xref: /linux/drivers/net/ethernet/xscale/ixp4xx_eth.c (revision fefe5dc4afeafe896c90d5b20b605f2759343c3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx Ethernet driver for Linux
4  *
5  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * Ethernet port config (0x00 is not present on IXP42X):
8  *
9  * logical port		0x00		0x10		0x20
10  * NPE			0 (NPE-A)	1 (NPE-B)	2 (NPE-C)
11  * physical PortId	2		0		1
12  * TX queue		23		24		25
13  * RX-free queue	26		27		28
14  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
15  *
16  * Queue entries:
17  * bits 0 -> 1	- NPE ID (RX and TX-done)
18  * bits 0 -> 2	- priority (TX, per 802.1D)
19  * bits 3 -> 4	- port ID (user-set?)
20  * bits 5 -> 31	- physical descriptor address
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmapool.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_vlan.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/net_tstamp.h>
31 #include <linux/of.h>
32 #include <linux/of_mdio.h>
33 #include <linux/of_net.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <linux/soc/ixp4xx/npe.h>
40 #include <linux/soc/ixp4xx/qmgr.h>
41 #include <linux/soc/ixp4xx/cpu.h>
42 #include <linux/types.h>
43 
44 #define IXP4XX_ETH_NPEA		0x00
45 #define IXP4XX_ETH_NPEB		0x10
46 #define IXP4XX_ETH_NPEC		0x20
47 
48 #include "ixp46x_ts.h"
49 
50 #define DEBUG_DESC		0
51 #define DEBUG_RX		0
52 #define DEBUG_TX		0
53 #define DEBUG_PKT_BYTES		0
54 #define DEBUG_MDIO		0
55 #define DEBUG_CLOSE		0
56 
57 #define DRV_NAME		"ixp4xx_eth"
58 
59 #define MAX_NPES		3
60 
61 #define RX_DESCS		64 /* also length of all RX queues */
62 #define TX_DESCS		16 /* also length of all TX queues */
63 #define TXDONE_QUEUE_LEN	64 /* dwords */
64 
65 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
66 #define REGS_SIZE		0x1000
67 #define MAX_MRU			1536 /* 0x600 */
68 #define RX_BUFF_SIZE		ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
69 
70 #define NAPI_WEIGHT		16
71 #define MDIO_INTERVAL		(3 * HZ)
72 #define MAX_MDIO_RETRIES	100 /* microseconds, typically 30 cycles */
73 #define MAX_CLOSE_WAIT		1000 /* microseconds, typically 2-3 cycles */
74 
75 #define NPE_ID(port_id)		((port_id) >> 4)
76 #define PHYSICAL_ID(port_id)	((NPE_ID(port_id) + 2) % 3)
77 #define TX_QUEUE(port_id)	(NPE_ID(port_id) + 23)
78 #define RXFREE_QUEUE(port_id)	(NPE_ID(port_id) + 26)
79 #define TXDONE_QUEUE		31
80 
81 #define PTP_SLAVE_MODE		1
82 #define PTP_MASTER_MODE		2
83 #define PORT2CHANNEL(p)		NPE_ID(p->id)
84 
85 /* TX Control Registers */
86 #define TX_CNTRL0_TX_EN		0x01
87 #define TX_CNTRL0_HALFDUPLEX	0x02
88 #define TX_CNTRL0_RETRY		0x04
89 #define TX_CNTRL0_PAD_EN	0x08
90 #define TX_CNTRL0_APPEND_FCS	0x10
91 #define TX_CNTRL0_2DEFER	0x20
92 #define TX_CNTRL0_RMII		0x40 /* reduced MII */
93 #define TX_CNTRL1_RETRIES	0x0F /* 4 bits */
94 
95 /* RX Control Registers */
96 #define RX_CNTRL0_RX_EN		0x01
97 #define RX_CNTRL0_PADSTRIP_EN	0x02
98 #define RX_CNTRL0_SEND_FCS	0x04
99 #define RX_CNTRL0_PAUSE_EN	0x08
100 #define RX_CNTRL0_LOOP_EN	0x10
101 #define RX_CNTRL0_ADDR_FLTR_EN	0x20
102 #define RX_CNTRL0_RX_RUNT_EN	0x40
103 #define RX_CNTRL0_BCAST_DIS	0x80
104 #define RX_CNTRL1_DEFER_EN	0x01
105 
106 /* Core Control Register */
107 #define CORE_RESET		0x01
108 #define CORE_RX_FIFO_FLUSH	0x02
109 #define CORE_TX_FIFO_FLUSH	0x04
110 #define CORE_SEND_JAM		0x08
111 #define CORE_MDC_EN		0x10 /* MDIO using NPE-B ETH-0 only */
112 
113 #define DEFAULT_TX_CNTRL0	(TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |	\
114 				 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
115 				 TX_CNTRL0_2DEFER)
116 #define DEFAULT_RX_CNTRL0	RX_CNTRL0_RX_EN
117 #define DEFAULT_CORE_CNTRL	CORE_MDC_EN
118 
119 
120 /* NPE message codes */
121 #define NPE_GETSTATUS			0x00
122 #define NPE_EDB_SETPORTADDRESS		0x01
123 #define NPE_EDB_GETMACADDRESSDATABASE	0x02
124 #define NPE_EDB_SETMACADDRESSSDATABASE	0x03
125 #define NPE_GETSTATS			0x04
126 #define NPE_RESETSTATS			0x05
127 #define NPE_SETMAXFRAMELENGTHS		0x06
128 #define NPE_VLAN_SETRXTAGMODE		0x07
129 #define NPE_VLAN_SETDEFAULTRXVID	0x08
130 #define NPE_VLAN_SETPORTVLANTABLEENTRY	0x09
131 #define NPE_VLAN_SETPORTVLANTABLERANGE	0x0A
132 #define NPE_VLAN_SETRXQOSENTRY		0x0B
133 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
134 #define NPE_STP_SETBLOCKINGSTATE	0x0D
135 #define NPE_FW_SETFIREWALLMODE		0x0E
136 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
137 #define NPE_PC_SETAPMACTABLE		0x11
138 #define NPE_SETLOOPBACK_MODE		0x12
139 #define NPE_PC_SETBSSIDTABLE		0x13
140 #define NPE_ADDRESS_FILTER_CONFIG	0x14
141 #define NPE_APPENDFCSCONFIG		0x15
142 #define NPE_NOTIFY_MAC_RECOVERY_DONE	0x16
143 #define NPE_MAC_RECOVERY_START		0x17
144 
145 
146 #ifdef __ARMEB__
147 typedef struct sk_buff buffer_t;
148 #define free_buffer dev_kfree_skb
149 #define free_buffer_irq dev_consume_skb_irq
150 #else
151 typedef void buffer_t;
152 #define free_buffer kfree
153 #define free_buffer_irq kfree
154 #endif
155 
156 /* Information about built-in Ethernet MAC interfaces */
157 struct eth_plat_info {
158 	u8 phy;		/* MII PHY ID, 0 - 31 */
159 	u8 rxq;		/* configurable, currently 0 - 31 only */
160 	u8 txreadyq;
161 	u8 hwaddr[ETH_ALEN];
162 	u8 npe;		/* NPE instance used by this interface */
163 	bool has_mdio;	/* If this instance has an MDIO bus */
164 };
165 
166 struct eth_regs {
167 	u32 tx_control[2], __res1[2];		/* 000 */
168 	u32 rx_control[2], __res2[2];		/* 010 */
169 	u32 random_seed, __res3[3];		/* 020 */
170 	u32 partial_empty_threshold, __res4;	/* 030 */
171 	u32 partial_full_threshold, __res5;	/* 038 */
172 	u32 tx_start_bytes, __res6[3];		/* 040 */
173 	u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
174 	u32 tx_2part_deferral[2], __res8[2];	/* 060 */
175 	u32 slot_time, __res9[3];		/* 070 */
176 	u32 mdio_command[4];			/* 080 */
177 	u32 mdio_status[4];			/* 090 */
178 	u32 mcast_mask[6], __res10[2];		/* 0A0 */
179 	u32 mcast_addr[6], __res11[2];		/* 0C0 */
180 	u32 int_clock_threshold, __res12[3];	/* 0E0 */
181 	u32 hw_addr[6], __res13[61];		/* 0F0 */
182 	u32 core_control;			/* 1FC */
183 };
184 
185 struct port {
186 	struct eth_regs __iomem *regs;
187 	struct ixp46x_ts_regs __iomem *timesync_regs;
188 	int phc_index;
189 	struct npe *npe;
190 	struct net_device *netdev;
191 	struct napi_struct napi;
192 	struct eth_plat_info *plat;
193 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
194 	struct desc *desc_tab;	/* coherent */
195 	dma_addr_t desc_tab_phys;
196 	int id;			/* logical port ID */
197 	int speed, duplex;
198 	u8 firmware[4];
199 	int hwts_tx_en;
200 	int hwts_rx_en;
201 };
202 
203 /* NPE message structure */
204 struct msg {
205 #ifdef __ARMEB__
206 	u8 cmd, eth_id, byte2, byte3;
207 	u8 byte4, byte5, byte6, byte7;
208 #else
209 	u8 byte3, byte2, eth_id, cmd;
210 	u8 byte7, byte6, byte5, byte4;
211 #endif
212 };
213 
214 /* Ethernet packet descriptor */
215 struct desc {
216 	u32 next;		/* pointer to next buffer, unused */
217 
218 #ifdef __ARMEB__
219 	u16 buf_len;		/* buffer length */
220 	u16 pkt_len;		/* packet length */
221 	u32 data;		/* pointer to data buffer in RAM */
222 	u8 dest_id;
223 	u8 src_id;
224 	u16 flags;
225 	u8 qos;
226 	u8 padlen;
227 	u16 vlan_tci;
228 #else
229 	u16 pkt_len;		/* packet length */
230 	u16 buf_len;		/* buffer length */
231 	u32 data;		/* pointer to data buffer in RAM */
232 	u16 flags;
233 	u8 src_id;
234 	u8 dest_id;
235 	u16 vlan_tci;
236 	u8 padlen;
237 	u8 qos;
238 #endif
239 
240 #ifdef __ARMEB__
241 	u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
242 	u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
243 	u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
244 #else
245 	u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
246 	u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
247 	u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
248 #endif
249 };
250 
251 
252 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
253 				 (n) * sizeof(struct desc))
254 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
255 
256 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
257 				 ((n) + RX_DESCS) * sizeof(struct desc))
258 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
259 
260 #ifndef __ARMEB__
261 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
262 {
263 	int i;
264 	for (i = 0; i < cnt; i++)
265 		dest[i] = swab32(src[i]);
266 }
267 #endif
268 
269 static DEFINE_SPINLOCK(mdio_lock);
270 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
271 static struct mii_bus *mdio_bus;
272 static struct device_node *mdio_bus_np;
273 static int ports_open;
274 static struct port *npe_port_tab[MAX_NPES];
275 static struct dma_pool *dma_pool;
276 
277 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
278 {
279 	u8 *data = skb->data;
280 	unsigned int offset;
281 	u16 *hi, *id;
282 	u32 lo;
283 
284 	if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
285 		return 0;
286 
287 	offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
288 
289 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
290 		return 0;
291 
292 	hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
293 	id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
294 
295 	memcpy(&lo, &hi[1], sizeof(lo));
296 
297 	return (uid_hi == ntohs(*hi) &&
298 		uid_lo == ntohl(lo) &&
299 		seqid  == ntohs(*id));
300 }
301 
302 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
303 {
304 	struct skb_shared_hwtstamps *shhwtstamps;
305 	struct ixp46x_ts_regs *regs;
306 	u64 ns;
307 	u32 ch, hi, lo, val;
308 	u16 uid, seq;
309 
310 	if (!port->hwts_rx_en)
311 		return;
312 
313 	ch = PORT2CHANNEL(port);
314 
315 	regs = port->timesync_regs;
316 
317 	val = __raw_readl(&regs->channel[ch].ch_event);
318 
319 	if (!(val & RX_SNAPSHOT_LOCKED))
320 		return;
321 
322 	lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
323 	hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
324 
325 	uid = hi & 0xffff;
326 	seq = (hi >> 16) & 0xffff;
327 
328 	if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
329 		goto out;
330 
331 	lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
332 	hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
333 	ns = ((u64) hi) << 32;
334 	ns |= lo;
335 	ns <<= TICKS_NS_SHIFT;
336 
337 	shhwtstamps = skb_hwtstamps(skb);
338 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
339 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
340 out:
341 	__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
342 }
343 
344 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
345 {
346 	struct skb_shared_hwtstamps shhwtstamps;
347 	struct ixp46x_ts_regs *regs;
348 	struct skb_shared_info *shtx;
349 	u64 ns;
350 	u32 ch, cnt, hi, lo, val;
351 
352 	shtx = skb_shinfo(skb);
353 	if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
354 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
355 	else
356 		return;
357 
358 	ch = PORT2CHANNEL(port);
359 
360 	regs = port->timesync_regs;
361 
362 	/*
363 	 * This really stinks, but we have to poll for the Tx time stamp.
364 	 * Usually, the time stamp is ready after 4 to 6 microseconds.
365 	 */
366 	for (cnt = 0; cnt < 100; cnt++) {
367 		val = __raw_readl(&regs->channel[ch].ch_event);
368 		if (val & TX_SNAPSHOT_LOCKED)
369 			break;
370 		udelay(1);
371 	}
372 	if (!(val & TX_SNAPSHOT_LOCKED)) {
373 		shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
374 		return;
375 	}
376 
377 	lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
378 	hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
379 	ns = ((u64) hi) << 32;
380 	ns |= lo;
381 	ns <<= TICKS_NS_SHIFT;
382 
383 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
384 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
385 	skb_tstamp_tx(skb, &shhwtstamps);
386 
387 	__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
388 }
389 
390 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
391 {
392 	struct hwtstamp_config cfg;
393 	struct ixp46x_ts_regs *regs;
394 	struct port *port = netdev_priv(netdev);
395 	int ret;
396 	int ch;
397 
398 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
399 		return -EFAULT;
400 
401 	ret = ixp46x_ptp_find(&port->timesync_regs, &port->phc_index);
402 	if (ret)
403 		return ret;
404 
405 	ch = PORT2CHANNEL(port);
406 	regs = port->timesync_regs;
407 
408 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
409 		return -ERANGE;
410 
411 	switch (cfg.rx_filter) {
412 	case HWTSTAMP_FILTER_NONE:
413 		port->hwts_rx_en = 0;
414 		break;
415 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
416 		port->hwts_rx_en = PTP_SLAVE_MODE;
417 		__raw_writel(0, &regs->channel[ch].ch_control);
418 		break;
419 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
420 		port->hwts_rx_en = PTP_MASTER_MODE;
421 		__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
422 		break;
423 	default:
424 		return -ERANGE;
425 	}
426 
427 	port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
428 
429 	/* Clear out any old time stamps. */
430 	__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
431 		     &regs->channel[ch].ch_event);
432 
433 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
434 }
435 
436 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
437 {
438 	struct hwtstamp_config cfg;
439 	struct port *port = netdev_priv(netdev);
440 
441 	cfg.flags = 0;
442 	cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
443 
444 	switch (port->hwts_rx_en) {
445 	case 0:
446 		cfg.rx_filter = HWTSTAMP_FILTER_NONE;
447 		break;
448 	case PTP_SLAVE_MODE:
449 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
450 		break;
451 	case PTP_MASTER_MODE:
452 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
453 		break;
454 	default:
455 		WARN_ON_ONCE(1);
456 		return -ERANGE;
457 	}
458 
459 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
460 }
461 
462 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
463 			   int write, u16 cmd)
464 {
465 	int cycles = 0;
466 
467 	if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
468 		printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
469 		return -1;
470 	}
471 
472 	if (write) {
473 		__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
474 		__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
475 	}
476 	__raw_writel(((phy_id << 5) | location) & 0xFF,
477 		     &mdio_regs->mdio_command[2]);
478 	__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
479 		     &mdio_regs->mdio_command[3]);
480 
481 	while ((cycles < MAX_MDIO_RETRIES) &&
482 	       (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
483 		udelay(1);
484 		cycles++;
485 	}
486 
487 	if (cycles == MAX_MDIO_RETRIES) {
488 		printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
489 		       phy_id);
490 		return -1;
491 	}
492 
493 #if DEBUG_MDIO
494 	printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
495 	       phy_id, write ? "write" : "read", cycles);
496 #endif
497 
498 	if (write)
499 		return 0;
500 
501 	if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
502 #if DEBUG_MDIO
503 		printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
504 		       phy_id);
505 #endif
506 		return 0xFFFF; /* don't return error */
507 	}
508 
509 	return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
510 		((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
511 }
512 
513 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
514 {
515 	unsigned long flags;
516 	int ret;
517 
518 	spin_lock_irqsave(&mdio_lock, flags);
519 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
520 	spin_unlock_irqrestore(&mdio_lock, flags);
521 #if DEBUG_MDIO
522 	printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
523 	       phy_id, location, ret);
524 #endif
525 	return ret;
526 }
527 
528 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
529 			     u16 val)
530 {
531 	unsigned long flags;
532 	int ret;
533 
534 	spin_lock_irqsave(&mdio_lock, flags);
535 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
536 	spin_unlock_irqrestore(&mdio_lock, flags);
537 #if DEBUG_MDIO
538 	printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
539 	       bus->name, phy_id, location, val, ret);
540 #endif
541 	return ret;
542 }
543 
544 static int ixp4xx_mdio_register(struct eth_regs __iomem *regs)
545 {
546 	int err;
547 
548 	if (!(mdio_bus = mdiobus_alloc()))
549 		return -ENOMEM;
550 
551 	mdio_regs = regs;
552 	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
553 	mdio_bus->name = "IXP4xx MII Bus";
554 	mdio_bus->read = &ixp4xx_mdio_read;
555 	mdio_bus->write = &ixp4xx_mdio_write;
556 	snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
557 
558 	err = of_mdiobus_register(mdio_bus, mdio_bus_np);
559 	if (err)
560 		mdiobus_free(mdio_bus);
561 	return err;
562 }
563 
564 static void ixp4xx_mdio_remove(void)
565 {
566 	mdiobus_unregister(mdio_bus);
567 	mdiobus_free(mdio_bus);
568 }
569 
570 
571 static void ixp4xx_adjust_link(struct net_device *dev)
572 {
573 	struct port *port = netdev_priv(dev);
574 	struct phy_device *phydev = dev->phydev;
575 
576 	if (!phydev->link) {
577 		if (port->speed) {
578 			port->speed = 0;
579 			printk(KERN_INFO "%s: link down\n", dev->name);
580 		}
581 		return;
582 	}
583 
584 	if (port->speed == phydev->speed && port->duplex == phydev->duplex)
585 		return;
586 
587 	port->speed = phydev->speed;
588 	port->duplex = phydev->duplex;
589 
590 	if (port->duplex)
591 		__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
592 			     &port->regs->tx_control[0]);
593 	else
594 		__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
595 			     &port->regs->tx_control[0]);
596 
597 	netdev_info(dev, "%s: link up, speed %u Mb/s, %s duplex\n",
598 		    dev->name, port->speed, port->duplex ? "full" : "half");
599 }
600 
601 
602 static inline void debug_pkt(struct net_device *dev, const char *func,
603 			     u8 *data, int len)
604 {
605 #if DEBUG_PKT_BYTES
606 	int i;
607 
608 	netdev_debug(dev, "%s(%i) ", func, len);
609 	for (i = 0; i < len; i++) {
610 		if (i >= DEBUG_PKT_BYTES)
611 			break;
612 		printk("%s%02X",
613 		       ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
614 		       data[i]);
615 	}
616 	printk("\n");
617 #endif
618 }
619 
620 
621 static inline void debug_desc(u32 phys, struct desc *desc)
622 {
623 #if DEBUG_DESC
624 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
625 	       " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
626 	       phys, desc->next, desc->buf_len, desc->pkt_len,
627 	       desc->data, desc->dest_id, desc->src_id, desc->flags,
628 	       desc->qos, desc->padlen, desc->vlan_tci,
629 	       desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
630 	       desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
631 	       desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
632 	       desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
633 #endif
634 }
635 
636 static inline int queue_get_desc(unsigned int queue, struct port *port,
637 				 int is_tx)
638 {
639 	u32 phys, tab_phys, n_desc;
640 	struct desc *tab;
641 
642 	if (!(phys = qmgr_get_entry(queue)))
643 		return -1;
644 
645 	phys &= ~0x1F; /* mask out non-address bits */
646 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
647 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
648 	n_desc = (phys - tab_phys) / sizeof(struct desc);
649 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
650 	debug_desc(phys, &tab[n_desc]);
651 	BUG_ON(tab[n_desc].next);
652 	return n_desc;
653 }
654 
655 static inline void queue_put_desc(unsigned int queue, u32 phys,
656 				  struct desc *desc)
657 {
658 	debug_desc(phys, desc);
659 	BUG_ON(phys & 0x1F);
660 	qmgr_put_entry(queue, phys);
661 	/* Don't check for queue overflow here, we've allocated sufficient
662 	   length and queues >= 32 don't support this check anyway. */
663 }
664 
665 
666 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
667 {
668 #ifdef __ARMEB__
669 	dma_unmap_single(&port->netdev->dev, desc->data,
670 			 desc->buf_len, DMA_TO_DEVICE);
671 #else
672 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
673 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
674 			 DMA_TO_DEVICE);
675 #endif
676 }
677 
678 
679 static void eth_rx_irq(void *pdev)
680 {
681 	struct net_device *dev = pdev;
682 	struct port *port = netdev_priv(dev);
683 
684 #if DEBUG_RX
685 	printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
686 #endif
687 	qmgr_disable_irq(port->plat->rxq);
688 	napi_schedule(&port->napi);
689 }
690 
691 static int eth_poll(struct napi_struct *napi, int budget)
692 {
693 	struct port *port = container_of(napi, struct port, napi);
694 	struct net_device *dev = port->netdev;
695 	unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
696 	int received = 0;
697 
698 #if DEBUG_RX
699 	netdev_debug(dev, "eth_poll\n");
700 #endif
701 
702 	while (received < budget) {
703 		struct sk_buff *skb;
704 		struct desc *desc;
705 		int n;
706 #ifdef __ARMEB__
707 		struct sk_buff *temp;
708 		u32 phys;
709 #endif
710 
711 		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
712 #if DEBUG_RX
713 			netdev_debug(dev, "eth_poll napi_complete\n");
714 #endif
715 			napi_complete(napi);
716 			qmgr_enable_irq(rxq);
717 			if (!qmgr_stat_below_low_watermark(rxq) &&
718 			    napi_reschedule(napi)) { /* not empty again */
719 #if DEBUG_RX
720 				netdev_debug(dev, "eth_poll napi_reschedule succeeded\n");
721 #endif
722 				qmgr_disable_irq(rxq);
723 				continue;
724 			}
725 #if DEBUG_RX
726 			netdev_debug(dev, "eth_poll all done\n");
727 #endif
728 			return received; /* all work done */
729 		}
730 
731 		desc = rx_desc_ptr(port, n);
732 
733 #ifdef __ARMEB__
734 		if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
735 			phys = dma_map_single(&dev->dev, skb->data,
736 					      RX_BUFF_SIZE, DMA_FROM_DEVICE);
737 			if (dma_mapping_error(&dev->dev, phys)) {
738 				dev_kfree_skb(skb);
739 				skb = NULL;
740 			}
741 		}
742 #else
743 		skb = netdev_alloc_skb(dev,
744 				       ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
745 #endif
746 
747 		if (!skb) {
748 			dev->stats.rx_dropped++;
749 			/* put the desc back on RX-ready queue */
750 			desc->buf_len = MAX_MRU;
751 			desc->pkt_len = 0;
752 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
753 			continue;
754 		}
755 
756 		/* process received frame */
757 #ifdef __ARMEB__
758 		temp = skb;
759 		skb = port->rx_buff_tab[n];
760 		dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
761 				 RX_BUFF_SIZE, DMA_FROM_DEVICE);
762 #else
763 		dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
764 					RX_BUFF_SIZE, DMA_FROM_DEVICE);
765 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
766 			      ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
767 #endif
768 		skb_reserve(skb, NET_IP_ALIGN);
769 		skb_put(skb, desc->pkt_len);
770 
771 		debug_pkt(dev, "eth_poll", skb->data, skb->len);
772 
773 		ixp_rx_timestamp(port, skb);
774 		skb->protocol = eth_type_trans(skb, dev);
775 		dev->stats.rx_packets++;
776 		dev->stats.rx_bytes += skb->len;
777 		netif_receive_skb(skb);
778 
779 		/* put the new buffer on RX-free queue */
780 #ifdef __ARMEB__
781 		port->rx_buff_tab[n] = temp;
782 		desc->data = phys + NET_IP_ALIGN;
783 #endif
784 		desc->buf_len = MAX_MRU;
785 		desc->pkt_len = 0;
786 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
787 		received++;
788 	}
789 
790 #if DEBUG_RX
791 	netdev_debug(dev, "eth_poll(): end, not all work done\n");
792 #endif
793 	return received;		/* not all work done */
794 }
795 
796 
797 static void eth_txdone_irq(void *unused)
798 {
799 	u32 phys;
800 
801 #if DEBUG_TX
802 	printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
803 #endif
804 	while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
805 		u32 npe_id, n_desc;
806 		struct port *port;
807 		struct desc *desc;
808 		int start;
809 
810 		npe_id = phys & 3;
811 		BUG_ON(npe_id >= MAX_NPES);
812 		port = npe_port_tab[npe_id];
813 		BUG_ON(!port);
814 		phys &= ~0x1F; /* mask out non-address bits */
815 		n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
816 		BUG_ON(n_desc >= TX_DESCS);
817 		desc = tx_desc_ptr(port, n_desc);
818 		debug_desc(phys, desc);
819 
820 		if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
821 			port->netdev->stats.tx_packets++;
822 			port->netdev->stats.tx_bytes += desc->pkt_len;
823 
824 			dma_unmap_tx(port, desc);
825 #if DEBUG_TX
826 			printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
827 			       port->netdev->name, port->tx_buff_tab[n_desc]);
828 #endif
829 			free_buffer_irq(port->tx_buff_tab[n_desc]);
830 			port->tx_buff_tab[n_desc] = NULL;
831 		}
832 
833 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
834 		queue_put_desc(port->plat->txreadyq, phys, desc);
835 		if (start) { /* TX-ready queue was empty */
836 #if DEBUG_TX
837 			printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
838 			       port->netdev->name);
839 #endif
840 			netif_wake_queue(port->netdev);
841 		}
842 	}
843 }
844 
845 static netdev_tx_t eth_xmit(struct sk_buff *skb, struct net_device *dev)
846 {
847 	struct port *port = netdev_priv(dev);
848 	unsigned int txreadyq = port->plat->txreadyq;
849 	int len, offset, bytes, n;
850 	void *mem;
851 	u32 phys;
852 	struct desc *desc;
853 
854 #if DEBUG_TX
855 	netdev_debug(dev, "eth_xmit\n");
856 #endif
857 
858 	if (unlikely(skb->len > MAX_MRU)) {
859 		dev_kfree_skb(skb);
860 		dev->stats.tx_errors++;
861 		return NETDEV_TX_OK;
862 	}
863 
864 	debug_pkt(dev, "eth_xmit", skb->data, skb->len);
865 
866 	len = skb->len;
867 #ifdef __ARMEB__
868 	offset = 0; /* no need to keep alignment */
869 	bytes = len;
870 	mem = skb->data;
871 #else
872 	offset = (uintptr_t)skb->data & 3; /* keep 32-bit alignment */
873 	bytes = ALIGN(offset + len, 4);
874 	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
875 		dev_kfree_skb(skb);
876 		dev->stats.tx_dropped++;
877 		return NETDEV_TX_OK;
878 	}
879 	memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
880 #endif
881 
882 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
883 	if (dma_mapping_error(&dev->dev, phys)) {
884 		dev_kfree_skb(skb);
885 #ifndef __ARMEB__
886 		kfree(mem);
887 #endif
888 		dev->stats.tx_dropped++;
889 		return NETDEV_TX_OK;
890 	}
891 
892 	n = queue_get_desc(txreadyq, port, 1);
893 	BUG_ON(n < 0);
894 	desc = tx_desc_ptr(port, n);
895 
896 #ifdef __ARMEB__
897 	port->tx_buff_tab[n] = skb;
898 #else
899 	port->tx_buff_tab[n] = mem;
900 #endif
901 	desc->data = phys + offset;
902 	desc->buf_len = desc->pkt_len = len;
903 
904 	/* NPE firmware pads short frames with zeros internally */
905 	wmb();
906 	queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
907 
908 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
909 #if DEBUG_TX
910 		netdev_debug(dev, "eth_xmit queue full\n");
911 #endif
912 		netif_stop_queue(dev);
913 		/* we could miss TX ready interrupt */
914 		/* really empty in fact */
915 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
916 #if DEBUG_TX
917 			netdev_debug(dev, "eth_xmit ready again\n");
918 #endif
919 			netif_wake_queue(dev);
920 		}
921 	}
922 
923 #if DEBUG_TX
924 	netdev_debug(dev, "eth_xmit end\n");
925 #endif
926 
927 	ixp_tx_timestamp(port, skb);
928 	skb_tx_timestamp(skb);
929 
930 #ifndef __ARMEB__
931 	dev_kfree_skb(skb);
932 #endif
933 	return NETDEV_TX_OK;
934 }
935 
936 
937 static void eth_set_mcast_list(struct net_device *dev)
938 {
939 	struct port *port = netdev_priv(dev);
940 	struct netdev_hw_addr *ha;
941 	u8 diffs[ETH_ALEN], *addr;
942 	int i;
943 	static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
944 
945 	if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
946 		for (i = 0; i < ETH_ALEN; i++) {
947 			__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
948 			__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
949 		}
950 		__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
951 			&port->regs->rx_control[0]);
952 		return;
953 	}
954 
955 	if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
956 		__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
957 			     &port->regs->rx_control[0]);
958 		return;
959 	}
960 
961 	eth_zero_addr(diffs);
962 
963 	addr = NULL;
964 	netdev_for_each_mc_addr(ha, dev) {
965 		if (!addr)
966 			addr = ha->addr; /* first MAC address */
967 		for (i = 0; i < ETH_ALEN; i++)
968 			diffs[i] |= addr[i] ^ ha->addr[i];
969 	}
970 
971 	for (i = 0; i < ETH_ALEN; i++) {
972 		__raw_writel(addr[i], &port->regs->mcast_addr[i]);
973 		__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
974 	}
975 
976 	__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
977 		     &port->regs->rx_control[0]);
978 }
979 
980 
981 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
982 {
983 	if (!netif_running(dev))
984 		return -EINVAL;
985 
986 	if (cpu_is_ixp46x()) {
987 		if (cmd == SIOCSHWTSTAMP)
988 			return hwtstamp_set(dev, req);
989 		if (cmd == SIOCGHWTSTAMP)
990 			return hwtstamp_get(dev, req);
991 	}
992 
993 	return phy_mii_ioctl(dev->phydev, req, cmd);
994 }
995 
996 /* ethtool support */
997 
998 static void ixp4xx_get_drvinfo(struct net_device *dev,
999 			       struct ethtool_drvinfo *info)
1000 {
1001 	struct port *port = netdev_priv(dev);
1002 
1003 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1004 	snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
1005 		 port->firmware[0], port->firmware[1],
1006 		 port->firmware[2], port->firmware[3]);
1007 	strscpy(info->bus_info, "internal", sizeof(info->bus_info));
1008 }
1009 
1010 static int ixp4xx_get_ts_info(struct net_device *dev,
1011 			      struct ethtool_ts_info *info)
1012 {
1013 	struct port *port = netdev_priv(dev);
1014 
1015 	if (port->phc_index < 0)
1016 		ixp46x_ptp_find(&port->timesync_regs, &port->phc_index);
1017 
1018 	info->phc_index = port->phc_index;
1019 
1020 	if (info->phc_index < 0) {
1021 		info->so_timestamping =
1022 			SOF_TIMESTAMPING_TX_SOFTWARE |
1023 			SOF_TIMESTAMPING_RX_SOFTWARE |
1024 			SOF_TIMESTAMPING_SOFTWARE;
1025 		return 0;
1026 	}
1027 	info->so_timestamping =
1028 		SOF_TIMESTAMPING_TX_HARDWARE |
1029 		SOF_TIMESTAMPING_RX_HARDWARE |
1030 		SOF_TIMESTAMPING_RAW_HARDWARE;
1031 	info->tx_types =
1032 		(1 << HWTSTAMP_TX_OFF) |
1033 		(1 << HWTSTAMP_TX_ON);
1034 	info->rx_filters =
1035 		(1 << HWTSTAMP_FILTER_NONE) |
1036 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1037 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1038 	return 0;
1039 }
1040 
1041 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1042 	.get_drvinfo = ixp4xx_get_drvinfo,
1043 	.nway_reset = phy_ethtool_nway_reset,
1044 	.get_link = ethtool_op_get_link,
1045 	.get_ts_info = ixp4xx_get_ts_info,
1046 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1047 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1048 };
1049 
1050 
1051 static int request_queues(struct port *port)
1052 {
1053 	int err;
1054 
1055 	err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1056 				 "%s:RX-free", port->netdev->name);
1057 	if (err)
1058 		return err;
1059 
1060 	err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1061 				 "%s:RX", port->netdev->name);
1062 	if (err)
1063 		goto rel_rxfree;
1064 
1065 	err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1066 				 "%s:TX", port->netdev->name);
1067 	if (err)
1068 		goto rel_rx;
1069 
1070 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1071 				 "%s:TX-ready", port->netdev->name);
1072 	if (err)
1073 		goto rel_tx;
1074 
1075 	/* TX-done queue handles skbs sent out by the NPEs */
1076 	if (!ports_open) {
1077 		err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1078 					 "%s:TX-done", DRV_NAME);
1079 		if (err)
1080 			goto rel_txready;
1081 	}
1082 	return 0;
1083 
1084 rel_txready:
1085 	qmgr_release_queue(port->plat->txreadyq);
1086 rel_tx:
1087 	qmgr_release_queue(TX_QUEUE(port->id));
1088 rel_rx:
1089 	qmgr_release_queue(port->plat->rxq);
1090 rel_rxfree:
1091 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1092 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1093 	       port->netdev->name);
1094 	return err;
1095 }
1096 
1097 static void release_queues(struct port *port)
1098 {
1099 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1100 	qmgr_release_queue(port->plat->rxq);
1101 	qmgr_release_queue(TX_QUEUE(port->id));
1102 	qmgr_release_queue(port->plat->txreadyq);
1103 
1104 	if (!ports_open)
1105 		qmgr_release_queue(TXDONE_QUEUE);
1106 }
1107 
1108 static int init_queues(struct port *port)
1109 {
1110 	int i;
1111 
1112 	if (!ports_open) {
1113 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1114 					   POOL_ALLOC_SIZE, 32, 0);
1115 		if (!dma_pool)
1116 			return -ENOMEM;
1117 	}
1118 
1119 	port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL, &port->desc_tab_phys);
1120 	if (!port->desc_tab)
1121 		return -ENOMEM;
1122 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1123 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1124 
1125 	/* Setup RX buffers */
1126 	for (i = 0; i < RX_DESCS; i++) {
1127 		struct desc *desc = rx_desc_ptr(port, i);
1128 		buffer_t *buff; /* skb or kmalloc()ated memory */
1129 		void *data;
1130 #ifdef __ARMEB__
1131 		if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1132 			return -ENOMEM;
1133 		data = buff->data;
1134 #else
1135 		if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1136 			return -ENOMEM;
1137 		data = buff;
1138 #endif
1139 		desc->buf_len = MAX_MRU;
1140 		desc->data = dma_map_single(&port->netdev->dev, data,
1141 					    RX_BUFF_SIZE, DMA_FROM_DEVICE);
1142 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1143 			free_buffer(buff);
1144 			return -EIO;
1145 		}
1146 		desc->data += NET_IP_ALIGN;
1147 		port->rx_buff_tab[i] = buff;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static void destroy_queues(struct port *port)
1154 {
1155 	int i;
1156 
1157 	if (port->desc_tab) {
1158 		for (i = 0; i < RX_DESCS; i++) {
1159 			struct desc *desc = rx_desc_ptr(port, i);
1160 			buffer_t *buff = port->rx_buff_tab[i];
1161 			if (buff) {
1162 				dma_unmap_single(&port->netdev->dev,
1163 						 desc->data - NET_IP_ALIGN,
1164 						 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1165 				free_buffer(buff);
1166 			}
1167 		}
1168 		for (i = 0; i < TX_DESCS; i++) {
1169 			struct desc *desc = tx_desc_ptr(port, i);
1170 			buffer_t *buff = port->tx_buff_tab[i];
1171 			if (buff) {
1172 				dma_unmap_tx(port, desc);
1173 				free_buffer(buff);
1174 			}
1175 		}
1176 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1177 		port->desc_tab = NULL;
1178 	}
1179 
1180 	if (!ports_open && dma_pool) {
1181 		dma_pool_destroy(dma_pool);
1182 		dma_pool = NULL;
1183 	}
1184 }
1185 
1186 static int eth_open(struct net_device *dev)
1187 {
1188 	struct port *port = netdev_priv(dev);
1189 	struct npe *npe = port->npe;
1190 	struct msg msg;
1191 	int i, err;
1192 
1193 	if (!npe_running(npe)) {
1194 		err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1195 		if (err)
1196 			return err;
1197 
1198 		if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1199 			netdev_err(dev, "%s not responding\n", npe_name(npe));
1200 			return -EIO;
1201 		}
1202 		port->firmware[0] = msg.byte4;
1203 		port->firmware[1] = msg.byte5;
1204 		port->firmware[2] = msg.byte6;
1205 		port->firmware[3] = msg.byte7;
1206 	}
1207 
1208 	memset(&msg, 0, sizeof(msg));
1209 	msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1210 	msg.eth_id = port->id;
1211 	msg.byte5 = port->plat->rxq | 0x80;
1212 	msg.byte7 = port->plat->rxq << 4;
1213 	for (i = 0; i < 8; i++) {
1214 		msg.byte3 = i;
1215 		if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1216 			return -EIO;
1217 	}
1218 
1219 	msg.cmd = NPE_EDB_SETPORTADDRESS;
1220 	msg.eth_id = PHYSICAL_ID(port->id);
1221 	msg.byte2 = dev->dev_addr[0];
1222 	msg.byte3 = dev->dev_addr[1];
1223 	msg.byte4 = dev->dev_addr[2];
1224 	msg.byte5 = dev->dev_addr[3];
1225 	msg.byte6 = dev->dev_addr[4];
1226 	msg.byte7 = dev->dev_addr[5];
1227 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1228 		return -EIO;
1229 
1230 	memset(&msg, 0, sizeof(msg));
1231 	msg.cmd = NPE_FW_SETFIREWALLMODE;
1232 	msg.eth_id = port->id;
1233 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1234 		return -EIO;
1235 
1236 	if ((err = request_queues(port)) != 0)
1237 		return err;
1238 
1239 	if ((err = init_queues(port)) != 0) {
1240 		destroy_queues(port);
1241 		release_queues(port);
1242 		return err;
1243 	}
1244 
1245 	port->speed = 0;	/* force "link up" message */
1246 	phy_start(dev->phydev);
1247 
1248 	for (i = 0; i < ETH_ALEN; i++)
1249 		__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1250 	__raw_writel(0x08, &port->regs->random_seed);
1251 	__raw_writel(0x12, &port->regs->partial_empty_threshold);
1252 	__raw_writel(0x30, &port->regs->partial_full_threshold);
1253 	__raw_writel(0x08, &port->regs->tx_start_bytes);
1254 	__raw_writel(0x15, &port->regs->tx_deferral);
1255 	__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1256 	__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1257 	__raw_writel(0x80, &port->regs->slot_time);
1258 	__raw_writel(0x01, &port->regs->int_clock_threshold);
1259 
1260 	/* Populate queues with buffers, no failure after this point */
1261 	for (i = 0; i < TX_DESCS; i++)
1262 		queue_put_desc(port->plat->txreadyq,
1263 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1264 
1265 	for (i = 0; i < RX_DESCS; i++)
1266 		queue_put_desc(RXFREE_QUEUE(port->id),
1267 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1268 
1269 	__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1270 	__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1271 	__raw_writel(0, &port->regs->rx_control[1]);
1272 	__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1273 
1274 	napi_enable(&port->napi);
1275 	eth_set_mcast_list(dev);
1276 	netif_start_queue(dev);
1277 
1278 	qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1279 		     eth_rx_irq, dev);
1280 	if (!ports_open) {
1281 		qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1282 			     eth_txdone_irq, NULL);
1283 		qmgr_enable_irq(TXDONE_QUEUE);
1284 	}
1285 	ports_open++;
1286 	/* we may already have RX data, enables IRQ */
1287 	napi_schedule(&port->napi);
1288 	return 0;
1289 }
1290 
1291 static int eth_close(struct net_device *dev)
1292 {
1293 	struct port *port = netdev_priv(dev);
1294 	struct msg msg;
1295 	int buffs = RX_DESCS; /* allocated RX buffers */
1296 	int i;
1297 
1298 	ports_open--;
1299 	qmgr_disable_irq(port->plat->rxq);
1300 	napi_disable(&port->napi);
1301 	netif_stop_queue(dev);
1302 
1303 	while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1304 		buffs--;
1305 
1306 	memset(&msg, 0, sizeof(msg));
1307 	msg.cmd = NPE_SETLOOPBACK_MODE;
1308 	msg.eth_id = port->id;
1309 	msg.byte3 = 1;
1310 	if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1311 		netdev_crit(dev, "unable to enable loopback\n");
1312 
1313 	i = 0;
1314 	do {			/* drain RX buffers */
1315 		while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1316 			buffs--;
1317 		if (!buffs)
1318 			break;
1319 		if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1320 			/* we have to inject some packet */
1321 			struct desc *desc;
1322 			u32 phys;
1323 			int n = queue_get_desc(port->plat->txreadyq, port, 1);
1324 			BUG_ON(n < 0);
1325 			desc = tx_desc_ptr(port, n);
1326 			phys = tx_desc_phys(port, n);
1327 			desc->buf_len = desc->pkt_len = 1;
1328 			wmb();
1329 			queue_put_desc(TX_QUEUE(port->id), phys, desc);
1330 		}
1331 		udelay(1);
1332 	} while (++i < MAX_CLOSE_WAIT);
1333 
1334 	if (buffs)
1335 		netdev_crit(dev, "unable to drain RX queue, %i buffer(s)"
1336 			    " left in NPE\n", buffs);
1337 #if DEBUG_CLOSE
1338 	if (!buffs)
1339 		netdev_debug(dev, "draining RX queue took %i cycles\n", i);
1340 #endif
1341 
1342 	buffs = TX_DESCS;
1343 	while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1344 		buffs--; /* cancel TX */
1345 
1346 	i = 0;
1347 	do {
1348 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1349 			buffs--;
1350 		if (!buffs)
1351 			break;
1352 	} while (++i < MAX_CLOSE_WAIT);
1353 
1354 	if (buffs)
1355 		netdev_crit(dev, "unable to drain TX queue, %i buffer(s) "
1356 			    "left in NPE\n", buffs);
1357 #if DEBUG_CLOSE
1358 	if (!buffs)
1359 		netdev_debug(dev, "draining TX queues took %i cycles\n", i);
1360 #endif
1361 
1362 	msg.byte3 = 0;
1363 	if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1364 		netdev_crit(dev, "unable to disable loopback\n");
1365 
1366 	phy_stop(dev->phydev);
1367 
1368 	if (!ports_open)
1369 		qmgr_disable_irq(TXDONE_QUEUE);
1370 	destroy_queues(port);
1371 	release_queues(port);
1372 	return 0;
1373 }
1374 
1375 static const struct net_device_ops ixp4xx_netdev_ops = {
1376 	.ndo_open = eth_open,
1377 	.ndo_stop = eth_close,
1378 	.ndo_start_xmit = eth_xmit,
1379 	.ndo_set_rx_mode = eth_set_mcast_list,
1380 	.ndo_eth_ioctl = eth_ioctl,
1381 	.ndo_set_mac_address = eth_mac_addr,
1382 	.ndo_validate_addr = eth_validate_addr,
1383 };
1384 
1385 static struct eth_plat_info *ixp4xx_of_get_platdata(struct device *dev)
1386 {
1387 	struct device_node *np = dev->of_node;
1388 	struct of_phandle_args queue_spec;
1389 	struct of_phandle_args npe_spec;
1390 	struct device_node *mdio_np;
1391 	struct eth_plat_info *plat;
1392 	u8 mac[ETH_ALEN];
1393 	int ret;
1394 
1395 	plat = devm_kzalloc(dev, sizeof(*plat), GFP_KERNEL);
1396 	if (!plat)
1397 		return NULL;
1398 
1399 	ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0,
1400 					       &npe_spec);
1401 	if (ret) {
1402 		dev_err(dev, "no NPE engine specified\n");
1403 		return NULL;
1404 	}
1405 	/* NPE ID 0x00, 0x10, 0x20... */
1406 	plat->npe = (npe_spec.args[0] << 4);
1407 
1408 	/* Check if this device has an MDIO bus */
1409 	mdio_np = of_get_child_by_name(np, "mdio");
1410 	if (mdio_np) {
1411 		plat->has_mdio = true;
1412 		mdio_bus_np = mdio_np;
1413 		/* DO NOT put the mdio_np, it will be used */
1414 	}
1415 
1416 	/* Get the rx queue as a resource from queue manager */
1417 	ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
1418 					       &queue_spec);
1419 	if (ret) {
1420 		dev_err(dev, "no rx queue phandle\n");
1421 		return NULL;
1422 	}
1423 	plat->rxq = queue_spec.args[0];
1424 
1425 	/* Get the txready queue as resource from queue manager */
1426 	ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
1427 					       &queue_spec);
1428 	if (ret) {
1429 		dev_err(dev, "no txready queue phandle\n");
1430 		return NULL;
1431 	}
1432 	plat->txreadyq = queue_spec.args[0];
1433 
1434 	ret = of_get_mac_address(np, mac);
1435 	if (!ret) {
1436 		dev_info(dev, "Setting macaddr from DT %pM\n", mac);
1437 		memcpy(plat->hwaddr, mac, ETH_ALEN);
1438 	}
1439 
1440 	return plat;
1441 }
1442 
1443 static int ixp4xx_eth_probe(struct platform_device *pdev)
1444 {
1445 	struct phy_device *phydev = NULL;
1446 	struct device *dev = &pdev->dev;
1447 	struct device_node *np = dev->of_node;
1448 	struct eth_plat_info *plat;
1449 	struct net_device *ndev;
1450 	struct port *port;
1451 	int err;
1452 
1453 	plat = ixp4xx_of_get_platdata(dev);
1454 	if (!plat)
1455 		return -ENODEV;
1456 
1457 	if (!(ndev = devm_alloc_etherdev(dev, sizeof(struct port))))
1458 		return -ENOMEM;
1459 
1460 	SET_NETDEV_DEV(ndev, dev);
1461 	port = netdev_priv(ndev);
1462 	port->netdev = ndev;
1463 	port->id = plat->npe;
1464 	port->phc_index = -1;
1465 
1466 	/* Get the port resource and remap */
1467 	port->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
1468 	if (IS_ERR(port->regs))
1469 		return PTR_ERR(port->regs);
1470 
1471 	/* Register the MDIO bus if we have it */
1472 	if (plat->has_mdio) {
1473 		err = ixp4xx_mdio_register(port->regs);
1474 		if (err) {
1475 			dev_err(dev, "failed to register MDIO bus\n");
1476 			return err;
1477 		}
1478 	}
1479 	/* If the instance with the MDIO bus has not yet appeared,
1480 	 * defer probing until it gets probed.
1481 	 */
1482 	if (!mdio_bus)
1483 		return -EPROBE_DEFER;
1484 
1485 	ndev->netdev_ops = &ixp4xx_netdev_ops;
1486 	ndev->ethtool_ops = &ixp4xx_ethtool_ops;
1487 	ndev->tx_queue_len = 100;
1488 	/* Inherit the DMA masks from the platform device */
1489 	ndev->dev.dma_mask = dev->dma_mask;
1490 	ndev->dev.coherent_dma_mask = dev->coherent_dma_mask;
1491 
1492 	/* Maximum frame size is 16320 bytes and includes VLAN and
1493 	 * ethernet headers. See "IXP400 Software Programmer's Guide"
1494 	 * section 10.3.2, page 161.
1495 	 */
1496 	ndev->min_mtu = ETH_MIN_MTU;
1497 	ndev->max_mtu = 16320 - VLAN_ETH_HLEN;
1498 
1499 	netif_napi_add_weight(ndev, &port->napi, eth_poll, NAPI_WEIGHT);
1500 
1501 	if (!(port->npe = npe_request(NPE_ID(port->id))))
1502 		return -EIO;
1503 
1504 	port->plat = plat;
1505 	npe_port_tab[NPE_ID(port->id)] = port;
1506 	if (is_valid_ether_addr(plat->hwaddr))
1507 		eth_hw_addr_set(ndev, plat->hwaddr);
1508 	else
1509 		eth_hw_addr_random(ndev);
1510 
1511 	platform_set_drvdata(pdev, ndev);
1512 
1513 	__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1514 		     &port->regs->core_control);
1515 	udelay(50);
1516 	__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1517 	udelay(50);
1518 
1519 	phydev = of_phy_get_and_connect(ndev, np, ixp4xx_adjust_link);
1520 	if (!phydev) {
1521 		err = -ENODEV;
1522 		dev_err(dev, "no phydev\n");
1523 		goto err_free_mem;
1524 	}
1525 
1526 	phydev->irq = PHY_POLL;
1527 
1528 	if ((err = register_netdev(ndev)))
1529 		goto err_phy_dis;
1530 
1531 	netdev_info(ndev, "%s: MII PHY %i on %s\n", ndev->name, plat->phy,
1532 		    npe_name(port->npe));
1533 
1534 	return 0;
1535 
1536 err_phy_dis:
1537 	phy_disconnect(phydev);
1538 err_free_mem:
1539 	npe_port_tab[NPE_ID(port->id)] = NULL;
1540 	npe_release(port->npe);
1541 	return err;
1542 }
1543 
1544 static void ixp4xx_eth_remove(struct platform_device *pdev)
1545 {
1546 	struct net_device *ndev = platform_get_drvdata(pdev);
1547 	struct phy_device *phydev = ndev->phydev;
1548 	struct port *port = netdev_priv(ndev);
1549 
1550 	unregister_netdev(ndev);
1551 	phy_disconnect(phydev);
1552 	ixp4xx_mdio_remove();
1553 	npe_port_tab[NPE_ID(port->id)] = NULL;
1554 	npe_release(port->npe);
1555 }
1556 
1557 static const struct of_device_id ixp4xx_eth_of_match[] = {
1558 	{
1559 		.compatible = "intel,ixp4xx-ethernet",
1560 	},
1561 	{ },
1562 };
1563 
1564 static struct platform_driver ixp4xx_eth_driver = {
1565 	.driver = {
1566 		.name = DRV_NAME,
1567 		.of_match_table = of_match_ptr(ixp4xx_eth_of_match),
1568 	},
1569 	.probe		= ixp4xx_eth_probe,
1570 	.remove_new	= ixp4xx_eth_remove,
1571 };
1572 module_platform_driver(ixp4xx_eth_driver);
1573 
1574 MODULE_AUTHOR("Krzysztof Halasa");
1575 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1576 MODULE_LICENSE("GPL v2");
1577 MODULE_ALIAS("platform:ixp4xx_eth");
1578