3669 		.remove	= dfx_dev_unregister,
3670 	},
3671 };
3672 #endif /* CONFIG_EISA */
3673 
3674 #ifdef CONFIG_TC
3675 static struct tc_device_id const dfx_tc_table[] = {
3676 	{ "DEC     ", "PMAF-FA " },
3677 	{ "DEC     ", "PMAF-FD " },
3678 	{ "DEC     ", "PMAF-FS " },
3679 	{ "DEC     ", "PMAF-FU " },
3680 	{ }
3681 };
3682 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3683 
3684 static struct tc_driver dfx_tc_driver = {
3685 	.id_table	= dfx_tc_table,
3686 	.driver		= {
3687 		.name	= "defxx",
3688 		.bus	= &tc_bus_type,
3689 		.probe	= dfx_dev_register,
3690 		.remove	= dfx_dev_unregister,
3691 	},
3692 };
3693 #endif /* CONFIG_TC */
3694 
3695 static int __maybe_unused dfx_dev_register(struct device *dev)
3696 {
3697 	int status;
3698 
3699 	status = dfx_register(dev);
3700 	if (!status)
3701 		get_device(dev);
3702 	return status;
3703 }
3704 
3705 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3706 {
3707 	put_device(dev);
3708 	dfx_unregister(dev);
3709 	return 0;
3710 }
3711 
3712 
3713 static int dfx_init(void)
3714 {
3715 	int status;
3716 
3717 	status = pci_register_driver(&dfx_pci_driver);
3718 	if (!status)
3719 		status = eisa_driver_register(&dfx_eisa_driver);
3720 	if (!status)
3721 		status = tc_register_driver(&dfx_tc_driver);
3722 	return status;
3723 }
3724 
3725 static void dfx_cleanup(void)
3726 {
3727 	tc_unregister_driver(&dfx_tc_driver);
3728 	eisa_driver_unregister(&dfx_eisa_driver);
3729 	pci_unregister_driver(&dfx_pci_driver);
3730 }
3731 
3732 module_init(dfx_init);
3733 module_exit(dfx_cleanup);
3734 MODULE_AUTHOR("Lawrence V. Stefani");
3735 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3736 		   DRV_VERSION " " DRV_RELDATE);
3737 MODULE_LICENSE("GPL");
3738