xref: /linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c (revision 895b4fae931a256f6c7c6c68f77a8e337980b5a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/platform_device.h>
36 #include <linux/skbuff.h>
37 #include <linux/math64.h>
38 #include <linux/phy.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/dmaengine.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dma/xilinx_dma.h>
44 #include <linux/circ_buf.h>
45 #include <net/netdev_queues.h>
46 
47 #include "xilinx_axienet.h"
48 
49 /* Descriptors defines for Tx and Rx DMA */
50 #define TX_BD_NUM_DEFAULT		128
51 #define RX_BD_NUM_DEFAULT		1024
52 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
53 #define TX_BD_NUM_MAX			4096
54 #define RX_BD_NUM_MAX			4096
55 #define DMA_NUM_APP_WORDS		5
56 #define LEN_APP				4
57 #define RX_BUF_NUM_DEFAULT		128
58 
59 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
60 #define DRIVER_NAME		"xaxienet"
61 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
62 #define DRIVER_VERSION		"1.00a"
63 
64 #define AXIENET_REGS_N		40
65 
66 static void axienet_rx_submit_desc(struct net_device *ndev);
67 
68 /* Match table for of_platform binding */
69 static const struct of_device_id axienet_of_match[] = {
70 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
71 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
72 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
73 	{},
74 };
75 
76 MODULE_DEVICE_TABLE(of, axienet_of_match);
77 
78 /* Option table for setting up Axi Ethernet hardware options */
79 static struct axienet_option axienet_options[] = {
80 	/* Turn on jumbo packet support for both Rx and Tx */
81 	{
82 		.opt = XAE_OPTION_JUMBO,
83 		.reg = XAE_TC_OFFSET,
84 		.m_or = XAE_TC_JUM_MASK,
85 	}, {
86 		.opt = XAE_OPTION_JUMBO,
87 		.reg = XAE_RCW1_OFFSET,
88 		.m_or = XAE_RCW1_JUM_MASK,
89 	}, { /* Turn on VLAN packet support for both Rx and Tx */
90 		.opt = XAE_OPTION_VLAN,
91 		.reg = XAE_TC_OFFSET,
92 		.m_or = XAE_TC_VLAN_MASK,
93 	}, {
94 		.opt = XAE_OPTION_VLAN,
95 		.reg = XAE_RCW1_OFFSET,
96 		.m_or = XAE_RCW1_VLAN_MASK,
97 	}, { /* Turn on FCS stripping on receive packets */
98 		.opt = XAE_OPTION_FCS_STRIP,
99 		.reg = XAE_RCW1_OFFSET,
100 		.m_or = XAE_RCW1_FCS_MASK,
101 	}, { /* Turn on FCS insertion on transmit packets */
102 		.opt = XAE_OPTION_FCS_INSERT,
103 		.reg = XAE_TC_OFFSET,
104 		.m_or = XAE_TC_FCS_MASK,
105 	}, { /* Turn off length/type field checking on receive packets */
106 		.opt = XAE_OPTION_LENTYPE_ERR,
107 		.reg = XAE_RCW1_OFFSET,
108 		.m_or = XAE_RCW1_LT_DIS_MASK,
109 	}, { /* Turn on Rx flow control */
110 		.opt = XAE_OPTION_FLOW_CONTROL,
111 		.reg = XAE_FCC_OFFSET,
112 		.m_or = XAE_FCC_FCRX_MASK,
113 	}, { /* Turn on Tx flow control */
114 		.opt = XAE_OPTION_FLOW_CONTROL,
115 		.reg = XAE_FCC_OFFSET,
116 		.m_or = XAE_FCC_FCTX_MASK,
117 	}, { /* Turn on promiscuous frame filtering */
118 		.opt = XAE_OPTION_PROMISC,
119 		.reg = XAE_FMI_OFFSET,
120 		.m_or = XAE_FMI_PM_MASK,
121 	}, { /* Enable transmitter */
122 		.opt = XAE_OPTION_TXEN,
123 		.reg = XAE_TC_OFFSET,
124 		.m_or = XAE_TC_TX_MASK,
125 	}, { /* Enable receiver */
126 		.opt = XAE_OPTION_RXEN,
127 		.reg = XAE_RCW1_OFFSET,
128 		.m_or = XAE_RCW1_RX_MASK,
129 	},
130 	{}
131 };
132 
133 static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i)
134 {
135 	return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)];
136 }
137 
138 static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i)
139 {
140 	return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)];
141 }
142 
143 /**
144  * axienet_dma_in32 - Memory mapped Axi DMA register read
145  * @lp:		Pointer to axienet local structure
146  * @reg:	Address offset from the base address of the Axi DMA core
147  *
148  * Return: The contents of the Axi DMA register
149  *
150  * This function returns the contents of the corresponding Axi DMA register.
151  */
152 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
153 {
154 	return ioread32(lp->dma_regs + reg);
155 }
156 
157 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
158 			       struct axidma_bd *desc)
159 {
160 	desc->phys = lower_32_bits(addr);
161 	if (lp->features & XAE_FEATURE_DMA_64BIT)
162 		desc->phys_msb = upper_32_bits(addr);
163 }
164 
165 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
166 				     struct axidma_bd *desc)
167 {
168 	dma_addr_t ret = desc->phys;
169 
170 	if (lp->features & XAE_FEATURE_DMA_64BIT)
171 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
172 
173 	return ret;
174 }
175 
176 /**
177  * axienet_dma_bd_release - Release buffer descriptor rings
178  * @ndev:	Pointer to the net_device structure
179  *
180  * This function is used to release the descriptors allocated in
181  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
182  * driver stop api is called.
183  */
184 static void axienet_dma_bd_release(struct net_device *ndev)
185 {
186 	int i;
187 	struct axienet_local *lp = netdev_priv(ndev);
188 
189 	/* If we end up here, tx_bd_v must have been DMA allocated. */
190 	dma_free_coherent(lp->dev,
191 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
192 			  lp->tx_bd_v,
193 			  lp->tx_bd_p);
194 
195 	if (!lp->rx_bd_v)
196 		return;
197 
198 	for (i = 0; i < lp->rx_bd_num; i++) {
199 		dma_addr_t phys;
200 
201 		/* A NULL skb means this descriptor has not been initialised
202 		 * at all.
203 		 */
204 		if (!lp->rx_bd_v[i].skb)
205 			break;
206 
207 		dev_kfree_skb(lp->rx_bd_v[i].skb);
208 
209 		/* For each descriptor, we programmed cntrl with the (non-zero)
210 		 * descriptor size, after it had been successfully allocated.
211 		 * So a non-zero value in there means we need to unmap it.
212 		 */
213 		if (lp->rx_bd_v[i].cntrl) {
214 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
215 			dma_unmap_single(lp->dev, phys,
216 					 lp->max_frm_size, DMA_FROM_DEVICE);
217 		}
218 	}
219 
220 	dma_free_coherent(lp->dev,
221 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
222 			  lp->rx_bd_v,
223 			  lp->rx_bd_p);
224 }
225 
226 /**
227  * axienet_usec_to_timer - Calculate IRQ delay timer value
228  * @lp:		Pointer to the axienet_local structure
229  * @coalesce_usec: Microseconds to convert into timer value
230  */
231 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
232 {
233 	u32 result;
234 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
235 
236 	if (lp->axi_clk)
237 		clk_rate = clk_get_rate(lp->axi_clk);
238 
239 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
240 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
241 					 (u64)125000000);
242 	if (result > 255)
243 		result = 255;
244 
245 	return result;
246 }
247 
248 /**
249  * axienet_dma_start - Set up DMA registers and start DMA operation
250  * @lp:		Pointer to the axienet_local structure
251  */
252 static void axienet_dma_start(struct axienet_local *lp)
253 {
254 	/* Start updating the Rx channel control register */
255 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
256 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
257 	/* Only set interrupt delay timer if not generating an interrupt on
258 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
259 	 */
260 	if (lp->coalesce_count_rx > 1)
261 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
262 					<< XAXIDMA_DELAY_SHIFT) |
263 				 XAXIDMA_IRQ_DELAY_MASK;
264 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
265 
266 	/* Start updating the Tx channel control register */
267 	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
268 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
269 	/* Only set interrupt delay timer if not generating an interrupt on
270 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
271 	 */
272 	if (lp->coalesce_count_tx > 1)
273 		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
274 					<< XAXIDMA_DELAY_SHIFT) |
275 				 XAXIDMA_IRQ_DELAY_MASK;
276 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
277 
278 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
279 	 * halted state. This will make the Rx side ready for reception.
280 	 */
281 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
282 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
283 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
284 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
285 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
286 
287 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
288 	 * Tx channel is now ready to run. But only after we write to the
289 	 * tail pointer register that the Tx channel will start transmitting.
290 	 */
291 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
292 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
293 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
294 }
295 
296 /**
297  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
298  * @ndev:	Pointer to the net_device structure
299  *
300  * Return: 0, on success -ENOMEM, on failure
301  *
302  * This function is called to initialize the Rx and Tx DMA descriptor
303  * rings. This initializes the descriptors with required default values
304  * and is called when Axi Ethernet driver reset is called.
305  */
306 static int axienet_dma_bd_init(struct net_device *ndev)
307 {
308 	int i;
309 	struct sk_buff *skb;
310 	struct axienet_local *lp = netdev_priv(ndev);
311 
312 	/* Reset the indexes which are used for accessing the BDs */
313 	lp->tx_bd_ci = 0;
314 	lp->tx_bd_tail = 0;
315 	lp->rx_bd_ci = 0;
316 
317 	/* Allocate the Tx and Rx buffer descriptors. */
318 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
319 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
320 					 &lp->tx_bd_p, GFP_KERNEL);
321 	if (!lp->tx_bd_v)
322 		return -ENOMEM;
323 
324 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
325 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
326 					 &lp->rx_bd_p, GFP_KERNEL);
327 	if (!lp->rx_bd_v)
328 		goto out;
329 
330 	for (i = 0; i < lp->tx_bd_num; i++) {
331 		dma_addr_t addr = lp->tx_bd_p +
332 				  sizeof(*lp->tx_bd_v) *
333 				  ((i + 1) % lp->tx_bd_num);
334 
335 		lp->tx_bd_v[i].next = lower_32_bits(addr);
336 		if (lp->features & XAE_FEATURE_DMA_64BIT)
337 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
338 	}
339 
340 	for (i = 0; i < lp->rx_bd_num; i++) {
341 		dma_addr_t addr;
342 
343 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
344 			((i + 1) % lp->rx_bd_num);
345 		lp->rx_bd_v[i].next = lower_32_bits(addr);
346 		if (lp->features & XAE_FEATURE_DMA_64BIT)
347 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
348 
349 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
350 		if (!skb)
351 			goto out;
352 
353 		lp->rx_bd_v[i].skb = skb;
354 		addr = dma_map_single(lp->dev, skb->data,
355 				      lp->max_frm_size, DMA_FROM_DEVICE);
356 		if (dma_mapping_error(lp->dev, addr)) {
357 			netdev_err(ndev, "DMA mapping error\n");
358 			goto out;
359 		}
360 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
361 
362 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
363 	}
364 
365 	axienet_dma_start(lp);
366 
367 	return 0;
368 out:
369 	axienet_dma_bd_release(ndev);
370 	return -ENOMEM;
371 }
372 
373 /**
374  * axienet_set_mac_address - Write the MAC address
375  * @ndev:	Pointer to the net_device structure
376  * @address:	6 byte Address to be written as MAC address
377  *
378  * This function is called to initialize the MAC address of the Axi Ethernet
379  * core. It writes to the UAW0 and UAW1 registers of the core.
380  */
381 static void axienet_set_mac_address(struct net_device *ndev,
382 				    const void *address)
383 {
384 	struct axienet_local *lp = netdev_priv(ndev);
385 
386 	if (address)
387 		eth_hw_addr_set(ndev, address);
388 	if (!is_valid_ether_addr(ndev->dev_addr))
389 		eth_hw_addr_random(ndev);
390 
391 	/* Set up unicast MAC address filter set its mac address */
392 	axienet_iow(lp, XAE_UAW0_OFFSET,
393 		    (ndev->dev_addr[0]) |
394 		    (ndev->dev_addr[1] << 8) |
395 		    (ndev->dev_addr[2] << 16) |
396 		    (ndev->dev_addr[3] << 24));
397 	axienet_iow(lp, XAE_UAW1_OFFSET,
398 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
399 		      ~XAE_UAW1_UNICASTADDR_MASK) |
400 		     (ndev->dev_addr[4] |
401 		     (ndev->dev_addr[5] << 8))));
402 }
403 
404 /**
405  * netdev_set_mac_address - Write the MAC address (from outside the driver)
406  * @ndev:	Pointer to the net_device structure
407  * @p:		6 byte Address to be written as MAC address
408  *
409  * Return: 0 for all conditions. Presently, there is no failure case.
410  *
411  * This function is called to initialize the MAC address of the Axi Ethernet
412  * core. It calls the core specific axienet_set_mac_address. This is the
413  * function that goes into net_device_ops structure entry ndo_set_mac_address.
414  */
415 static int netdev_set_mac_address(struct net_device *ndev, void *p)
416 {
417 	struct sockaddr *addr = p;
418 	axienet_set_mac_address(ndev, addr->sa_data);
419 	return 0;
420 }
421 
422 /**
423  * axienet_set_multicast_list - Prepare the multicast table
424  * @ndev:	Pointer to the net_device structure
425  *
426  * This function is called to initialize the multicast table during
427  * initialization. The Axi Ethernet basic multicast support has a four-entry
428  * multicast table which is initialized here. Additionally this function
429  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
430  * means whenever the multicast table entries need to be updated this
431  * function gets called.
432  */
433 static void axienet_set_multicast_list(struct net_device *ndev)
434 {
435 	int i = 0;
436 	u32 reg, af0reg, af1reg;
437 	struct axienet_local *lp = netdev_priv(ndev);
438 
439 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
440 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
441 		/* We must make the kernel realize we had to move into
442 		 * promiscuous mode. If it was a promiscuous mode request
443 		 * the flag is already set. If not we set it.
444 		 */
445 		ndev->flags |= IFF_PROMISC;
446 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
447 		reg |= XAE_FMI_PM_MASK;
448 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
449 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
450 	} else if (!netdev_mc_empty(ndev)) {
451 		struct netdev_hw_addr *ha;
452 
453 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
454 		reg &= ~XAE_FMI_PM_MASK;
455 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
456 
457 		netdev_for_each_mc_addr(ha, ndev) {
458 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
459 				break;
460 
461 			af0reg = (ha->addr[0]);
462 			af0reg |= (ha->addr[1] << 8);
463 			af0reg |= (ha->addr[2] << 16);
464 			af0reg |= (ha->addr[3] << 24);
465 
466 			af1reg = (ha->addr[4]);
467 			af1reg |= (ha->addr[5] << 8);
468 
469 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
470 			reg |= i;
471 
472 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
473 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
474 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
475 			axienet_iow(lp, XAE_FFE_OFFSET, 1);
476 			i++;
477 		}
478 	} else {
479 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
480 		reg &= ~XAE_FMI_PM_MASK;
481 
482 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
483 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
484 	}
485 
486 	for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
487 		reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
488 		reg |= i;
489 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
490 		axienet_iow(lp, XAE_FFE_OFFSET, 0);
491 	}
492 }
493 
494 /**
495  * axienet_setoptions - Set an Axi Ethernet option
496  * @ndev:	Pointer to the net_device structure
497  * @options:	Option to be enabled/disabled
498  *
499  * The Axi Ethernet core has multiple features which can be selectively turned
500  * on or off. The typical options could be jumbo frame option, basic VLAN
501  * option, promiscuous mode option etc. This function is used to set or clear
502  * these options in the Axi Ethernet hardware. This is done through
503  * axienet_option structure .
504  */
505 static void axienet_setoptions(struct net_device *ndev, u32 options)
506 {
507 	int reg;
508 	struct axienet_local *lp = netdev_priv(ndev);
509 	struct axienet_option *tp = &axienet_options[0];
510 
511 	while (tp->opt) {
512 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
513 		if (options & tp->opt)
514 			reg |= tp->m_or;
515 		axienet_iow(lp, tp->reg, reg);
516 		tp++;
517 	}
518 
519 	lp->options |= options;
520 }
521 
522 static int __axienet_device_reset(struct axienet_local *lp)
523 {
524 	u32 value;
525 	int ret;
526 
527 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
528 	 * process of Axi DMA takes a while to complete as all pending
529 	 * commands/transfers will be flushed or completed during this
530 	 * reset process.
531 	 * Note that even though both TX and RX have their own reset register,
532 	 * they both reset the entire DMA core, so only one needs to be used.
533 	 */
534 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
535 	ret = read_poll_timeout(axienet_dma_in32, value,
536 				!(value & XAXIDMA_CR_RESET_MASK),
537 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
538 				XAXIDMA_TX_CR_OFFSET);
539 	if (ret) {
540 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
541 		return ret;
542 	}
543 
544 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
545 	ret = read_poll_timeout(axienet_ior, value,
546 				value & XAE_INT_PHYRSTCMPLT_MASK,
547 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
548 				XAE_IS_OFFSET);
549 	if (ret) {
550 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
551 		return ret;
552 	}
553 
554 	return 0;
555 }
556 
557 /**
558  * axienet_dma_stop - Stop DMA operation
559  * @lp:		Pointer to the axienet_local structure
560  */
561 static void axienet_dma_stop(struct axienet_local *lp)
562 {
563 	int count;
564 	u32 cr, sr;
565 
566 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
567 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
568 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
569 	synchronize_irq(lp->rx_irq);
570 
571 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
572 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
573 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
574 	synchronize_irq(lp->tx_irq);
575 
576 	/* Give DMAs a chance to halt gracefully */
577 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
578 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
579 		msleep(20);
580 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
581 	}
582 
583 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
584 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
585 		msleep(20);
586 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
587 	}
588 
589 	/* Do a reset to ensure DMA is really stopped */
590 	axienet_lock_mii(lp);
591 	__axienet_device_reset(lp);
592 	axienet_unlock_mii(lp);
593 }
594 
595 /**
596  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
597  * @ndev:	Pointer to the net_device structure
598  *
599  * This function is called to reset and initialize the Axi Ethernet core. This
600  * is typically called during initialization. It does a reset of the Axi DMA
601  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
602  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
603  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
604  * core.
605  * Returns 0 on success or a negative error number otherwise.
606  */
607 static int axienet_device_reset(struct net_device *ndev)
608 {
609 	u32 axienet_status;
610 	struct axienet_local *lp = netdev_priv(ndev);
611 	int ret;
612 
613 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
614 	lp->options |= XAE_OPTION_VLAN;
615 	lp->options &= (~XAE_OPTION_JUMBO);
616 
617 	if ((ndev->mtu > XAE_MTU) &&
618 	    (ndev->mtu <= XAE_JUMBO_MTU)) {
619 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
620 					XAE_TRL_SIZE;
621 
622 		if (lp->max_frm_size <= lp->rxmem)
623 			lp->options |= XAE_OPTION_JUMBO;
624 	}
625 
626 	if (!lp->use_dmaengine) {
627 		ret = __axienet_device_reset(lp);
628 		if (ret)
629 			return ret;
630 
631 		ret = axienet_dma_bd_init(ndev);
632 		if (ret) {
633 			netdev_err(ndev, "%s: descriptor allocation failed\n",
634 				   __func__);
635 			return ret;
636 		}
637 	}
638 
639 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
640 	axienet_status &= ~XAE_RCW1_RX_MASK;
641 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
642 
643 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
644 	if (axienet_status & XAE_INT_RXRJECT_MASK)
645 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
646 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
647 		    XAE_INT_RECV_ERROR_MASK : 0);
648 
649 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
650 
651 	/* Sync default options with HW but leave receiver and
652 	 * transmitter disabled.
653 	 */
654 	axienet_setoptions(ndev, lp->options &
655 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
656 	axienet_set_mac_address(ndev, NULL);
657 	axienet_set_multicast_list(ndev);
658 	axienet_setoptions(ndev, lp->options);
659 
660 	netif_trans_update(ndev);
661 
662 	return 0;
663 }
664 
665 /**
666  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
667  * @lp:		Pointer to the axienet_local structure
668  * @first_bd:	Index of first descriptor to clean up
669  * @nr_bds:	Max number of descriptors to clean up
670  * @force:	Whether to clean descriptors even if not complete
671  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
672  *		in all cleaned-up descriptors. Ignored if NULL.
673  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
674  *
675  * Would either be called after a successful transmit operation, or after
676  * there was an error when setting up the chain.
677  * Returns the number of descriptors handled.
678  */
679 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
680 				 int nr_bds, bool force, u32 *sizep, int budget)
681 {
682 	struct axidma_bd *cur_p;
683 	unsigned int status;
684 	dma_addr_t phys;
685 	int i;
686 
687 	for (i = 0; i < nr_bds; i++) {
688 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
689 		status = cur_p->status;
690 
691 		/* If force is not specified, clean up only descriptors
692 		 * that have been completed by the MAC.
693 		 */
694 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
695 			break;
696 
697 		/* Ensure we see complete descriptor update */
698 		dma_rmb();
699 		phys = desc_get_phys_addr(lp, cur_p);
700 		dma_unmap_single(lp->dev, phys,
701 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
702 				 DMA_TO_DEVICE);
703 
704 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
705 			napi_consume_skb(cur_p->skb, budget);
706 
707 		cur_p->app0 = 0;
708 		cur_p->app1 = 0;
709 		cur_p->app2 = 0;
710 		cur_p->app4 = 0;
711 		cur_p->skb = NULL;
712 		/* ensure our transmit path and device don't prematurely see status cleared */
713 		wmb();
714 		cur_p->cntrl = 0;
715 		cur_p->status = 0;
716 
717 		if (sizep)
718 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
719 	}
720 
721 	return i;
722 }
723 
724 /**
725  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
726  * @lp:		Pointer to the axienet_local structure
727  * @num_frag:	The number of BDs to check for
728  *
729  * Return: 0, on success
730  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
731  *
732  * This function is invoked before BDs are allocated and transmission starts.
733  * This function returns 0 if a BD or group of BDs can be allocated for
734  * transmission. If the BD or any of the BDs are not free the function
735  * returns a busy status.
736  */
737 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
738 					    int num_frag)
739 {
740 	struct axidma_bd *cur_p;
741 
742 	/* Ensure we see all descriptor updates from device or TX polling */
743 	rmb();
744 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
745 			     lp->tx_bd_num];
746 	if (cur_p->cntrl)
747 		return NETDEV_TX_BUSY;
748 	return 0;
749 }
750 
751 /**
752  * axienet_dma_tx_cb - DMA engine callback for TX channel.
753  * @data:       Pointer to the axienet_local structure.
754  * @result:     error reporting through dmaengine_result.
755  * This function is called by dmaengine driver for TX channel to notify
756  * that the transmit is done.
757  */
758 static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result)
759 {
760 	struct skbuf_dma_descriptor *skbuf_dma;
761 	struct axienet_local *lp = data;
762 	struct netdev_queue *txq;
763 	int len;
764 
765 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++);
766 	len = skbuf_dma->skb->len;
767 	txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb);
768 	u64_stats_update_begin(&lp->tx_stat_sync);
769 	u64_stats_add(&lp->tx_bytes, len);
770 	u64_stats_add(&lp->tx_packets, 1);
771 	u64_stats_update_end(&lp->tx_stat_sync);
772 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE);
773 	dev_consume_skb_any(skbuf_dma->skb);
774 	netif_txq_completed_wake(txq, 1, len,
775 				 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
776 				 2 * MAX_SKB_FRAGS);
777 }
778 
779 /**
780  * axienet_start_xmit_dmaengine - Starts the transmission.
781  * @skb:        sk_buff pointer that contains data to be Txed.
782  * @ndev:       Pointer to net_device structure.
783  *
784  * Return: NETDEV_TX_OK on success or any non space errors.
785  *         NETDEV_TX_BUSY when free element in TX skb ring buffer
786  *         is not available.
787  *
788  * This function is invoked to initiate transmission. The
789  * function sets the skbs, register dma callback API and submit
790  * the dma transaction.
791  * Additionally if checksum offloading is supported,
792  * it populates AXI Stream Control fields with appropriate values.
793  */
794 static netdev_tx_t
795 axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev)
796 {
797 	struct dma_async_tx_descriptor *dma_tx_desc = NULL;
798 	struct axienet_local *lp = netdev_priv(ndev);
799 	u32 app_metadata[DMA_NUM_APP_WORDS] = {0};
800 	struct skbuf_dma_descriptor *skbuf_dma;
801 	struct dma_device *dma_dev;
802 	struct netdev_queue *txq;
803 	u32 csum_start_off;
804 	u32 csum_index_off;
805 	int sg_len;
806 	int ret;
807 
808 	dma_dev = lp->tx_chan->device;
809 	sg_len = skb_shinfo(skb)->nr_frags + 1;
810 	if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) {
811 		netif_stop_queue(ndev);
812 		if (net_ratelimit())
813 			netdev_warn(ndev, "TX ring unexpectedly full\n");
814 		return NETDEV_TX_BUSY;
815 	}
816 
817 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head);
818 	if (!skbuf_dma)
819 		goto xmit_error_drop_skb;
820 
821 	lp->tx_ring_head++;
822 	sg_init_table(skbuf_dma->sgl, sg_len);
823 	ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len);
824 	if (ret < 0)
825 		goto xmit_error_drop_skb;
826 
827 	ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
828 	if (!ret)
829 		goto xmit_error_drop_skb;
830 
831 	/* Fill up app fields for checksum */
832 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
834 			/* Tx Full Checksum Offload Enabled */
835 			app_metadata[0] |= 2;
836 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
837 			csum_start_off = skb_transport_offset(skb);
838 			csum_index_off = csum_start_off + skb->csum_offset;
839 			/* Tx Partial Checksum Offload Enabled */
840 			app_metadata[0] |= 1;
841 			app_metadata[1] = (csum_start_off << 16) | csum_index_off;
842 		}
843 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
844 		app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */
845 	}
846 
847 	dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl,
848 			sg_len, DMA_MEM_TO_DEV,
849 			DMA_PREP_INTERRUPT, (void *)app_metadata);
850 	if (!dma_tx_desc)
851 		goto xmit_error_unmap_sg;
852 
853 	skbuf_dma->skb = skb;
854 	skbuf_dma->sg_len = sg_len;
855 	dma_tx_desc->callback_param = lp;
856 	dma_tx_desc->callback_result = axienet_dma_tx_cb;
857 	dmaengine_submit(dma_tx_desc);
858 	dma_async_issue_pending(lp->tx_chan);
859 	txq = skb_get_tx_queue(lp->ndev, skb);
860 	netdev_tx_sent_queue(txq, skb->len);
861 	netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
862 			     MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS);
863 
864 	return NETDEV_TX_OK;
865 
866 xmit_error_unmap_sg:
867 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
868 xmit_error_drop_skb:
869 	dev_kfree_skb_any(skb);
870 	return NETDEV_TX_OK;
871 }
872 
873 /**
874  * axienet_tx_poll - Invoked once a transmit is completed by the
875  * Axi DMA Tx channel.
876  * @napi:	Pointer to NAPI structure.
877  * @budget:	Max number of TX packets to process.
878  *
879  * Return: Number of TX packets processed.
880  *
881  * This function is invoked from the NAPI processing to notify the completion
882  * of transmit operation. It clears fields in the corresponding Tx BDs and
883  * unmaps the corresponding buffer so that CPU can regain ownership of the
884  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
885  * required.
886  */
887 static int axienet_tx_poll(struct napi_struct *napi, int budget)
888 {
889 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
890 	struct net_device *ndev = lp->ndev;
891 	u32 size = 0;
892 	int packets;
893 
894 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
895 
896 	if (packets) {
897 		lp->tx_bd_ci += packets;
898 		if (lp->tx_bd_ci >= lp->tx_bd_num)
899 			lp->tx_bd_ci %= lp->tx_bd_num;
900 
901 		u64_stats_update_begin(&lp->tx_stat_sync);
902 		u64_stats_add(&lp->tx_packets, packets);
903 		u64_stats_add(&lp->tx_bytes, size);
904 		u64_stats_update_end(&lp->tx_stat_sync);
905 
906 		/* Matches barrier in axienet_start_xmit */
907 		smp_mb();
908 
909 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
910 			netif_wake_queue(ndev);
911 	}
912 
913 	if (packets < budget && napi_complete_done(napi, packets)) {
914 		/* Re-enable TX completion interrupts. This should
915 		 * cause an immediate interrupt if any TX packets are
916 		 * already pending.
917 		 */
918 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
919 	}
920 	return packets;
921 }
922 
923 /**
924  * axienet_start_xmit - Starts the transmission.
925  * @skb:	sk_buff pointer that contains data to be Txed.
926  * @ndev:	Pointer to net_device structure.
927  *
928  * Return: NETDEV_TX_OK, on success
929  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
930  *
931  * This function is invoked from upper layers to initiate transmission. The
932  * function uses the next available free BDs and populates their fields to
933  * start the transmission. Additionally if checksum offloading is supported,
934  * it populates AXI Stream Control fields with appropriate values.
935  */
936 static netdev_tx_t
937 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
938 {
939 	u32 ii;
940 	u32 num_frag;
941 	u32 csum_start_off;
942 	u32 csum_index_off;
943 	skb_frag_t *frag;
944 	dma_addr_t tail_p, phys;
945 	u32 orig_tail_ptr, new_tail_ptr;
946 	struct axienet_local *lp = netdev_priv(ndev);
947 	struct axidma_bd *cur_p;
948 
949 	orig_tail_ptr = lp->tx_bd_tail;
950 	new_tail_ptr = orig_tail_ptr;
951 
952 	num_frag = skb_shinfo(skb)->nr_frags;
953 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
954 
955 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
956 		/* Should not happen as last start_xmit call should have
957 		 * checked for sufficient space and queue should only be
958 		 * woken when sufficient space is available.
959 		 */
960 		netif_stop_queue(ndev);
961 		if (net_ratelimit())
962 			netdev_warn(ndev, "TX ring unexpectedly full\n");
963 		return NETDEV_TX_BUSY;
964 	}
965 
966 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
967 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
968 			/* Tx Full Checksum Offload Enabled */
969 			cur_p->app0 |= 2;
970 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
971 			csum_start_off = skb_transport_offset(skb);
972 			csum_index_off = csum_start_off + skb->csum_offset;
973 			/* Tx Partial Checksum Offload Enabled */
974 			cur_p->app0 |= 1;
975 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
976 		}
977 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
978 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
979 	}
980 
981 	phys = dma_map_single(lp->dev, skb->data,
982 			      skb_headlen(skb), DMA_TO_DEVICE);
983 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
984 		if (net_ratelimit())
985 			netdev_err(ndev, "TX DMA mapping error\n");
986 		ndev->stats.tx_dropped++;
987 		return NETDEV_TX_OK;
988 	}
989 	desc_set_phys_addr(lp, phys, cur_p);
990 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
991 
992 	for (ii = 0; ii < num_frag; ii++) {
993 		if (++new_tail_ptr >= lp->tx_bd_num)
994 			new_tail_ptr = 0;
995 		cur_p = &lp->tx_bd_v[new_tail_ptr];
996 		frag = &skb_shinfo(skb)->frags[ii];
997 		phys = dma_map_single(lp->dev,
998 				      skb_frag_address(frag),
999 				      skb_frag_size(frag),
1000 				      DMA_TO_DEVICE);
1001 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1002 			if (net_ratelimit())
1003 				netdev_err(ndev, "TX DMA mapping error\n");
1004 			ndev->stats.tx_dropped++;
1005 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
1006 					      true, NULL, 0);
1007 			return NETDEV_TX_OK;
1008 		}
1009 		desc_set_phys_addr(lp, phys, cur_p);
1010 		cur_p->cntrl = skb_frag_size(frag);
1011 	}
1012 
1013 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
1014 	cur_p->skb = skb;
1015 
1016 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
1017 	if (++new_tail_ptr >= lp->tx_bd_num)
1018 		new_tail_ptr = 0;
1019 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
1020 
1021 	/* Start the transfer */
1022 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
1023 
1024 	/* Stop queue if next transmit may not have space */
1025 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
1026 		netif_stop_queue(ndev);
1027 
1028 		/* Matches barrier in axienet_tx_poll */
1029 		smp_mb();
1030 
1031 		/* Space might have just been freed - check again */
1032 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
1033 			netif_wake_queue(ndev);
1034 	}
1035 
1036 	return NETDEV_TX_OK;
1037 }
1038 
1039 /**
1040  * axienet_dma_rx_cb - DMA engine callback for RX channel.
1041  * @data:       Pointer to the skbuf_dma_descriptor structure.
1042  * @result:     error reporting through dmaengine_result.
1043  * This function is called by dmaengine driver for RX channel to notify
1044  * that the packet is received.
1045  */
1046 static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result)
1047 {
1048 	struct skbuf_dma_descriptor *skbuf_dma;
1049 	size_t meta_len, meta_max_len, rx_len;
1050 	struct axienet_local *lp = data;
1051 	struct sk_buff *skb;
1052 	u32 *app_metadata;
1053 
1054 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++);
1055 	skb = skbuf_dma->skb;
1056 	app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len,
1057 						       &meta_max_len);
1058 	dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size,
1059 			 DMA_FROM_DEVICE);
1060 	/* TODO: Derive app word index programmatically */
1061 	rx_len = (app_metadata[LEN_APP] & 0xFFFF);
1062 	skb_put(skb, rx_len);
1063 	skb->protocol = eth_type_trans(skb, lp->ndev);
1064 	skb->ip_summed = CHECKSUM_NONE;
1065 
1066 	__netif_rx(skb);
1067 	u64_stats_update_begin(&lp->rx_stat_sync);
1068 	u64_stats_add(&lp->rx_packets, 1);
1069 	u64_stats_add(&lp->rx_bytes, rx_len);
1070 	u64_stats_update_end(&lp->rx_stat_sync);
1071 	axienet_rx_submit_desc(lp->ndev);
1072 	dma_async_issue_pending(lp->rx_chan);
1073 }
1074 
1075 /**
1076  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
1077  * @napi:	Pointer to NAPI structure.
1078  * @budget:	Max number of RX packets to process.
1079  *
1080  * Return: Number of RX packets processed.
1081  */
1082 static int axienet_rx_poll(struct napi_struct *napi, int budget)
1083 {
1084 	u32 length;
1085 	u32 csumstatus;
1086 	u32 size = 0;
1087 	int packets = 0;
1088 	dma_addr_t tail_p = 0;
1089 	struct axidma_bd *cur_p;
1090 	struct sk_buff *skb, *new_skb;
1091 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
1092 
1093 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1094 
1095 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
1096 		dma_addr_t phys;
1097 
1098 		/* Ensure we see complete descriptor update */
1099 		dma_rmb();
1100 
1101 		skb = cur_p->skb;
1102 		cur_p->skb = NULL;
1103 
1104 		/* skb could be NULL if a previous pass already received the
1105 		 * packet for this slot in the ring, but failed to refill it
1106 		 * with a newly allocated buffer. In this case, don't try to
1107 		 * receive it again.
1108 		 */
1109 		if (likely(skb)) {
1110 			length = cur_p->app4 & 0x0000FFFF;
1111 
1112 			phys = desc_get_phys_addr(lp, cur_p);
1113 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
1114 					 DMA_FROM_DEVICE);
1115 
1116 			skb_put(skb, length);
1117 			skb->protocol = eth_type_trans(skb, lp->ndev);
1118 			/*skb_checksum_none_assert(skb);*/
1119 			skb->ip_summed = CHECKSUM_NONE;
1120 
1121 			/* if we're doing Rx csum offload, set it up */
1122 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
1123 				csumstatus = (cur_p->app2 &
1124 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
1125 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
1126 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
1127 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1128 				}
1129 			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
1130 				   skb->protocol == htons(ETH_P_IP) &&
1131 				   skb->len > 64) {
1132 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
1133 				skb->ip_summed = CHECKSUM_COMPLETE;
1134 			}
1135 
1136 			napi_gro_receive(napi, skb);
1137 
1138 			size += length;
1139 			packets++;
1140 		}
1141 
1142 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
1143 		if (!new_skb)
1144 			break;
1145 
1146 		phys = dma_map_single(lp->dev, new_skb->data,
1147 				      lp->max_frm_size,
1148 				      DMA_FROM_DEVICE);
1149 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1150 			if (net_ratelimit())
1151 				netdev_err(lp->ndev, "RX DMA mapping error\n");
1152 			dev_kfree_skb(new_skb);
1153 			break;
1154 		}
1155 		desc_set_phys_addr(lp, phys, cur_p);
1156 
1157 		cur_p->cntrl = lp->max_frm_size;
1158 		cur_p->status = 0;
1159 		cur_p->skb = new_skb;
1160 
1161 		/* Only update tail_p to mark this slot as usable after it has
1162 		 * been successfully refilled.
1163 		 */
1164 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
1165 
1166 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
1167 			lp->rx_bd_ci = 0;
1168 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1169 	}
1170 
1171 	u64_stats_update_begin(&lp->rx_stat_sync);
1172 	u64_stats_add(&lp->rx_packets, packets);
1173 	u64_stats_add(&lp->rx_bytes, size);
1174 	u64_stats_update_end(&lp->rx_stat_sync);
1175 
1176 	if (tail_p)
1177 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1178 
1179 	if (packets < budget && napi_complete_done(napi, packets)) {
1180 		/* Re-enable RX completion interrupts. This should
1181 		 * cause an immediate interrupt if any RX packets are
1182 		 * already pending.
1183 		 */
1184 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1185 	}
1186 	return packets;
1187 }
1188 
1189 /**
1190  * axienet_tx_irq - Tx Done Isr.
1191  * @irq:	irq number
1192  * @_ndev:	net_device pointer
1193  *
1194  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1195  *
1196  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1197  * TX BD processing.
1198  */
1199 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1200 {
1201 	unsigned int status;
1202 	struct net_device *ndev = _ndev;
1203 	struct axienet_local *lp = netdev_priv(ndev);
1204 
1205 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1206 
1207 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1208 		return IRQ_NONE;
1209 
1210 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1211 
1212 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1213 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1214 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1215 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1216 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1217 		schedule_work(&lp->dma_err_task);
1218 	} else {
1219 		/* Disable further TX completion interrupts and schedule
1220 		 * NAPI to handle the completions.
1221 		 */
1222 		u32 cr = lp->tx_dma_cr;
1223 
1224 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1225 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1226 
1227 		napi_schedule(&lp->napi_tx);
1228 	}
1229 
1230 	return IRQ_HANDLED;
1231 }
1232 
1233 /**
1234  * axienet_rx_irq - Rx Isr.
1235  * @irq:	irq number
1236  * @_ndev:	net_device pointer
1237  *
1238  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1239  *
1240  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1241  * processing.
1242  */
1243 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1244 {
1245 	unsigned int status;
1246 	struct net_device *ndev = _ndev;
1247 	struct axienet_local *lp = netdev_priv(ndev);
1248 
1249 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1250 
1251 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1252 		return IRQ_NONE;
1253 
1254 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1255 
1256 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1257 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1258 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1259 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1260 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1261 		schedule_work(&lp->dma_err_task);
1262 	} else {
1263 		/* Disable further RX completion interrupts and schedule
1264 		 * NAPI receive.
1265 		 */
1266 		u32 cr = lp->rx_dma_cr;
1267 
1268 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1269 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1270 
1271 		napi_schedule(&lp->napi_rx);
1272 	}
1273 
1274 	return IRQ_HANDLED;
1275 }
1276 
1277 /**
1278  * axienet_eth_irq - Ethernet core Isr.
1279  * @irq:	irq number
1280  * @_ndev:	net_device pointer
1281  *
1282  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1283  *
1284  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1285  */
1286 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1287 {
1288 	struct net_device *ndev = _ndev;
1289 	struct axienet_local *lp = netdev_priv(ndev);
1290 	unsigned int pending;
1291 
1292 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1293 	if (!pending)
1294 		return IRQ_NONE;
1295 
1296 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1297 		ndev->stats.rx_missed_errors++;
1298 
1299 	if (pending & XAE_INT_RXRJECT_MASK)
1300 		ndev->stats.rx_frame_errors++;
1301 
1302 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1303 	return IRQ_HANDLED;
1304 }
1305 
1306 static void axienet_dma_err_handler(struct work_struct *work);
1307 
1308 /**
1309  * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine.
1310  * allocate skbuff, map the scatterlist and obtain a descriptor
1311  * and then add the callback information and submit descriptor.
1312  *
1313  * @ndev:	net_device pointer
1314  *
1315  */
1316 static void axienet_rx_submit_desc(struct net_device *ndev)
1317 {
1318 	struct dma_async_tx_descriptor *dma_rx_desc = NULL;
1319 	struct axienet_local *lp = netdev_priv(ndev);
1320 	struct skbuf_dma_descriptor *skbuf_dma;
1321 	struct sk_buff *skb;
1322 	dma_addr_t addr;
1323 
1324 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head);
1325 	if (!skbuf_dma)
1326 		return;
1327 
1328 	lp->rx_ring_head++;
1329 	skb = netdev_alloc_skb(ndev, lp->max_frm_size);
1330 	if (!skb)
1331 		return;
1332 
1333 	sg_init_table(skbuf_dma->sgl, 1);
1334 	addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE);
1335 	if (unlikely(dma_mapping_error(lp->dev, addr))) {
1336 		if (net_ratelimit())
1337 			netdev_err(ndev, "DMA mapping error\n");
1338 		goto rx_submit_err_free_skb;
1339 	}
1340 	sg_dma_address(skbuf_dma->sgl) = addr;
1341 	sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size;
1342 	dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl,
1343 					      1, DMA_DEV_TO_MEM,
1344 					      DMA_PREP_INTERRUPT);
1345 	if (!dma_rx_desc)
1346 		goto rx_submit_err_unmap_skb;
1347 
1348 	skbuf_dma->skb = skb;
1349 	skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl);
1350 	skbuf_dma->desc = dma_rx_desc;
1351 	dma_rx_desc->callback_param = lp;
1352 	dma_rx_desc->callback_result = axienet_dma_rx_cb;
1353 	dmaengine_submit(dma_rx_desc);
1354 
1355 	return;
1356 
1357 rx_submit_err_unmap_skb:
1358 	dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE);
1359 rx_submit_err_free_skb:
1360 	dev_kfree_skb(skb);
1361 }
1362 
1363 /**
1364  * axienet_init_dmaengine - init the dmaengine code.
1365  * @ndev:       Pointer to net_device structure
1366  *
1367  * Return: 0, on success.
1368  *          non-zero error value on failure
1369  *
1370  * This is the dmaengine initialization code.
1371  */
1372 static int axienet_init_dmaengine(struct net_device *ndev)
1373 {
1374 	struct axienet_local *lp = netdev_priv(ndev);
1375 	struct skbuf_dma_descriptor *skbuf_dma;
1376 	int i, ret;
1377 
1378 	lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0");
1379 	if (IS_ERR(lp->tx_chan)) {
1380 		dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n");
1381 		return PTR_ERR(lp->tx_chan);
1382 	}
1383 
1384 	lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0");
1385 	if (IS_ERR(lp->rx_chan)) {
1386 		ret = PTR_ERR(lp->rx_chan);
1387 		dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n");
1388 		goto err_dma_release_tx;
1389 	}
1390 
1391 	lp->tx_ring_tail = 0;
1392 	lp->tx_ring_head = 0;
1393 	lp->rx_ring_tail = 0;
1394 	lp->rx_ring_head = 0;
1395 	lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring),
1396 				  GFP_KERNEL);
1397 	if (!lp->tx_skb_ring) {
1398 		ret = -ENOMEM;
1399 		goto err_dma_release_rx;
1400 	}
1401 	for (i = 0; i < TX_BD_NUM_MAX; i++) {
1402 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1403 		if (!skbuf_dma) {
1404 			ret = -ENOMEM;
1405 			goto err_free_tx_skb_ring;
1406 		}
1407 		lp->tx_skb_ring[i] = skbuf_dma;
1408 	}
1409 
1410 	lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring),
1411 				  GFP_KERNEL);
1412 	if (!lp->rx_skb_ring) {
1413 		ret = -ENOMEM;
1414 		goto err_free_tx_skb_ring;
1415 	}
1416 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) {
1417 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1418 		if (!skbuf_dma) {
1419 			ret = -ENOMEM;
1420 			goto err_free_rx_skb_ring;
1421 		}
1422 		lp->rx_skb_ring[i] = skbuf_dma;
1423 	}
1424 	/* TODO: Instead of BD_NUM_DEFAULT use runtime support */
1425 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1426 		axienet_rx_submit_desc(ndev);
1427 	dma_async_issue_pending(lp->rx_chan);
1428 
1429 	return 0;
1430 
1431 err_free_rx_skb_ring:
1432 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1433 		kfree(lp->rx_skb_ring[i]);
1434 	kfree(lp->rx_skb_ring);
1435 err_free_tx_skb_ring:
1436 	for (i = 0; i < TX_BD_NUM_MAX; i++)
1437 		kfree(lp->tx_skb_ring[i]);
1438 	kfree(lp->tx_skb_ring);
1439 err_dma_release_rx:
1440 	dma_release_channel(lp->rx_chan);
1441 err_dma_release_tx:
1442 	dma_release_channel(lp->tx_chan);
1443 	return ret;
1444 }
1445 
1446 /**
1447  * axienet_init_legacy_dma - init the dma legacy code.
1448  * @ndev:       Pointer to net_device structure
1449  *
1450  * Return: 0, on success.
1451  *          non-zero error value on failure
1452  *
1453  * This is the dma  initialization code. It also allocates interrupt
1454  * service routines, enables the interrupt lines and ISR handling.
1455  *
1456  */
1457 static int axienet_init_legacy_dma(struct net_device *ndev)
1458 {
1459 	int ret;
1460 	struct axienet_local *lp = netdev_priv(ndev);
1461 
1462 	/* Enable worker thread for Axi DMA error handling */
1463 	lp->stopping = false;
1464 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1465 
1466 	napi_enable(&lp->napi_rx);
1467 	napi_enable(&lp->napi_tx);
1468 
1469 	/* Enable interrupts for Axi DMA Tx */
1470 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1471 			  ndev->name, ndev);
1472 	if (ret)
1473 		goto err_tx_irq;
1474 	/* Enable interrupts for Axi DMA Rx */
1475 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1476 			  ndev->name, ndev);
1477 	if (ret)
1478 		goto err_rx_irq;
1479 	/* Enable interrupts for Axi Ethernet core (if defined) */
1480 	if (lp->eth_irq > 0) {
1481 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1482 				  ndev->name, ndev);
1483 		if (ret)
1484 			goto err_eth_irq;
1485 	}
1486 
1487 	return 0;
1488 
1489 err_eth_irq:
1490 	free_irq(lp->rx_irq, ndev);
1491 err_rx_irq:
1492 	free_irq(lp->tx_irq, ndev);
1493 err_tx_irq:
1494 	napi_disable(&lp->napi_tx);
1495 	napi_disable(&lp->napi_rx);
1496 	cancel_work_sync(&lp->dma_err_task);
1497 	dev_err(lp->dev, "request_irq() failed\n");
1498 	return ret;
1499 }
1500 
1501 /**
1502  * axienet_open - Driver open routine.
1503  * @ndev:	Pointer to net_device structure
1504  *
1505  * Return: 0, on success.
1506  *	    non-zero error value on failure
1507  *
1508  * This is the driver open routine. It calls phylink_start to start the
1509  * PHY device.
1510  * It also allocates interrupt service routines, enables the interrupt lines
1511  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1512  * descriptors are initialized.
1513  */
1514 static int axienet_open(struct net_device *ndev)
1515 {
1516 	int ret;
1517 	struct axienet_local *lp = netdev_priv(ndev);
1518 
1519 	dev_dbg(&ndev->dev, "%s\n", __func__);
1520 
1521 	/* When we do an Axi Ethernet reset, it resets the complete core
1522 	 * including the MDIO. MDIO must be disabled before resetting.
1523 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1524 	 */
1525 	axienet_lock_mii(lp);
1526 	ret = axienet_device_reset(ndev);
1527 	axienet_unlock_mii(lp);
1528 
1529 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1530 	if (ret) {
1531 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1532 		return ret;
1533 	}
1534 
1535 	phylink_start(lp->phylink);
1536 
1537 	if (lp->use_dmaengine) {
1538 		/* Enable interrupts for Axi Ethernet core (if defined) */
1539 		if (lp->eth_irq > 0) {
1540 			ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1541 					  ndev->name, ndev);
1542 			if (ret)
1543 				goto err_phy;
1544 		}
1545 
1546 		ret = axienet_init_dmaengine(ndev);
1547 		if (ret < 0)
1548 			goto err_free_eth_irq;
1549 	} else {
1550 		ret = axienet_init_legacy_dma(ndev);
1551 		if (ret)
1552 			goto err_phy;
1553 	}
1554 
1555 	return 0;
1556 
1557 err_free_eth_irq:
1558 	if (lp->eth_irq > 0)
1559 		free_irq(lp->eth_irq, ndev);
1560 err_phy:
1561 	phylink_stop(lp->phylink);
1562 	phylink_disconnect_phy(lp->phylink);
1563 	return ret;
1564 }
1565 
1566 /**
1567  * axienet_stop - Driver stop routine.
1568  * @ndev:	Pointer to net_device structure
1569  *
1570  * Return: 0, on success.
1571  *
1572  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1573  * device. It also removes the interrupt handlers and disables the interrupts.
1574  * The Axi DMA Tx/Rx BDs are released.
1575  */
1576 static int axienet_stop(struct net_device *ndev)
1577 {
1578 	struct axienet_local *lp = netdev_priv(ndev);
1579 	int i;
1580 
1581 	dev_dbg(&ndev->dev, "axienet_close()\n");
1582 
1583 	if (!lp->use_dmaengine) {
1584 		WRITE_ONCE(lp->stopping, true);
1585 		flush_work(&lp->dma_err_task);
1586 
1587 		napi_disable(&lp->napi_tx);
1588 		napi_disable(&lp->napi_rx);
1589 	}
1590 
1591 	phylink_stop(lp->phylink);
1592 	phylink_disconnect_phy(lp->phylink);
1593 
1594 	axienet_setoptions(ndev, lp->options &
1595 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1596 
1597 	if (!lp->use_dmaengine) {
1598 		axienet_dma_stop(lp);
1599 		cancel_work_sync(&lp->dma_err_task);
1600 		free_irq(lp->tx_irq, ndev);
1601 		free_irq(lp->rx_irq, ndev);
1602 		axienet_dma_bd_release(ndev);
1603 	} else {
1604 		dmaengine_terminate_sync(lp->tx_chan);
1605 		dmaengine_synchronize(lp->tx_chan);
1606 		dmaengine_terminate_sync(lp->rx_chan);
1607 		dmaengine_synchronize(lp->rx_chan);
1608 
1609 		for (i = 0; i < TX_BD_NUM_MAX; i++)
1610 			kfree(lp->tx_skb_ring[i]);
1611 		kfree(lp->tx_skb_ring);
1612 		for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1613 			kfree(lp->rx_skb_ring[i]);
1614 		kfree(lp->rx_skb_ring);
1615 
1616 		dma_release_channel(lp->rx_chan);
1617 		dma_release_channel(lp->tx_chan);
1618 	}
1619 
1620 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1621 
1622 	if (lp->eth_irq > 0)
1623 		free_irq(lp->eth_irq, ndev);
1624 	return 0;
1625 }
1626 
1627 /**
1628  * axienet_change_mtu - Driver change mtu routine.
1629  * @ndev:	Pointer to net_device structure
1630  * @new_mtu:	New mtu value to be applied
1631  *
1632  * Return: Always returns 0 (success).
1633  *
1634  * This is the change mtu driver routine. It checks if the Axi Ethernet
1635  * hardware supports jumbo frames before changing the mtu. This can be
1636  * called only when the device is not up.
1637  */
1638 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1639 {
1640 	struct axienet_local *lp = netdev_priv(ndev);
1641 
1642 	if (netif_running(ndev))
1643 		return -EBUSY;
1644 
1645 	if ((new_mtu + VLAN_ETH_HLEN +
1646 		XAE_TRL_SIZE) > lp->rxmem)
1647 		return -EINVAL;
1648 
1649 	WRITE_ONCE(ndev->mtu, new_mtu);
1650 
1651 	return 0;
1652 }
1653 
1654 #ifdef CONFIG_NET_POLL_CONTROLLER
1655 /**
1656  * axienet_poll_controller - Axi Ethernet poll mechanism.
1657  * @ndev:	Pointer to net_device structure
1658  *
1659  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1660  * to polling the ISRs and are enabled back after the polling is done.
1661  */
1662 static void axienet_poll_controller(struct net_device *ndev)
1663 {
1664 	struct axienet_local *lp = netdev_priv(ndev);
1665 	disable_irq(lp->tx_irq);
1666 	disable_irq(lp->rx_irq);
1667 	axienet_rx_irq(lp->tx_irq, ndev);
1668 	axienet_tx_irq(lp->rx_irq, ndev);
1669 	enable_irq(lp->tx_irq);
1670 	enable_irq(lp->rx_irq);
1671 }
1672 #endif
1673 
1674 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1675 {
1676 	struct axienet_local *lp = netdev_priv(dev);
1677 
1678 	if (!netif_running(dev))
1679 		return -EINVAL;
1680 
1681 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1682 }
1683 
1684 static void
1685 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1686 {
1687 	struct axienet_local *lp = netdev_priv(dev);
1688 	unsigned int start;
1689 
1690 	netdev_stats_to_stats64(stats, &dev->stats);
1691 
1692 	do {
1693 		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1694 		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1695 		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1696 	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1697 
1698 	do {
1699 		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1700 		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1701 		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1702 	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1703 }
1704 
1705 static const struct net_device_ops axienet_netdev_ops = {
1706 	.ndo_open = axienet_open,
1707 	.ndo_stop = axienet_stop,
1708 	.ndo_start_xmit = axienet_start_xmit,
1709 	.ndo_get_stats64 = axienet_get_stats64,
1710 	.ndo_change_mtu	= axienet_change_mtu,
1711 	.ndo_set_mac_address = netdev_set_mac_address,
1712 	.ndo_validate_addr = eth_validate_addr,
1713 	.ndo_eth_ioctl = axienet_ioctl,
1714 	.ndo_set_rx_mode = axienet_set_multicast_list,
1715 #ifdef CONFIG_NET_POLL_CONTROLLER
1716 	.ndo_poll_controller = axienet_poll_controller,
1717 #endif
1718 };
1719 
1720 static const struct net_device_ops axienet_netdev_dmaengine_ops = {
1721 	.ndo_open = axienet_open,
1722 	.ndo_stop = axienet_stop,
1723 	.ndo_start_xmit = axienet_start_xmit_dmaengine,
1724 	.ndo_get_stats64 = axienet_get_stats64,
1725 	.ndo_change_mtu	= axienet_change_mtu,
1726 	.ndo_set_mac_address = netdev_set_mac_address,
1727 	.ndo_validate_addr = eth_validate_addr,
1728 	.ndo_eth_ioctl = axienet_ioctl,
1729 	.ndo_set_rx_mode = axienet_set_multicast_list,
1730 };
1731 
1732 /**
1733  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1734  * @ndev:	Pointer to net_device structure
1735  * @ed:		Pointer to ethtool_drvinfo structure
1736  *
1737  * This implements ethtool command for getting the driver information.
1738  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1739  */
1740 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1741 					 struct ethtool_drvinfo *ed)
1742 {
1743 	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1744 	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1745 }
1746 
1747 /**
1748  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1749  *				   AxiEthernet core.
1750  * @ndev:	Pointer to net_device structure
1751  *
1752  * This implements ethtool command for getting the total register length
1753  * information.
1754  *
1755  * Return: the total regs length
1756  */
1757 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1758 {
1759 	return sizeof(u32) * AXIENET_REGS_N;
1760 }
1761 
1762 /**
1763  * axienet_ethtools_get_regs - Dump the contents of all registers present
1764  *			       in AxiEthernet core.
1765  * @ndev:	Pointer to net_device structure
1766  * @regs:	Pointer to ethtool_regs structure
1767  * @ret:	Void pointer used to return the contents of the registers.
1768  *
1769  * This implements ethtool command for getting the Axi Ethernet register dump.
1770  * Issue "ethtool -d ethX" to execute this function.
1771  */
1772 static void axienet_ethtools_get_regs(struct net_device *ndev,
1773 				      struct ethtool_regs *regs, void *ret)
1774 {
1775 	u32 *data = (u32 *)ret;
1776 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1777 	struct axienet_local *lp = netdev_priv(ndev);
1778 
1779 	regs->version = 0;
1780 	regs->len = len;
1781 
1782 	memset(data, 0, len);
1783 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1784 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1785 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1786 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1787 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1788 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1789 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1790 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1791 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1792 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1793 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1794 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1795 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1796 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1797 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1798 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1799 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1800 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1801 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1802 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1803 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1804 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1805 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1806 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1807 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1808 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1809 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1810 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1811 	if (!lp->use_dmaengine) {
1812 		data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1813 		data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1814 		data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1815 		data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1816 		data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1817 		data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1818 		data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1819 		data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1820 	}
1821 }
1822 
1823 static void
1824 axienet_ethtools_get_ringparam(struct net_device *ndev,
1825 			       struct ethtool_ringparam *ering,
1826 			       struct kernel_ethtool_ringparam *kernel_ering,
1827 			       struct netlink_ext_ack *extack)
1828 {
1829 	struct axienet_local *lp = netdev_priv(ndev);
1830 
1831 	ering->rx_max_pending = RX_BD_NUM_MAX;
1832 	ering->rx_mini_max_pending = 0;
1833 	ering->rx_jumbo_max_pending = 0;
1834 	ering->tx_max_pending = TX_BD_NUM_MAX;
1835 	ering->rx_pending = lp->rx_bd_num;
1836 	ering->rx_mini_pending = 0;
1837 	ering->rx_jumbo_pending = 0;
1838 	ering->tx_pending = lp->tx_bd_num;
1839 }
1840 
1841 static int
1842 axienet_ethtools_set_ringparam(struct net_device *ndev,
1843 			       struct ethtool_ringparam *ering,
1844 			       struct kernel_ethtool_ringparam *kernel_ering,
1845 			       struct netlink_ext_ack *extack)
1846 {
1847 	struct axienet_local *lp = netdev_priv(ndev);
1848 
1849 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1850 	    ering->rx_mini_pending ||
1851 	    ering->rx_jumbo_pending ||
1852 	    ering->tx_pending < TX_BD_NUM_MIN ||
1853 	    ering->tx_pending > TX_BD_NUM_MAX)
1854 		return -EINVAL;
1855 
1856 	if (netif_running(ndev))
1857 		return -EBUSY;
1858 
1859 	lp->rx_bd_num = ering->rx_pending;
1860 	lp->tx_bd_num = ering->tx_pending;
1861 	return 0;
1862 }
1863 
1864 /**
1865  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1866  *				     Tx and Rx paths.
1867  * @ndev:	Pointer to net_device structure
1868  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1869  *
1870  * This implements ethtool command for getting axi ethernet pause frame
1871  * setting. Issue "ethtool -a ethX" to execute this function.
1872  */
1873 static void
1874 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1875 				struct ethtool_pauseparam *epauseparm)
1876 {
1877 	struct axienet_local *lp = netdev_priv(ndev);
1878 
1879 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1880 }
1881 
1882 /**
1883  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1884  *				     settings.
1885  * @ndev:	Pointer to net_device structure
1886  * @epauseparm:Pointer to ethtool_pauseparam structure
1887  *
1888  * This implements ethtool command for enabling flow control on Rx and Tx
1889  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1890  * function.
1891  *
1892  * Return: 0 on success, -EFAULT if device is running
1893  */
1894 static int
1895 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1896 				struct ethtool_pauseparam *epauseparm)
1897 {
1898 	struct axienet_local *lp = netdev_priv(ndev);
1899 
1900 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1901 }
1902 
1903 /**
1904  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1905  * @ndev:	Pointer to net_device structure
1906  * @ecoalesce:	Pointer to ethtool_coalesce structure
1907  * @kernel_coal: ethtool CQE mode setting structure
1908  * @extack:	extack for reporting error messages
1909  *
1910  * This implements ethtool command for getting the DMA interrupt coalescing
1911  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1912  * execute this function.
1913  *
1914  * Return: 0 always
1915  */
1916 static int
1917 axienet_ethtools_get_coalesce(struct net_device *ndev,
1918 			      struct ethtool_coalesce *ecoalesce,
1919 			      struct kernel_ethtool_coalesce *kernel_coal,
1920 			      struct netlink_ext_ack *extack)
1921 {
1922 	struct axienet_local *lp = netdev_priv(ndev);
1923 
1924 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1925 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1926 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1927 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1928 	return 0;
1929 }
1930 
1931 /**
1932  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1933  * @ndev:	Pointer to net_device structure
1934  * @ecoalesce:	Pointer to ethtool_coalesce structure
1935  * @kernel_coal: ethtool CQE mode setting structure
1936  * @extack:	extack for reporting error messages
1937  *
1938  * This implements ethtool command for setting the DMA interrupt coalescing
1939  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1940  * prompt to execute this function.
1941  *
1942  * Return: 0, on success, Non-zero error value on failure.
1943  */
1944 static int
1945 axienet_ethtools_set_coalesce(struct net_device *ndev,
1946 			      struct ethtool_coalesce *ecoalesce,
1947 			      struct kernel_ethtool_coalesce *kernel_coal,
1948 			      struct netlink_ext_ack *extack)
1949 {
1950 	struct axienet_local *lp = netdev_priv(ndev);
1951 
1952 	if (netif_running(ndev)) {
1953 		NL_SET_ERR_MSG(extack,
1954 			       "Please stop netif before applying configuration");
1955 		return -EBUSY;
1956 	}
1957 
1958 	if (ecoalesce->rx_max_coalesced_frames)
1959 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1960 	if (ecoalesce->rx_coalesce_usecs)
1961 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1962 	if (ecoalesce->tx_max_coalesced_frames)
1963 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1964 	if (ecoalesce->tx_coalesce_usecs)
1965 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1966 
1967 	return 0;
1968 }
1969 
1970 static int
1971 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1972 				    struct ethtool_link_ksettings *cmd)
1973 {
1974 	struct axienet_local *lp = netdev_priv(ndev);
1975 
1976 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1977 }
1978 
1979 static int
1980 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1981 				    const struct ethtool_link_ksettings *cmd)
1982 {
1983 	struct axienet_local *lp = netdev_priv(ndev);
1984 
1985 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1986 }
1987 
1988 static int axienet_ethtools_nway_reset(struct net_device *dev)
1989 {
1990 	struct axienet_local *lp = netdev_priv(dev);
1991 
1992 	return phylink_ethtool_nway_reset(lp->phylink);
1993 }
1994 
1995 static const struct ethtool_ops axienet_ethtool_ops = {
1996 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1997 				     ETHTOOL_COALESCE_USECS,
1998 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1999 	.get_regs_len   = axienet_ethtools_get_regs_len,
2000 	.get_regs       = axienet_ethtools_get_regs,
2001 	.get_link       = ethtool_op_get_link,
2002 	.get_ringparam	= axienet_ethtools_get_ringparam,
2003 	.set_ringparam	= axienet_ethtools_set_ringparam,
2004 	.get_pauseparam = axienet_ethtools_get_pauseparam,
2005 	.set_pauseparam = axienet_ethtools_set_pauseparam,
2006 	.get_coalesce   = axienet_ethtools_get_coalesce,
2007 	.set_coalesce   = axienet_ethtools_set_coalesce,
2008 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
2009 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
2010 	.nway_reset	= axienet_ethtools_nway_reset,
2011 };
2012 
2013 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
2014 {
2015 	return container_of(pcs, struct axienet_local, pcs);
2016 }
2017 
2018 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
2019 				  struct phylink_link_state *state)
2020 {
2021 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2022 
2023 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
2024 }
2025 
2026 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
2027 {
2028 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2029 
2030 	phylink_mii_c22_pcs_an_restart(pcs_phy);
2031 }
2032 
2033 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2034 			      phy_interface_t interface,
2035 			      const unsigned long *advertising,
2036 			      bool permit_pause_to_mac)
2037 {
2038 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2039 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
2040 	struct axienet_local *lp = netdev_priv(ndev);
2041 	int ret;
2042 
2043 	if (lp->switch_x_sgmii) {
2044 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
2045 				    interface == PHY_INTERFACE_MODE_SGMII ?
2046 					XLNX_MII_STD_SELECT_SGMII : 0);
2047 		if (ret < 0) {
2048 			netdev_warn(ndev,
2049 				    "Failed to switch PHY interface: %d\n",
2050 				    ret);
2051 			return ret;
2052 		}
2053 	}
2054 
2055 	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
2056 					 neg_mode);
2057 	if (ret < 0)
2058 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
2059 
2060 	return ret;
2061 }
2062 
2063 static const struct phylink_pcs_ops axienet_pcs_ops = {
2064 	.pcs_get_state = axienet_pcs_get_state,
2065 	.pcs_config = axienet_pcs_config,
2066 	.pcs_an_restart = axienet_pcs_an_restart,
2067 };
2068 
2069 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
2070 						  phy_interface_t interface)
2071 {
2072 	struct net_device *ndev = to_net_dev(config->dev);
2073 	struct axienet_local *lp = netdev_priv(ndev);
2074 
2075 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
2076 	    interface ==  PHY_INTERFACE_MODE_SGMII)
2077 		return &lp->pcs;
2078 
2079 	return NULL;
2080 }
2081 
2082 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
2083 			       const struct phylink_link_state *state)
2084 {
2085 	/* nothing meaningful to do */
2086 }
2087 
2088 static void axienet_mac_link_down(struct phylink_config *config,
2089 				  unsigned int mode,
2090 				  phy_interface_t interface)
2091 {
2092 	/* nothing meaningful to do */
2093 }
2094 
2095 static void axienet_mac_link_up(struct phylink_config *config,
2096 				struct phy_device *phy,
2097 				unsigned int mode, phy_interface_t interface,
2098 				int speed, int duplex,
2099 				bool tx_pause, bool rx_pause)
2100 {
2101 	struct net_device *ndev = to_net_dev(config->dev);
2102 	struct axienet_local *lp = netdev_priv(ndev);
2103 	u32 emmc_reg, fcc_reg;
2104 
2105 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
2106 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
2107 
2108 	switch (speed) {
2109 	case SPEED_1000:
2110 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
2111 		break;
2112 	case SPEED_100:
2113 		emmc_reg |= XAE_EMMC_LINKSPD_100;
2114 		break;
2115 	case SPEED_10:
2116 		emmc_reg |= XAE_EMMC_LINKSPD_10;
2117 		break;
2118 	default:
2119 		dev_err(&ndev->dev,
2120 			"Speed other than 10, 100 or 1Gbps is not supported\n");
2121 		break;
2122 	}
2123 
2124 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
2125 
2126 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
2127 	if (tx_pause)
2128 		fcc_reg |= XAE_FCC_FCTX_MASK;
2129 	else
2130 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
2131 	if (rx_pause)
2132 		fcc_reg |= XAE_FCC_FCRX_MASK;
2133 	else
2134 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
2135 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
2136 }
2137 
2138 static const struct phylink_mac_ops axienet_phylink_ops = {
2139 	.mac_select_pcs = axienet_mac_select_pcs,
2140 	.mac_config = axienet_mac_config,
2141 	.mac_link_down = axienet_mac_link_down,
2142 	.mac_link_up = axienet_mac_link_up,
2143 };
2144 
2145 /**
2146  * axienet_dma_err_handler - Work queue task for Axi DMA Error
2147  * @work:	pointer to work_struct
2148  *
2149  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
2150  * Tx/Rx BDs.
2151  */
2152 static void axienet_dma_err_handler(struct work_struct *work)
2153 {
2154 	u32 i;
2155 	u32 axienet_status;
2156 	struct axidma_bd *cur_p;
2157 	struct axienet_local *lp = container_of(work, struct axienet_local,
2158 						dma_err_task);
2159 	struct net_device *ndev = lp->ndev;
2160 
2161 	/* Don't bother if we are going to stop anyway */
2162 	if (READ_ONCE(lp->stopping))
2163 		return;
2164 
2165 	napi_disable(&lp->napi_tx);
2166 	napi_disable(&lp->napi_rx);
2167 
2168 	axienet_setoptions(ndev, lp->options &
2169 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2170 
2171 	axienet_dma_stop(lp);
2172 
2173 	for (i = 0; i < lp->tx_bd_num; i++) {
2174 		cur_p = &lp->tx_bd_v[i];
2175 		if (cur_p->cntrl) {
2176 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
2177 
2178 			dma_unmap_single(lp->dev, addr,
2179 					 (cur_p->cntrl &
2180 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
2181 					 DMA_TO_DEVICE);
2182 		}
2183 		if (cur_p->skb)
2184 			dev_kfree_skb_irq(cur_p->skb);
2185 		cur_p->phys = 0;
2186 		cur_p->phys_msb = 0;
2187 		cur_p->cntrl = 0;
2188 		cur_p->status = 0;
2189 		cur_p->app0 = 0;
2190 		cur_p->app1 = 0;
2191 		cur_p->app2 = 0;
2192 		cur_p->app3 = 0;
2193 		cur_p->app4 = 0;
2194 		cur_p->skb = NULL;
2195 	}
2196 
2197 	for (i = 0; i < lp->rx_bd_num; i++) {
2198 		cur_p = &lp->rx_bd_v[i];
2199 		cur_p->status = 0;
2200 		cur_p->app0 = 0;
2201 		cur_p->app1 = 0;
2202 		cur_p->app2 = 0;
2203 		cur_p->app3 = 0;
2204 		cur_p->app4 = 0;
2205 	}
2206 
2207 	lp->tx_bd_ci = 0;
2208 	lp->tx_bd_tail = 0;
2209 	lp->rx_bd_ci = 0;
2210 
2211 	axienet_dma_start(lp);
2212 
2213 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
2214 	axienet_status &= ~XAE_RCW1_RX_MASK;
2215 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
2216 
2217 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
2218 	if (axienet_status & XAE_INT_RXRJECT_MASK)
2219 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
2220 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
2221 		    XAE_INT_RECV_ERROR_MASK : 0);
2222 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
2223 
2224 	/* Sync default options with HW but leave receiver and
2225 	 * transmitter disabled.
2226 	 */
2227 	axienet_setoptions(ndev, lp->options &
2228 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2229 	axienet_set_mac_address(ndev, NULL);
2230 	axienet_set_multicast_list(ndev);
2231 	napi_enable(&lp->napi_rx);
2232 	napi_enable(&lp->napi_tx);
2233 	axienet_setoptions(ndev, lp->options);
2234 }
2235 
2236 /**
2237  * axienet_probe - Axi Ethernet probe function.
2238  * @pdev:	Pointer to platform device structure.
2239  *
2240  * Return: 0, on success
2241  *	    Non-zero error value on failure.
2242  *
2243  * This is the probe routine for Axi Ethernet driver. This is called before
2244  * any other driver routines are invoked. It allocates and sets up the Ethernet
2245  * device. Parses through device tree and populates fields of
2246  * axienet_local. It registers the Ethernet device.
2247  */
2248 static int axienet_probe(struct platform_device *pdev)
2249 {
2250 	int ret;
2251 	struct device_node *np;
2252 	struct axienet_local *lp;
2253 	struct net_device *ndev;
2254 	struct resource *ethres;
2255 	u8 mac_addr[ETH_ALEN];
2256 	int addr_width = 32;
2257 	u32 value;
2258 
2259 	ndev = alloc_etherdev(sizeof(*lp));
2260 	if (!ndev)
2261 		return -ENOMEM;
2262 
2263 	platform_set_drvdata(pdev, ndev);
2264 
2265 	SET_NETDEV_DEV(ndev, &pdev->dev);
2266 	ndev->features = NETIF_F_SG;
2267 	ndev->ethtool_ops = &axienet_ethtool_ops;
2268 
2269 	/* MTU range: 64 - 9000 */
2270 	ndev->min_mtu = 64;
2271 	ndev->max_mtu = XAE_JUMBO_MTU;
2272 
2273 	lp = netdev_priv(ndev);
2274 	lp->ndev = ndev;
2275 	lp->dev = &pdev->dev;
2276 	lp->options = XAE_OPTION_DEFAULTS;
2277 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
2278 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
2279 
2280 	u64_stats_init(&lp->rx_stat_sync);
2281 	u64_stats_init(&lp->tx_stat_sync);
2282 
2283 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
2284 	if (!lp->axi_clk) {
2285 		/* For backward compatibility, if named AXI clock is not present,
2286 		 * treat the first clock specified as the AXI clock.
2287 		 */
2288 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
2289 	}
2290 	if (IS_ERR(lp->axi_clk)) {
2291 		ret = PTR_ERR(lp->axi_clk);
2292 		goto free_netdev;
2293 	}
2294 	ret = clk_prepare_enable(lp->axi_clk);
2295 	if (ret) {
2296 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
2297 		goto free_netdev;
2298 	}
2299 
2300 	lp->misc_clks[0].id = "axis_clk";
2301 	lp->misc_clks[1].id = "ref_clk";
2302 	lp->misc_clks[2].id = "mgt_clk";
2303 
2304 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2305 	if (ret)
2306 		goto cleanup_clk;
2307 
2308 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2309 	if (ret)
2310 		goto cleanup_clk;
2311 
2312 	/* Map device registers */
2313 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
2314 	if (IS_ERR(lp->regs)) {
2315 		ret = PTR_ERR(lp->regs);
2316 		goto cleanup_clk;
2317 	}
2318 	lp->regs_start = ethres->start;
2319 
2320 	/* Setup checksum offload, but default to off if not specified */
2321 	lp->features = 0;
2322 
2323 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
2324 	if (!ret) {
2325 		switch (value) {
2326 		case 1:
2327 			lp->csum_offload_on_tx_path =
2328 				XAE_FEATURE_PARTIAL_TX_CSUM;
2329 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
2330 			/* Can checksum TCP/UDP over IPv4. */
2331 			ndev->features |= NETIF_F_IP_CSUM;
2332 			break;
2333 		case 2:
2334 			lp->csum_offload_on_tx_path =
2335 				XAE_FEATURE_FULL_TX_CSUM;
2336 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
2337 			/* Can checksum TCP/UDP over IPv4. */
2338 			ndev->features |= NETIF_F_IP_CSUM;
2339 			break;
2340 		default:
2341 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
2342 		}
2343 	}
2344 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
2345 	if (!ret) {
2346 		switch (value) {
2347 		case 1:
2348 			lp->csum_offload_on_rx_path =
2349 				XAE_FEATURE_PARTIAL_RX_CSUM;
2350 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
2351 			break;
2352 		case 2:
2353 			lp->csum_offload_on_rx_path =
2354 				XAE_FEATURE_FULL_RX_CSUM;
2355 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
2356 			break;
2357 		default:
2358 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
2359 		}
2360 	}
2361 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
2362 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
2363 	 * we can enable jumbo option and start supporting jumbo frames.
2364 	 * Here we check for memory allocated for Rx/Tx in the hardware from
2365 	 * the device-tree and accordingly set flags.
2366 	 */
2367 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
2368 
2369 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
2370 						   "xlnx,switch-x-sgmii");
2371 
2372 	/* Start with the proprietary, and broken phy_type */
2373 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
2374 	if (!ret) {
2375 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
2376 		switch (value) {
2377 		case XAE_PHY_TYPE_MII:
2378 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
2379 			break;
2380 		case XAE_PHY_TYPE_GMII:
2381 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
2382 			break;
2383 		case XAE_PHY_TYPE_RGMII_2_0:
2384 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
2385 			break;
2386 		case XAE_PHY_TYPE_SGMII:
2387 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2388 			break;
2389 		case XAE_PHY_TYPE_1000BASE_X:
2390 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2391 			break;
2392 		default:
2393 			ret = -EINVAL;
2394 			goto cleanup_clk;
2395 		}
2396 	} else {
2397 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2398 		if (ret)
2399 			goto cleanup_clk;
2400 	}
2401 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2402 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2403 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2404 		ret = -EINVAL;
2405 		goto cleanup_clk;
2406 	}
2407 
2408 	if (!of_find_property(pdev->dev.of_node, "dmas", NULL)) {
2409 		/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2410 		np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2411 
2412 		if (np) {
2413 			struct resource dmares;
2414 
2415 			ret = of_address_to_resource(np, 0, &dmares);
2416 			if (ret) {
2417 				dev_err(&pdev->dev,
2418 					"unable to get DMA resource\n");
2419 				of_node_put(np);
2420 				goto cleanup_clk;
2421 			}
2422 			lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2423 							     &dmares);
2424 			lp->rx_irq = irq_of_parse_and_map(np, 1);
2425 			lp->tx_irq = irq_of_parse_and_map(np, 0);
2426 			of_node_put(np);
2427 			lp->eth_irq = platform_get_irq_optional(pdev, 0);
2428 		} else {
2429 			/* Check for these resources directly on the Ethernet node. */
2430 			lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2431 			lp->rx_irq = platform_get_irq(pdev, 1);
2432 			lp->tx_irq = platform_get_irq(pdev, 0);
2433 			lp->eth_irq = platform_get_irq_optional(pdev, 2);
2434 		}
2435 		if (IS_ERR(lp->dma_regs)) {
2436 			dev_err(&pdev->dev, "could not map DMA regs\n");
2437 			ret = PTR_ERR(lp->dma_regs);
2438 			goto cleanup_clk;
2439 		}
2440 		if (lp->rx_irq <= 0 || lp->tx_irq <= 0) {
2441 			dev_err(&pdev->dev, "could not determine irqs\n");
2442 			ret = -ENOMEM;
2443 			goto cleanup_clk;
2444 		}
2445 
2446 		/* Reset core now that clocks are enabled, prior to accessing MDIO */
2447 		ret = __axienet_device_reset(lp);
2448 		if (ret)
2449 			goto cleanup_clk;
2450 
2451 		/* Autodetect the need for 64-bit DMA pointers.
2452 		 * When the IP is configured for a bus width bigger than 32 bits,
2453 		 * writing the MSB registers is mandatory, even if they are all 0.
2454 		 * We can detect this case by writing all 1's to one such register
2455 		 * and see if that sticks: when the IP is configured for 32 bits
2456 		 * only, those registers are RES0.
2457 		 * Those MSB registers were introduced in IP v7.1, which we check first.
2458 		 */
2459 		if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2460 			void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2461 
2462 			iowrite32(0x0, desc);
2463 			if (ioread32(desc) == 0) {	/* sanity check */
2464 				iowrite32(0xffffffff, desc);
2465 				if (ioread32(desc) > 0) {
2466 					lp->features |= XAE_FEATURE_DMA_64BIT;
2467 					addr_width = 64;
2468 					dev_info(&pdev->dev,
2469 						 "autodetected 64-bit DMA range\n");
2470 				}
2471 				iowrite32(0x0, desc);
2472 			}
2473 		}
2474 		if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2475 			dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2476 			ret = -EINVAL;
2477 			goto cleanup_clk;
2478 		}
2479 
2480 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2481 		if (ret) {
2482 			dev_err(&pdev->dev, "No suitable DMA available\n");
2483 			goto cleanup_clk;
2484 		}
2485 		netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
2486 		netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
2487 	} else {
2488 		struct xilinx_vdma_config cfg;
2489 		struct dma_chan *tx_chan;
2490 
2491 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2492 		if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) {
2493 			ret = lp->eth_irq;
2494 			goto cleanup_clk;
2495 		}
2496 		tx_chan = dma_request_chan(lp->dev, "tx_chan0");
2497 		if (IS_ERR(tx_chan)) {
2498 			ret = PTR_ERR(tx_chan);
2499 			dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n");
2500 			goto cleanup_clk;
2501 		}
2502 
2503 		cfg.reset = 1;
2504 		/* As name says VDMA but it has support for DMA channel reset */
2505 		ret = xilinx_vdma_channel_set_config(tx_chan, &cfg);
2506 		if (ret < 0) {
2507 			dev_err(&pdev->dev, "Reset channel failed\n");
2508 			dma_release_channel(tx_chan);
2509 			goto cleanup_clk;
2510 		}
2511 
2512 		dma_release_channel(tx_chan);
2513 		lp->use_dmaengine = 1;
2514 	}
2515 
2516 	if (lp->use_dmaengine)
2517 		ndev->netdev_ops = &axienet_netdev_dmaengine_ops;
2518 	else
2519 		ndev->netdev_ops = &axienet_netdev_ops;
2520 	/* Check for Ethernet core IRQ (optional) */
2521 	if (lp->eth_irq <= 0)
2522 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2523 
2524 	/* Retrieve the MAC address */
2525 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2526 	if (!ret) {
2527 		axienet_set_mac_address(ndev, mac_addr);
2528 	} else {
2529 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2530 			 ret);
2531 		axienet_set_mac_address(ndev, NULL);
2532 	}
2533 
2534 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2535 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2536 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2537 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2538 
2539 	ret = axienet_mdio_setup(lp);
2540 	if (ret)
2541 		dev_warn(&pdev->dev,
2542 			 "error registering MDIO bus: %d\n", ret);
2543 
2544 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2545 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2546 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2547 		if (!np) {
2548 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2549 			 * Falling back to "phy-handle" here is only for
2550 			 * backward compatibility with old device trees.
2551 			 */
2552 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2553 		}
2554 		if (!np) {
2555 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2556 			ret = -EINVAL;
2557 			goto cleanup_mdio;
2558 		}
2559 		lp->pcs_phy = of_mdio_find_device(np);
2560 		if (!lp->pcs_phy) {
2561 			ret = -EPROBE_DEFER;
2562 			of_node_put(np);
2563 			goto cleanup_mdio;
2564 		}
2565 		of_node_put(np);
2566 		lp->pcs.ops = &axienet_pcs_ops;
2567 		lp->pcs.neg_mode = true;
2568 		lp->pcs.poll = true;
2569 	}
2570 
2571 	lp->phylink_config.dev = &ndev->dev;
2572 	lp->phylink_config.type = PHYLINK_NETDEV;
2573 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2574 		MAC_10FD | MAC_100FD | MAC_1000FD;
2575 
2576 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2577 	if (lp->switch_x_sgmii) {
2578 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2579 			  lp->phylink_config.supported_interfaces);
2580 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2581 			  lp->phylink_config.supported_interfaces);
2582 	}
2583 
2584 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2585 				     lp->phy_mode,
2586 				     &axienet_phylink_ops);
2587 	if (IS_ERR(lp->phylink)) {
2588 		ret = PTR_ERR(lp->phylink);
2589 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2590 		goto cleanup_mdio;
2591 	}
2592 
2593 	ret = register_netdev(lp->ndev);
2594 	if (ret) {
2595 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2596 		goto cleanup_phylink;
2597 	}
2598 
2599 	return 0;
2600 
2601 cleanup_phylink:
2602 	phylink_destroy(lp->phylink);
2603 
2604 cleanup_mdio:
2605 	if (lp->pcs_phy)
2606 		put_device(&lp->pcs_phy->dev);
2607 	if (lp->mii_bus)
2608 		axienet_mdio_teardown(lp);
2609 cleanup_clk:
2610 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2611 	clk_disable_unprepare(lp->axi_clk);
2612 
2613 free_netdev:
2614 	free_netdev(ndev);
2615 
2616 	return ret;
2617 }
2618 
2619 static void axienet_remove(struct platform_device *pdev)
2620 {
2621 	struct net_device *ndev = platform_get_drvdata(pdev);
2622 	struct axienet_local *lp = netdev_priv(ndev);
2623 
2624 	unregister_netdev(ndev);
2625 
2626 	if (lp->phylink)
2627 		phylink_destroy(lp->phylink);
2628 
2629 	if (lp->pcs_phy)
2630 		put_device(&lp->pcs_phy->dev);
2631 
2632 	axienet_mdio_teardown(lp);
2633 
2634 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2635 	clk_disable_unprepare(lp->axi_clk);
2636 
2637 	free_netdev(ndev);
2638 }
2639 
2640 static void axienet_shutdown(struct platform_device *pdev)
2641 {
2642 	struct net_device *ndev = platform_get_drvdata(pdev);
2643 
2644 	rtnl_lock();
2645 	netif_device_detach(ndev);
2646 
2647 	if (netif_running(ndev))
2648 		dev_close(ndev);
2649 
2650 	rtnl_unlock();
2651 }
2652 
2653 static int axienet_suspend(struct device *dev)
2654 {
2655 	struct net_device *ndev = dev_get_drvdata(dev);
2656 
2657 	if (!netif_running(ndev))
2658 		return 0;
2659 
2660 	netif_device_detach(ndev);
2661 
2662 	rtnl_lock();
2663 	axienet_stop(ndev);
2664 	rtnl_unlock();
2665 
2666 	return 0;
2667 }
2668 
2669 static int axienet_resume(struct device *dev)
2670 {
2671 	struct net_device *ndev = dev_get_drvdata(dev);
2672 
2673 	if (!netif_running(ndev))
2674 		return 0;
2675 
2676 	rtnl_lock();
2677 	axienet_open(ndev);
2678 	rtnl_unlock();
2679 
2680 	netif_device_attach(ndev);
2681 
2682 	return 0;
2683 }
2684 
2685 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2686 				axienet_suspend, axienet_resume);
2687 
2688 static struct platform_driver axienet_driver = {
2689 	.probe = axienet_probe,
2690 	.remove_new = axienet_remove,
2691 	.shutdown = axienet_shutdown,
2692 	.driver = {
2693 		 .name = "xilinx_axienet",
2694 		 .pm = &axienet_pm_ops,
2695 		 .of_match_table = axienet_of_match,
2696 	},
2697 };
2698 
2699 module_platform_driver(axienet_driver);
2700 
2701 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2702 MODULE_AUTHOR("Xilinx");
2703 MODULE_LICENSE("GPL");
2704