1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MDIO bus driver for the Xilinx Axi Ethernet device 4 * 5 * Copyright (c) 2009 Secret Lab Technologies, Ltd. 6 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> 7 * Copyright (c) 2010 - 2011 PetaLogix 8 * Copyright (c) 2019 SED Systems, a division of Calian Ltd. 9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/of_address.h> 14 #include <linux/of_mdio.h> 15 #include <linux/jiffies.h> 16 #include <linux/iopoll.h> 17 18 #include "xilinx_axienet.h" 19 20 #define DEFAULT_MDIO_FREQ 2500000 /* 2.5 MHz */ 21 #define DEFAULT_HOST_CLOCK 150000000 /* 150 MHz */ 22 23 /* Wait till MDIO interface is ready to accept a new transaction.*/ 24 static int axienet_mdio_wait_until_ready(struct axienet_local *lp) 25 { 26 u32 val; 27 28 return readx_poll_timeout(axinet_ior_read_mcr, lp, 29 val, val & XAE_MDIO_MCR_READY_MASK, 30 1, 20000); 31 } 32 33 /* Enable the MDIO MDC. Called prior to a read/write operation */ 34 static void axienet_mdio_mdc_enable(struct axienet_local *lp) 35 { 36 axienet_iow(lp, XAE_MDIO_MC_OFFSET, 37 ((u32)lp->mii_clk_div | XAE_MDIO_MC_MDIOEN_MASK)); 38 } 39 40 /* Disable the MDIO MDC. Called after a read/write operation*/ 41 static void axienet_mdio_mdc_disable(struct axienet_local *lp) 42 { 43 u32 mc_reg; 44 45 mc_reg = axienet_ior(lp, XAE_MDIO_MC_OFFSET); 46 axienet_iow(lp, XAE_MDIO_MC_OFFSET, 47 (mc_reg & ~XAE_MDIO_MC_MDIOEN_MASK)); 48 } 49 50 /** 51 * axienet_mdio_read - MDIO interface read function 52 * @bus: Pointer to mii bus structure 53 * @phy_id: Address of the PHY device 54 * @reg: PHY register to read 55 * 56 * Return: The register contents on success, -ETIMEDOUT on a timeout 57 * 58 * Reads the contents of the requested register from the requested PHY 59 * address by first writing the details into MCR register. After a while 60 * the register MRD is read to obtain the PHY register content. 61 */ 62 static int axienet_mdio_read(struct mii_bus *bus, int phy_id, int reg) 63 { 64 u32 rc; 65 int ret; 66 struct axienet_local *lp = bus->priv; 67 68 axienet_mdio_mdc_enable(lp); 69 70 ret = axienet_mdio_wait_until_ready(lp); 71 if (ret < 0) { 72 axienet_mdio_mdc_disable(lp); 73 return ret; 74 } 75 76 axienet_iow(lp, XAE_MDIO_MCR_OFFSET, 77 (((phy_id << XAE_MDIO_MCR_PHYAD_SHIFT) & 78 XAE_MDIO_MCR_PHYAD_MASK) | 79 ((reg << XAE_MDIO_MCR_REGAD_SHIFT) & 80 XAE_MDIO_MCR_REGAD_MASK) | 81 XAE_MDIO_MCR_INITIATE_MASK | 82 XAE_MDIO_MCR_OP_READ_MASK)); 83 84 ret = axienet_mdio_wait_until_ready(lp); 85 if (ret < 0) { 86 axienet_mdio_mdc_disable(lp); 87 return ret; 88 } 89 90 rc = axienet_ior(lp, XAE_MDIO_MRD_OFFSET) & 0x0000FFFF; 91 92 dev_dbg(lp->dev, "axienet_mdio_read(phy_id=%i, reg=%x) == %x\n", 93 phy_id, reg, rc); 94 95 axienet_mdio_mdc_disable(lp); 96 return rc; 97 } 98 99 /** 100 * axienet_mdio_write - MDIO interface write function 101 * @bus: Pointer to mii bus structure 102 * @phy_id: Address of the PHY device 103 * @reg: PHY register to write to 104 * @val: Value to be written into the register 105 * 106 * Return: 0 on success, -ETIMEDOUT on a timeout 107 * 108 * Writes the value to the requested register by first writing the value 109 * into MWD register. The MCR register is then appropriately setup 110 * to finish the write operation. 111 */ 112 static int axienet_mdio_write(struct mii_bus *bus, int phy_id, int reg, 113 u16 val) 114 { 115 int ret; 116 struct axienet_local *lp = bus->priv; 117 118 dev_dbg(lp->dev, "axienet_mdio_write(phy_id=%i, reg=%x, val=%x)\n", 119 phy_id, reg, val); 120 121 axienet_mdio_mdc_enable(lp); 122 123 ret = axienet_mdio_wait_until_ready(lp); 124 if (ret < 0) { 125 axienet_mdio_mdc_disable(lp); 126 return ret; 127 } 128 129 axienet_iow(lp, XAE_MDIO_MWD_OFFSET, (u32)val); 130 axienet_iow(lp, XAE_MDIO_MCR_OFFSET, 131 (((phy_id << XAE_MDIO_MCR_PHYAD_SHIFT) & 132 XAE_MDIO_MCR_PHYAD_MASK) | 133 ((reg << XAE_MDIO_MCR_REGAD_SHIFT) & 134 XAE_MDIO_MCR_REGAD_MASK) | 135 XAE_MDIO_MCR_INITIATE_MASK | 136 XAE_MDIO_MCR_OP_WRITE_MASK)); 137 138 ret = axienet_mdio_wait_until_ready(lp); 139 if (ret < 0) { 140 axienet_mdio_mdc_disable(lp); 141 return ret; 142 } 143 axienet_mdio_mdc_disable(lp); 144 return 0; 145 } 146 147 /** 148 * axienet_mdio_enable - MDIO hardware setup function 149 * @lp: Pointer to axienet local data structure. 150 * @np: Pointer to mdio device tree node. 151 * 152 * Return: 0 on success, -ETIMEDOUT on a timeout, -EOVERFLOW on a clock 153 * divisor overflow. 154 * 155 * Sets up the MDIO interface by initializing the MDIO clock and enabling the 156 * MDIO interface in hardware. 157 **/ 158 static int axienet_mdio_enable(struct axienet_local *lp, struct device_node *np) 159 { 160 u32 mdio_freq = DEFAULT_MDIO_FREQ; 161 u32 host_clock; 162 u32 clk_div; 163 int ret; 164 165 lp->mii_clk_div = 0; 166 167 if (lp->axi_clk) { 168 host_clock = clk_get_rate(lp->axi_clk); 169 } else { 170 struct device_node *np1; 171 172 /* Legacy fallback: detect CPU clock frequency and use as AXI 173 * bus clock frequency. This only works on certain platforms. 174 */ 175 np1 = of_find_node_by_name(NULL, "cpu"); 176 if (!np1) { 177 netdev_warn(lp->ndev, "Could not find CPU device node.\n"); 178 host_clock = DEFAULT_HOST_CLOCK; 179 } else { 180 int ret = of_property_read_u32(np1, "clock-frequency", 181 &host_clock); 182 if (ret) { 183 netdev_warn(lp->ndev, "CPU clock-frequency property not found.\n"); 184 host_clock = DEFAULT_HOST_CLOCK; 185 } 186 of_node_put(np1); 187 } 188 netdev_info(lp->ndev, "Setting assumed host clock to %u\n", 189 host_clock); 190 } 191 192 if (np) 193 of_property_read_u32(np, "clock-frequency", &mdio_freq); 194 if (mdio_freq != DEFAULT_MDIO_FREQ) 195 netdev_info(lp->ndev, "Setting non-standard mdio bus frequency to %u Hz\n", 196 mdio_freq); 197 198 /* clk_div can be calculated by deriving it from the equation: 199 * fMDIO = fHOST / ((1 + clk_div) * 2) 200 * 201 * Where fMDIO <= 2500000, so we get: 202 * fHOST / ((1 + clk_div) * 2) <= 2500000 203 * 204 * Then we get: 205 * 1 / ((1 + clk_div) * 2) <= (2500000 / fHOST) 206 * 207 * Then we get: 208 * 1 / (1 + clk_div) <= ((2500000 * 2) / fHOST) 209 * 210 * Then we get: 211 * 1 / (1 + clk_div) <= (5000000 / fHOST) 212 * 213 * So: 214 * (1 + clk_div) >= (fHOST / 5000000) 215 * 216 * And finally: 217 * clk_div >= (fHOST / 5000000) - 1 218 * 219 * fHOST can be read from the flattened device tree as property 220 * "clock-frequency" from the CPU 221 */ 222 223 clk_div = (host_clock / (mdio_freq * 2)) - 1; 224 /* If there is any remainder from the division of 225 * fHOST / (mdio_freq * 2), then we need to add 226 * 1 to the clock divisor or we will surely be 227 * above the requested frequency 228 */ 229 if (host_clock % (mdio_freq * 2)) 230 clk_div++; 231 232 /* Check for overflow of mii_clk_div */ 233 if (clk_div & ~XAE_MDIO_MC_CLOCK_DIVIDE_MAX) { 234 netdev_warn(lp->ndev, "MDIO clock divisor overflow\n"); 235 return -EOVERFLOW; 236 } 237 lp->mii_clk_div = (u8)clk_div; 238 239 netdev_dbg(lp->ndev, 240 "Setting MDIO clock divisor to %u/%u Hz host clock.\n", 241 lp->mii_clk_div, host_clock); 242 243 axienet_mdio_mdc_enable(lp); 244 245 ret = axienet_mdio_wait_until_ready(lp); 246 if (ret) 247 axienet_mdio_mdc_disable(lp); 248 249 return ret; 250 } 251 252 /** 253 * axienet_mdio_setup - MDIO setup function 254 * @lp: Pointer to axienet local data structure. 255 * 256 * Return: 0 on success, -ETIMEDOUT on a timeout, -EOVERFLOW on a clock 257 * divisor overflow, -ENOMEM when mdiobus_alloc (to allocate 258 * memory for mii bus structure) fails. 259 * 260 * Sets up the MDIO interface by initializing the MDIO clock. 261 * Register the MDIO interface. 262 **/ 263 int axienet_mdio_setup(struct axienet_local *lp) 264 { 265 struct device_node *mdio_node; 266 struct mii_bus *bus; 267 int ret; 268 269 bus = mdiobus_alloc(); 270 if (!bus) 271 return -ENOMEM; 272 273 snprintf(bus->id, MII_BUS_ID_SIZE, "axienet-%.8llx", 274 (unsigned long long)lp->regs_start); 275 276 bus->priv = lp; 277 bus->name = "Xilinx Axi Ethernet MDIO"; 278 bus->read = axienet_mdio_read; 279 bus->write = axienet_mdio_write; 280 bus->parent = lp->dev; 281 lp->mii_bus = bus; 282 283 mdio_node = of_get_child_by_name(lp->dev->of_node, "mdio"); 284 ret = axienet_mdio_enable(lp, mdio_node); 285 if (ret < 0) 286 goto unregister; 287 ret = of_mdiobus_register(bus, mdio_node); 288 if (ret) 289 goto unregister_mdio_enabled; 290 of_node_put(mdio_node); 291 axienet_mdio_mdc_disable(lp); 292 return 0; 293 294 unregister_mdio_enabled: 295 axienet_mdio_mdc_disable(lp); 296 unregister: 297 of_node_put(mdio_node); 298 mdiobus_free(bus); 299 lp->mii_bus = NULL; 300 return ret; 301 } 302 303 /** 304 * axienet_mdio_teardown - MDIO remove function 305 * @lp: Pointer to axienet local data structure. 306 * 307 * Unregisters the MDIO and frees any associate memory for mii bus. 308 */ 309 void axienet_mdio_teardown(struct axienet_local *lp) 310 { 311 mdiobus_unregister(lp->mii_bus); 312 mdiobus_free(lp->mii_bus); 313 lp->mii_bus = NULL; 314 } 315