xref: /linux/drivers/net/ethernet/xscale/ixp4xx_eth.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Intel IXP4xx Ethernet driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * Ethernet port config (0x00 is not present on IXP42X):
11  *
12  * logical port		0x00		0x10		0x20
13  * NPE			0 (NPE-A)	1 (NPE-B)	2 (NPE-C)
14  * physical PortId	2		0		1
15  * TX queue		23		24		25
16  * RX-free queue	26		27		28
17  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
18  *
19  *
20  * Queue entries:
21  * bits 0 -> 1	- NPE ID (RX and TX-done)
22  * bits 0 -> 2	- priority (TX, per 802.1D)
23  * bits 3 -> 4	- port ID (user-set?)
24  * bits 5 -> 31	- physical descriptor address
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <mach/ixp46x_ts.h>
40 #include <mach/npe.h>
41 #include <mach/qmgr.h>
42 
43 #define DEBUG_DESC		0
44 #define DEBUG_RX		0
45 #define DEBUG_TX		0
46 #define DEBUG_PKT_BYTES		0
47 #define DEBUG_MDIO		0
48 #define DEBUG_CLOSE		0
49 
50 #define DRV_NAME		"ixp4xx_eth"
51 
52 #define MAX_NPES		3
53 
54 #define RX_DESCS		64 /* also length of all RX queues */
55 #define TX_DESCS		16 /* also length of all TX queues */
56 #define TXDONE_QUEUE_LEN	64 /* dwords */
57 
58 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
59 #define REGS_SIZE		0x1000
60 #define MAX_MRU			1536 /* 0x600 */
61 #define RX_BUFF_SIZE		ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
62 
63 #define NAPI_WEIGHT		16
64 #define MDIO_INTERVAL		(3 * HZ)
65 #define MAX_MDIO_RETRIES	100 /* microseconds, typically 30 cycles */
66 #define MAX_CLOSE_WAIT		1000 /* microseconds, typically 2-3 cycles */
67 
68 #define NPE_ID(port_id)		((port_id) >> 4)
69 #define PHYSICAL_ID(port_id)	((NPE_ID(port_id) + 2) % 3)
70 #define TX_QUEUE(port_id)	(NPE_ID(port_id) + 23)
71 #define RXFREE_QUEUE(port_id)	(NPE_ID(port_id) + 26)
72 #define TXDONE_QUEUE		31
73 
74 #define PTP_SLAVE_MODE		1
75 #define PTP_MASTER_MODE		2
76 #define PORT2CHANNEL(p)		NPE_ID(p->id)
77 
78 /* TX Control Registers */
79 #define TX_CNTRL0_TX_EN		0x01
80 #define TX_CNTRL0_HALFDUPLEX	0x02
81 #define TX_CNTRL0_RETRY		0x04
82 #define TX_CNTRL0_PAD_EN	0x08
83 #define TX_CNTRL0_APPEND_FCS	0x10
84 #define TX_CNTRL0_2DEFER	0x20
85 #define TX_CNTRL0_RMII		0x40 /* reduced MII */
86 #define TX_CNTRL1_RETRIES	0x0F /* 4 bits */
87 
88 /* RX Control Registers */
89 #define RX_CNTRL0_RX_EN		0x01
90 #define RX_CNTRL0_PADSTRIP_EN	0x02
91 #define RX_CNTRL0_SEND_FCS	0x04
92 #define RX_CNTRL0_PAUSE_EN	0x08
93 #define RX_CNTRL0_LOOP_EN	0x10
94 #define RX_CNTRL0_ADDR_FLTR_EN	0x20
95 #define RX_CNTRL0_RX_RUNT_EN	0x40
96 #define RX_CNTRL0_BCAST_DIS	0x80
97 #define RX_CNTRL1_DEFER_EN	0x01
98 
99 /* Core Control Register */
100 #define CORE_RESET		0x01
101 #define CORE_RX_FIFO_FLUSH	0x02
102 #define CORE_TX_FIFO_FLUSH	0x04
103 #define CORE_SEND_JAM		0x08
104 #define CORE_MDC_EN		0x10 /* MDIO using NPE-B ETH-0 only */
105 
106 #define DEFAULT_TX_CNTRL0	(TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |	\
107 				 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
108 				 TX_CNTRL0_2DEFER)
109 #define DEFAULT_RX_CNTRL0	RX_CNTRL0_RX_EN
110 #define DEFAULT_CORE_CNTRL	CORE_MDC_EN
111 
112 
113 /* NPE message codes */
114 #define NPE_GETSTATUS			0x00
115 #define NPE_EDB_SETPORTADDRESS		0x01
116 #define NPE_EDB_GETMACADDRESSDATABASE	0x02
117 #define NPE_EDB_SETMACADDRESSSDATABASE	0x03
118 #define NPE_GETSTATS			0x04
119 #define NPE_RESETSTATS			0x05
120 #define NPE_SETMAXFRAMELENGTHS		0x06
121 #define NPE_VLAN_SETRXTAGMODE		0x07
122 #define NPE_VLAN_SETDEFAULTRXVID	0x08
123 #define NPE_VLAN_SETPORTVLANTABLEENTRY	0x09
124 #define NPE_VLAN_SETPORTVLANTABLERANGE	0x0A
125 #define NPE_VLAN_SETRXQOSENTRY		0x0B
126 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
127 #define NPE_STP_SETBLOCKINGSTATE	0x0D
128 #define NPE_FW_SETFIREWALLMODE		0x0E
129 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
130 #define NPE_PC_SETAPMACTABLE		0x11
131 #define NPE_SETLOOPBACK_MODE		0x12
132 #define NPE_PC_SETBSSIDTABLE		0x13
133 #define NPE_ADDRESS_FILTER_CONFIG	0x14
134 #define NPE_APPENDFCSCONFIG		0x15
135 #define NPE_NOTIFY_MAC_RECOVERY_DONE	0x16
136 #define NPE_MAC_RECOVERY_START		0x17
137 
138 
139 #ifdef __ARMEB__
140 typedef struct sk_buff buffer_t;
141 #define free_buffer dev_kfree_skb
142 #define free_buffer_irq dev_kfree_skb_irq
143 #else
144 typedef void buffer_t;
145 #define free_buffer kfree
146 #define free_buffer_irq kfree
147 #endif
148 
149 struct eth_regs {
150 	u32 tx_control[2], __res1[2];		/* 000 */
151 	u32 rx_control[2], __res2[2];		/* 010 */
152 	u32 random_seed, __res3[3];		/* 020 */
153 	u32 partial_empty_threshold, __res4;	/* 030 */
154 	u32 partial_full_threshold, __res5;	/* 038 */
155 	u32 tx_start_bytes, __res6[3];		/* 040 */
156 	u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
157 	u32 tx_2part_deferral[2], __res8[2];	/* 060 */
158 	u32 slot_time, __res9[3];		/* 070 */
159 	u32 mdio_command[4];			/* 080 */
160 	u32 mdio_status[4];			/* 090 */
161 	u32 mcast_mask[6], __res10[2];		/* 0A0 */
162 	u32 mcast_addr[6], __res11[2];		/* 0C0 */
163 	u32 int_clock_threshold, __res12[3];	/* 0E0 */
164 	u32 hw_addr[6], __res13[61];		/* 0F0 */
165 	u32 core_control;			/* 1FC */
166 };
167 
168 struct port {
169 	struct resource *mem_res;
170 	struct eth_regs __iomem *regs;
171 	struct npe *npe;
172 	struct net_device *netdev;
173 	struct napi_struct napi;
174 	struct phy_device *phydev;
175 	struct eth_plat_info *plat;
176 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
177 	struct desc *desc_tab;	/* coherent */
178 	u32 desc_tab_phys;
179 	int id;			/* logical port ID */
180 	int speed, duplex;
181 	u8 firmware[4];
182 	int hwts_tx_en;
183 	int hwts_rx_en;
184 };
185 
186 /* NPE message structure */
187 struct msg {
188 #ifdef __ARMEB__
189 	u8 cmd, eth_id, byte2, byte3;
190 	u8 byte4, byte5, byte6, byte7;
191 #else
192 	u8 byte3, byte2, eth_id, cmd;
193 	u8 byte7, byte6, byte5, byte4;
194 #endif
195 };
196 
197 /* Ethernet packet descriptor */
198 struct desc {
199 	u32 next;		/* pointer to next buffer, unused */
200 
201 #ifdef __ARMEB__
202 	u16 buf_len;		/* buffer length */
203 	u16 pkt_len;		/* packet length */
204 	u32 data;		/* pointer to data buffer in RAM */
205 	u8 dest_id;
206 	u8 src_id;
207 	u16 flags;
208 	u8 qos;
209 	u8 padlen;
210 	u16 vlan_tci;
211 #else
212 	u16 pkt_len;		/* packet length */
213 	u16 buf_len;		/* buffer length */
214 	u32 data;		/* pointer to data buffer in RAM */
215 	u16 flags;
216 	u8 src_id;
217 	u8 dest_id;
218 	u16 vlan_tci;
219 	u8 padlen;
220 	u8 qos;
221 #endif
222 
223 #ifdef __ARMEB__
224 	u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
225 	u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
226 	u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
227 #else
228 	u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
229 	u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
230 	u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
231 #endif
232 };
233 
234 
235 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
236 				 (n) * sizeof(struct desc))
237 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
238 
239 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
240 				 ((n) + RX_DESCS) * sizeof(struct desc))
241 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
242 
243 #ifndef __ARMEB__
244 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
245 {
246 	int i;
247 	for (i = 0; i < cnt; i++)
248 		dest[i] = swab32(src[i]);
249 }
250 #endif
251 
252 static spinlock_t mdio_lock;
253 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
254 static struct mii_bus *mdio_bus;
255 static int ports_open;
256 static struct port *npe_port_tab[MAX_NPES];
257 static struct dma_pool *dma_pool;
258 
259 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
260 {
261 	u8 *data = skb->data;
262 	unsigned int offset;
263 	u16 *hi, *id;
264 	u32 lo;
265 
266 	if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
267 		return 0;
268 
269 	offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
270 
271 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
272 		return 0;
273 
274 	hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
275 	id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
276 
277 	memcpy(&lo, &hi[1], sizeof(lo));
278 
279 	return (uid_hi == ntohs(*hi) &&
280 		uid_lo == ntohl(lo) &&
281 		seqid  == ntohs(*id));
282 }
283 
284 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
285 {
286 	struct skb_shared_hwtstamps *shhwtstamps;
287 	struct ixp46x_ts_regs *regs;
288 	u64 ns;
289 	u32 ch, hi, lo, val;
290 	u16 uid, seq;
291 
292 	if (!port->hwts_rx_en)
293 		return;
294 
295 	ch = PORT2CHANNEL(port);
296 
297 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
298 
299 	val = __raw_readl(&regs->channel[ch].ch_event);
300 
301 	if (!(val & RX_SNAPSHOT_LOCKED))
302 		return;
303 
304 	lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
305 	hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
306 
307 	uid = hi & 0xffff;
308 	seq = (hi >> 16) & 0xffff;
309 
310 	if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
311 		goto out;
312 
313 	lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
314 	hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
315 	ns = ((u64) hi) << 32;
316 	ns |= lo;
317 	ns <<= TICKS_NS_SHIFT;
318 
319 	shhwtstamps = skb_hwtstamps(skb);
320 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
321 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
322 out:
323 	__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
324 }
325 
326 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
327 {
328 	struct skb_shared_hwtstamps shhwtstamps;
329 	struct ixp46x_ts_regs *regs;
330 	struct skb_shared_info *shtx;
331 	u64 ns;
332 	u32 ch, cnt, hi, lo, val;
333 
334 	shtx = skb_shinfo(skb);
335 	if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
336 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
337 	else
338 		return;
339 
340 	ch = PORT2CHANNEL(port);
341 
342 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
343 
344 	/*
345 	 * This really stinks, but we have to poll for the Tx time stamp.
346 	 * Usually, the time stamp is ready after 4 to 6 microseconds.
347 	 */
348 	for (cnt = 0; cnt < 100; cnt++) {
349 		val = __raw_readl(&regs->channel[ch].ch_event);
350 		if (val & TX_SNAPSHOT_LOCKED)
351 			break;
352 		udelay(1);
353 	}
354 	if (!(val & TX_SNAPSHOT_LOCKED)) {
355 		shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
356 		return;
357 	}
358 
359 	lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
360 	hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
361 	ns = ((u64) hi) << 32;
362 	ns |= lo;
363 	ns <<= TICKS_NS_SHIFT;
364 
365 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
366 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
367 	skb_tstamp_tx(skb, &shhwtstamps);
368 
369 	__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
370 }
371 
372 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
373 {
374 	struct hwtstamp_config cfg;
375 	struct ixp46x_ts_regs *regs;
376 	struct port *port = netdev_priv(netdev);
377 	int ch;
378 
379 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
380 		return -EFAULT;
381 
382 	if (cfg.flags) /* reserved for future extensions */
383 		return -EINVAL;
384 
385 	ch = PORT2CHANNEL(port);
386 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
387 
388 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
389 		return -ERANGE;
390 
391 	switch (cfg.rx_filter) {
392 	case HWTSTAMP_FILTER_NONE:
393 		port->hwts_rx_en = 0;
394 		break;
395 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
396 		port->hwts_rx_en = PTP_SLAVE_MODE;
397 		__raw_writel(0, &regs->channel[ch].ch_control);
398 		break;
399 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
400 		port->hwts_rx_en = PTP_MASTER_MODE;
401 		__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
402 		break;
403 	default:
404 		return -ERANGE;
405 	}
406 
407 	port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
408 
409 	/* Clear out any old time stamps. */
410 	__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
411 		     &regs->channel[ch].ch_event);
412 
413 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
414 }
415 
416 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
417 {
418 	struct hwtstamp_config cfg;
419 	struct port *port = netdev_priv(netdev);
420 
421 	cfg.flags = 0;
422 	cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
423 
424 	switch (port->hwts_rx_en) {
425 	case 0:
426 		cfg.rx_filter = HWTSTAMP_FILTER_NONE;
427 		break;
428 	case PTP_SLAVE_MODE:
429 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
430 		break;
431 	case PTP_MASTER_MODE:
432 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
433 		break;
434 	default:
435 		WARN_ON_ONCE(1);
436 		return -ERANGE;
437 	}
438 
439 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
440 }
441 
442 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
443 			   int write, u16 cmd)
444 {
445 	int cycles = 0;
446 
447 	if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
448 		printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
449 		return -1;
450 	}
451 
452 	if (write) {
453 		__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
454 		__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
455 	}
456 	__raw_writel(((phy_id << 5) | location) & 0xFF,
457 		     &mdio_regs->mdio_command[2]);
458 	__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
459 		     &mdio_regs->mdio_command[3]);
460 
461 	while ((cycles < MAX_MDIO_RETRIES) &&
462 	       (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
463 		udelay(1);
464 		cycles++;
465 	}
466 
467 	if (cycles == MAX_MDIO_RETRIES) {
468 		printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
469 		       phy_id);
470 		return -1;
471 	}
472 
473 #if DEBUG_MDIO
474 	printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
475 	       phy_id, write ? "write" : "read", cycles);
476 #endif
477 
478 	if (write)
479 		return 0;
480 
481 	if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
482 #if DEBUG_MDIO
483 		printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
484 		       phy_id);
485 #endif
486 		return 0xFFFF; /* don't return error */
487 	}
488 
489 	return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
490 		((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
491 }
492 
493 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
494 {
495 	unsigned long flags;
496 	int ret;
497 
498 	spin_lock_irqsave(&mdio_lock, flags);
499 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
500 	spin_unlock_irqrestore(&mdio_lock, flags);
501 #if DEBUG_MDIO
502 	printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
503 	       phy_id, location, ret);
504 #endif
505 	return ret;
506 }
507 
508 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
509 			     u16 val)
510 {
511 	unsigned long flags;
512 	int ret;
513 
514 	spin_lock_irqsave(&mdio_lock, flags);
515 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
516 	spin_unlock_irqrestore(&mdio_lock, flags);
517 #if DEBUG_MDIO
518 	printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
519 	       bus->name, phy_id, location, val, ret);
520 #endif
521 	return ret;
522 }
523 
524 static int ixp4xx_mdio_register(void)
525 {
526 	int err;
527 
528 	if (!(mdio_bus = mdiobus_alloc()))
529 		return -ENOMEM;
530 
531 	if (cpu_is_ixp43x()) {
532 		/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
533 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
534 			return -ENODEV;
535 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
536 	} else {
537 		/* All MII PHY accesses use NPE-B Ethernet registers */
538 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
539 			return -ENODEV;
540 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
541 	}
542 
543 	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
544 	spin_lock_init(&mdio_lock);
545 	mdio_bus->name = "IXP4xx MII Bus";
546 	mdio_bus->read = &ixp4xx_mdio_read;
547 	mdio_bus->write = &ixp4xx_mdio_write;
548 	snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
549 
550 	if ((err = mdiobus_register(mdio_bus)))
551 		mdiobus_free(mdio_bus);
552 	return err;
553 }
554 
555 static void ixp4xx_mdio_remove(void)
556 {
557 	mdiobus_unregister(mdio_bus);
558 	mdiobus_free(mdio_bus);
559 }
560 
561 
562 static void ixp4xx_adjust_link(struct net_device *dev)
563 {
564 	struct port *port = netdev_priv(dev);
565 	struct phy_device *phydev = port->phydev;
566 
567 	if (!phydev->link) {
568 		if (port->speed) {
569 			port->speed = 0;
570 			printk(KERN_INFO "%s: link down\n", dev->name);
571 		}
572 		return;
573 	}
574 
575 	if (port->speed == phydev->speed && port->duplex == phydev->duplex)
576 		return;
577 
578 	port->speed = phydev->speed;
579 	port->duplex = phydev->duplex;
580 
581 	if (port->duplex)
582 		__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
583 			     &port->regs->tx_control[0]);
584 	else
585 		__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
586 			     &port->regs->tx_control[0]);
587 
588 	printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
589 	       dev->name, port->speed, port->duplex ? "full" : "half");
590 }
591 
592 
593 static inline void debug_pkt(struct net_device *dev, const char *func,
594 			     u8 *data, int len)
595 {
596 #if DEBUG_PKT_BYTES
597 	int i;
598 
599 	printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
600 	for (i = 0; i < len; i++) {
601 		if (i >= DEBUG_PKT_BYTES)
602 			break;
603 		printk("%s%02X",
604 		       ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
605 		       data[i]);
606 	}
607 	printk("\n");
608 #endif
609 }
610 
611 
612 static inline void debug_desc(u32 phys, struct desc *desc)
613 {
614 #if DEBUG_DESC
615 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
616 	       " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
617 	       phys, desc->next, desc->buf_len, desc->pkt_len,
618 	       desc->data, desc->dest_id, desc->src_id, desc->flags,
619 	       desc->qos, desc->padlen, desc->vlan_tci,
620 	       desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
621 	       desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
622 	       desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
623 	       desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
624 #endif
625 }
626 
627 static inline int queue_get_desc(unsigned int queue, struct port *port,
628 				 int is_tx)
629 {
630 	u32 phys, tab_phys, n_desc;
631 	struct desc *tab;
632 
633 	if (!(phys = qmgr_get_entry(queue)))
634 		return -1;
635 
636 	phys &= ~0x1F; /* mask out non-address bits */
637 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
638 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
639 	n_desc = (phys - tab_phys) / sizeof(struct desc);
640 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
641 	debug_desc(phys, &tab[n_desc]);
642 	BUG_ON(tab[n_desc].next);
643 	return n_desc;
644 }
645 
646 static inline void queue_put_desc(unsigned int queue, u32 phys,
647 				  struct desc *desc)
648 {
649 	debug_desc(phys, desc);
650 	BUG_ON(phys & 0x1F);
651 	qmgr_put_entry(queue, phys);
652 	/* Don't check for queue overflow here, we've allocated sufficient
653 	   length and queues >= 32 don't support this check anyway. */
654 }
655 
656 
657 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
658 {
659 #ifdef __ARMEB__
660 	dma_unmap_single(&port->netdev->dev, desc->data,
661 			 desc->buf_len, DMA_TO_DEVICE);
662 #else
663 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
664 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
665 			 DMA_TO_DEVICE);
666 #endif
667 }
668 
669 
670 static void eth_rx_irq(void *pdev)
671 {
672 	struct net_device *dev = pdev;
673 	struct port *port = netdev_priv(dev);
674 
675 #if DEBUG_RX
676 	printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
677 #endif
678 	qmgr_disable_irq(port->plat->rxq);
679 	napi_schedule(&port->napi);
680 }
681 
682 static int eth_poll(struct napi_struct *napi, int budget)
683 {
684 	struct port *port = container_of(napi, struct port, napi);
685 	struct net_device *dev = port->netdev;
686 	unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
687 	int received = 0;
688 
689 #if DEBUG_RX
690 	printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
691 #endif
692 
693 	while (received < budget) {
694 		struct sk_buff *skb;
695 		struct desc *desc;
696 		int n;
697 #ifdef __ARMEB__
698 		struct sk_buff *temp;
699 		u32 phys;
700 #endif
701 
702 		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
703 #if DEBUG_RX
704 			printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
705 			       dev->name);
706 #endif
707 			napi_complete(napi);
708 			qmgr_enable_irq(rxq);
709 			if (!qmgr_stat_below_low_watermark(rxq) &&
710 			    napi_reschedule(napi)) { /* not empty again */
711 #if DEBUG_RX
712 				printk(KERN_DEBUG "%s: eth_poll"
713 				       " napi_reschedule successed\n",
714 				       dev->name);
715 #endif
716 				qmgr_disable_irq(rxq);
717 				continue;
718 			}
719 #if DEBUG_RX
720 			printk(KERN_DEBUG "%s: eth_poll all done\n",
721 			       dev->name);
722 #endif
723 			return received; /* all work done */
724 		}
725 
726 		desc = rx_desc_ptr(port, n);
727 
728 #ifdef __ARMEB__
729 		if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
730 			phys = dma_map_single(&dev->dev, skb->data,
731 					      RX_BUFF_SIZE, DMA_FROM_DEVICE);
732 			if (dma_mapping_error(&dev->dev, phys)) {
733 				dev_kfree_skb(skb);
734 				skb = NULL;
735 			}
736 		}
737 #else
738 		skb = netdev_alloc_skb(dev,
739 				       ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
740 #endif
741 
742 		if (!skb) {
743 			dev->stats.rx_dropped++;
744 			/* put the desc back on RX-ready queue */
745 			desc->buf_len = MAX_MRU;
746 			desc->pkt_len = 0;
747 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
748 			continue;
749 		}
750 
751 		/* process received frame */
752 #ifdef __ARMEB__
753 		temp = skb;
754 		skb = port->rx_buff_tab[n];
755 		dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
756 				 RX_BUFF_SIZE, DMA_FROM_DEVICE);
757 #else
758 		dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
759 					RX_BUFF_SIZE, DMA_FROM_DEVICE);
760 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
761 			      ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
762 #endif
763 		skb_reserve(skb, NET_IP_ALIGN);
764 		skb_put(skb, desc->pkt_len);
765 
766 		debug_pkt(dev, "eth_poll", skb->data, skb->len);
767 
768 		ixp_rx_timestamp(port, skb);
769 		skb->protocol = eth_type_trans(skb, dev);
770 		dev->stats.rx_packets++;
771 		dev->stats.rx_bytes += skb->len;
772 		netif_receive_skb(skb);
773 
774 		/* put the new buffer on RX-free queue */
775 #ifdef __ARMEB__
776 		port->rx_buff_tab[n] = temp;
777 		desc->data = phys + NET_IP_ALIGN;
778 #endif
779 		desc->buf_len = MAX_MRU;
780 		desc->pkt_len = 0;
781 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
782 		received++;
783 	}
784 
785 #if DEBUG_RX
786 	printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
787 #endif
788 	return received;		/* not all work done */
789 }
790 
791 
792 static void eth_txdone_irq(void *unused)
793 {
794 	u32 phys;
795 
796 #if DEBUG_TX
797 	printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
798 #endif
799 	while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
800 		u32 npe_id, n_desc;
801 		struct port *port;
802 		struct desc *desc;
803 		int start;
804 
805 		npe_id = phys & 3;
806 		BUG_ON(npe_id >= MAX_NPES);
807 		port = npe_port_tab[npe_id];
808 		BUG_ON(!port);
809 		phys &= ~0x1F; /* mask out non-address bits */
810 		n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
811 		BUG_ON(n_desc >= TX_DESCS);
812 		desc = tx_desc_ptr(port, n_desc);
813 		debug_desc(phys, desc);
814 
815 		if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
816 			port->netdev->stats.tx_packets++;
817 			port->netdev->stats.tx_bytes += desc->pkt_len;
818 
819 			dma_unmap_tx(port, desc);
820 #if DEBUG_TX
821 			printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
822 			       port->netdev->name, port->tx_buff_tab[n_desc]);
823 #endif
824 			free_buffer_irq(port->tx_buff_tab[n_desc]);
825 			port->tx_buff_tab[n_desc] = NULL;
826 		}
827 
828 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
829 		queue_put_desc(port->plat->txreadyq, phys, desc);
830 		if (start) { /* TX-ready queue was empty */
831 #if DEBUG_TX
832 			printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
833 			       port->netdev->name);
834 #endif
835 			netif_wake_queue(port->netdev);
836 		}
837 	}
838 }
839 
840 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
841 {
842 	struct port *port = netdev_priv(dev);
843 	unsigned int txreadyq = port->plat->txreadyq;
844 	int len, offset, bytes, n;
845 	void *mem;
846 	u32 phys;
847 	struct desc *desc;
848 
849 #if DEBUG_TX
850 	printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
851 #endif
852 
853 	if (unlikely(skb->len > MAX_MRU)) {
854 		dev_kfree_skb(skb);
855 		dev->stats.tx_errors++;
856 		return NETDEV_TX_OK;
857 	}
858 
859 	debug_pkt(dev, "eth_xmit", skb->data, skb->len);
860 
861 	len = skb->len;
862 #ifdef __ARMEB__
863 	offset = 0; /* no need to keep alignment */
864 	bytes = len;
865 	mem = skb->data;
866 #else
867 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
868 	bytes = ALIGN(offset + len, 4);
869 	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
870 		dev_kfree_skb(skb);
871 		dev->stats.tx_dropped++;
872 		return NETDEV_TX_OK;
873 	}
874 	memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
875 #endif
876 
877 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
878 	if (dma_mapping_error(&dev->dev, phys)) {
879 		dev_kfree_skb(skb);
880 #ifndef __ARMEB__
881 		kfree(mem);
882 #endif
883 		dev->stats.tx_dropped++;
884 		return NETDEV_TX_OK;
885 	}
886 
887 	n = queue_get_desc(txreadyq, port, 1);
888 	BUG_ON(n < 0);
889 	desc = tx_desc_ptr(port, n);
890 
891 #ifdef __ARMEB__
892 	port->tx_buff_tab[n] = skb;
893 #else
894 	port->tx_buff_tab[n] = mem;
895 #endif
896 	desc->data = phys + offset;
897 	desc->buf_len = desc->pkt_len = len;
898 
899 	/* NPE firmware pads short frames with zeros internally */
900 	wmb();
901 	queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
902 
903 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
904 #if DEBUG_TX
905 		printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
906 #endif
907 		netif_stop_queue(dev);
908 		/* we could miss TX ready interrupt */
909 		/* really empty in fact */
910 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
911 #if DEBUG_TX
912 			printk(KERN_DEBUG "%s: eth_xmit ready again\n",
913 			       dev->name);
914 #endif
915 			netif_wake_queue(dev);
916 		}
917 	}
918 
919 #if DEBUG_TX
920 	printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
921 #endif
922 
923 	ixp_tx_timestamp(port, skb);
924 	skb_tx_timestamp(skb);
925 
926 #ifndef __ARMEB__
927 	dev_kfree_skb(skb);
928 #endif
929 	return NETDEV_TX_OK;
930 }
931 
932 
933 static void eth_set_mcast_list(struct net_device *dev)
934 {
935 	struct port *port = netdev_priv(dev);
936 	struct netdev_hw_addr *ha;
937 	u8 diffs[ETH_ALEN], *addr;
938 	int i;
939 	static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
940 
941 	if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
942 		for (i = 0; i < ETH_ALEN; i++) {
943 			__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
944 			__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
945 		}
946 		__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
947 			&port->regs->rx_control[0]);
948 		return;
949 	}
950 
951 	if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
952 		__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
953 			     &port->regs->rx_control[0]);
954 		return;
955 	}
956 
957 	eth_zero_addr(diffs);
958 
959 	addr = NULL;
960 	netdev_for_each_mc_addr(ha, dev) {
961 		if (!addr)
962 			addr = ha->addr; /* first MAC address */
963 		for (i = 0; i < ETH_ALEN; i++)
964 			diffs[i] |= addr[i] ^ ha->addr[i];
965 	}
966 
967 	for (i = 0; i < ETH_ALEN; i++) {
968 		__raw_writel(addr[i], &port->regs->mcast_addr[i]);
969 		__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
970 	}
971 
972 	__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
973 		     &port->regs->rx_control[0]);
974 }
975 
976 
977 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
978 {
979 	struct port *port = netdev_priv(dev);
980 
981 	if (!netif_running(dev))
982 		return -EINVAL;
983 
984 	if (cpu_is_ixp46x()) {
985 		if (cmd == SIOCSHWTSTAMP)
986 			return hwtstamp_set(dev, req);
987 		if (cmd == SIOCGHWTSTAMP)
988 			return hwtstamp_get(dev, req);
989 	}
990 
991 	return phy_mii_ioctl(port->phydev, req, cmd);
992 }
993 
994 /* ethtool support */
995 
996 static void ixp4xx_get_drvinfo(struct net_device *dev,
997 			       struct ethtool_drvinfo *info)
998 {
999 	struct port *port = netdev_priv(dev);
1000 
1001 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1002 	snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
1003 		 port->firmware[0], port->firmware[1],
1004 		 port->firmware[2], port->firmware[3]);
1005 	strlcpy(info->bus_info, "internal", sizeof(info->bus_info));
1006 }
1007 
1008 static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1009 {
1010 	struct port *port = netdev_priv(dev);
1011 	return phy_ethtool_gset(port->phydev, cmd);
1012 }
1013 
1014 static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1015 {
1016 	struct port *port = netdev_priv(dev);
1017 	return phy_ethtool_sset(port->phydev, cmd);
1018 }
1019 
1020 static int ixp4xx_nway_reset(struct net_device *dev)
1021 {
1022 	struct port *port = netdev_priv(dev);
1023 	return phy_start_aneg(port->phydev);
1024 }
1025 
1026 int ixp46x_phc_index = -1;
1027 EXPORT_SYMBOL_GPL(ixp46x_phc_index);
1028 
1029 static int ixp4xx_get_ts_info(struct net_device *dev,
1030 			      struct ethtool_ts_info *info)
1031 {
1032 	if (!cpu_is_ixp46x()) {
1033 		info->so_timestamping =
1034 			SOF_TIMESTAMPING_TX_SOFTWARE |
1035 			SOF_TIMESTAMPING_RX_SOFTWARE |
1036 			SOF_TIMESTAMPING_SOFTWARE;
1037 		info->phc_index = -1;
1038 		return 0;
1039 	}
1040 	info->so_timestamping =
1041 		SOF_TIMESTAMPING_TX_HARDWARE |
1042 		SOF_TIMESTAMPING_RX_HARDWARE |
1043 		SOF_TIMESTAMPING_RAW_HARDWARE;
1044 	info->phc_index = ixp46x_phc_index;
1045 	info->tx_types =
1046 		(1 << HWTSTAMP_TX_OFF) |
1047 		(1 << HWTSTAMP_TX_ON);
1048 	info->rx_filters =
1049 		(1 << HWTSTAMP_FILTER_NONE) |
1050 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1051 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1052 	return 0;
1053 }
1054 
1055 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1056 	.get_drvinfo = ixp4xx_get_drvinfo,
1057 	.get_settings = ixp4xx_get_settings,
1058 	.set_settings = ixp4xx_set_settings,
1059 	.nway_reset = ixp4xx_nway_reset,
1060 	.get_link = ethtool_op_get_link,
1061 	.get_ts_info = ixp4xx_get_ts_info,
1062 };
1063 
1064 
1065 static int request_queues(struct port *port)
1066 {
1067 	int err;
1068 
1069 	err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1070 				 "%s:RX-free", port->netdev->name);
1071 	if (err)
1072 		return err;
1073 
1074 	err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1075 				 "%s:RX", port->netdev->name);
1076 	if (err)
1077 		goto rel_rxfree;
1078 
1079 	err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1080 				 "%s:TX", port->netdev->name);
1081 	if (err)
1082 		goto rel_rx;
1083 
1084 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1085 				 "%s:TX-ready", port->netdev->name);
1086 	if (err)
1087 		goto rel_tx;
1088 
1089 	/* TX-done queue handles skbs sent out by the NPEs */
1090 	if (!ports_open) {
1091 		err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1092 					 "%s:TX-done", DRV_NAME);
1093 		if (err)
1094 			goto rel_txready;
1095 	}
1096 	return 0;
1097 
1098 rel_txready:
1099 	qmgr_release_queue(port->plat->txreadyq);
1100 rel_tx:
1101 	qmgr_release_queue(TX_QUEUE(port->id));
1102 rel_rx:
1103 	qmgr_release_queue(port->plat->rxq);
1104 rel_rxfree:
1105 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1106 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1107 	       port->netdev->name);
1108 	return err;
1109 }
1110 
1111 static void release_queues(struct port *port)
1112 {
1113 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1114 	qmgr_release_queue(port->plat->rxq);
1115 	qmgr_release_queue(TX_QUEUE(port->id));
1116 	qmgr_release_queue(port->plat->txreadyq);
1117 
1118 	if (!ports_open)
1119 		qmgr_release_queue(TXDONE_QUEUE);
1120 }
1121 
1122 static int init_queues(struct port *port)
1123 {
1124 	int i;
1125 
1126 	if (!ports_open) {
1127 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1128 					   POOL_ALLOC_SIZE, 32, 0);
1129 		if (!dma_pool)
1130 			return -ENOMEM;
1131 	}
1132 
1133 	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1134 					      &port->desc_tab_phys)))
1135 		return -ENOMEM;
1136 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1137 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1138 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1139 
1140 	/* Setup RX buffers */
1141 	for (i = 0; i < RX_DESCS; i++) {
1142 		struct desc *desc = rx_desc_ptr(port, i);
1143 		buffer_t *buff; /* skb or kmalloc()ated memory */
1144 		void *data;
1145 #ifdef __ARMEB__
1146 		if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1147 			return -ENOMEM;
1148 		data = buff->data;
1149 #else
1150 		if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1151 			return -ENOMEM;
1152 		data = buff;
1153 #endif
1154 		desc->buf_len = MAX_MRU;
1155 		desc->data = dma_map_single(&port->netdev->dev, data,
1156 					    RX_BUFF_SIZE, DMA_FROM_DEVICE);
1157 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1158 			free_buffer(buff);
1159 			return -EIO;
1160 		}
1161 		desc->data += NET_IP_ALIGN;
1162 		port->rx_buff_tab[i] = buff;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 static void destroy_queues(struct port *port)
1169 {
1170 	int i;
1171 
1172 	if (port->desc_tab) {
1173 		for (i = 0; i < RX_DESCS; i++) {
1174 			struct desc *desc = rx_desc_ptr(port, i);
1175 			buffer_t *buff = port->rx_buff_tab[i];
1176 			if (buff) {
1177 				dma_unmap_single(&port->netdev->dev,
1178 						 desc->data - NET_IP_ALIGN,
1179 						 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1180 				free_buffer(buff);
1181 			}
1182 		}
1183 		for (i = 0; i < TX_DESCS; i++) {
1184 			struct desc *desc = tx_desc_ptr(port, i);
1185 			buffer_t *buff = port->tx_buff_tab[i];
1186 			if (buff) {
1187 				dma_unmap_tx(port, desc);
1188 				free_buffer(buff);
1189 			}
1190 		}
1191 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1192 		port->desc_tab = NULL;
1193 	}
1194 
1195 	if (!ports_open && dma_pool) {
1196 		dma_pool_destroy(dma_pool);
1197 		dma_pool = NULL;
1198 	}
1199 }
1200 
1201 static int eth_open(struct net_device *dev)
1202 {
1203 	struct port *port = netdev_priv(dev);
1204 	struct npe *npe = port->npe;
1205 	struct msg msg;
1206 	int i, err;
1207 
1208 	if (!npe_running(npe)) {
1209 		err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1210 		if (err)
1211 			return err;
1212 
1213 		if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1214 			printk(KERN_ERR "%s: %s not responding\n", dev->name,
1215 			       npe_name(npe));
1216 			return -EIO;
1217 		}
1218 		port->firmware[0] = msg.byte4;
1219 		port->firmware[1] = msg.byte5;
1220 		port->firmware[2] = msg.byte6;
1221 		port->firmware[3] = msg.byte7;
1222 	}
1223 
1224 	memset(&msg, 0, sizeof(msg));
1225 	msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1226 	msg.eth_id = port->id;
1227 	msg.byte5 = port->plat->rxq | 0x80;
1228 	msg.byte7 = port->plat->rxq << 4;
1229 	for (i = 0; i < 8; i++) {
1230 		msg.byte3 = i;
1231 		if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1232 			return -EIO;
1233 	}
1234 
1235 	msg.cmd = NPE_EDB_SETPORTADDRESS;
1236 	msg.eth_id = PHYSICAL_ID(port->id);
1237 	msg.byte2 = dev->dev_addr[0];
1238 	msg.byte3 = dev->dev_addr[1];
1239 	msg.byte4 = dev->dev_addr[2];
1240 	msg.byte5 = dev->dev_addr[3];
1241 	msg.byte6 = dev->dev_addr[4];
1242 	msg.byte7 = dev->dev_addr[5];
1243 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1244 		return -EIO;
1245 
1246 	memset(&msg, 0, sizeof(msg));
1247 	msg.cmd = NPE_FW_SETFIREWALLMODE;
1248 	msg.eth_id = port->id;
1249 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1250 		return -EIO;
1251 
1252 	if ((err = request_queues(port)) != 0)
1253 		return err;
1254 
1255 	if ((err = init_queues(port)) != 0) {
1256 		destroy_queues(port);
1257 		release_queues(port);
1258 		return err;
1259 	}
1260 
1261 	port->speed = 0;	/* force "link up" message */
1262 	phy_start(port->phydev);
1263 
1264 	for (i = 0; i < ETH_ALEN; i++)
1265 		__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1266 	__raw_writel(0x08, &port->regs->random_seed);
1267 	__raw_writel(0x12, &port->regs->partial_empty_threshold);
1268 	__raw_writel(0x30, &port->regs->partial_full_threshold);
1269 	__raw_writel(0x08, &port->regs->tx_start_bytes);
1270 	__raw_writel(0x15, &port->regs->tx_deferral);
1271 	__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1272 	__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1273 	__raw_writel(0x80, &port->regs->slot_time);
1274 	__raw_writel(0x01, &port->regs->int_clock_threshold);
1275 
1276 	/* Populate queues with buffers, no failure after this point */
1277 	for (i = 0; i < TX_DESCS; i++)
1278 		queue_put_desc(port->plat->txreadyq,
1279 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1280 
1281 	for (i = 0; i < RX_DESCS; i++)
1282 		queue_put_desc(RXFREE_QUEUE(port->id),
1283 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1284 
1285 	__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1286 	__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1287 	__raw_writel(0, &port->regs->rx_control[1]);
1288 	__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1289 
1290 	napi_enable(&port->napi);
1291 	eth_set_mcast_list(dev);
1292 	netif_start_queue(dev);
1293 
1294 	qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1295 		     eth_rx_irq, dev);
1296 	if (!ports_open) {
1297 		qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1298 			     eth_txdone_irq, NULL);
1299 		qmgr_enable_irq(TXDONE_QUEUE);
1300 	}
1301 	ports_open++;
1302 	/* we may already have RX data, enables IRQ */
1303 	napi_schedule(&port->napi);
1304 	return 0;
1305 }
1306 
1307 static int eth_close(struct net_device *dev)
1308 {
1309 	struct port *port = netdev_priv(dev);
1310 	struct msg msg;
1311 	int buffs = RX_DESCS; /* allocated RX buffers */
1312 	int i;
1313 
1314 	ports_open--;
1315 	qmgr_disable_irq(port->plat->rxq);
1316 	napi_disable(&port->napi);
1317 	netif_stop_queue(dev);
1318 
1319 	while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1320 		buffs--;
1321 
1322 	memset(&msg, 0, sizeof(msg));
1323 	msg.cmd = NPE_SETLOOPBACK_MODE;
1324 	msg.eth_id = port->id;
1325 	msg.byte3 = 1;
1326 	if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1327 		printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1328 
1329 	i = 0;
1330 	do {			/* drain RX buffers */
1331 		while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1332 			buffs--;
1333 		if (!buffs)
1334 			break;
1335 		if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1336 			/* we have to inject some packet */
1337 			struct desc *desc;
1338 			u32 phys;
1339 			int n = queue_get_desc(port->plat->txreadyq, port, 1);
1340 			BUG_ON(n < 0);
1341 			desc = tx_desc_ptr(port, n);
1342 			phys = tx_desc_phys(port, n);
1343 			desc->buf_len = desc->pkt_len = 1;
1344 			wmb();
1345 			queue_put_desc(TX_QUEUE(port->id), phys, desc);
1346 		}
1347 		udelay(1);
1348 	} while (++i < MAX_CLOSE_WAIT);
1349 
1350 	if (buffs)
1351 		printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1352 		       " left in NPE\n", dev->name, buffs);
1353 #if DEBUG_CLOSE
1354 	if (!buffs)
1355 		printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1356 #endif
1357 
1358 	buffs = TX_DESCS;
1359 	while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1360 		buffs--; /* cancel TX */
1361 
1362 	i = 0;
1363 	do {
1364 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1365 			buffs--;
1366 		if (!buffs)
1367 			break;
1368 	} while (++i < MAX_CLOSE_WAIT);
1369 
1370 	if (buffs)
1371 		printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1372 		       "left in NPE\n", dev->name, buffs);
1373 #if DEBUG_CLOSE
1374 	if (!buffs)
1375 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1376 #endif
1377 
1378 	msg.byte3 = 0;
1379 	if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1380 		printk(KERN_CRIT "%s: unable to disable loopback\n",
1381 		       dev->name);
1382 
1383 	phy_stop(port->phydev);
1384 
1385 	if (!ports_open)
1386 		qmgr_disable_irq(TXDONE_QUEUE);
1387 	destroy_queues(port);
1388 	release_queues(port);
1389 	return 0;
1390 }
1391 
1392 static const struct net_device_ops ixp4xx_netdev_ops = {
1393 	.ndo_open = eth_open,
1394 	.ndo_stop = eth_close,
1395 	.ndo_start_xmit = eth_xmit,
1396 	.ndo_set_rx_mode = eth_set_mcast_list,
1397 	.ndo_do_ioctl = eth_ioctl,
1398 	.ndo_change_mtu = eth_change_mtu,
1399 	.ndo_set_mac_address = eth_mac_addr,
1400 	.ndo_validate_addr = eth_validate_addr,
1401 };
1402 
1403 static int eth_init_one(struct platform_device *pdev)
1404 {
1405 	struct port *port;
1406 	struct net_device *dev;
1407 	struct eth_plat_info *plat = dev_get_platdata(&pdev->dev);
1408 	u32 regs_phys;
1409 	char phy_id[MII_BUS_ID_SIZE + 3];
1410 	int err;
1411 
1412 	if (!(dev = alloc_etherdev(sizeof(struct port))))
1413 		return -ENOMEM;
1414 
1415 	SET_NETDEV_DEV(dev, &pdev->dev);
1416 	port = netdev_priv(dev);
1417 	port->netdev = dev;
1418 	port->id = pdev->id;
1419 
1420 	switch (port->id) {
1421 	case IXP4XX_ETH_NPEA:
1422 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1423 		regs_phys  = IXP4XX_EthA_BASE_PHYS;
1424 		break;
1425 	case IXP4XX_ETH_NPEB:
1426 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1427 		regs_phys  = IXP4XX_EthB_BASE_PHYS;
1428 		break;
1429 	case IXP4XX_ETH_NPEC:
1430 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1431 		regs_phys  = IXP4XX_EthC_BASE_PHYS;
1432 		break;
1433 	default:
1434 		err = -ENODEV;
1435 		goto err_free;
1436 	}
1437 
1438 	dev->netdev_ops = &ixp4xx_netdev_ops;
1439 	dev->ethtool_ops = &ixp4xx_ethtool_ops;
1440 	dev->tx_queue_len = 100;
1441 
1442 	netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1443 
1444 	if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1445 		err = -EIO;
1446 		goto err_free;
1447 	}
1448 
1449 	port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1450 	if (!port->mem_res) {
1451 		err = -EBUSY;
1452 		goto err_npe_rel;
1453 	}
1454 
1455 	port->plat = plat;
1456 	npe_port_tab[NPE_ID(port->id)] = port;
1457 	memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1458 
1459 	platform_set_drvdata(pdev, dev);
1460 
1461 	__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1462 		     &port->regs->core_control);
1463 	udelay(50);
1464 	__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1465 	udelay(50);
1466 
1467 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
1468 		mdio_bus->id, plat->phy);
1469 	port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link,
1470 				   PHY_INTERFACE_MODE_MII);
1471 	if (IS_ERR(port->phydev)) {
1472 		err = PTR_ERR(port->phydev);
1473 		goto err_free_mem;
1474 	}
1475 
1476 	port->phydev->irq = PHY_POLL;
1477 
1478 	if ((err = register_netdev(dev)))
1479 		goto err_phy_dis;
1480 
1481 	printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1482 	       npe_name(port->npe));
1483 
1484 	return 0;
1485 
1486 err_phy_dis:
1487 	phy_disconnect(port->phydev);
1488 err_free_mem:
1489 	npe_port_tab[NPE_ID(port->id)] = NULL;
1490 	release_resource(port->mem_res);
1491 err_npe_rel:
1492 	npe_release(port->npe);
1493 err_free:
1494 	free_netdev(dev);
1495 	return err;
1496 }
1497 
1498 static int eth_remove_one(struct platform_device *pdev)
1499 {
1500 	struct net_device *dev = platform_get_drvdata(pdev);
1501 	struct port *port = netdev_priv(dev);
1502 
1503 	unregister_netdev(dev);
1504 	phy_disconnect(port->phydev);
1505 	npe_port_tab[NPE_ID(port->id)] = NULL;
1506 	npe_release(port->npe);
1507 	release_resource(port->mem_res);
1508 	free_netdev(dev);
1509 	return 0;
1510 }
1511 
1512 static struct platform_driver ixp4xx_eth_driver = {
1513 	.driver.name	= DRV_NAME,
1514 	.probe		= eth_init_one,
1515 	.remove		= eth_remove_one,
1516 };
1517 
1518 static int __init eth_init_module(void)
1519 {
1520 	int err;
1521 	if ((err = ixp4xx_mdio_register()))
1522 		return err;
1523 	return platform_driver_register(&ixp4xx_eth_driver);
1524 }
1525 
1526 static void __exit eth_cleanup_module(void)
1527 {
1528 	platform_driver_unregister(&ixp4xx_eth_driver);
1529 	ixp4xx_mdio_remove();
1530 }
1531 
1532 MODULE_AUTHOR("Krzysztof Halasa");
1533 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1534 MODULE_LICENSE("GPL v2");
1535 MODULE_ALIAS("platform:ixp4xx_eth");
1536 module_init(eth_init_module);
1537 module_exit(eth_cleanup_module);
1538