xref: /linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c (revision b4ada0618eed0fbd1b1630f73deb048c592b06a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/platform_device.h>
36 #include <linux/skbuff.h>
37 #include <linux/math64.h>
38 #include <linux/phy.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/dmaengine.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dma/xilinx_dma.h>
44 #include <linux/circ_buf.h>
45 #include <net/netdev_queues.h>
46 
47 #include "xilinx_axienet.h"
48 
49 /* Descriptors defines for Tx and Rx DMA */
50 #define TX_BD_NUM_DEFAULT		128
51 #define RX_BD_NUM_DEFAULT		1024
52 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
53 #define TX_BD_NUM_MAX			4096
54 #define RX_BD_NUM_MAX			4096
55 #define DMA_NUM_APP_WORDS		5
56 #define LEN_APP				4
57 #define RX_BUF_NUM_DEFAULT		128
58 
59 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
60 #define DRIVER_NAME		"xaxienet"
61 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
62 #define DRIVER_VERSION		"1.00a"
63 
64 #define AXIENET_REGS_N		40
65 
66 static void axienet_rx_submit_desc(struct net_device *ndev);
67 
68 /* Match table for of_platform binding */
69 static const struct of_device_id axienet_of_match[] = {
70 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
71 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
72 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
73 	{},
74 };
75 
76 MODULE_DEVICE_TABLE(of, axienet_of_match);
77 
78 /* Option table for setting up Axi Ethernet hardware options */
79 static struct axienet_option axienet_options[] = {
80 	/* Turn on jumbo packet support for both Rx and Tx */
81 	{
82 		.opt = XAE_OPTION_JUMBO,
83 		.reg = XAE_TC_OFFSET,
84 		.m_or = XAE_TC_JUM_MASK,
85 	}, {
86 		.opt = XAE_OPTION_JUMBO,
87 		.reg = XAE_RCW1_OFFSET,
88 		.m_or = XAE_RCW1_JUM_MASK,
89 	}, { /* Turn on VLAN packet support for both Rx and Tx */
90 		.opt = XAE_OPTION_VLAN,
91 		.reg = XAE_TC_OFFSET,
92 		.m_or = XAE_TC_VLAN_MASK,
93 	}, {
94 		.opt = XAE_OPTION_VLAN,
95 		.reg = XAE_RCW1_OFFSET,
96 		.m_or = XAE_RCW1_VLAN_MASK,
97 	}, { /* Turn on FCS stripping on receive packets */
98 		.opt = XAE_OPTION_FCS_STRIP,
99 		.reg = XAE_RCW1_OFFSET,
100 		.m_or = XAE_RCW1_FCS_MASK,
101 	}, { /* Turn on FCS insertion on transmit packets */
102 		.opt = XAE_OPTION_FCS_INSERT,
103 		.reg = XAE_TC_OFFSET,
104 		.m_or = XAE_TC_FCS_MASK,
105 	}, { /* Turn off length/type field checking on receive packets */
106 		.opt = XAE_OPTION_LENTYPE_ERR,
107 		.reg = XAE_RCW1_OFFSET,
108 		.m_or = XAE_RCW1_LT_DIS_MASK,
109 	}, { /* Turn on Rx flow control */
110 		.opt = XAE_OPTION_FLOW_CONTROL,
111 		.reg = XAE_FCC_OFFSET,
112 		.m_or = XAE_FCC_FCRX_MASK,
113 	}, { /* Turn on Tx flow control */
114 		.opt = XAE_OPTION_FLOW_CONTROL,
115 		.reg = XAE_FCC_OFFSET,
116 		.m_or = XAE_FCC_FCTX_MASK,
117 	}, { /* Turn on promiscuous frame filtering */
118 		.opt = XAE_OPTION_PROMISC,
119 		.reg = XAE_FMI_OFFSET,
120 		.m_or = XAE_FMI_PM_MASK,
121 	}, { /* Enable transmitter */
122 		.opt = XAE_OPTION_TXEN,
123 		.reg = XAE_TC_OFFSET,
124 		.m_or = XAE_TC_TX_MASK,
125 	}, { /* Enable receiver */
126 		.opt = XAE_OPTION_RXEN,
127 		.reg = XAE_RCW1_OFFSET,
128 		.m_or = XAE_RCW1_RX_MASK,
129 	},
130 	{}
131 };
132 
133 static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i)
134 {
135 	return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)];
136 }
137 
138 static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i)
139 {
140 	return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)];
141 }
142 
143 /**
144  * axienet_dma_in32 - Memory mapped Axi DMA register read
145  * @lp:		Pointer to axienet local structure
146  * @reg:	Address offset from the base address of the Axi DMA core
147  *
148  * Return: The contents of the Axi DMA register
149  *
150  * This function returns the contents of the corresponding Axi DMA register.
151  */
152 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
153 {
154 	return ioread32(lp->dma_regs + reg);
155 }
156 
157 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
158 			       struct axidma_bd *desc)
159 {
160 	desc->phys = lower_32_bits(addr);
161 	if (lp->features & XAE_FEATURE_DMA_64BIT)
162 		desc->phys_msb = upper_32_bits(addr);
163 }
164 
165 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
166 				     struct axidma_bd *desc)
167 {
168 	dma_addr_t ret = desc->phys;
169 
170 	if (lp->features & XAE_FEATURE_DMA_64BIT)
171 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
172 
173 	return ret;
174 }
175 
176 /**
177  * axienet_dma_bd_release - Release buffer descriptor rings
178  * @ndev:	Pointer to the net_device structure
179  *
180  * This function is used to release the descriptors allocated in
181  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
182  * driver stop api is called.
183  */
184 static void axienet_dma_bd_release(struct net_device *ndev)
185 {
186 	int i;
187 	struct axienet_local *lp = netdev_priv(ndev);
188 
189 	/* If we end up here, tx_bd_v must have been DMA allocated. */
190 	dma_free_coherent(lp->dev,
191 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
192 			  lp->tx_bd_v,
193 			  lp->tx_bd_p);
194 
195 	if (!lp->rx_bd_v)
196 		return;
197 
198 	for (i = 0; i < lp->rx_bd_num; i++) {
199 		dma_addr_t phys;
200 
201 		/* A NULL skb means this descriptor has not been initialised
202 		 * at all.
203 		 */
204 		if (!lp->rx_bd_v[i].skb)
205 			break;
206 
207 		dev_kfree_skb(lp->rx_bd_v[i].skb);
208 
209 		/* For each descriptor, we programmed cntrl with the (non-zero)
210 		 * descriptor size, after it had been successfully allocated.
211 		 * So a non-zero value in there means we need to unmap it.
212 		 */
213 		if (lp->rx_bd_v[i].cntrl) {
214 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
215 			dma_unmap_single(lp->dev, phys,
216 					 lp->max_frm_size, DMA_FROM_DEVICE);
217 		}
218 	}
219 
220 	dma_free_coherent(lp->dev,
221 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
222 			  lp->rx_bd_v,
223 			  lp->rx_bd_p);
224 }
225 
226 static u64 axienet_dma_rate(struct axienet_local *lp)
227 {
228 	if (lp->axi_clk)
229 		return clk_get_rate(lp->axi_clk);
230 	return 125000000; /* arbitrary guess if no clock rate set */
231 }
232 
233 /**
234  * axienet_calc_cr() - Calculate control register value
235  * @lp: Device private data
236  * @count: Number of completions before an interrupt
237  * @usec: Microseconds after the last completion before an interrupt
238  *
239  * Calculate a control register value based on the coalescing settings. The
240  * run/stop bit is not set.
241  */
242 static u32 axienet_calc_cr(struct axienet_local *lp, u32 count, u32 usec)
243 {
244 	u32 cr;
245 
246 	cr = FIELD_PREP(XAXIDMA_COALESCE_MASK, count) | XAXIDMA_IRQ_IOC_MASK |
247 	     XAXIDMA_IRQ_ERROR_MASK;
248 	/* Only set interrupt delay timer if not generating an interrupt on
249 	 * the first packet. Otherwise leave at 0 to disable delay interrupt.
250 	 */
251 	if (count > 1) {
252 		u64 clk_rate = axienet_dma_rate(lp);
253 		u32 timer;
254 
255 		/* 1 Timeout Interval = 125 * (clock period of SG clock) */
256 		timer = DIV64_U64_ROUND_CLOSEST((u64)usec * clk_rate,
257 						XAXIDMA_DELAY_SCALE);
258 
259 		timer = min(timer, FIELD_MAX(XAXIDMA_DELAY_MASK));
260 		cr |= FIELD_PREP(XAXIDMA_DELAY_MASK, timer) |
261 		      XAXIDMA_IRQ_DELAY_MASK;
262 	}
263 
264 	return cr;
265 }
266 
267 /**
268  * axienet_coalesce_params() - Extract coalesce parameters from the CR
269  * @lp: Device private data
270  * @cr: The control register to parse
271  * @count: Number of packets before an interrupt
272  * @usec: Idle time (in usec) before an interrupt
273  */
274 static void axienet_coalesce_params(struct axienet_local *lp, u32 cr,
275 				    u32 *count, u32 *usec)
276 {
277 	u64 clk_rate = axienet_dma_rate(lp);
278 	u64 timer = FIELD_GET(XAXIDMA_DELAY_MASK, cr);
279 
280 	*count = FIELD_GET(XAXIDMA_COALESCE_MASK, cr);
281 	*usec = DIV64_U64_ROUND_CLOSEST(timer * XAXIDMA_DELAY_SCALE, clk_rate);
282 }
283 
284 /**
285  * axienet_dma_start - Set up DMA registers and start DMA operation
286  * @lp:		Pointer to the axienet_local structure
287  */
288 static void axienet_dma_start(struct axienet_local *lp)
289 {
290 	spin_lock_irq(&lp->rx_cr_lock);
291 
292 	/* Start updating the Rx channel control register */
293 	lp->rx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK;
294 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
295 
296 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
297 	 * halted state. This will make the Rx side ready for reception.
298 	 */
299 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
300 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
301 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
302 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
303 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
304 	lp->rx_dma_started = true;
305 
306 	spin_unlock_irq(&lp->rx_cr_lock);
307 	spin_lock_irq(&lp->tx_cr_lock);
308 
309 	/* Start updating the Tx channel control register */
310 	lp->tx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK;
311 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
312 
313 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
314 	 * Tx channel is now ready to run. But only after we write to the
315 	 * tail pointer register that the Tx channel will start transmitting.
316 	 */
317 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
318 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
319 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
320 	lp->tx_dma_started = true;
321 
322 	spin_unlock_irq(&lp->tx_cr_lock);
323 }
324 
325 /**
326  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
327  * @ndev:	Pointer to the net_device structure
328  *
329  * Return: 0, on success -ENOMEM, on failure
330  *
331  * This function is called to initialize the Rx and Tx DMA descriptor
332  * rings. This initializes the descriptors with required default values
333  * and is called when Axi Ethernet driver reset is called.
334  */
335 static int axienet_dma_bd_init(struct net_device *ndev)
336 {
337 	int i;
338 	struct sk_buff *skb;
339 	struct axienet_local *lp = netdev_priv(ndev);
340 
341 	/* Reset the indexes which are used for accessing the BDs */
342 	lp->tx_bd_ci = 0;
343 	lp->tx_bd_tail = 0;
344 	lp->rx_bd_ci = 0;
345 
346 	/* Allocate the Tx and Rx buffer descriptors. */
347 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
348 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
349 					 &lp->tx_bd_p, GFP_KERNEL);
350 	if (!lp->tx_bd_v)
351 		return -ENOMEM;
352 
353 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
354 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
355 					 &lp->rx_bd_p, GFP_KERNEL);
356 	if (!lp->rx_bd_v)
357 		goto out;
358 
359 	for (i = 0; i < lp->tx_bd_num; i++) {
360 		dma_addr_t addr = lp->tx_bd_p +
361 				  sizeof(*lp->tx_bd_v) *
362 				  ((i + 1) % lp->tx_bd_num);
363 
364 		lp->tx_bd_v[i].next = lower_32_bits(addr);
365 		if (lp->features & XAE_FEATURE_DMA_64BIT)
366 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
367 	}
368 
369 	for (i = 0; i < lp->rx_bd_num; i++) {
370 		dma_addr_t addr;
371 
372 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
373 			((i + 1) % lp->rx_bd_num);
374 		lp->rx_bd_v[i].next = lower_32_bits(addr);
375 		if (lp->features & XAE_FEATURE_DMA_64BIT)
376 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
377 
378 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
379 		if (!skb)
380 			goto out;
381 
382 		lp->rx_bd_v[i].skb = skb;
383 		addr = dma_map_single(lp->dev, skb->data,
384 				      lp->max_frm_size, DMA_FROM_DEVICE);
385 		if (dma_mapping_error(lp->dev, addr)) {
386 			netdev_err(ndev, "DMA mapping error\n");
387 			goto out;
388 		}
389 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
390 
391 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
392 	}
393 
394 	axienet_dma_start(lp);
395 
396 	return 0;
397 out:
398 	axienet_dma_bd_release(ndev);
399 	return -ENOMEM;
400 }
401 
402 /**
403  * axienet_set_mac_address - Write the MAC address
404  * @ndev:	Pointer to the net_device structure
405  * @address:	6 byte Address to be written as MAC address
406  *
407  * This function is called to initialize the MAC address of the Axi Ethernet
408  * core. It writes to the UAW0 and UAW1 registers of the core.
409  */
410 static void axienet_set_mac_address(struct net_device *ndev,
411 				    const void *address)
412 {
413 	struct axienet_local *lp = netdev_priv(ndev);
414 
415 	if (address)
416 		eth_hw_addr_set(ndev, address);
417 	if (!is_valid_ether_addr(ndev->dev_addr))
418 		eth_hw_addr_random(ndev);
419 
420 	/* Set up unicast MAC address filter set its mac address */
421 	axienet_iow(lp, XAE_UAW0_OFFSET,
422 		    (ndev->dev_addr[0]) |
423 		    (ndev->dev_addr[1] << 8) |
424 		    (ndev->dev_addr[2] << 16) |
425 		    (ndev->dev_addr[3] << 24));
426 	axienet_iow(lp, XAE_UAW1_OFFSET,
427 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
428 		      ~XAE_UAW1_UNICASTADDR_MASK) |
429 		     (ndev->dev_addr[4] |
430 		     (ndev->dev_addr[5] << 8))));
431 }
432 
433 /**
434  * netdev_set_mac_address - Write the MAC address (from outside the driver)
435  * @ndev:	Pointer to the net_device structure
436  * @p:		6 byte Address to be written as MAC address
437  *
438  * Return: 0 for all conditions. Presently, there is no failure case.
439  *
440  * This function is called to initialize the MAC address of the Axi Ethernet
441  * core. It calls the core specific axienet_set_mac_address. This is the
442  * function that goes into net_device_ops structure entry ndo_set_mac_address.
443  */
444 static int netdev_set_mac_address(struct net_device *ndev, void *p)
445 {
446 	struct sockaddr *addr = p;
447 
448 	axienet_set_mac_address(ndev, addr->sa_data);
449 	return 0;
450 }
451 
452 /**
453  * axienet_set_multicast_list - Prepare the multicast table
454  * @ndev:	Pointer to the net_device structure
455  *
456  * This function is called to initialize the multicast table during
457  * initialization. The Axi Ethernet basic multicast support has a four-entry
458  * multicast table which is initialized here. Additionally this function
459  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
460  * means whenever the multicast table entries need to be updated this
461  * function gets called.
462  */
463 static void axienet_set_multicast_list(struct net_device *ndev)
464 {
465 	int i = 0;
466 	u32 reg, af0reg, af1reg;
467 	struct axienet_local *lp = netdev_priv(ndev);
468 
469 	reg = axienet_ior(lp, XAE_FMI_OFFSET);
470 	reg &= ~XAE_FMI_PM_MASK;
471 	if (ndev->flags & IFF_PROMISC)
472 		reg |= XAE_FMI_PM_MASK;
473 	else
474 		reg &= ~XAE_FMI_PM_MASK;
475 	axienet_iow(lp, XAE_FMI_OFFSET, reg);
476 
477 	if (ndev->flags & IFF_ALLMULTI ||
478 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
479 		reg &= 0xFFFFFF00;
480 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
481 		axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */
482 		axienet_iow(lp, XAE_AF1_OFFSET, 0);
483 		axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */
484 		axienet_iow(lp, XAE_AM1_OFFSET, 0);
485 		axienet_iow(lp, XAE_FFE_OFFSET, 1);
486 		i = 1;
487 	} else if (!netdev_mc_empty(ndev)) {
488 		struct netdev_hw_addr *ha;
489 
490 		netdev_for_each_mc_addr(ha, ndev) {
491 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
492 				break;
493 
494 			af0reg = (ha->addr[0]);
495 			af0reg |= (ha->addr[1] << 8);
496 			af0reg |= (ha->addr[2] << 16);
497 			af0reg |= (ha->addr[3] << 24);
498 
499 			af1reg = (ha->addr[4]);
500 			af1reg |= (ha->addr[5] << 8);
501 
502 			reg &= 0xFFFFFF00;
503 			reg |= i;
504 
505 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
506 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
507 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
508 			axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff);
509 			axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff);
510 			axienet_iow(lp, XAE_FFE_OFFSET, 1);
511 			i++;
512 		}
513 	}
514 
515 	for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
516 		reg &= 0xFFFFFF00;
517 		reg |= i;
518 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
519 		axienet_iow(lp, XAE_FFE_OFFSET, 0);
520 	}
521 }
522 
523 /**
524  * axienet_setoptions - Set an Axi Ethernet option
525  * @ndev:	Pointer to the net_device structure
526  * @options:	Option to be enabled/disabled
527  *
528  * The Axi Ethernet core has multiple features which can be selectively turned
529  * on or off. The typical options could be jumbo frame option, basic VLAN
530  * option, promiscuous mode option etc. This function is used to set or clear
531  * these options in the Axi Ethernet hardware. This is done through
532  * axienet_option structure .
533  */
534 static void axienet_setoptions(struct net_device *ndev, u32 options)
535 {
536 	int reg;
537 	struct axienet_local *lp = netdev_priv(ndev);
538 	struct axienet_option *tp = &axienet_options[0];
539 
540 	while (tp->opt) {
541 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
542 		if (options & tp->opt)
543 			reg |= tp->m_or;
544 		axienet_iow(lp, tp->reg, reg);
545 		tp++;
546 	}
547 
548 	lp->options |= options;
549 }
550 
551 static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat)
552 {
553 	u32 counter;
554 
555 	if (lp->reset_in_progress)
556 		return lp->hw_stat_base[stat];
557 
558 	counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
559 	return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]);
560 }
561 
562 static void axienet_stats_update(struct axienet_local *lp, bool reset)
563 {
564 	enum temac_stat stat;
565 
566 	write_seqcount_begin(&lp->hw_stats_seqcount);
567 	lp->reset_in_progress = reset;
568 	for (stat = 0; stat < STAT_COUNT; stat++) {
569 		u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
570 
571 		lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat];
572 		lp->hw_last_counter[stat] = counter;
573 	}
574 	write_seqcount_end(&lp->hw_stats_seqcount);
575 }
576 
577 static void axienet_refresh_stats(struct work_struct *work)
578 {
579 	struct axienet_local *lp = container_of(work, struct axienet_local,
580 						stats_work.work);
581 
582 	mutex_lock(&lp->stats_lock);
583 	axienet_stats_update(lp, false);
584 	mutex_unlock(&lp->stats_lock);
585 
586 	/* Just less than 2^32 bytes at 2.5 GBit/s */
587 	schedule_delayed_work(&lp->stats_work, 13 * HZ);
588 }
589 
590 static int __axienet_device_reset(struct axienet_local *lp)
591 {
592 	u32 value;
593 	int ret;
594 
595 	/* Save statistics counters in case they will be reset */
596 	mutex_lock(&lp->stats_lock);
597 	if (lp->features & XAE_FEATURE_STATS)
598 		axienet_stats_update(lp, true);
599 
600 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
601 	 * process of Axi DMA takes a while to complete as all pending
602 	 * commands/transfers will be flushed or completed during this
603 	 * reset process.
604 	 * Note that even though both TX and RX have their own reset register,
605 	 * they both reset the entire DMA core, so only one needs to be used.
606 	 */
607 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
608 	ret = read_poll_timeout(axienet_dma_in32, value,
609 				!(value & XAXIDMA_CR_RESET_MASK),
610 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
611 				XAXIDMA_TX_CR_OFFSET);
612 	if (ret) {
613 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
614 		goto out;
615 	}
616 
617 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
618 	ret = read_poll_timeout(axienet_ior, value,
619 				value & XAE_INT_PHYRSTCMPLT_MASK,
620 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
621 				XAE_IS_OFFSET);
622 	if (ret) {
623 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
624 		goto out;
625 	}
626 
627 	/* Update statistics counters with new values */
628 	if (lp->features & XAE_FEATURE_STATS) {
629 		enum temac_stat stat;
630 
631 		write_seqcount_begin(&lp->hw_stats_seqcount);
632 		lp->reset_in_progress = false;
633 		for (stat = 0; stat < STAT_COUNT; stat++) {
634 			u32 counter =
635 				axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
636 
637 			lp->hw_stat_base[stat] +=
638 				lp->hw_last_counter[stat] - counter;
639 			lp->hw_last_counter[stat] = counter;
640 		}
641 		write_seqcount_end(&lp->hw_stats_seqcount);
642 	}
643 
644 out:
645 	mutex_unlock(&lp->stats_lock);
646 	return ret;
647 }
648 
649 /**
650  * axienet_dma_stop - Stop DMA operation
651  * @lp:		Pointer to the axienet_local structure
652  */
653 static void axienet_dma_stop(struct axienet_local *lp)
654 {
655 	int count;
656 	u32 cr, sr;
657 
658 	spin_lock_irq(&lp->rx_cr_lock);
659 
660 	cr = lp->rx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
661 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
662 	lp->rx_dma_started = false;
663 
664 	spin_unlock_irq(&lp->rx_cr_lock);
665 	synchronize_irq(lp->rx_irq);
666 
667 	spin_lock_irq(&lp->tx_cr_lock);
668 
669 	cr = lp->tx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
670 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
671 	lp->tx_dma_started = false;
672 
673 	spin_unlock_irq(&lp->tx_cr_lock);
674 	synchronize_irq(lp->tx_irq);
675 
676 	/* Give DMAs a chance to halt gracefully */
677 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
678 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
679 		msleep(20);
680 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
681 	}
682 
683 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
684 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
685 		msleep(20);
686 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
687 	}
688 
689 	/* Do a reset to ensure DMA is really stopped */
690 	axienet_lock_mii(lp);
691 	__axienet_device_reset(lp);
692 	axienet_unlock_mii(lp);
693 }
694 
695 /**
696  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
697  * @ndev:	Pointer to the net_device structure
698  *
699  * This function is called to reset and initialize the Axi Ethernet core. This
700  * is typically called during initialization. It does a reset of the Axi DMA
701  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
702  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
703  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
704  * core.
705  * Returns 0 on success or a negative error number otherwise.
706  */
707 static int axienet_device_reset(struct net_device *ndev)
708 {
709 	u32 axienet_status;
710 	struct axienet_local *lp = netdev_priv(ndev);
711 	int ret;
712 
713 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
714 	lp->options |= XAE_OPTION_VLAN;
715 	lp->options &= (~XAE_OPTION_JUMBO);
716 
717 	if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) {
718 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
719 					XAE_TRL_SIZE;
720 
721 		if (lp->max_frm_size <= lp->rxmem)
722 			lp->options |= XAE_OPTION_JUMBO;
723 	}
724 
725 	if (!lp->use_dmaengine) {
726 		ret = __axienet_device_reset(lp);
727 		if (ret)
728 			return ret;
729 
730 		ret = axienet_dma_bd_init(ndev);
731 		if (ret) {
732 			netdev_err(ndev, "%s: descriptor allocation failed\n",
733 				   __func__);
734 			return ret;
735 		}
736 	}
737 
738 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
739 	axienet_status &= ~XAE_RCW1_RX_MASK;
740 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
741 
742 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
743 	if (axienet_status & XAE_INT_RXRJECT_MASK)
744 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
745 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
746 		    XAE_INT_RECV_ERROR_MASK : 0);
747 
748 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
749 
750 	/* Sync default options with HW but leave receiver and
751 	 * transmitter disabled.
752 	 */
753 	axienet_setoptions(ndev, lp->options &
754 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
755 	axienet_set_mac_address(ndev, NULL);
756 	axienet_set_multicast_list(ndev);
757 	axienet_setoptions(ndev, lp->options);
758 
759 	netif_trans_update(ndev);
760 
761 	return 0;
762 }
763 
764 /**
765  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
766  * @lp:		Pointer to the axienet_local structure
767  * @first_bd:	Index of first descriptor to clean up
768  * @nr_bds:	Max number of descriptors to clean up
769  * @force:	Whether to clean descriptors even if not complete
770  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
771  *		in all cleaned-up descriptors. Ignored if NULL.
772  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
773  *
774  * Would either be called after a successful transmit operation, or after
775  * there was an error when setting up the chain.
776  * Returns the number of packets handled.
777  */
778 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
779 				 int nr_bds, bool force, u32 *sizep, int budget)
780 {
781 	struct axidma_bd *cur_p;
782 	unsigned int status;
783 	int i, packets = 0;
784 	dma_addr_t phys;
785 
786 	for (i = 0; i < nr_bds; i++) {
787 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
788 		status = cur_p->status;
789 
790 		/* If force is not specified, clean up only descriptors
791 		 * that have been completed by the MAC.
792 		 */
793 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
794 			break;
795 
796 		/* Ensure we see complete descriptor update */
797 		dma_rmb();
798 		phys = desc_get_phys_addr(lp, cur_p);
799 		dma_unmap_single(lp->dev, phys,
800 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
801 				 DMA_TO_DEVICE);
802 
803 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
804 			napi_consume_skb(cur_p->skb, budget);
805 			packets++;
806 		}
807 
808 		cur_p->app0 = 0;
809 		cur_p->app1 = 0;
810 		cur_p->app2 = 0;
811 		cur_p->app4 = 0;
812 		cur_p->skb = NULL;
813 		/* ensure our transmit path and device don't prematurely see status cleared */
814 		wmb();
815 		cur_p->cntrl = 0;
816 		cur_p->status = 0;
817 
818 		if (sizep)
819 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
820 	}
821 
822 	if (!force) {
823 		lp->tx_bd_ci += i;
824 		if (lp->tx_bd_ci >= lp->tx_bd_num)
825 			lp->tx_bd_ci %= lp->tx_bd_num;
826 	}
827 
828 	return packets;
829 }
830 
831 /**
832  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
833  * @lp:		Pointer to the axienet_local structure
834  * @num_frag:	The number of BDs to check for
835  *
836  * Return: 0, on success
837  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
838  *
839  * This function is invoked before BDs are allocated and transmission starts.
840  * This function returns 0 if a BD or group of BDs can be allocated for
841  * transmission. If the BD or any of the BDs are not free the function
842  * returns a busy status.
843  */
844 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
845 					    int num_frag)
846 {
847 	struct axidma_bd *cur_p;
848 
849 	/* Ensure we see all descriptor updates from device or TX polling */
850 	rmb();
851 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
852 			     lp->tx_bd_num];
853 	if (cur_p->cntrl)
854 		return NETDEV_TX_BUSY;
855 	return 0;
856 }
857 
858 /**
859  * axienet_dma_tx_cb - DMA engine callback for TX channel.
860  * @data:       Pointer to the axienet_local structure.
861  * @result:     error reporting through dmaengine_result.
862  * This function is called by dmaengine driver for TX channel to notify
863  * that the transmit is done.
864  */
865 static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result)
866 {
867 	struct skbuf_dma_descriptor *skbuf_dma;
868 	struct axienet_local *lp = data;
869 	struct netdev_queue *txq;
870 	int len;
871 
872 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++);
873 	len = skbuf_dma->skb->len;
874 	txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb);
875 	u64_stats_update_begin(&lp->tx_stat_sync);
876 	u64_stats_add(&lp->tx_bytes, len);
877 	u64_stats_add(&lp->tx_packets, 1);
878 	u64_stats_update_end(&lp->tx_stat_sync);
879 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE);
880 	dev_consume_skb_any(skbuf_dma->skb);
881 	netif_txq_completed_wake(txq, 1, len,
882 				 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
883 				 2);
884 }
885 
886 /**
887  * axienet_start_xmit_dmaengine - Starts the transmission.
888  * @skb:        sk_buff pointer that contains data to be Txed.
889  * @ndev:       Pointer to net_device structure.
890  *
891  * Return: NETDEV_TX_OK on success or any non space errors.
892  *         NETDEV_TX_BUSY when free element in TX skb ring buffer
893  *         is not available.
894  *
895  * This function is invoked to initiate transmission. The
896  * function sets the skbs, register dma callback API and submit
897  * the dma transaction.
898  * Additionally if checksum offloading is supported,
899  * it populates AXI Stream Control fields with appropriate values.
900  */
901 static netdev_tx_t
902 axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev)
903 {
904 	struct dma_async_tx_descriptor *dma_tx_desc = NULL;
905 	struct axienet_local *lp = netdev_priv(ndev);
906 	u32 app_metadata[DMA_NUM_APP_WORDS] = {0};
907 	struct skbuf_dma_descriptor *skbuf_dma;
908 	struct dma_device *dma_dev;
909 	struct netdev_queue *txq;
910 	u32 csum_start_off;
911 	u32 csum_index_off;
912 	int sg_len;
913 	int ret;
914 
915 	dma_dev = lp->tx_chan->device;
916 	sg_len = skb_shinfo(skb)->nr_frags + 1;
917 	if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= 1) {
918 		netif_stop_queue(ndev);
919 		if (net_ratelimit())
920 			netdev_warn(ndev, "TX ring unexpectedly full\n");
921 		return NETDEV_TX_BUSY;
922 	}
923 
924 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head);
925 	if (!skbuf_dma)
926 		goto xmit_error_drop_skb;
927 
928 	lp->tx_ring_head++;
929 	sg_init_table(skbuf_dma->sgl, sg_len);
930 	ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len);
931 	if (ret < 0)
932 		goto xmit_error_drop_skb;
933 
934 	ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
935 	if (!ret)
936 		goto xmit_error_drop_skb;
937 
938 	/* Fill up app fields for checksum */
939 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
940 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
941 			/* Tx Full Checksum Offload Enabled */
942 			app_metadata[0] |= 2;
943 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
944 			csum_start_off = skb_transport_offset(skb);
945 			csum_index_off = csum_start_off + skb->csum_offset;
946 			/* Tx Partial Checksum Offload Enabled */
947 			app_metadata[0] |= 1;
948 			app_metadata[1] = (csum_start_off << 16) | csum_index_off;
949 		}
950 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
951 		app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */
952 	}
953 
954 	dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl,
955 			sg_len, DMA_MEM_TO_DEV,
956 			DMA_PREP_INTERRUPT, (void *)app_metadata);
957 	if (!dma_tx_desc)
958 		goto xmit_error_unmap_sg;
959 
960 	skbuf_dma->skb = skb;
961 	skbuf_dma->sg_len = sg_len;
962 	dma_tx_desc->callback_param = lp;
963 	dma_tx_desc->callback_result = axienet_dma_tx_cb;
964 	txq = skb_get_tx_queue(lp->ndev, skb);
965 	netdev_tx_sent_queue(txq, skb->len);
966 	netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
967 			     1, 2);
968 
969 	dmaengine_submit(dma_tx_desc);
970 	dma_async_issue_pending(lp->tx_chan);
971 	return NETDEV_TX_OK;
972 
973 xmit_error_unmap_sg:
974 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
975 xmit_error_drop_skb:
976 	dev_kfree_skb_any(skb);
977 	return NETDEV_TX_OK;
978 }
979 
980 /**
981  * axienet_tx_poll - Invoked once a transmit is completed by the
982  * Axi DMA Tx channel.
983  * @napi:	Pointer to NAPI structure.
984  * @budget:	Max number of TX packets to process.
985  *
986  * Return: Number of TX packets processed.
987  *
988  * This function is invoked from the NAPI processing to notify the completion
989  * of transmit operation. It clears fields in the corresponding Tx BDs and
990  * unmaps the corresponding buffer so that CPU can regain ownership of the
991  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
992  * required.
993  */
994 static int axienet_tx_poll(struct napi_struct *napi, int budget)
995 {
996 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
997 	struct net_device *ndev = lp->ndev;
998 	u32 size = 0;
999 	int packets;
1000 
1001 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, lp->tx_bd_num, false,
1002 					&size, budget);
1003 
1004 	if (packets) {
1005 		netdev_completed_queue(ndev, packets, size);
1006 		u64_stats_update_begin(&lp->tx_stat_sync);
1007 		u64_stats_add(&lp->tx_packets, packets);
1008 		u64_stats_add(&lp->tx_bytes, size);
1009 		u64_stats_update_end(&lp->tx_stat_sync);
1010 
1011 		/* Matches barrier in axienet_start_xmit */
1012 		smp_mb();
1013 
1014 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
1015 			netif_wake_queue(ndev);
1016 	}
1017 
1018 	if (packets < budget && napi_complete_done(napi, packets)) {
1019 		/* Re-enable TX completion interrupts. This should
1020 		 * cause an immediate interrupt if any TX packets are
1021 		 * already pending.
1022 		 */
1023 		spin_lock_irq(&lp->tx_cr_lock);
1024 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
1025 		spin_unlock_irq(&lp->tx_cr_lock);
1026 	}
1027 	return packets;
1028 }
1029 
1030 /**
1031  * axienet_start_xmit - Starts the transmission.
1032  * @skb:	sk_buff pointer that contains data to be Txed.
1033  * @ndev:	Pointer to net_device structure.
1034  *
1035  * Return: NETDEV_TX_OK, on success
1036  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
1037  *
1038  * This function is invoked from upper layers to initiate transmission. The
1039  * function uses the next available free BDs and populates their fields to
1040  * start the transmission. Additionally if checksum offloading is supported,
1041  * it populates AXI Stream Control fields with appropriate values.
1042  */
1043 static netdev_tx_t
1044 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1045 {
1046 	u32 ii;
1047 	u32 num_frag;
1048 	u32 csum_start_off;
1049 	u32 csum_index_off;
1050 	skb_frag_t *frag;
1051 	dma_addr_t tail_p, phys;
1052 	u32 orig_tail_ptr, new_tail_ptr;
1053 	struct axienet_local *lp = netdev_priv(ndev);
1054 	struct axidma_bd *cur_p;
1055 
1056 	orig_tail_ptr = lp->tx_bd_tail;
1057 	new_tail_ptr = orig_tail_ptr;
1058 
1059 	num_frag = skb_shinfo(skb)->nr_frags;
1060 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
1061 
1062 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
1063 		/* Should not happen as last start_xmit call should have
1064 		 * checked for sufficient space and queue should only be
1065 		 * woken when sufficient space is available.
1066 		 */
1067 		netif_stop_queue(ndev);
1068 		if (net_ratelimit())
1069 			netdev_warn(ndev, "TX ring unexpectedly full\n");
1070 		return NETDEV_TX_BUSY;
1071 	}
1072 
1073 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1074 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
1075 			/* Tx Full Checksum Offload Enabled */
1076 			cur_p->app0 |= 2;
1077 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
1078 			csum_start_off = skb_transport_offset(skb);
1079 			csum_index_off = csum_start_off + skb->csum_offset;
1080 			/* Tx Partial Checksum Offload Enabled */
1081 			cur_p->app0 |= 1;
1082 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
1083 		}
1084 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1085 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
1086 	}
1087 
1088 	phys = dma_map_single(lp->dev, skb->data,
1089 			      skb_headlen(skb), DMA_TO_DEVICE);
1090 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
1091 		if (net_ratelimit())
1092 			netdev_err(ndev, "TX DMA mapping error\n");
1093 		ndev->stats.tx_dropped++;
1094 		dev_kfree_skb_any(skb);
1095 		return NETDEV_TX_OK;
1096 	}
1097 	desc_set_phys_addr(lp, phys, cur_p);
1098 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
1099 
1100 	for (ii = 0; ii < num_frag; ii++) {
1101 		if (++new_tail_ptr >= lp->tx_bd_num)
1102 			new_tail_ptr = 0;
1103 		cur_p = &lp->tx_bd_v[new_tail_ptr];
1104 		frag = &skb_shinfo(skb)->frags[ii];
1105 		phys = dma_map_single(lp->dev,
1106 				      skb_frag_address(frag),
1107 				      skb_frag_size(frag),
1108 				      DMA_TO_DEVICE);
1109 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1110 			if (net_ratelimit())
1111 				netdev_err(ndev, "TX DMA mapping error\n");
1112 			ndev->stats.tx_dropped++;
1113 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
1114 					      true, NULL, 0);
1115 			dev_kfree_skb_any(skb);
1116 			return NETDEV_TX_OK;
1117 		}
1118 		desc_set_phys_addr(lp, phys, cur_p);
1119 		cur_p->cntrl = skb_frag_size(frag);
1120 	}
1121 
1122 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
1123 	cur_p->skb = skb;
1124 
1125 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
1126 	if (++new_tail_ptr >= lp->tx_bd_num)
1127 		new_tail_ptr = 0;
1128 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
1129 	netdev_sent_queue(ndev, skb->len);
1130 
1131 	/* Start the transfer */
1132 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
1133 
1134 	/* Stop queue if next transmit may not have space */
1135 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
1136 		netif_stop_queue(ndev);
1137 
1138 		/* Matches barrier in axienet_tx_poll */
1139 		smp_mb();
1140 
1141 		/* Space might have just been freed - check again */
1142 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
1143 			netif_wake_queue(ndev);
1144 	}
1145 
1146 	return NETDEV_TX_OK;
1147 }
1148 
1149 /**
1150  * axienet_dma_rx_cb - DMA engine callback for RX channel.
1151  * @data:       Pointer to the skbuf_dma_descriptor structure.
1152  * @result:     error reporting through dmaengine_result.
1153  * This function is called by dmaengine driver for RX channel to notify
1154  * that the packet is received.
1155  */
1156 static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result)
1157 {
1158 	struct skbuf_dma_descriptor *skbuf_dma;
1159 	size_t meta_len, meta_max_len, rx_len;
1160 	struct axienet_local *lp = data;
1161 	struct sk_buff *skb;
1162 	u32 *app_metadata;
1163 	int i;
1164 
1165 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++);
1166 	skb = skbuf_dma->skb;
1167 	app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len,
1168 						       &meta_max_len);
1169 	dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size,
1170 			 DMA_FROM_DEVICE);
1171 	/* TODO: Derive app word index programmatically */
1172 	rx_len = (app_metadata[LEN_APP] & 0xFFFF);
1173 	skb_put(skb, rx_len);
1174 	skb->protocol = eth_type_trans(skb, lp->ndev);
1175 	skb->ip_summed = CHECKSUM_NONE;
1176 
1177 	__netif_rx(skb);
1178 	u64_stats_update_begin(&lp->rx_stat_sync);
1179 	u64_stats_add(&lp->rx_packets, 1);
1180 	u64_stats_add(&lp->rx_bytes, rx_len);
1181 	u64_stats_update_end(&lp->rx_stat_sync);
1182 
1183 	for (i = 0; i < CIRC_SPACE(lp->rx_ring_head, lp->rx_ring_tail,
1184 				   RX_BUF_NUM_DEFAULT); i++)
1185 		axienet_rx_submit_desc(lp->ndev);
1186 	dma_async_issue_pending(lp->rx_chan);
1187 }
1188 
1189 /**
1190  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
1191  * @napi:	Pointer to NAPI structure.
1192  * @budget:	Max number of RX packets to process.
1193  *
1194  * Return: Number of RX packets processed.
1195  */
1196 static int axienet_rx_poll(struct napi_struct *napi, int budget)
1197 {
1198 	u32 length;
1199 	u32 csumstatus;
1200 	u32 size = 0;
1201 	int packets = 0;
1202 	dma_addr_t tail_p = 0;
1203 	struct axidma_bd *cur_p;
1204 	struct sk_buff *skb, *new_skb;
1205 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
1206 
1207 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1208 
1209 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
1210 		dma_addr_t phys;
1211 
1212 		/* Ensure we see complete descriptor update */
1213 		dma_rmb();
1214 
1215 		skb = cur_p->skb;
1216 		cur_p->skb = NULL;
1217 
1218 		/* skb could be NULL if a previous pass already received the
1219 		 * packet for this slot in the ring, but failed to refill it
1220 		 * with a newly allocated buffer. In this case, don't try to
1221 		 * receive it again.
1222 		 */
1223 		if (likely(skb)) {
1224 			length = cur_p->app4 & 0x0000FFFF;
1225 
1226 			phys = desc_get_phys_addr(lp, cur_p);
1227 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
1228 					 DMA_FROM_DEVICE);
1229 
1230 			skb_put(skb, length);
1231 			skb->protocol = eth_type_trans(skb, lp->ndev);
1232 			/*skb_checksum_none_assert(skb);*/
1233 			skb->ip_summed = CHECKSUM_NONE;
1234 
1235 			/* if we're doing Rx csum offload, set it up */
1236 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
1237 				csumstatus = (cur_p->app2 &
1238 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
1239 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
1240 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
1241 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1242 				}
1243 			} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
1244 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
1245 				skb->ip_summed = CHECKSUM_COMPLETE;
1246 			}
1247 
1248 			napi_gro_receive(napi, skb);
1249 
1250 			size += length;
1251 			packets++;
1252 		}
1253 
1254 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
1255 		if (!new_skb)
1256 			break;
1257 
1258 		phys = dma_map_single(lp->dev, new_skb->data,
1259 				      lp->max_frm_size,
1260 				      DMA_FROM_DEVICE);
1261 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1262 			if (net_ratelimit())
1263 				netdev_err(lp->ndev, "RX DMA mapping error\n");
1264 			dev_kfree_skb(new_skb);
1265 			break;
1266 		}
1267 		desc_set_phys_addr(lp, phys, cur_p);
1268 
1269 		cur_p->cntrl = lp->max_frm_size;
1270 		cur_p->status = 0;
1271 		cur_p->skb = new_skb;
1272 
1273 		/* Only update tail_p to mark this slot as usable after it has
1274 		 * been successfully refilled.
1275 		 */
1276 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
1277 
1278 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
1279 			lp->rx_bd_ci = 0;
1280 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1281 	}
1282 
1283 	u64_stats_update_begin(&lp->rx_stat_sync);
1284 	u64_stats_add(&lp->rx_packets, packets);
1285 	u64_stats_add(&lp->rx_bytes, size);
1286 	u64_stats_update_end(&lp->rx_stat_sync);
1287 
1288 	if (tail_p)
1289 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1290 
1291 	if (packets < budget && napi_complete_done(napi, packets)) {
1292 		if (READ_ONCE(lp->rx_dim_enabled)) {
1293 			struct dim_sample sample = {
1294 				.time = ktime_get(),
1295 				/* Safe because we are the only writer */
1296 				.pkt_ctr = u64_stats_read(&lp->rx_packets),
1297 				.byte_ctr = u64_stats_read(&lp->rx_bytes),
1298 				.event_ctr = READ_ONCE(lp->rx_irqs),
1299 			};
1300 
1301 			net_dim(&lp->rx_dim, &sample);
1302 		}
1303 
1304 		/* Re-enable RX completion interrupts. This should
1305 		 * cause an immediate interrupt if any RX packets are
1306 		 * already pending.
1307 		 */
1308 		spin_lock_irq(&lp->rx_cr_lock);
1309 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1310 		spin_unlock_irq(&lp->rx_cr_lock);
1311 	}
1312 	return packets;
1313 }
1314 
1315 /**
1316  * axienet_tx_irq - Tx Done Isr.
1317  * @irq:	irq number
1318  * @_ndev:	net_device pointer
1319  *
1320  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1321  *
1322  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1323  * TX BD processing.
1324  */
1325 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1326 {
1327 	unsigned int status;
1328 	struct net_device *ndev = _ndev;
1329 	struct axienet_local *lp = netdev_priv(ndev);
1330 
1331 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1332 
1333 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1334 		return IRQ_NONE;
1335 
1336 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1337 
1338 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1339 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1340 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1341 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1342 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1343 		schedule_work(&lp->dma_err_task);
1344 	} else {
1345 		/* Disable further TX completion interrupts and schedule
1346 		 * NAPI to handle the completions.
1347 		 */
1348 		if (napi_schedule_prep(&lp->napi_tx)) {
1349 			u32 cr;
1350 
1351 			spin_lock(&lp->tx_cr_lock);
1352 			cr = lp->tx_dma_cr;
1353 			cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1354 			axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1355 			spin_unlock(&lp->tx_cr_lock);
1356 			__napi_schedule(&lp->napi_tx);
1357 		}
1358 	}
1359 
1360 	return IRQ_HANDLED;
1361 }
1362 
1363 /**
1364  * axienet_rx_irq - Rx Isr.
1365  * @irq:	irq number
1366  * @_ndev:	net_device pointer
1367  *
1368  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1369  *
1370  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1371  * processing.
1372  */
1373 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1374 {
1375 	unsigned int status;
1376 	struct net_device *ndev = _ndev;
1377 	struct axienet_local *lp = netdev_priv(ndev);
1378 
1379 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1380 
1381 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1382 		return IRQ_NONE;
1383 
1384 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1385 
1386 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1387 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1388 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1389 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1390 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1391 		schedule_work(&lp->dma_err_task);
1392 	} else {
1393 		/* Disable further RX completion interrupts and schedule
1394 		 * NAPI receive.
1395 		 */
1396 		WRITE_ONCE(lp->rx_irqs, READ_ONCE(lp->rx_irqs) + 1);
1397 		if (napi_schedule_prep(&lp->napi_rx)) {
1398 			u32 cr;
1399 
1400 			spin_lock(&lp->rx_cr_lock);
1401 			cr = lp->rx_dma_cr;
1402 			cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1403 			axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1404 			spin_unlock(&lp->rx_cr_lock);
1405 
1406 			__napi_schedule(&lp->napi_rx);
1407 		}
1408 	}
1409 
1410 	return IRQ_HANDLED;
1411 }
1412 
1413 /**
1414  * axienet_eth_irq - Ethernet core Isr.
1415  * @irq:	irq number
1416  * @_ndev:	net_device pointer
1417  *
1418  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1419  *
1420  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1421  */
1422 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1423 {
1424 	struct net_device *ndev = _ndev;
1425 	struct axienet_local *lp = netdev_priv(ndev);
1426 	unsigned int pending;
1427 
1428 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1429 	if (!pending)
1430 		return IRQ_NONE;
1431 
1432 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1433 		ndev->stats.rx_missed_errors++;
1434 
1435 	if (pending & XAE_INT_RXRJECT_MASK)
1436 		ndev->stats.rx_dropped++;
1437 
1438 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1439 	return IRQ_HANDLED;
1440 }
1441 
1442 static void axienet_dma_err_handler(struct work_struct *work);
1443 
1444 /**
1445  * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine.
1446  * allocate skbuff, map the scatterlist and obtain a descriptor
1447  * and then add the callback information and submit descriptor.
1448  *
1449  * @ndev:	net_device pointer
1450  *
1451  */
1452 static void axienet_rx_submit_desc(struct net_device *ndev)
1453 {
1454 	struct dma_async_tx_descriptor *dma_rx_desc = NULL;
1455 	struct axienet_local *lp = netdev_priv(ndev);
1456 	struct skbuf_dma_descriptor *skbuf_dma;
1457 	struct sk_buff *skb;
1458 	dma_addr_t addr;
1459 
1460 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head);
1461 	if (!skbuf_dma)
1462 		return;
1463 
1464 	skb = netdev_alloc_skb(ndev, lp->max_frm_size);
1465 	if (!skb)
1466 		return;
1467 
1468 	sg_init_table(skbuf_dma->sgl, 1);
1469 	addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE);
1470 	if (unlikely(dma_mapping_error(lp->dev, addr))) {
1471 		if (net_ratelimit())
1472 			netdev_err(ndev, "DMA mapping error\n");
1473 		goto rx_submit_err_free_skb;
1474 	}
1475 	sg_dma_address(skbuf_dma->sgl) = addr;
1476 	sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size;
1477 	dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl,
1478 					      1, DMA_DEV_TO_MEM,
1479 					      DMA_PREP_INTERRUPT);
1480 	if (!dma_rx_desc)
1481 		goto rx_submit_err_unmap_skb;
1482 
1483 	skbuf_dma->skb = skb;
1484 	skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl);
1485 	skbuf_dma->desc = dma_rx_desc;
1486 	dma_rx_desc->callback_param = lp;
1487 	dma_rx_desc->callback_result = axienet_dma_rx_cb;
1488 	lp->rx_ring_head++;
1489 	dmaengine_submit(dma_rx_desc);
1490 
1491 	return;
1492 
1493 rx_submit_err_unmap_skb:
1494 	dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE);
1495 rx_submit_err_free_skb:
1496 	dev_kfree_skb(skb);
1497 }
1498 
1499 /**
1500  * axienet_init_dmaengine - init the dmaengine code.
1501  * @ndev:       Pointer to net_device structure
1502  *
1503  * Return: 0, on success.
1504  *          non-zero error value on failure
1505  *
1506  * This is the dmaengine initialization code.
1507  */
1508 static int axienet_init_dmaengine(struct net_device *ndev)
1509 {
1510 	struct axienet_local *lp = netdev_priv(ndev);
1511 	struct skbuf_dma_descriptor *skbuf_dma;
1512 	int i, ret;
1513 
1514 	lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0");
1515 	if (IS_ERR(lp->tx_chan)) {
1516 		dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n");
1517 		return PTR_ERR(lp->tx_chan);
1518 	}
1519 
1520 	lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0");
1521 	if (IS_ERR(lp->rx_chan)) {
1522 		ret = PTR_ERR(lp->rx_chan);
1523 		dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n");
1524 		goto err_dma_release_tx;
1525 	}
1526 
1527 	lp->tx_ring_tail = 0;
1528 	lp->tx_ring_head = 0;
1529 	lp->rx_ring_tail = 0;
1530 	lp->rx_ring_head = 0;
1531 	lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring),
1532 				  GFP_KERNEL);
1533 	if (!lp->tx_skb_ring) {
1534 		ret = -ENOMEM;
1535 		goto err_dma_release_rx;
1536 	}
1537 	for (i = 0; i < TX_BD_NUM_MAX; i++) {
1538 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1539 		if (!skbuf_dma) {
1540 			ret = -ENOMEM;
1541 			goto err_free_tx_skb_ring;
1542 		}
1543 		lp->tx_skb_ring[i] = skbuf_dma;
1544 	}
1545 
1546 	lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring),
1547 				  GFP_KERNEL);
1548 	if (!lp->rx_skb_ring) {
1549 		ret = -ENOMEM;
1550 		goto err_free_tx_skb_ring;
1551 	}
1552 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) {
1553 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1554 		if (!skbuf_dma) {
1555 			ret = -ENOMEM;
1556 			goto err_free_rx_skb_ring;
1557 		}
1558 		lp->rx_skb_ring[i] = skbuf_dma;
1559 	}
1560 	/* TODO: Instead of BD_NUM_DEFAULT use runtime support */
1561 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1562 		axienet_rx_submit_desc(ndev);
1563 	dma_async_issue_pending(lp->rx_chan);
1564 
1565 	return 0;
1566 
1567 err_free_rx_skb_ring:
1568 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1569 		kfree(lp->rx_skb_ring[i]);
1570 	kfree(lp->rx_skb_ring);
1571 err_free_tx_skb_ring:
1572 	for (i = 0; i < TX_BD_NUM_MAX; i++)
1573 		kfree(lp->tx_skb_ring[i]);
1574 	kfree(lp->tx_skb_ring);
1575 err_dma_release_rx:
1576 	dma_release_channel(lp->rx_chan);
1577 err_dma_release_tx:
1578 	dma_release_channel(lp->tx_chan);
1579 	return ret;
1580 }
1581 
1582 /**
1583  * axienet_init_legacy_dma - init the dma legacy code.
1584  * @ndev:       Pointer to net_device structure
1585  *
1586  * Return: 0, on success.
1587  *          non-zero error value on failure
1588  *
1589  * This is the dma  initialization code. It also allocates interrupt
1590  * service routines, enables the interrupt lines and ISR handling.
1591  *
1592  */
1593 static int axienet_init_legacy_dma(struct net_device *ndev)
1594 {
1595 	int ret;
1596 	struct axienet_local *lp = netdev_priv(ndev);
1597 
1598 	/* Enable worker thread for Axi DMA error handling */
1599 	lp->stopping = false;
1600 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1601 
1602 	napi_enable(&lp->napi_rx);
1603 	napi_enable(&lp->napi_tx);
1604 
1605 	/* Enable interrupts for Axi DMA Tx */
1606 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1607 			  ndev->name, ndev);
1608 	if (ret)
1609 		goto err_tx_irq;
1610 	/* Enable interrupts for Axi DMA Rx */
1611 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1612 			  ndev->name, ndev);
1613 	if (ret)
1614 		goto err_rx_irq;
1615 	/* Enable interrupts for Axi Ethernet core (if defined) */
1616 	if (lp->eth_irq > 0) {
1617 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1618 				  ndev->name, ndev);
1619 		if (ret)
1620 			goto err_eth_irq;
1621 	}
1622 
1623 	return 0;
1624 
1625 err_eth_irq:
1626 	free_irq(lp->rx_irq, ndev);
1627 err_rx_irq:
1628 	free_irq(lp->tx_irq, ndev);
1629 err_tx_irq:
1630 	napi_disable(&lp->napi_tx);
1631 	napi_disable(&lp->napi_rx);
1632 	cancel_work_sync(&lp->dma_err_task);
1633 	dev_err(lp->dev, "request_irq() failed\n");
1634 	return ret;
1635 }
1636 
1637 /**
1638  * axienet_open - Driver open routine.
1639  * @ndev:	Pointer to net_device structure
1640  *
1641  * Return: 0, on success.
1642  *	    non-zero error value on failure
1643  *
1644  * This is the driver open routine. It calls phylink_start to start the
1645  * PHY device.
1646  * It also allocates interrupt service routines, enables the interrupt lines
1647  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1648  * descriptors are initialized.
1649  */
1650 static int axienet_open(struct net_device *ndev)
1651 {
1652 	int ret;
1653 	struct axienet_local *lp = netdev_priv(ndev);
1654 
1655 	/* When we do an Axi Ethernet reset, it resets the complete core
1656 	 * including the MDIO. MDIO must be disabled before resetting.
1657 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1658 	 */
1659 	axienet_lock_mii(lp);
1660 	ret = axienet_device_reset(ndev);
1661 	axienet_unlock_mii(lp);
1662 
1663 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1664 	if (ret) {
1665 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1666 		return ret;
1667 	}
1668 
1669 	phylink_start(lp->phylink);
1670 
1671 	/* Start the statistics refresh work */
1672 	schedule_delayed_work(&lp->stats_work, 0);
1673 
1674 	if (lp->use_dmaengine) {
1675 		/* Enable interrupts for Axi Ethernet core (if defined) */
1676 		if (lp->eth_irq > 0) {
1677 			ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1678 					  ndev->name, ndev);
1679 			if (ret)
1680 				goto err_phy;
1681 		}
1682 
1683 		ret = axienet_init_dmaengine(ndev);
1684 		if (ret < 0)
1685 			goto err_free_eth_irq;
1686 	} else {
1687 		ret = axienet_init_legacy_dma(ndev);
1688 		if (ret)
1689 			goto err_phy;
1690 	}
1691 
1692 	return 0;
1693 
1694 err_free_eth_irq:
1695 	if (lp->eth_irq > 0)
1696 		free_irq(lp->eth_irq, ndev);
1697 err_phy:
1698 	cancel_work_sync(&lp->rx_dim.work);
1699 	cancel_delayed_work_sync(&lp->stats_work);
1700 	phylink_stop(lp->phylink);
1701 	phylink_disconnect_phy(lp->phylink);
1702 	return ret;
1703 }
1704 
1705 /**
1706  * axienet_stop - Driver stop routine.
1707  * @ndev:	Pointer to net_device structure
1708  *
1709  * Return: 0, on success.
1710  *
1711  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1712  * device. It also removes the interrupt handlers and disables the interrupts.
1713  * The Axi DMA Tx/Rx BDs are released.
1714  */
1715 static int axienet_stop(struct net_device *ndev)
1716 {
1717 	struct axienet_local *lp = netdev_priv(ndev);
1718 	int i;
1719 
1720 	if (!lp->use_dmaengine) {
1721 		WRITE_ONCE(lp->stopping, true);
1722 		flush_work(&lp->dma_err_task);
1723 
1724 		napi_disable(&lp->napi_tx);
1725 		napi_disable(&lp->napi_rx);
1726 	}
1727 
1728 	cancel_work_sync(&lp->rx_dim.work);
1729 	cancel_delayed_work_sync(&lp->stats_work);
1730 
1731 	phylink_stop(lp->phylink);
1732 	phylink_disconnect_phy(lp->phylink);
1733 
1734 	axienet_setoptions(ndev, lp->options &
1735 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1736 
1737 	if (!lp->use_dmaengine) {
1738 		axienet_dma_stop(lp);
1739 		cancel_work_sync(&lp->dma_err_task);
1740 		free_irq(lp->tx_irq, ndev);
1741 		free_irq(lp->rx_irq, ndev);
1742 		axienet_dma_bd_release(ndev);
1743 	} else {
1744 		dmaengine_terminate_sync(lp->tx_chan);
1745 		dmaengine_synchronize(lp->tx_chan);
1746 		dmaengine_terminate_sync(lp->rx_chan);
1747 		dmaengine_synchronize(lp->rx_chan);
1748 
1749 		for (i = 0; i < TX_BD_NUM_MAX; i++)
1750 			kfree(lp->tx_skb_ring[i]);
1751 		kfree(lp->tx_skb_ring);
1752 		for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1753 			kfree(lp->rx_skb_ring[i]);
1754 		kfree(lp->rx_skb_ring);
1755 
1756 		dma_release_channel(lp->rx_chan);
1757 		dma_release_channel(lp->tx_chan);
1758 	}
1759 
1760 	netdev_reset_queue(ndev);
1761 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1762 
1763 	if (lp->eth_irq > 0)
1764 		free_irq(lp->eth_irq, ndev);
1765 	return 0;
1766 }
1767 
1768 /**
1769  * axienet_change_mtu - Driver change mtu routine.
1770  * @ndev:	Pointer to net_device structure
1771  * @new_mtu:	New mtu value to be applied
1772  *
1773  * Return: Always returns 0 (success).
1774  *
1775  * This is the change mtu driver routine. It checks if the Axi Ethernet
1776  * hardware supports jumbo frames before changing the mtu. This can be
1777  * called only when the device is not up.
1778  */
1779 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1780 {
1781 	struct axienet_local *lp = netdev_priv(ndev);
1782 
1783 	if (netif_running(ndev))
1784 		return -EBUSY;
1785 
1786 	if ((new_mtu + VLAN_ETH_HLEN +
1787 		XAE_TRL_SIZE) > lp->rxmem)
1788 		return -EINVAL;
1789 
1790 	WRITE_ONCE(ndev->mtu, new_mtu);
1791 
1792 	return 0;
1793 }
1794 
1795 #ifdef CONFIG_NET_POLL_CONTROLLER
1796 /**
1797  * axienet_poll_controller - Axi Ethernet poll mechanism.
1798  * @ndev:	Pointer to net_device structure
1799  *
1800  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1801  * to polling the ISRs and are enabled back after the polling is done.
1802  */
1803 static void axienet_poll_controller(struct net_device *ndev)
1804 {
1805 	struct axienet_local *lp = netdev_priv(ndev);
1806 
1807 	disable_irq(lp->tx_irq);
1808 	disable_irq(lp->rx_irq);
1809 	axienet_rx_irq(lp->tx_irq, ndev);
1810 	axienet_tx_irq(lp->rx_irq, ndev);
1811 	enable_irq(lp->tx_irq);
1812 	enable_irq(lp->rx_irq);
1813 }
1814 #endif
1815 
1816 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1817 {
1818 	struct axienet_local *lp = netdev_priv(dev);
1819 
1820 	if (!netif_running(dev))
1821 		return -EINVAL;
1822 
1823 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1824 }
1825 
1826 static void
1827 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1828 {
1829 	struct axienet_local *lp = netdev_priv(dev);
1830 	unsigned int start;
1831 
1832 	netdev_stats_to_stats64(stats, &dev->stats);
1833 
1834 	do {
1835 		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1836 		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1837 		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1838 	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1839 
1840 	do {
1841 		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1842 		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1843 		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1844 	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1845 
1846 	if (!(lp->features & XAE_FEATURE_STATS))
1847 		return;
1848 
1849 	do {
1850 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
1851 		stats->rx_length_errors =
1852 			axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
1853 		stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS);
1854 		stats->rx_frame_errors =
1855 			axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
1856 		stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) +
1857 				   axienet_stat(lp, STAT_FRAGMENT_FRAMES) +
1858 				   stats->rx_length_errors +
1859 				   stats->rx_crc_errors +
1860 				   stats->rx_frame_errors;
1861 		stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
1862 
1863 		stats->tx_aborted_errors =
1864 			axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
1865 		stats->tx_fifo_errors =
1866 			axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS);
1867 		stats->tx_window_errors =
1868 			axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
1869 		stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) +
1870 				   stats->tx_aborted_errors +
1871 				   stats->tx_fifo_errors +
1872 				   stats->tx_window_errors;
1873 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
1874 }
1875 
1876 static const struct net_device_ops axienet_netdev_ops = {
1877 	.ndo_open = axienet_open,
1878 	.ndo_stop = axienet_stop,
1879 	.ndo_start_xmit = axienet_start_xmit,
1880 	.ndo_get_stats64 = axienet_get_stats64,
1881 	.ndo_change_mtu	= axienet_change_mtu,
1882 	.ndo_set_mac_address = netdev_set_mac_address,
1883 	.ndo_validate_addr = eth_validate_addr,
1884 	.ndo_eth_ioctl = axienet_ioctl,
1885 	.ndo_set_rx_mode = axienet_set_multicast_list,
1886 #ifdef CONFIG_NET_POLL_CONTROLLER
1887 	.ndo_poll_controller = axienet_poll_controller,
1888 #endif
1889 };
1890 
1891 static const struct net_device_ops axienet_netdev_dmaengine_ops = {
1892 	.ndo_open = axienet_open,
1893 	.ndo_stop = axienet_stop,
1894 	.ndo_start_xmit = axienet_start_xmit_dmaengine,
1895 	.ndo_get_stats64 = axienet_get_stats64,
1896 	.ndo_change_mtu	= axienet_change_mtu,
1897 	.ndo_set_mac_address = netdev_set_mac_address,
1898 	.ndo_validate_addr = eth_validate_addr,
1899 	.ndo_eth_ioctl = axienet_ioctl,
1900 	.ndo_set_rx_mode = axienet_set_multicast_list,
1901 };
1902 
1903 /**
1904  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1905  * @ndev:	Pointer to net_device structure
1906  * @ed:		Pointer to ethtool_drvinfo structure
1907  *
1908  * This implements ethtool command for getting the driver information.
1909  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1910  */
1911 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1912 					 struct ethtool_drvinfo *ed)
1913 {
1914 	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1915 	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1916 }
1917 
1918 /**
1919  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1920  *				   AxiEthernet core.
1921  * @ndev:	Pointer to net_device structure
1922  *
1923  * This implements ethtool command for getting the total register length
1924  * information.
1925  *
1926  * Return: the total regs length
1927  */
1928 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1929 {
1930 	return sizeof(u32) * AXIENET_REGS_N;
1931 }
1932 
1933 /**
1934  * axienet_ethtools_get_regs - Dump the contents of all registers present
1935  *			       in AxiEthernet core.
1936  * @ndev:	Pointer to net_device structure
1937  * @regs:	Pointer to ethtool_regs structure
1938  * @ret:	Void pointer used to return the contents of the registers.
1939  *
1940  * This implements ethtool command for getting the Axi Ethernet register dump.
1941  * Issue "ethtool -d ethX" to execute this function.
1942  */
1943 static void axienet_ethtools_get_regs(struct net_device *ndev,
1944 				      struct ethtool_regs *regs, void *ret)
1945 {
1946 	u32 *data = (u32 *)ret;
1947 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1948 	struct axienet_local *lp = netdev_priv(ndev);
1949 
1950 	regs->version = 0;
1951 	regs->len = len;
1952 
1953 	memset(data, 0, len);
1954 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1955 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1956 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1957 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1958 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1959 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1960 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1961 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1962 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1963 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1964 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1965 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1966 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1967 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1968 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1969 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1970 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1971 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1972 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1973 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1974 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1975 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1976 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1977 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1978 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1979 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1980 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1981 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1982 	if (!lp->use_dmaengine) {
1983 		data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1984 		data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1985 		data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1986 		data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1987 		data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1988 		data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1989 		data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1990 		data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1991 	}
1992 }
1993 
1994 static void
1995 axienet_ethtools_get_ringparam(struct net_device *ndev,
1996 			       struct ethtool_ringparam *ering,
1997 			       struct kernel_ethtool_ringparam *kernel_ering,
1998 			       struct netlink_ext_ack *extack)
1999 {
2000 	struct axienet_local *lp = netdev_priv(ndev);
2001 
2002 	ering->rx_max_pending = RX_BD_NUM_MAX;
2003 	ering->rx_mini_max_pending = 0;
2004 	ering->rx_jumbo_max_pending = 0;
2005 	ering->tx_max_pending = TX_BD_NUM_MAX;
2006 	ering->rx_pending = lp->rx_bd_num;
2007 	ering->rx_mini_pending = 0;
2008 	ering->rx_jumbo_pending = 0;
2009 	ering->tx_pending = lp->tx_bd_num;
2010 }
2011 
2012 static int
2013 axienet_ethtools_set_ringparam(struct net_device *ndev,
2014 			       struct ethtool_ringparam *ering,
2015 			       struct kernel_ethtool_ringparam *kernel_ering,
2016 			       struct netlink_ext_ack *extack)
2017 {
2018 	struct axienet_local *lp = netdev_priv(ndev);
2019 
2020 	if (ering->rx_pending > RX_BD_NUM_MAX ||
2021 	    ering->rx_mini_pending ||
2022 	    ering->rx_jumbo_pending ||
2023 	    ering->tx_pending < TX_BD_NUM_MIN ||
2024 	    ering->tx_pending > TX_BD_NUM_MAX)
2025 		return -EINVAL;
2026 
2027 	if (netif_running(ndev))
2028 		return -EBUSY;
2029 
2030 	lp->rx_bd_num = ering->rx_pending;
2031 	lp->tx_bd_num = ering->tx_pending;
2032 	return 0;
2033 }
2034 
2035 /**
2036  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
2037  *				     Tx and Rx paths.
2038  * @ndev:	Pointer to net_device structure
2039  * @epauseparm:	Pointer to ethtool_pauseparam structure.
2040  *
2041  * This implements ethtool command for getting axi ethernet pause frame
2042  * setting. Issue "ethtool -a ethX" to execute this function.
2043  */
2044 static void
2045 axienet_ethtools_get_pauseparam(struct net_device *ndev,
2046 				struct ethtool_pauseparam *epauseparm)
2047 {
2048 	struct axienet_local *lp = netdev_priv(ndev);
2049 
2050 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
2051 }
2052 
2053 /**
2054  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
2055  *				     settings.
2056  * @ndev:	Pointer to net_device structure
2057  * @epauseparm:Pointer to ethtool_pauseparam structure
2058  *
2059  * This implements ethtool command for enabling flow control on Rx and Tx
2060  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
2061  * function.
2062  *
2063  * Return: 0 on success, -EFAULT if device is running
2064  */
2065 static int
2066 axienet_ethtools_set_pauseparam(struct net_device *ndev,
2067 				struct ethtool_pauseparam *epauseparm)
2068 {
2069 	struct axienet_local *lp = netdev_priv(ndev);
2070 
2071 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
2072 }
2073 
2074 /**
2075  * axienet_update_coalesce_rx() - Set RX CR
2076  * @lp: Device private data
2077  * @cr: Value to write to the RX CR
2078  * @mask: Bits to set from @cr
2079  */
2080 static void axienet_update_coalesce_rx(struct axienet_local *lp, u32 cr,
2081 				       u32 mask)
2082 {
2083 	spin_lock_irq(&lp->rx_cr_lock);
2084 	lp->rx_dma_cr &= ~mask;
2085 	lp->rx_dma_cr |= cr;
2086 	/* If DMA isn't started, then the settings will be applied the next
2087 	 * time dma_start() is called.
2088 	 */
2089 	if (lp->rx_dma_started) {
2090 		u32 reg = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
2091 
2092 		/* Don't enable IRQs if they are disabled by NAPI */
2093 		if (reg & XAXIDMA_IRQ_ALL_MASK)
2094 			cr = lp->rx_dma_cr;
2095 		else
2096 			cr = lp->rx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK;
2097 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
2098 	}
2099 	spin_unlock_irq(&lp->rx_cr_lock);
2100 }
2101 
2102 /**
2103  * axienet_dim_coalesce_count_rx() - RX coalesce count for DIM
2104  * @lp: Device private data
2105  */
2106 static u32 axienet_dim_coalesce_count_rx(struct axienet_local *lp)
2107 {
2108 	return min(1 << (lp->rx_dim.profile_ix << 1), 255);
2109 }
2110 
2111 /**
2112  * axienet_rx_dim_work() - Adjust RX DIM settings
2113  * @work: The work struct
2114  */
2115 static void axienet_rx_dim_work(struct work_struct *work)
2116 {
2117 	struct axienet_local *lp =
2118 		container_of(work, struct axienet_local, rx_dim.work);
2119 	u32 cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp), 0);
2120 	u32 mask = XAXIDMA_COALESCE_MASK | XAXIDMA_IRQ_IOC_MASK |
2121 		   XAXIDMA_IRQ_ERROR_MASK;
2122 
2123 	axienet_update_coalesce_rx(lp, cr, mask);
2124 	lp->rx_dim.state = DIM_START_MEASURE;
2125 }
2126 
2127 /**
2128  * axienet_update_coalesce_tx() - Set TX CR
2129  * @lp: Device private data
2130  * @cr: Value to write to the TX CR
2131  * @mask: Bits to set from @cr
2132  */
2133 static void axienet_update_coalesce_tx(struct axienet_local *lp, u32 cr,
2134 				       u32 mask)
2135 {
2136 	spin_lock_irq(&lp->tx_cr_lock);
2137 	lp->tx_dma_cr &= ~mask;
2138 	lp->tx_dma_cr |= cr;
2139 	/* If DMA isn't started, then the settings will be applied the next
2140 	 * time dma_start() is called.
2141 	 */
2142 	if (lp->tx_dma_started) {
2143 		u32 reg = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
2144 
2145 		/* Don't enable IRQs if they are disabled by NAPI */
2146 		if (reg & XAXIDMA_IRQ_ALL_MASK)
2147 			cr = lp->tx_dma_cr;
2148 		else
2149 			cr = lp->tx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK;
2150 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
2151 	}
2152 	spin_unlock_irq(&lp->tx_cr_lock);
2153 }
2154 
2155 /**
2156  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
2157  * @ndev:	Pointer to net_device structure
2158  * @ecoalesce:	Pointer to ethtool_coalesce structure
2159  * @kernel_coal: ethtool CQE mode setting structure
2160  * @extack:	extack for reporting error messages
2161  *
2162  * This implements ethtool command for getting the DMA interrupt coalescing
2163  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
2164  * execute this function.
2165  *
2166  * Return: 0 always
2167  */
2168 static int
2169 axienet_ethtools_get_coalesce(struct net_device *ndev,
2170 			      struct ethtool_coalesce *ecoalesce,
2171 			      struct kernel_ethtool_coalesce *kernel_coal,
2172 			      struct netlink_ext_ack *extack)
2173 {
2174 	struct axienet_local *lp = netdev_priv(ndev);
2175 	u32 cr;
2176 
2177 	ecoalesce->use_adaptive_rx_coalesce = lp->rx_dim_enabled;
2178 
2179 	spin_lock_irq(&lp->rx_cr_lock);
2180 	cr = lp->rx_dma_cr;
2181 	spin_unlock_irq(&lp->rx_cr_lock);
2182 	axienet_coalesce_params(lp, cr,
2183 				&ecoalesce->rx_max_coalesced_frames,
2184 				&ecoalesce->rx_coalesce_usecs);
2185 
2186 	spin_lock_irq(&lp->tx_cr_lock);
2187 	cr = lp->tx_dma_cr;
2188 	spin_unlock_irq(&lp->tx_cr_lock);
2189 	axienet_coalesce_params(lp, cr,
2190 				&ecoalesce->tx_max_coalesced_frames,
2191 				&ecoalesce->tx_coalesce_usecs);
2192 	return 0;
2193 }
2194 
2195 /**
2196  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
2197  * @ndev:	Pointer to net_device structure
2198  * @ecoalesce:	Pointer to ethtool_coalesce structure
2199  * @kernel_coal: ethtool CQE mode setting structure
2200  * @extack:	extack for reporting error messages
2201  *
2202  * This implements ethtool command for setting the DMA interrupt coalescing
2203  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
2204  * prompt to execute this function.
2205  *
2206  * Return: 0, on success, Non-zero error value on failure.
2207  */
2208 static int
2209 axienet_ethtools_set_coalesce(struct net_device *ndev,
2210 			      struct ethtool_coalesce *ecoalesce,
2211 			      struct kernel_ethtool_coalesce *kernel_coal,
2212 			      struct netlink_ext_ack *extack)
2213 {
2214 	struct axienet_local *lp = netdev_priv(ndev);
2215 	bool new_dim = ecoalesce->use_adaptive_rx_coalesce;
2216 	bool old_dim = lp->rx_dim_enabled;
2217 	u32 cr, mask = ~XAXIDMA_CR_RUNSTOP_MASK;
2218 
2219 	if (ecoalesce->rx_max_coalesced_frames > 255 ||
2220 	    ecoalesce->tx_max_coalesced_frames > 255) {
2221 		NL_SET_ERR_MSG(extack, "frames must be less than 256");
2222 		return -EINVAL;
2223 	}
2224 
2225 	if (!ecoalesce->rx_max_coalesced_frames ||
2226 	    !ecoalesce->tx_max_coalesced_frames) {
2227 		NL_SET_ERR_MSG(extack, "frames must be non-zero");
2228 		return -EINVAL;
2229 	}
2230 
2231 	if (((ecoalesce->rx_max_coalesced_frames > 1 || new_dim) &&
2232 	     !ecoalesce->rx_coalesce_usecs) ||
2233 	    (ecoalesce->tx_max_coalesced_frames > 1 &&
2234 	     !ecoalesce->tx_coalesce_usecs)) {
2235 		NL_SET_ERR_MSG(extack,
2236 			       "usecs must be non-zero when frames is greater than one");
2237 		return -EINVAL;
2238 	}
2239 
2240 	if (new_dim && !old_dim) {
2241 		cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp),
2242 				     ecoalesce->rx_coalesce_usecs);
2243 	} else if (!new_dim) {
2244 		if (old_dim) {
2245 			WRITE_ONCE(lp->rx_dim_enabled, false);
2246 			napi_synchronize(&lp->napi_rx);
2247 			flush_work(&lp->rx_dim.work);
2248 		}
2249 
2250 		cr = axienet_calc_cr(lp, ecoalesce->rx_max_coalesced_frames,
2251 				     ecoalesce->rx_coalesce_usecs);
2252 	} else {
2253 		/* Dummy value for count just to calculate timer */
2254 		cr = axienet_calc_cr(lp, 2, ecoalesce->rx_coalesce_usecs);
2255 		mask = XAXIDMA_DELAY_MASK | XAXIDMA_IRQ_DELAY_MASK;
2256 	}
2257 
2258 	axienet_update_coalesce_rx(lp, cr, mask);
2259 	if (new_dim && !old_dim)
2260 		WRITE_ONCE(lp->rx_dim_enabled, true);
2261 
2262 	cr = axienet_calc_cr(lp, ecoalesce->tx_max_coalesced_frames,
2263 			     ecoalesce->tx_coalesce_usecs);
2264 	axienet_update_coalesce_tx(lp, cr, ~XAXIDMA_CR_RUNSTOP_MASK);
2265 	return 0;
2266 }
2267 
2268 static int
2269 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
2270 				    struct ethtool_link_ksettings *cmd)
2271 {
2272 	struct axienet_local *lp = netdev_priv(ndev);
2273 
2274 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
2275 }
2276 
2277 static int
2278 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
2279 				    const struct ethtool_link_ksettings *cmd)
2280 {
2281 	struct axienet_local *lp = netdev_priv(ndev);
2282 
2283 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
2284 }
2285 
2286 static int axienet_ethtools_nway_reset(struct net_device *dev)
2287 {
2288 	struct axienet_local *lp = netdev_priv(dev);
2289 
2290 	return phylink_ethtool_nway_reset(lp->phylink);
2291 }
2292 
2293 static void axienet_ethtools_get_ethtool_stats(struct net_device *dev,
2294 					       struct ethtool_stats *stats,
2295 					       u64 *data)
2296 {
2297 	struct axienet_local *lp = netdev_priv(dev);
2298 	unsigned int start;
2299 
2300 	do {
2301 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2302 		data[0] = axienet_stat(lp, STAT_RX_BYTES);
2303 		data[1] = axienet_stat(lp, STAT_TX_BYTES);
2304 		data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES);
2305 		data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES);
2306 		data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES);
2307 		data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES);
2308 		data[8] = axienet_stat(lp, STAT_USER_DEFINED0);
2309 		data[9] = axienet_stat(lp, STAT_USER_DEFINED1);
2310 		data[10] = axienet_stat(lp, STAT_USER_DEFINED2);
2311 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2312 }
2313 
2314 static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = {
2315 	"Received bytes",
2316 	"Transmitted bytes",
2317 	"RX Good VLAN Tagged Frames",
2318 	"TX Good VLAN Tagged Frames",
2319 	"TX Good PFC Frames",
2320 	"RX Good PFC Frames",
2321 	"User Defined Counter 0",
2322 	"User Defined Counter 1",
2323 	"User Defined Counter 2",
2324 };
2325 
2326 static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2327 {
2328 	switch (stringset) {
2329 	case ETH_SS_STATS:
2330 		memcpy(data, axienet_ethtool_stats_strings,
2331 		       sizeof(axienet_ethtool_stats_strings));
2332 		break;
2333 	}
2334 }
2335 
2336 static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset)
2337 {
2338 	struct axienet_local *lp = netdev_priv(dev);
2339 
2340 	switch (sset) {
2341 	case ETH_SS_STATS:
2342 		if (lp->features & XAE_FEATURE_STATS)
2343 			return ARRAY_SIZE(axienet_ethtool_stats_strings);
2344 		fallthrough;
2345 	default:
2346 		return -EOPNOTSUPP;
2347 	}
2348 }
2349 
2350 static void
2351 axienet_ethtools_get_pause_stats(struct net_device *dev,
2352 				 struct ethtool_pause_stats *pause_stats)
2353 {
2354 	struct axienet_local *lp = netdev_priv(dev);
2355 	unsigned int start;
2356 
2357 	if (!(lp->features & XAE_FEATURE_STATS))
2358 		return;
2359 
2360 	do {
2361 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2362 		pause_stats->tx_pause_frames =
2363 			axienet_stat(lp, STAT_TX_PAUSE_FRAMES);
2364 		pause_stats->rx_pause_frames =
2365 			axienet_stat(lp, STAT_RX_PAUSE_FRAMES);
2366 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2367 }
2368 
2369 static void
2370 axienet_ethtool_get_eth_mac_stats(struct net_device *dev,
2371 				  struct ethtool_eth_mac_stats *mac_stats)
2372 {
2373 	struct axienet_local *lp = netdev_priv(dev);
2374 	unsigned int start;
2375 
2376 	if (!(lp->features & XAE_FEATURE_STATS))
2377 		return;
2378 
2379 	do {
2380 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2381 		mac_stats->FramesTransmittedOK =
2382 			axienet_stat(lp, STAT_TX_GOOD_FRAMES);
2383 		mac_stats->SingleCollisionFrames =
2384 			axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES);
2385 		mac_stats->MultipleCollisionFrames =
2386 			axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES);
2387 		mac_stats->FramesReceivedOK =
2388 			axienet_stat(lp, STAT_RX_GOOD_FRAMES);
2389 		mac_stats->FrameCheckSequenceErrors =
2390 			axienet_stat(lp, STAT_RX_FCS_ERRORS);
2391 		mac_stats->AlignmentErrors =
2392 			axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
2393 		mac_stats->FramesWithDeferredXmissions =
2394 			axienet_stat(lp, STAT_TX_DEFERRED_FRAMES);
2395 		mac_stats->LateCollisions =
2396 			axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
2397 		mac_stats->FramesAbortedDueToXSColls =
2398 			axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
2399 		mac_stats->MulticastFramesXmittedOK =
2400 			axienet_stat(lp, STAT_TX_MULTICAST_FRAMES);
2401 		mac_stats->BroadcastFramesXmittedOK =
2402 			axienet_stat(lp, STAT_TX_BROADCAST_FRAMES);
2403 		mac_stats->FramesWithExcessiveDeferral =
2404 			axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL);
2405 		mac_stats->MulticastFramesReceivedOK =
2406 			axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
2407 		mac_stats->BroadcastFramesReceivedOK =
2408 			axienet_stat(lp, STAT_RX_BROADCAST_FRAMES);
2409 		mac_stats->InRangeLengthErrors =
2410 			axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
2411 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2412 }
2413 
2414 static void
2415 axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev,
2416 				   struct ethtool_eth_ctrl_stats *ctrl_stats)
2417 {
2418 	struct axienet_local *lp = netdev_priv(dev);
2419 	unsigned int start;
2420 
2421 	if (!(lp->features & XAE_FEATURE_STATS))
2422 		return;
2423 
2424 	do {
2425 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2426 		ctrl_stats->MACControlFramesTransmitted =
2427 			axienet_stat(lp, STAT_TX_CONTROL_FRAMES);
2428 		ctrl_stats->MACControlFramesReceived =
2429 			axienet_stat(lp, STAT_RX_CONTROL_FRAMES);
2430 		ctrl_stats->UnsupportedOpcodesReceived =
2431 			axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS);
2432 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2433 }
2434 
2435 static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = {
2436 	{   64,    64 },
2437 	{   65,   127 },
2438 	{  128,   255 },
2439 	{  256,   511 },
2440 	{  512,  1023 },
2441 	{ 1024,  1518 },
2442 	{ 1519, 16384 },
2443 	{ },
2444 };
2445 
2446 static void
2447 axienet_ethtool_get_rmon_stats(struct net_device *dev,
2448 			       struct ethtool_rmon_stats *rmon_stats,
2449 			       const struct ethtool_rmon_hist_range **ranges)
2450 {
2451 	struct axienet_local *lp = netdev_priv(dev);
2452 	unsigned int start;
2453 
2454 	if (!(lp->features & XAE_FEATURE_STATS))
2455 		return;
2456 
2457 	do {
2458 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2459 		rmon_stats->undersize_pkts =
2460 			axienet_stat(lp, STAT_UNDERSIZE_FRAMES);
2461 		rmon_stats->oversize_pkts =
2462 			axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES);
2463 		rmon_stats->fragments =
2464 			axienet_stat(lp, STAT_FRAGMENT_FRAMES);
2465 
2466 		rmon_stats->hist[0] =
2467 			axienet_stat(lp, STAT_RX_64_BYTE_FRAMES);
2468 		rmon_stats->hist[1] =
2469 			axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES);
2470 		rmon_stats->hist[2] =
2471 			axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES);
2472 		rmon_stats->hist[3] =
2473 			axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES);
2474 		rmon_stats->hist[4] =
2475 			axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES);
2476 		rmon_stats->hist[5] =
2477 			axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES);
2478 		rmon_stats->hist[6] =
2479 			rmon_stats->oversize_pkts;
2480 
2481 		rmon_stats->hist_tx[0] =
2482 			axienet_stat(lp, STAT_TX_64_BYTE_FRAMES);
2483 		rmon_stats->hist_tx[1] =
2484 			axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES);
2485 		rmon_stats->hist_tx[2] =
2486 			axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES);
2487 		rmon_stats->hist_tx[3] =
2488 			axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES);
2489 		rmon_stats->hist_tx[4] =
2490 			axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES);
2491 		rmon_stats->hist_tx[5] =
2492 			axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES);
2493 		rmon_stats->hist_tx[6] =
2494 			axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES);
2495 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2496 
2497 	*ranges = axienet_rmon_ranges;
2498 }
2499 
2500 static const struct ethtool_ops axienet_ethtool_ops = {
2501 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
2502 				     ETHTOOL_COALESCE_USECS |
2503 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
2504 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
2505 	.get_regs_len   = axienet_ethtools_get_regs_len,
2506 	.get_regs       = axienet_ethtools_get_regs,
2507 	.get_link       = ethtool_op_get_link,
2508 	.get_ringparam	= axienet_ethtools_get_ringparam,
2509 	.set_ringparam	= axienet_ethtools_set_ringparam,
2510 	.get_pauseparam = axienet_ethtools_get_pauseparam,
2511 	.set_pauseparam = axienet_ethtools_set_pauseparam,
2512 	.get_coalesce   = axienet_ethtools_get_coalesce,
2513 	.set_coalesce   = axienet_ethtools_set_coalesce,
2514 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
2515 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
2516 	.nway_reset	= axienet_ethtools_nway_reset,
2517 	.get_ethtool_stats = axienet_ethtools_get_ethtool_stats,
2518 	.get_strings    = axienet_ethtools_get_strings,
2519 	.get_sset_count = axienet_ethtools_get_sset_count,
2520 	.get_pause_stats = axienet_ethtools_get_pause_stats,
2521 	.get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats,
2522 	.get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats,
2523 	.get_rmon_stats = axienet_ethtool_get_rmon_stats,
2524 };
2525 
2526 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
2527 {
2528 	return container_of(pcs, struct axienet_local, pcs);
2529 }
2530 
2531 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
2532 				  unsigned int neg_mode,
2533 				  struct phylink_link_state *state)
2534 {
2535 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2536 
2537 	phylink_mii_c22_pcs_get_state(pcs_phy, neg_mode, state);
2538 }
2539 
2540 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
2541 {
2542 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2543 
2544 	phylink_mii_c22_pcs_an_restart(pcs_phy);
2545 }
2546 
2547 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2548 			      phy_interface_t interface,
2549 			      const unsigned long *advertising,
2550 			      bool permit_pause_to_mac)
2551 {
2552 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2553 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
2554 	struct axienet_local *lp = netdev_priv(ndev);
2555 	int ret;
2556 
2557 	if (lp->switch_x_sgmii) {
2558 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
2559 				    interface == PHY_INTERFACE_MODE_SGMII ?
2560 					XLNX_MII_STD_SELECT_SGMII : 0);
2561 		if (ret < 0) {
2562 			netdev_warn(ndev,
2563 				    "Failed to switch PHY interface: %d\n",
2564 				    ret);
2565 			return ret;
2566 		}
2567 	}
2568 
2569 	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
2570 					 neg_mode);
2571 	if (ret < 0)
2572 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
2573 
2574 	return ret;
2575 }
2576 
2577 static const struct phylink_pcs_ops axienet_pcs_ops = {
2578 	.pcs_get_state = axienet_pcs_get_state,
2579 	.pcs_config = axienet_pcs_config,
2580 	.pcs_an_restart = axienet_pcs_an_restart,
2581 };
2582 
2583 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
2584 						  phy_interface_t interface)
2585 {
2586 	struct net_device *ndev = to_net_dev(config->dev);
2587 	struct axienet_local *lp = netdev_priv(ndev);
2588 
2589 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
2590 	    interface ==  PHY_INTERFACE_MODE_SGMII)
2591 		return &lp->pcs;
2592 
2593 	return NULL;
2594 }
2595 
2596 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
2597 			       const struct phylink_link_state *state)
2598 {
2599 	/* nothing meaningful to do */
2600 }
2601 
2602 static void axienet_mac_link_down(struct phylink_config *config,
2603 				  unsigned int mode,
2604 				  phy_interface_t interface)
2605 {
2606 	/* nothing meaningful to do */
2607 }
2608 
2609 static void axienet_mac_link_up(struct phylink_config *config,
2610 				struct phy_device *phy,
2611 				unsigned int mode, phy_interface_t interface,
2612 				int speed, int duplex,
2613 				bool tx_pause, bool rx_pause)
2614 {
2615 	struct net_device *ndev = to_net_dev(config->dev);
2616 	struct axienet_local *lp = netdev_priv(ndev);
2617 	u32 emmc_reg, fcc_reg;
2618 
2619 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
2620 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
2621 
2622 	switch (speed) {
2623 	case SPEED_1000:
2624 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
2625 		break;
2626 	case SPEED_100:
2627 		emmc_reg |= XAE_EMMC_LINKSPD_100;
2628 		break;
2629 	case SPEED_10:
2630 		emmc_reg |= XAE_EMMC_LINKSPD_10;
2631 		break;
2632 	default:
2633 		dev_err(&ndev->dev,
2634 			"Speed other than 10, 100 or 1Gbps is not supported\n");
2635 		break;
2636 	}
2637 
2638 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
2639 
2640 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
2641 	if (tx_pause)
2642 		fcc_reg |= XAE_FCC_FCTX_MASK;
2643 	else
2644 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
2645 	if (rx_pause)
2646 		fcc_reg |= XAE_FCC_FCRX_MASK;
2647 	else
2648 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
2649 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
2650 }
2651 
2652 static const struct phylink_mac_ops axienet_phylink_ops = {
2653 	.mac_select_pcs = axienet_mac_select_pcs,
2654 	.mac_config = axienet_mac_config,
2655 	.mac_link_down = axienet_mac_link_down,
2656 	.mac_link_up = axienet_mac_link_up,
2657 };
2658 
2659 /**
2660  * axienet_dma_err_handler - Work queue task for Axi DMA Error
2661  * @work:	pointer to work_struct
2662  *
2663  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
2664  * Tx/Rx BDs.
2665  */
2666 static void axienet_dma_err_handler(struct work_struct *work)
2667 {
2668 	u32 i;
2669 	u32 axienet_status;
2670 	struct axidma_bd *cur_p;
2671 	struct axienet_local *lp = container_of(work, struct axienet_local,
2672 						dma_err_task);
2673 	struct net_device *ndev = lp->ndev;
2674 
2675 	/* Don't bother if we are going to stop anyway */
2676 	if (READ_ONCE(lp->stopping))
2677 		return;
2678 
2679 	napi_disable(&lp->napi_tx);
2680 	napi_disable(&lp->napi_rx);
2681 
2682 	axienet_setoptions(ndev, lp->options &
2683 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2684 
2685 	axienet_dma_stop(lp);
2686 	netdev_reset_queue(ndev);
2687 
2688 	for (i = 0; i < lp->tx_bd_num; i++) {
2689 		cur_p = &lp->tx_bd_v[i];
2690 		if (cur_p->cntrl) {
2691 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
2692 
2693 			dma_unmap_single(lp->dev, addr,
2694 					 (cur_p->cntrl &
2695 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
2696 					 DMA_TO_DEVICE);
2697 		}
2698 		if (cur_p->skb)
2699 			dev_kfree_skb_irq(cur_p->skb);
2700 		cur_p->phys = 0;
2701 		cur_p->phys_msb = 0;
2702 		cur_p->cntrl = 0;
2703 		cur_p->status = 0;
2704 		cur_p->app0 = 0;
2705 		cur_p->app1 = 0;
2706 		cur_p->app2 = 0;
2707 		cur_p->app3 = 0;
2708 		cur_p->app4 = 0;
2709 		cur_p->skb = NULL;
2710 	}
2711 
2712 	for (i = 0; i < lp->rx_bd_num; i++) {
2713 		cur_p = &lp->rx_bd_v[i];
2714 		cur_p->status = 0;
2715 		cur_p->app0 = 0;
2716 		cur_p->app1 = 0;
2717 		cur_p->app2 = 0;
2718 		cur_p->app3 = 0;
2719 		cur_p->app4 = 0;
2720 	}
2721 
2722 	lp->tx_bd_ci = 0;
2723 	lp->tx_bd_tail = 0;
2724 	lp->rx_bd_ci = 0;
2725 
2726 	axienet_dma_start(lp);
2727 
2728 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
2729 	axienet_status &= ~XAE_RCW1_RX_MASK;
2730 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
2731 
2732 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
2733 	if (axienet_status & XAE_INT_RXRJECT_MASK)
2734 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
2735 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
2736 		    XAE_INT_RECV_ERROR_MASK : 0);
2737 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
2738 
2739 	/* Sync default options with HW but leave receiver and
2740 	 * transmitter disabled.
2741 	 */
2742 	axienet_setoptions(ndev, lp->options &
2743 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2744 	axienet_set_mac_address(ndev, NULL);
2745 	axienet_set_multicast_list(ndev);
2746 	napi_enable(&lp->napi_rx);
2747 	napi_enable(&lp->napi_tx);
2748 	axienet_setoptions(ndev, lp->options);
2749 }
2750 
2751 /**
2752  * axienet_probe - Axi Ethernet probe function.
2753  * @pdev:	Pointer to platform device structure.
2754  *
2755  * Return: 0, on success
2756  *	    Non-zero error value on failure.
2757  *
2758  * This is the probe routine for Axi Ethernet driver. This is called before
2759  * any other driver routines are invoked. It allocates and sets up the Ethernet
2760  * device. Parses through device tree and populates fields of
2761  * axienet_local. It registers the Ethernet device.
2762  */
2763 static int axienet_probe(struct platform_device *pdev)
2764 {
2765 	int ret;
2766 	struct device_node *np;
2767 	struct axienet_local *lp;
2768 	struct net_device *ndev;
2769 	struct resource *ethres;
2770 	u8 mac_addr[ETH_ALEN];
2771 	int addr_width = 32;
2772 	u32 value;
2773 
2774 	ndev = alloc_etherdev(sizeof(*lp));
2775 	if (!ndev)
2776 		return -ENOMEM;
2777 
2778 	platform_set_drvdata(pdev, ndev);
2779 
2780 	SET_NETDEV_DEV(ndev, &pdev->dev);
2781 	ndev->features = NETIF_F_SG;
2782 	ndev->ethtool_ops = &axienet_ethtool_ops;
2783 
2784 	/* MTU range: 64 - 9000 */
2785 	ndev->min_mtu = 64;
2786 	ndev->max_mtu = XAE_JUMBO_MTU;
2787 
2788 	lp = netdev_priv(ndev);
2789 	lp->ndev = ndev;
2790 	lp->dev = &pdev->dev;
2791 	lp->options = XAE_OPTION_DEFAULTS;
2792 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
2793 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
2794 
2795 	u64_stats_init(&lp->rx_stat_sync);
2796 	u64_stats_init(&lp->tx_stat_sync);
2797 
2798 	mutex_init(&lp->stats_lock);
2799 	seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock);
2800 	INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats);
2801 
2802 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
2803 	if (!lp->axi_clk) {
2804 		/* For backward compatibility, if named AXI clock is not present,
2805 		 * treat the first clock specified as the AXI clock.
2806 		 */
2807 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
2808 	}
2809 	if (IS_ERR(lp->axi_clk)) {
2810 		ret = PTR_ERR(lp->axi_clk);
2811 		goto free_netdev;
2812 	}
2813 	ret = clk_prepare_enable(lp->axi_clk);
2814 	if (ret) {
2815 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
2816 		goto free_netdev;
2817 	}
2818 
2819 	lp->misc_clks[0].id = "axis_clk";
2820 	lp->misc_clks[1].id = "ref_clk";
2821 	lp->misc_clks[2].id = "mgt_clk";
2822 
2823 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2824 	if (ret)
2825 		goto cleanup_clk;
2826 
2827 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2828 	if (ret)
2829 		goto cleanup_clk;
2830 
2831 	/* Map device registers */
2832 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
2833 	if (IS_ERR(lp->regs)) {
2834 		ret = PTR_ERR(lp->regs);
2835 		goto cleanup_clk;
2836 	}
2837 	lp->regs_start = ethres->start;
2838 
2839 	/* Setup checksum offload, but default to off if not specified */
2840 	lp->features = 0;
2841 
2842 	if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS)
2843 		lp->features |= XAE_FEATURE_STATS;
2844 
2845 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
2846 	if (!ret) {
2847 		switch (value) {
2848 		case 1:
2849 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
2850 			/* Can checksum any contiguous range */
2851 			ndev->features |= NETIF_F_HW_CSUM;
2852 			break;
2853 		case 2:
2854 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
2855 			/* Can checksum TCP/UDP over IPv4. */
2856 			ndev->features |= NETIF_F_IP_CSUM;
2857 			break;
2858 		}
2859 	}
2860 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
2861 	if (!ret) {
2862 		switch (value) {
2863 		case 1:
2864 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
2865 			ndev->features |= NETIF_F_RXCSUM;
2866 			break;
2867 		case 2:
2868 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
2869 			ndev->features |= NETIF_F_RXCSUM;
2870 			break;
2871 		}
2872 	}
2873 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
2874 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
2875 	 * we can enable jumbo option and start supporting jumbo frames.
2876 	 * Here we check for memory allocated for Rx/Tx in the hardware from
2877 	 * the device-tree and accordingly set flags.
2878 	 */
2879 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
2880 
2881 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
2882 						   "xlnx,switch-x-sgmii");
2883 
2884 	/* Start with the proprietary, and broken phy_type */
2885 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
2886 	if (!ret) {
2887 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
2888 		switch (value) {
2889 		case XAE_PHY_TYPE_MII:
2890 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
2891 			break;
2892 		case XAE_PHY_TYPE_GMII:
2893 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
2894 			break;
2895 		case XAE_PHY_TYPE_RGMII_2_0:
2896 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
2897 			break;
2898 		case XAE_PHY_TYPE_SGMII:
2899 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2900 			break;
2901 		case XAE_PHY_TYPE_1000BASE_X:
2902 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2903 			break;
2904 		default:
2905 			ret = -EINVAL;
2906 			goto cleanup_clk;
2907 		}
2908 	} else {
2909 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2910 		if (ret)
2911 			goto cleanup_clk;
2912 	}
2913 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2914 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2915 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2916 		ret = -EINVAL;
2917 		goto cleanup_clk;
2918 	}
2919 
2920 	if (!of_property_present(pdev->dev.of_node, "dmas")) {
2921 		/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2922 		np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2923 
2924 		if (np) {
2925 			struct resource dmares;
2926 
2927 			ret = of_address_to_resource(np, 0, &dmares);
2928 			if (ret) {
2929 				dev_err(&pdev->dev,
2930 					"unable to get DMA resource\n");
2931 				of_node_put(np);
2932 				goto cleanup_clk;
2933 			}
2934 			lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2935 							     &dmares);
2936 			lp->rx_irq = irq_of_parse_and_map(np, 1);
2937 			lp->tx_irq = irq_of_parse_and_map(np, 0);
2938 			of_node_put(np);
2939 			lp->eth_irq = platform_get_irq_optional(pdev, 0);
2940 		} else {
2941 			/* Check for these resources directly on the Ethernet node. */
2942 			lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2943 			lp->rx_irq = platform_get_irq(pdev, 1);
2944 			lp->tx_irq = platform_get_irq(pdev, 0);
2945 			lp->eth_irq = platform_get_irq_optional(pdev, 2);
2946 		}
2947 		if (IS_ERR(lp->dma_regs)) {
2948 			dev_err(&pdev->dev, "could not map DMA regs\n");
2949 			ret = PTR_ERR(lp->dma_regs);
2950 			goto cleanup_clk;
2951 		}
2952 		if (lp->rx_irq <= 0 || lp->tx_irq <= 0) {
2953 			dev_err(&pdev->dev, "could not determine irqs\n");
2954 			ret = -ENOMEM;
2955 			goto cleanup_clk;
2956 		}
2957 
2958 		/* Reset core now that clocks are enabled, prior to accessing MDIO */
2959 		ret = __axienet_device_reset(lp);
2960 		if (ret)
2961 			goto cleanup_clk;
2962 
2963 		/* Autodetect the need for 64-bit DMA pointers.
2964 		 * When the IP is configured for a bus width bigger than 32 bits,
2965 		 * writing the MSB registers is mandatory, even if they are all 0.
2966 		 * We can detect this case by writing all 1's to one such register
2967 		 * and see if that sticks: when the IP is configured for 32 bits
2968 		 * only, those registers are RES0.
2969 		 * Those MSB registers were introduced in IP v7.1, which we check first.
2970 		 */
2971 		if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2972 			void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2973 
2974 			iowrite32(0x0, desc);
2975 			if (ioread32(desc) == 0) {	/* sanity check */
2976 				iowrite32(0xffffffff, desc);
2977 				if (ioread32(desc) > 0) {
2978 					lp->features |= XAE_FEATURE_DMA_64BIT;
2979 					addr_width = 64;
2980 					dev_info(&pdev->dev,
2981 						 "autodetected 64-bit DMA range\n");
2982 				}
2983 				iowrite32(0x0, desc);
2984 			}
2985 		}
2986 		if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2987 			dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit architecture\n");
2988 			ret = -EINVAL;
2989 			goto cleanup_clk;
2990 		}
2991 
2992 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2993 		if (ret) {
2994 			dev_err(&pdev->dev, "No suitable DMA available\n");
2995 			goto cleanup_clk;
2996 		}
2997 		netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
2998 		netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
2999 	} else {
3000 		struct xilinx_vdma_config cfg;
3001 		struct dma_chan *tx_chan;
3002 
3003 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
3004 		if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) {
3005 			ret = lp->eth_irq;
3006 			goto cleanup_clk;
3007 		}
3008 		tx_chan = dma_request_chan(lp->dev, "tx_chan0");
3009 		if (IS_ERR(tx_chan)) {
3010 			ret = PTR_ERR(tx_chan);
3011 			dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n");
3012 			goto cleanup_clk;
3013 		}
3014 
3015 		cfg.reset = 1;
3016 		/* As name says VDMA but it has support for DMA channel reset */
3017 		ret = xilinx_vdma_channel_set_config(tx_chan, &cfg);
3018 		if (ret < 0) {
3019 			dev_err(&pdev->dev, "Reset channel failed\n");
3020 			dma_release_channel(tx_chan);
3021 			goto cleanup_clk;
3022 		}
3023 
3024 		dma_release_channel(tx_chan);
3025 		lp->use_dmaengine = 1;
3026 	}
3027 
3028 	if (lp->use_dmaengine)
3029 		ndev->netdev_ops = &axienet_netdev_dmaengine_ops;
3030 	else
3031 		ndev->netdev_ops = &axienet_netdev_ops;
3032 	/* Check for Ethernet core IRQ (optional) */
3033 	if (lp->eth_irq <= 0)
3034 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
3035 
3036 	/* Retrieve the MAC address */
3037 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
3038 	if (!ret) {
3039 		axienet_set_mac_address(ndev, mac_addr);
3040 	} else {
3041 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
3042 			 ret);
3043 		axienet_set_mac_address(ndev, NULL);
3044 	}
3045 
3046 	spin_lock_init(&lp->rx_cr_lock);
3047 	spin_lock_init(&lp->tx_cr_lock);
3048 	INIT_WORK(&lp->rx_dim.work, axienet_rx_dim_work);
3049 	lp->rx_dim_enabled = true;
3050 	lp->rx_dim.profile_ix = 1;
3051 	lp->rx_dma_cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp),
3052 					XAXIDMA_DFT_RX_USEC);
3053 	lp->tx_dma_cr = axienet_calc_cr(lp, XAXIDMA_DFT_TX_THRESHOLD,
3054 					XAXIDMA_DFT_TX_USEC);
3055 
3056 	ret = axienet_mdio_setup(lp);
3057 	if (ret)
3058 		dev_warn(&pdev->dev,
3059 			 "error registering MDIO bus: %d\n", ret);
3060 
3061 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
3062 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
3063 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
3064 		if (!np) {
3065 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
3066 			 * Falling back to "phy-handle" here is only for
3067 			 * backward compatibility with old device trees.
3068 			 */
3069 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
3070 		}
3071 		if (!np) {
3072 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
3073 			ret = -EINVAL;
3074 			goto cleanup_mdio;
3075 		}
3076 		lp->pcs_phy = of_mdio_find_device(np);
3077 		if (!lp->pcs_phy) {
3078 			ret = -EPROBE_DEFER;
3079 			of_node_put(np);
3080 			goto cleanup_mdio;
3081 		}
3082 		of_node_put(np);
3083 		lp->pcs.ops = &axienet_pcs_ops;
3084 		lp->pcs.poll = true;
3085 	}
3086 
3087 	lp->phylink_config.dev = &ndev->dev;
3088 	lp->phylink_config.type = PHYLINK_NETDEV;
3089 	lp->phylink_config.mac_managed_pm = true;
3090 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
3091 		MAC_10FD | MAC_100FD | MAC_1000FD;
3092 
3093 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
3094 	if (lp->switch_x_sgmii) {
3095 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
3096 			  lp->phylink_config.supported_interfaces);
3097 		__set_bit(PHY_INTERFACE_MODE_SGMII,
3098 			  lp->phylink_config.supported_interfaces);
3099 	}
3100 
3101 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
3102 				     lp->phy_mode,
3103 				     &axienet_phylink_ops);
3104 	if (IS_ERR(lp->phylink)) {
3105 		ret = PTR_ERR(lp->phylink);
3106 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
3107 		goto cleanup_mdio;
3108 	}
3109 
3110 	ret = register_netdev(lp->ndev);
3111 	if (ret) {
3112 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
3113 		goto cleanup_phylink;
3114 	}
3115 
3116 	return 0;
3117 
3118 cleanup_phylink:
3119 	phylink_destroy(lp->phylink);
3120 
3121 cleanup_mdio:
3122 	if (lp->pcs_phy)
3123 		put_device(&lp->pcs_phy->dev);
3124 	if (lp->mii_bus)
3125 		axienet_mdio_teardown(lp);
3126 cleanup_clk:
3127 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
3128 	clk_disable_unprepare(lp->axi_clk);
3129 
3130 free_netdev:
3131 	free_netdev(ndev);
3132 
3133 	return ret;
3134 }
3135 
3136 static void axienet_remove(struct platform_device *pdev)
3137 {
3138 	struct net_device *ndev = platform_get_drvdata(pdev);
3139 	struct axienet_local *lp = netdev_priv(ndev);
3140 
3141 	unregister_netdev(ndev);
3142 
3143 	if (lp->phylink)
3144 		phylink_destroy(lp->phylink);
3145 
3146 	if (lp->pcs_phy)
3147 		put_device(&lp->pcs_phy->dev);
3148 
3149 	axienet_mdio_teardown(lp);
3150 
3151 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
3152 	clk_disable_unprepare(lp->axi_clk);
3153 
3154 	free_netdev(ndev);
3155 }
3156 
3157 static void axienet_shutdown(struct platform_device *pdev)
3158 {
3159 	struct net_device *ndev = platform_get_drvdata(pdev);
3160 
3161 	rtnl_lock();
3162 	netif_device_detach(ndev);
3163 
3164 	if (netif_running(ndev))
3165 		dev_close(ndev);
3166 
3167 	rtnl_unlock();
3168 }
3169 
3170 static int axienet_suspend(struct device *dev)
3171 {
3172 	struct net_device *ndev = dev_get_drvdata(dev);
3173 
3174 	if (!netif_running(ndev))
3175 		return 0;
3176 
3177 	netif_device_detach(ndev);
3178 
3179 	rtnl_lock();
3180 	axienet_stop(ndev);
3181 	rtnl_unlock();
3182 
3183 	return 0;
3184 }
3185 
3186 static int axienet_resume(struct device *dev)
3187 {
3188 	struct net_device *ndev = dev_get_drvdata(dev);
3189 
3190 	if (!netif_running(ndev))
3191 		return 0;
3192 
3193 	rtnl_lock();
3194 	axienet_open(ndev);
3195 	rtnl_unlock();
3196 
3197 	netif_device_attach(ndev);
3198 
3199 	return 0;
3200 }
3201 
3202 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
3203 				axienet_suspend, axienet_resume);
3204 
3205 static struct platform_driver axienet_driver = {
3206 	.probe = axienet_probe,
3207 	.remove = axienet_remove,
3208 	.shutdown = axienet_shutdown,
3209 	.driver = {
3210 		 .name = "xilinx_axienet",
3211 		 .pm = &axienet_pm_ops,
3212 		 .of_match_table = axienet_of_match,
3213 	},
3214 };
3215 
3216 module_platform_driver(axienet_driver);
3217 
3218 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
3219 MODULE_AUTHOR("Xilinx");
3220 MODULE_LICENSE("GPL");
3221