xref: /linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/platform_device.h>
36 #include <linux/skbuff.h>
37 #include <linux/math64.h>
38 #include <linux/phy.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/dmaengine.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dma/xilinx_dma.h>
44 #include <linux/circ_buf.h>
45 #include <net/netdev_queues.h>
46 
47 #include "xilinx_axienet.h"
48 
49 /* Descriptors defines for Tx and Rx DMA */
50 #define TX_BD_NUM_DEFAULT		128
51 #define RX_BD_NUM_DEFAULT		1024
52 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
53 #define TX_BD_NUM_MAX			4096
54 #define RX_BD_NUM_MAX			4096
55 #define DMA_NUM_APP_WORDS		5
56 #define LEN_APP				4
57 #define RX_BUF_NUM_DEFAULT		128
58 
59 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
60 #define DRIVER_NAME		"xaxienet"
61 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
62 #define DRIVER_VERSION		"1.00a"
63 
64 #define AXIENET_REGS_N		40
65 
66 static void axienet_rx_submit_desc(struct net_device *ndev);
67 
68 /* Match table for of_platform binding */
69 static const struct of_device_id axienet_of_match[] = {
70 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
71 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
72 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
73 	{},
74 };
75 
76 MODULE_DEVICE_TABLE(of, axienet_of_match);
77 
78 /* Option table for setting up Axi Ethernet hardware options */
79 static struct axienet_option axienet_options[] = {
80 	/* Turn on jumbo packet support for both Rx and Tx */
81 	{
82 		.opt = XAE_OPTION_JUMBO,
83 		.reg = XAE_TC_OFFSET,
84 		.m_or = XAE_TC_JUM_MASK,
85 	}, {
86 		.opt = XAE_OPTION_JUMBO,
87 		.reg = XAE_RCW1_OFFSET,
88 		.m_or = XAE_RCW1_JUM_MASK,
89 	}, { /* Turn on VLAN packet support for both Rx and Tx */
90 		.opt = XAE_OPTION_VLAN,
91 		.reg = XAE_TC_OFFSET,
92 		.m_or = XAE_TC_VLAN_MASK,
93 	}, {
94 		.opt = XAE_OPTION_VLAN,
95 		.reg = XAE_RCW1_OFFSET,
96 		.m_or = XAE_RCW1_VLAN_MASK,
97 	}, { /* Turn on FCS stripping on receive packets */
98 		.opt = XAE_OPTION_FCS_STRIP,
99 		.reg = XAE_RCW1_OFFSET,
100 		.m_or = XAE_RCW1_FCS_MASK,
101 	}, { /* Turn on FCS insertion on transmit packets */
102 		.opt = XAE_OPTION_FCS_INSERT,
103 		.reg = XAE_TC_OFFSET,
104 		.m_or = XAE_TC_FCS_MASK,
105 	}, { /* Turn off length/type field checking on receive packets */
106 		.opt = XAE_OPTION_LENTYPE_ERR,
107 		.reg = XAE_RCW1_OFFSET,
108 		.m_or = XAE_RCW1_LT_DIS_MASK,
109 	}, { /* Turn on Rx flow control */
110 		.opt = XAE_OPTION_FLOW_CONTROL,
111 		.reg = XAE_FCC_OFFSET,
112 		.m_or = XAE_FCC_FCRX_MASK,
113 	}, { /* Turn on Tx flow control */
114 		.opt = XAE_OPTION_FLOW_CONTROL,
115 		.reg = XAE_FCC_OFFSET,
116 		.m_or = XAE_FCC_FCTX_MASK,
117 	}, { /* Turn on promiscuous frame filtering */
118 		.opt = XAE_OPTION_PROMISC,
119 		.reg = XAE_FMI_OFFSET,
120 		.m_or = XAE_FMI_PM_MASK,
121 	}, { /* Enable transmitter */
122 		.opt = XAE_OPTION_TXEN,
123 		.reg = XAE_TC_OFFSET,
124 		.m_or = XAE_TC_TX_MASK,
125 	}, { /* Enable receiver */
126 		.opt = XAE_OPTION_RXEN,
127 		.reg = XAE_RCW1_OFFSET,
128 		.m_or = XAE_RCW1_RX_MASK,
129 	},
130 	{}
131 };
132 
133 static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i)
134 {
135 	return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)];
136 }
137 
138 static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i)
139 {
140 	return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)];
141 }
142 
143 /**
144  * axienet_dma_in32 - Memory mapped Axi DMA register read
145  * @lp:		Pointer to axienet local structure
146  * @reg:	Address offset from the base address of the Axi DMA core
147  *
148  * Return: The contents of the Axi DMA register
149  *
150  * This function returns the contents of the corresponding Axi DMA register.
151  */
152 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
153 {
154 	return ioread32(lp->dma_regs + reg);
155 }
156 
157 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
158 			       struct axidma_bd *desc)
159 {
160 	desc->phys = lower_32_bits(addr);
161 	if (lp->features & XAE_FEATURE_DMA_64BIT)
162 		desc->phys_msb = upper_32_bits(addr);
163 }
164 
165 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
166 				     struct axidma_bd *desc)
167 {
168 	dma_addr_t ret = desc->phys;
169 
170 	if (lp->features & XAE_FEATURE_DMA_64BIT)
171 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
172 
173 	return ret;
174 }
175 
176 /**
177  * axienet_dma_bd_release - Release buffer descriptor rings
178  * @ndev:	Pointer to the net_device structure
179  *
180  * This function is used to release the descriptors allocated in
181  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
182  * driver stop api is called.
183  */
184 static void axienet_dma_bd_release(struct net_device *ndev)
185 {
186 	int i;
187 	struct axienet_local *lp = netdev_priv(ndev);
188 
189 	/* If we end up here, tx_bd_v must have been DMA allocated. */
190 	dma_free_coherent(lp->dev,
191 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
192 			  lp->tx_bd_v,
193 			  lp->tx_bd_p);
194 
195 	if (!lp->rx_bd_v)
196 		return;
197 
198 	for (i = 0; i < lp->rx_bd_num; i++) {
199 		dma_addr_t phys;
200 
201 		/* A NULL skb means this descriptor has not been initialised
202 		 * at all.
203 		 */
204 		if (!lp->rx_bd_v[i].skb)
205 			break;
206 
207 		dev_kfree_skb(lp->rx_bd_v[i].skb);
208 
209 		/* For each descriptor, we programmed cntrl with the (non-zero)
210 		 * descriptor size, after it had been successfully allocated.
211 		 * So a non-zero value in there means we need to unmap it.
212 		 */
213 		if (lp->rx_bd_v[i].cntrl) {
214 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
215 			dma_unmap_single(lp->dev, phys,
216 					 lp->max_frm_size, DMA_FROM_DEVICE);
217 		}
218 	}
219 
220 	dma_free_coherent(lp->dev,
221 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
222 			  lp->rx_bd_v,
223 			  lp->rx_bd_p);
224 }
225 
226 /**
227  * axienet_usec_to_timer - Calculate IRQ delay timer value
228  * @lp:		Pointer to the axienet_local structure
229  * @coalesce_usec: Microseconds to convert into timer value
230  */
231 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
232 {
233 	u32 result;
234 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
235 
236 	if (lp->axi_clk)
237 		clk_rate = clk_get_rate(lp->axi_clk);
238 
239 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
240 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
241 					 (u64)125000000);
242 	if (result > 255)
243 		result = 255;
244 
245 	return result;
246 }
247 
248 /**
249  * axienet_dma_start - Set up DMA registers and start DMA operation
250  * @lp:		Pointer to the axienet_local structure
251  */
252 static void axienet_dma_start(struct axienet_local *lp)
253 {
254 	/* Start updating the Rx channel control register */
255 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
256 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
257 	/* Only set interrupt delay timer if not generating an interrupt on
258 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
259 	 */
260 	if (lp->coalesce_count_rx > 1)
261 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
262 					<< XAXIDMA_DELAY_SHIFT) |
263 				 XAXIDMA_IRQ_DELAY_MASK;
264 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
265 
266 	/* Start updating the Tx channel control register */
267 	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
268 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
269 	/* Only set interrupt delay timer if not generating an interrupt on
270 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
271 	 */
272 	if (lp->coalesce_count_tx > 1)
273 		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
274 					<< XAXIDMA_DELAY_SHIFT) |
275 				 XAXIDMA_IRQ_DELAY_MASK;
276 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
277 
278 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
279 	 * halted state. This will make the Rx side ready for reception.
280 	 */
281 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
282 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
283 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
284 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
285 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
286 
287 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
288 	 * Tx channel is now ready to run. But only after we write to the
289 	 * tail pointer register that the Tx channel will start transmitting.
290 	 */
291 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
292 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
293 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
294 }
295 
296 /**
297  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
298  * @ndev:	Pointer to the net_device structure
299  *
300  * Return: 0, on success -ENOMEM, on failure
301  *
302  * This function is called to initialize the Rx and Tx DMA descriptor
303  * rings. This initializes the descriptors with required default values
304  * and is called when Axi Ethernet driver reset is called.
305  */
306 static int axienet_dma_bd_init(struct net_device *ndev)
307 {
308 	int i;
309 	struct sk_buff *skb;
310 	struct axienet_local *lp = netdev_priv(ndev);
311 
312 	/* Reset the indexes which are used for accessing the BDs */
313 	lp->tx_bd_ci = 0;
314 	lp->tx_bd_tail = 0;
315 	lp->rx_bd_ci = 0;
316 
317 	/* Allocate the Tx and Rx buffer descriptors. */
318 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
319 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
320 					 &lp->tx_bd_p, GFP_KERNEL);
321 	if (!lp->tx_bd_v)
322 		return -ENOMEM;
323 
324 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
325 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
326 					 &lp->rx_bd_p, GFP_KERNEL);
327 	if (!lp->rx_bd_v)
328 		goto out;
329 
330 	for (i = 0; i < lp->tx_bd_num; i++) {
331 		dma_addr_t addr = lp->tx_bd_p +
332 				  sizeof(*lp->tx_bd_v) *
333 				  ((i + 1) % lp->tx_bd_num);
334 
335 		lp->tx_bd_v[i].next = lower_32_bits(addr);
336 		if (lp->features & XAE_FEATURE_DMA_64BIT)
337 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
338 	}
339 
340 	for (i = 0; i < lp->rx_bd_num; i++) {
341 		dma_addr_t addr;
342 
343 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
344 			((i + 1) % lp->rx_bd_num);
345 		lp->rx_bd_v[i].next = lower_32_bits(addr);
346 		if (lp->features & XAE_FEATURE_DMA_64BIT)
347 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
348 
349 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
350 		if (!skb)
351 			goto out;
352 
353 		lp->rx_bd_v[i].skb = skb;
354 		addr = dma_map_single(lp->dev, skb->data,
355 				      lp->max_frm_size, DMA_FROM_DEVICE);
356 		if (dma_mapping_error(lp->dev, addr)) {
357 			netdev_err(ndev, "DMA mapping error\n");
358 			goto out;
359 		}
360 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
361 
362 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
363 	}
364 
365 	axienet_dma_start(lp);
366 
367 	return 0;
368 out:
369 	axienet_dma_bd_release(ndev);
370 	return -ENOMEM;
371 }
372 
373 /**
374  * axienet_set_mac_address - Write the MAC address
375  * @ndev:	Pointer to the net_device structure
376  * @address:	6 byte Address to be written as MAC address
377  *
378  * This function is called to initialize the MAC address of the Axi Ethernet
379  * core. It writes to the UAW0 and UAW1 registers of the core.
380  */
381 static void axienet_set_mac_address(struct net_device *ndev,
382 				    const void *address)
383 {
384 	struct axienet_local *lp = netdev_priv(ndev);
385 
386 	if (address)
387 		eth_hw_addr_set(ndev, address);
388 	if (!is_valid_ether_addr(ndev->dev_addr))
389 		eth_hw_addr_random(ndev);
390 
391 	/* Set up unicast MAC address filter set its mac address */
392 	axienet_iow(lp, XAE_UAW0_OFFSET,
393 		    (ndev->dev_addr[0]) |
394 		    (ndev->dev_addr[1] << 8) |
395 		    (ndev->dev_addr[2] << 16) |
396 		    (ndev->dev_addr[3] << 24));
397 	axienet_iow(lp, XAE_UAW1_OFFSET,
398 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
399 		      ~XAE_UAW1_UNICASTADDR_MASK) |
400 		     (ndev->dev_addr[4] |
401 		     (ndev->dev_addr[5] << 8))));
402 }
403 
404 /**
405  * netdev_set_mac_address - Write the MAC address (from outside the driver)
406  * @ndev:	Pointer to the net_device structure
407  * @p:		6 byte Address to be written as MAC address
408  *
409  * Return: 0 for all conditions. Presently, there is no failure case.
410  *
411  * This function is called to initialize the MAC address of the Axi Ethernet
412  * core. It calls the core specific axienet_set_mac_address. This is the
413  * function that goes into net_device_ops structure entry ndo_set_mac_address.
414  */
415 static int netdev_set_mac_address(struct net_device *ndev, void *p)
416 {
417 	struct sockaddr *addr = p;
418 
419 	axienet_set_mac_address(ndev, addr->sa_data);
420 	return 0;
421 }
422 
423 /**
424  * axienet_set_multicast_list - Prepare the multicast table
425  * @ndev:	Pointer to the net_device structure
426  *
427  * This function is called to initialize the multicast table during
428  * initialization. The Axi Ethernet basic multicast support has a four-entry
429  * multicast table which is initialized here. Additionally this function
430  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
431  * means whenever the multicast table entries need to be updated this
432  * function gets called.
433  */
434 static void axienet_set_multicast_list(struct net_device *ndev)
435 {
436 	int i = 0;
437 	u32 reg, af0reg, af1reg;
438 	struct axienet_local *lp = netdev_priv(ndev);
439 
440 	reg = axienet_ior(lp, XAE_FMI_OFFSET);
441 	reg &= ~XAE_FMI_PM_MASK;
442 	if (ndev->flags & IFF_PROMISC)
443 		reg |= XAE_FMI_PM_MASK;
444 	else
445 		reg &= ~XAE_FMI_PM_MASK;
446 	axienet_iow(lp, XAE_FMI_OFFSET, reg);
447 
448 	if (ndev->flags & IFF_ALLMULTI ||
449 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
450 		reg &= 0xFFFFFF00;
451 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
452 		axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */
453 		axienet_iow(lp, XAE_AF1_OFFSET, 0);
454 		axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */
455 		axienet_iow(lp, XAE_AM1_OFFSET, 0);
456 		axienet_iow(lp, XAE_FFE_OFFSET, 1);
457 		i = 1;
458 	} else if (!netdev_mc_empty(ndev)) {
459 		struct netdev_hw_addr *ha;
460 
461 		netdev_for_each_mc_addr(ha, ndev) {
462 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
463 				break;
464 
465 			af0reg = (ha->addr[0]);
466 			af0reg |= (ha->addr[1] << 8);
467 			af0reg |= (ha->addr[2] << 16);
468 			af0reg |= (ha->addr[3] << 24);
469 
470 			af1reg = (ha->addr[4]);
471 			af1reg |= (ha->addr[5] << 8);
472 
473 			reg &= 0xFFFFFF00;
474 			reg |= i;
475 
476 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
477 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
478 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
479 			axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff);
480 			axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff);
481 			axienet_iow(lp, XAE_FFE_OFFSET, 1);
482 			i++;
483 		}
484 	}
485 
486 	for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
487 		reg &= 0xFFFFFF00;
488 		reg |= i;
489 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
490 		axienet_iow(lp, XAE_FFE_OFFSET, 0);
491 	}
492 }
493 
494 /**
495  * axienet_setoptions - Set an Axi Ethernet option
496  * @ndev:	Pointer to the net_device structure
497  * @options:	Option to be enabled/disabled
498  *
499  * The Axi Ethernet core has multiple features which can be selectively turned
500  * on or off. The typical options could be jumbo frame option, basic VLAN
501  * option, promiscuous mode option etc. This function is used to set or clear
502  * these options in the Axi Ethernet hardware. This is done through
503  * axienet_option structure .
504  */
505 static void axienet_setoptions(struct net_device *ndev, u32 options)
506 {
507 	int reg;
508 	struct axienet_local *lp = netdev_priv(ndev);
509 	struct axienet_option *tp = &axienet_options[0];
510 
511 	while (tp->opt) {
512 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
513 		if (options & tp->opt)
514 			reg |= tp->m_or;
515 		axienet_iow(lp, tp->reg, reg);
516 		tp++;
517 	}
518 
519 	lp->options |= options;
520 }
521 
522 static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat)
523 {
524 	u32 counter;
525 
526 	if (lp->reset_in_progress)
527 		return lp->hw_stat_base[stat];
528 
529 	counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
530 	return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]);
531 }
532 
533 static void axienet_stats_update(struct axienet_local *lp, bool reset)
534 {
535 	enum temac_stat stat;
536 
537 	write_seqcount_begin(&lp->hw_stats_seqcount);
538 	lp->reset_in_progress = reset;
539 	for (stat = 0; stat < STAT_COUNT; stat++) {
540 		u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
541 
542 		lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat];
543 		lp->hw_last_counter[stat] = counter;
544 	}
545 	write_seqcount_end(&lp->hw_stats_seqcount);
546 }
547 
548 static void axienet_refresh_stats(struct work_struct *work)
549 {
550 	struct axienet_local *lp = container_of(work, struct axienet_local,
551 						stats_work.work);
552 
553 	mutex_lock(&lp->stats_lock);
554 	axienet_stats_update(lp, false);
555 	mutex_unlock(&lp->stats_lock);
556 
557 	/* Just less than 2^32 bytes at 2.5 GBit/s */
558 	schedule_delayed_work(&lp->stats_work, 13 * HZ);
559 }
560 
561 static int __axienet_device_reset(struct axienet_local *lp)
562 {
563 	u32 value;
564 	int ret;
565 
566 	/* Save statistics counters in case they will be reset */
567 	mutex_lock(&lp->stats_lock);
568 	if (lp->features & XAE_FEATURE_STATS)
569 		axienet_stats_update(lp, true);
570 
571 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
572 	 * process of Axi DMA takes a while to complete as all pending
573 	 * commands/transfers will be flushed or completed during this
574 	 * reset process.
575 	 * Note that even though both TX and RX have their own reset register,
576 	 * they both reset the entire DMA core, so only one needs to be used.
577 	 */
578 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
579 	ret = read_poll_timeout(axienet_dma_in32, value,
580 				!(value & XAXIDMA_CR_RESET_MASK),
581 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
582 				XAXIDMA_TX_CR_OFFSET);
583 	if (ret) {
584 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
585 		goto out;
586 	}
587 
588 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
589 	ret = read_poll_timeout(axienet_ior, value,
590 				value & XAE_INT_PHYRSTCMPLT_MASK,
591 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
592 				XAE_IS_OFFSET);
593 	if (ret) {
594 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
595 		goto out;
596 	}
597 
598 	/* Update statistics counters with new values */
599 	if (lp->features & XAE_FEATURE_STATS) {
600 		enum temac_stat stat;
601 
602 		write_seqcount_begin(&lp->hw_stats_seqcount);
603 		lp->reset_in_progress = false;
604 		for (stat = 0; stat < STAT_COUNT; stat++) {
605 			u32 counter =
606 				axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
607 
608 			lp->hw_stat_base[stat] +=
609 				lp->hw_last_counter[stat] - counter;
610 			lp->hw_last_counter[stat] = counter;
611 		}
612 		write_seqcount_end(&lp->hw_stats_seqcount);
613 	}
614 
615 out:
616 	mutex_unlock(&lp->stats_lock);
617 	return ret;
618 }
619 
620 /**
621  * axienet_dma_stop - Stop DMA operation
622  * @lp:		Pointer to the axienet_local structure
623  */
624 static void axienet_dma_stop(struct axienet_local *lp)
625 {
626 	int count;
627 	u32 cr, sr;
628 
629 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
630 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
631 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
632 	synchronize_irq(lp->rx_irq);
633 
634 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
635 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
636 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
637 	synchronize_irq(lp->tx_irq);
638 
639 	/* Give DMAs a chance to halt gracefully */
640 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
641 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
642 		msleep(20);
643 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
644 	}
645 
646 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
647 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
648 		msleep(20);
649 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
650 	}
651 
652 	/* Do a reset to ensure DMA is really stopped */
653 	axienet_lock_mii(lp);
654 	__axienet_device_reset(lp);
655 	axienet_unlock_mii(lp);
656 }
657 
658 /**
659  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
660  * @ndev:	Pointer to the net_device structure
661  *
662  * This function is called to reset and initialize the Axi Ethernet core. This
663  * is typically called during initialization. It does a reset of the Axi DMA
664  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
665  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
666  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
667  * core.
668  * Returns 0 on success or a negative error number otherwise.
669  */
670 static int axienet_device_reset(struct net_device *ndev)
671 {
672 	u32 axienet_status;
673 	struct axienet_local *lp = netdev_priv(ndev);
674 	int ret;
675 
676 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
677 	lp->options |= XAE_OPTION_VLAN;
678 	lp->options &= (~XAE_OPTION_JUMBO);
679 
680 	if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) {
681 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
682 					XAE_TRL_SIZE;
683 
684 		if (lp->max_frm_size <= lp->rxmem)
685 			lp->options |= XAE_OPTION_JUMBO;
686 	}
687 
688 	if (!lp->use_dmaengine) {
689 		ret = __axienet_device_reset(lp);
690 		if (ret)
691 			return ret;
692 
693 		ret = axienet_dma_bd_init(ndev);
694 		if (ret) {
695 			netdev_err(ndev, "%s: descriptor allocation failed\n",
696 				   __func__);
697 			return ret;
698 		}
699 	}
700 
701 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
702 	axienet_status &= ~XAE_RCW1_RX_MASK;
703 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
704 
705 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
706 	if (axienet_status & XAE_INT_RXRJECT_MASK)
707 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
708 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
709 		    XAE_INT_RECV_ERROR_MASK : 0);
710 
711 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
712 
713 	/* Sync default options with HW but leave receiver and
714 	 * transmitter disabled.
715 	 */
716 	axienet_setoptions(ndev, lp->options &
717 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
718 	axienet_set_mac_address(ndev, NULL);
719 	axienet_set_multicast_list(ndev);
720 	axienet_setoptions(ndev, lp->options);
721 
722 	netif_trans_update(ndev);
723 
724 	return 0;
725 }
726 
727 /**
728  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
729  * @lp:		Pointer to the axienet_local structure
730  * @first_bd:	Index of first descriptor to clean up
731  * @nr_bds:	Max number of descriptors to clean up
732  * @force:	Whether to clean descriptors even if not complete
733  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
734  *		in all cleaned-up descriptors. Ignored if NULL.
735  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
736  *
737  * Would either be called after a successful transmit operation, or after
738  * there was an error when setting up the chain.
739  * Returns the number of descriptors handled.
740  */
741 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
742 				 int nr_bds, bool force, u32 *sizep, int budget)
743 {
744 	struct axidma_bd *cur_p;
745 	unsigned int status;
746 	dma_addr_t phys;
747 	int i;
748 
749 	for (i = 0; i < nr_bds; i++) {
750 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
751 		status = cur_p->status;
752 
753 		/* If force is not specified, clean up only descriptors
754 		 * that have been completed by the MAC.
755 		 */
756 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
757 			break;
758 
759 		/* Ensure we see complete descriptor update */
760 		dma_rmb();
761 		phys = desc_get_phys_addr(lp, cur_p);
762 		dma_unmap_single(lp->dev, phys,
763 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
764 				 DMA_TO_DEVICE);
765 
766 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
767 			napi_consume_skb(cur_p->skb, budget);
768 
769 		cur_p->app0 = 0;
770 		cur_p->app1 = 0;
771 		cur_p->app2 = 0;
772 		cur_p->app4 = 0;
773 		cur_p->skb = NULL;
774 		/* ensure our transmit path and device don't prematurely see status cleared */
775 		wmb();
776 		cur_p->cntrl = 0;
777 		cur_p->status = 0;
778 
779 		if (sizep)
780 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
781 	}
782 
783 	return i;
784 }
785 
786 /**
787  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
788  * @lp:		Pointer to the axienet_local structure
789  * @num_frag:	The number of BDs to check for
790  *
791  * Return: 0, on success
792  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
793  *
794  * This function is invoked before BDs are allocated and transmission starts.
795  * This function returns 0 if a BD or group of BDs can be allocated for
796  * transmission. If the BD or any of the BDs are not free the function
797  * returns a busy status.
798  */
799 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
800 					    int num_frag)
801 {
802 	struct axidma_bd *cur_p;
803 
804 	/* Ensure we see all descriptor updates from device or TX polling */
805 	rmb();
806 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
807 			     lp->tx_bd_num];
808 	if (cur_p->cntrl)
809 		return NETDEV_TX_BUSY;
810 	return 0;
811 }
812 
813 /**
814  * axienet_dma_tx_cb - DMA engine callback for TX channel.
815  * @data:       Pointer to the axienet_local structure.
816  * @result:     error reporting through dmaengine_result.
817  * This function is called by dmaengine driver for TX channel to notify
818  * that the transmit is done.
819  */
820 static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result)
821 {
822 	struct skbuf_dma_descriptor *skbuf_dma;
823 	struct axienet_local *lp = data;
824 	struct netdev_queue *txq;
825 	int len;
826 
827 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++);
828 	len = skbuf_dma->skb->len;
829 	txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb);
830 	u64_stats_update_begin(&lp->tx_stat_sync);
831 	u64_stats_add(&lp->tx_bytes, len);
832 	u64_stats_add(&lp->tx_packets, 1);
833 	u64_stats_update_end(&lp->tx_stat_sync);
834 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE);
835 	dev_consume_skb_any(skbuf_dma->skb);
836 	netif_txq_completed_wake(txq, 1, len,
837 				 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
838 				 2 * MAX_SKB_FRAGS);
839 }
840 
841 /**
842  * axienet_start_xmit_dmaengine - Starts the transmission.
843  * @skb:        sk_buff pointer that contains data to be Txed.
844  * @ndev:       Pointer to net_device structure.
845  *
846  * Return: NETDEV_TX_OK on success or any non space errors.
847  *         NETDEV_TX_BUSY when free element in TX skb ring buffer
848  *         is not available.
849  *
850  * This function is invoked to initiate transmission. The
851  * function sets the skbs, register dma callback API and submit
852  * the dma transaction.
853  * Additionally if checksum offloading is supported,
854  * it populates AXI Stream Control fields with appropriate values.
855  */
856 static netdev_tx_t
857 axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev)
858 {
859 	struct dma_async_tx_descriptor *dma_tx_desc = NULL;
860 	struct axienet_local *lp = netdev_priv(ndev);
861 	u32 app_metadata[DMA_NUM_APP_WORDS] = {0};
862 	struct skbuf_dma_descriptor *skbuf_dma;
863 	struct dma_device *dma_dev;
864 	struct netdev_queue *txq;
865 	u32 csum_start_off;
866 	u32 csum_index_off;
867 	int sg_len;
868 	int ret;
869 
870 	dma_dev = lp->tx_chan->device;
871 	sg_len = skb_shinfo(skb)->nr_frags + 1;
872 	if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) {
873 		netif_stop_queue(ndev);
874 		if (net_ratelimit())
875 			netdev_warn(ndev, "TX ring unexpectedly full\n");
876 		return NETDEV_TX_BUSY;
877 	}
878 
879 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head);
880 	if (!skbuf_dma)
881 		goto xmit_error_drop_skb;
882 
883 	lp->tx_ring_head++;
884 	sg_init_table(skbuf_dma->sgl, sg_len);
885 	ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len);
886 	if (ret < 0)
887 		goto xmit_error_drop_skb;
888 
889 	ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
890 	if (!ret)
891 		goto xmit_error_drop_skb;
892 
893 	/* Fill up app fields for checksum */
894 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
895 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
896 			/* Tx Full Checksum Offload Enabled */
897 			app_metadata[0] |= 2;
898 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
899 			csum_start_off = skb_transport_offset(skb);
900 			csum_index_off = csum_start_off + skb->csum_offset;
901 			/* Tx Partial Checksum Offload Enabled */
902 			app_metadata[0] |= 1;
903 			app_metadata[1] = (csum_start_off << 16) | csum_index_off;
904 		}
905 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
906 		app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */
907 	}
908 
909 	dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl,
910 			sg_len, DMA_MEM_TO_DEV,
911 			DMA_PREP_INTERRUPT, (void *)app_metadata);
912 	if (!dma_tx_desc)
913 		goto xmit_error_unmap_sg;
914 
915 	skbuf_dma->skb = skb;
916 	skbuf_dma->sg_len = sg_len;
917 	dma_tx_desc->callback_param = lp;
918 	dma_tx_desc->callback_result = axienet_dma_tx_cb;
919 	dmaengine_submit(dma_tx_desc);
920 	dma_async_issue_pending(lp->tx_chan);
921 	txq = skb_get_tx_queue(lp->ndev, skb);
922 	netdev_tx_sent_queue(txq, skb->len);
923 	netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
924 			     MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS);
925 
926 	return NETDEV_TX_OK;
927 
928 xmit_error_unmap_sg:
929 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
930 xmit_error_drop_skb:
931 	dev_kfree_skb_any(skb);
932 	return NETDEV_TX_OK;
933 }
934 
935 /**
936  * axienet_tx_poll - Invoked once a transmit is completed by the
937  * Axi DMA Tx channel.
938  * @napi:	Pointer to NAPI structure.
939  * @budget:	Max number of TX packets to process.
940  *
941  * Return: Number of TX packets processed.
942  *
943  * This function is invoked from the NAPI processing to notify the completion
944  * of transmit operation. It clears fields in the corresponding Tx BDs and
945  * unmaps the corresponding buffer so that CPU can regain ownership of the
946  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
947  * required.
948  */
949 static int axienet_tx_poll(struct napi_struct *napi, int budget)
950 {
951 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
952 	struct net_device *ndev = lp->ndev;
953 	u32 size = 0;
954 	int packets;
955 
956 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
957 
958 	if (packets) {
959 		lp->tx_bd_ci += packets;
960 		if (lp->tx_bd_ci >= lp->tx_bd_num)
961 			lp->tx_bd_ci %= lp->tx_bd_num;
962 
963 		u64_stats_update_begin(&lp->tx_stat_sync);
964 		u64_stats_add(&lp->tx_packets, packets);
965 		u64_stats_add(&lp->tx_bytes, size);
966 		u64_stats_update_end(&lp->tx_stat_sync);
967 
968 		/* Matches barrier in axienet_start_xmit */
969 		smp_mb();
970 
971 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
972 			netif_wake_queue(ndev);
973 	}
974 
975 	if (packets < budget && napi_complete_done(napi, packets)) {
976 		/* Re-enable TX completion interrupts. This should
977 		 * cause an immediate interrupt if any TX packets are
978 		 * already pending.
979 		 */
980 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
981 	}
982 	return packets;
983 }
984 
985 /**
986  * axienet_start_xmit - Starts the transmission.
987  * @skb:	sk_buff pointer that contains data to be Txed.
988  * @ndev:	Pointer to net_device structure.
989  *
990  * Return: NETDEV_TX_OK, on success
991  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
992  *
993  * This function is invoked from upper layers to initiate transmission. The
994  * function uses the next available free BDs and populates their fields to
995  * start the transmission. Additionally if checksum offloading is supported,
996  * it populates AXI Stream Control fields with appropriate values.
997  */
998 static netdev_tx_t
999 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1000 {
1001 	u32 ii;
1002 	u32 num_frag;
1003 	u32 csum_start_off;
1004 	u32 csum_index_off;
1005 	skb_frag_t *frag;
1006 	dma_addr_t tail_p, phys;
1007 	u32 orig_tail_ptr, new_tail_ptr;
1008 	struct axienet_local *lp = netdev_priv(ndev);
1009 	struct axidma_bd *cur_p;
1010 
1011 	orig_tail_ptr = lp->tx_bd_tail;
1012 	new_tail_ptr = orig_tail_ptr;
1013 
1014 	num_frag = skb_shinfo(skb)->nr_frags;
1015 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
1016 
1017 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
1018 		/* Should not happen as last start_xmit call should have
1019 		 * checked for sufficient space and queue should only be
1020 		 * woken when sufficient space is available.
1021 		 */
1022 		netif_stop_queue(ndev);
1023 		if (net_ratelimit())
1024 			netdev_warn(ndev, "TX ring unexpectedly full\n");
1025 		return NETDEV_TX_BUSY;
1026 	}
1027 
1028 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1029 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
1030 			/* Tx Full Checksum Offload Enabled */
1031 			cur_p->app0 |= 2;
1032 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
1033 			csum_start_off = skb_transport_offset(skb);
1034 			csum_index_off = csum_start_off + skb->csum_offset;
1035 			/* Tx Partial Checksum Offload Enabled */
1036 			cur_p->app0 |= 1;
1037 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
1038 		}
1039 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1040 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
1041 	}
1042 
1043 	phys = dma_map_single(lp->dev, skb->data,
1044 			      skb_headlen(skb), DMA_TO_DEVICE);
1045 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
1046 		if (net_ratelimit())
1047 			netdev_err(ndev, "TX DMA mapping error\n");
1048 		ndev->stats.tx_dropped++;
1049 		return NETDEV_TX_OK;
1050 	}
1051 	desc_set_phys_addr(lp, phys, cur_p);
1052 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
1053 
1054 	for (ii = 0; ii < num_frag; ii++) {
1055 		if (++new_tail_ptr >= lp->tx_bd_num)
1056 			new_tail_ptr = 0;
1057 		cur_p = &lp->tx_bd_v[new_tail_ptr];
1058 		frag = &skb_shinfo(skb)->frags[ii];
1059 		phys = dma_map_single(lp->dev,
1060 				      skb_frag_address(frag),
1061 				      skb_frag_size(frag),
1062 				      DMA_TO_DEVICE);
1063 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1064 			if (net_ratelimit())
1065 				netdev_err(ndev, "TX DMA mapping error\n");
1066 			ndev->stats.tx_dropped++;
1067 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
1068 					      true, NULL, 0);
1069 			return NETDEV_TX_OK;
1070 		}
1071 		desc_set_phys_addr(lp, phys, cur_p);
1072 		cur_p->cntrl = skb_frag_size(frag);
1073 	}
1074 
1075 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
1076 	cur_p->skb = skb;
1077 
1078 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
1079 	if (++new_tail_ptr >= lp->tx_bd_num)
1080 		new_tail_ptr = 0;
1081 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
1082 
1083 	/* Start the transfer */
1084 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
1085 
1086 	/* Stop queue if next transmit may not have space */
1087 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
1088 		netif_stop_queue(ndev);
1089 
1090 		/* Matches barrier in axienet_tx_poll */
1091 		smp_mb();
1092 
1093 		/* Space might have just been freed - check again */
1094 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
1095 			netif_wake_queue(ndev);
1096 	}
1097 
1098 	return NETDEV_TX_OK;
1099 }
1100 
1101 /**
1102  * axienet_dma_rx_cb - DMA engine callback for RX channel.
1103  * @data:       Pointer to the skbuf_dma_descriptor structure.
1104  * @result:     error reporting through dmaengine_result.
1105  * This function is called by dmaengine driver for RX channel to notify
1106  * that the packet is received.
1107  */
1108 static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result)
1109 {
1110 	struct skbuf_dma_descriptor *skbuf_dma;
1111 	size_t meta_len, meta_max_len, rx_len;
1112 	struct axienet_local *lp = data;
1113 	struct sk_buff *skb;
1114 	u32 *app_metadata;
1115 
1116 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++);
1117 	skb = skbuf_dma->skb;
1118 	app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len,
1119 						       &meta_max_len);
1120 	dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size,
1121 			 DMA_FROM_DEVICE);
1122 	/* TODO: Derive app word index programmatically */
1123 	rx_len = (app_metadata[LEN_APP] & 0xFFFF);
1124 	skb_put(skb, rx_len);
1125 	skb->protocol = eth_type_trans(skb, lp->ndev);
1126 	skb->ip_summed = CHECKSUM_NONE;
1127 
1128 	__netif_rx(skb);
1129 	u64_stats_update_begin(&lp->rx_stat_sync);
1130 	u64_stats_add(&lp->rx_packets, 1);
1131 	u64_stats_add(&lp->rx_bytes, rx_len);
1132 	u64_stats_update_end(&lp->rx_stat_sync);
1133 	axienet_rx_submit_desc(lp->ndev);
1134 	dma_async_issue_pending(lp->rx_chan);
1135 }
1136 
1137 /**
1138  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
1139  * @napi:	Pointer to NAPI structure.
1140  * @budget:	Max number of RX packets to process.
1141  *
1142  * Return: Number of RX packets processed.
1143  */
1144 static int axienet_rx_poll(struct napi_struct *napi, int budget)
1145 {
1146 	u32 length;
1147 	u32 csumstatus;
1148 	u32 size = 0;
1149 	int packets = 0;
1150 	dma_addr_t tail_p = 0;
1151 	struct axidma_bd *cur_p;
1152 	struct sk_buff *skb, *new_skb;
1153 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
1154 
1155 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1156 
1157 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
1158 		dma_addr_t phys;
1159 
1160 		/* Ensure we see complete descriptor update */
1161 		dma_rmb();
1162 
1163 		skb = cur_p->skb;
1164 		cur_p->skb = NULL;
1165 
1166 		/* skb could be NULL if a previous pass already received the
1167 		 * packet for this slot in the ring, but failed to refill it
1168 		 * with a newly allocated buffer. In this case, don't try to
1169 		 * receive it again.
1170 		 */
1171 		if (likely(skb)) {
1172 			length = cur_p->app4 & 0x0000FFFF;
1173 
1174 			phys = desc_get_phys_addr(lp, cur_p);
1175 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
1176 					 DMA_FROM_DEVICE);
1177 
1178 			skb_put(skb, length);
1179 			skb->protocol = eth_type_trans(skb, lp->ndev);
1180 			/*skb_checksum_none_assert(skb);*/
1181 			skb->ip_summed = CHECKSUM_NONE;
1182 
1183 			/* if we're doing Rx csum offload, set it up */
1184 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
1185 				csumstatus = (cur_p->app2 &
1186 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
1187 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
1188 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
1189 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1190 				}
1191 			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
1192 				   skb->protocol == htons(ETH_P_IP) &&
1193 				   skb->len > 64) {
1194 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
1195 				skb->ip_summed = CHECKSUM_COMPLETE;
1196 			}
1197 
1198 			napi_gro_receive(napi, skb);
1199 
1200 			size += length;
1201 			packets++;
1202 		}
1203 
1204 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
1205 		if (!new_skb)
1206 			break;
1207 
1208 		phys = dma_map_single(lp->dev, new_skb->data,
1209 				      lp->max_frm_size,
1210 				      DMA_FROM_DEVICE);
1211 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1212 			if (net_ratelimit())
1213 				netdev_err(lp->ndev, "RX DMA mapping error\n");
1214 			dev_kfree_skb(new_skb);
1215 			break;
1216 		}
1217 		desc_set_phys_addr(lp, phys, cur_p);
1218 
1219 		cur_p->cntrl = lp->max_frm_size;
1220 		cur_p->status = 0;
1221 		cur_p->skb = new_skb;
1222 
1223 		/* Only update tail_p to mark this slot as usable after it has
1224 		 * been successfully refilled.
1225 		 */
1226 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
1227 
1228 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
1229 			lp->rx_bd_ci = 0;
1230 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1231 	}
1232 
1233 	u64_stats_update_begin(&lp->rx_stat_sync);
1234 	u64_stats_add(&lp->rx_packets, packets);
1235 	u64_stats_add(&lp->rx_bytes, size);
1236 	u64_stats_update_end(&lp->rx_stat_sync);
1237 
1238 	if (tail_p)
1239 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1240 
1241 	if (packets < budget && napi_complete_done(napi, packets)) {
1242 		/* Re-enable RX completion interrupts. This should
1243 		 * cause an immediate interrupt if any RX packets are
1244 		 * already pending.
1245 		 */
1246 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1247 	}
1248 	return packets;
1249 }
1250 
1251 /**
1252  * axienet_tx_irq - Tx Done Isr.
1253  * @irq:	irq number
1254  * @_ndev:	net_device pointer
1255  *
1256  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1257  *
1258  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1259  * TX BD processing.
1260  */
1261 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1262 {
1263 	unsigned int status;
1264 	struct net_device *ndev = _ndev;
1265 	struct axienet_local *lp = netdev_priv(ndev);
1266 
1267 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1268 
1269 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1270 		return IRQ_NONE;
1271 
1272 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1273 
1274 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1275 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1276 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1277 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1278 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1279 		schedule_work(&lp->dma_err_task);
1280 	} else {
1281 		/* Disable further TX completion interrupts and schedule
1282 		 * NAPI to handle the completions.
1283 		 */
1284 		u32 cr = lp->tx_dma_cr;
1285 
1286 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1287 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1288 
1289 		napi_schedule(&lp->napi_tx);
1290 	}
1291 
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 /**
1296  * axienet_rx_irq - Rx Isr.
1297  * @irq:	irq number
1298  * @_ndev:	net_device pointer
1299  *
1300  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1301  *
1302  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1303  * processing.
1304  */
1305 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1306 {
1307 	unsigned int status;
1308 	struct net_device *ndev = _ndev;
1309 	struct axienet_local *lp = netdev_priv(ndev);
1310 
1311 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1312 
1313 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1314 		return IRQ_NONE;
1315 
1316 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1317 
1318 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1319 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1320 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1321 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1322 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1323 		schedule_work(&lp->dma_err_task);
1324 	} else {
1325 		/* Disable further RX completion interrupts and schedule
1326 		 * NAPI receive.
1327 		 */
1328 		u32 cr = lp->rx_dma_cr;
1329 
1330 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1331 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1332 
1333 		napi_schedule(&lp->napi_rx);
1334 	}
1335 
1336 	return IRQ_HANDLED;
1337 }
1338 
1339 /**
1340  * axienet_eth_irq - Ethernet core Isr.
1341  * @irq:	irq number
1342  * @_ndev:	net_device pointer
1343  *
1344  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1345  *
1346  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1347  */
1348 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1349 {
1350 	struct net_device *ndev = _ndev;
1351 	struct axienet_local *lp = netdev_priv(ndev);
1352 	unsigned int pending;
1353 
1354 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1355 	if (!pending)
1356 		return IRQ_NONE;
1357 
1358 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1359 		ndev->stats.rx_missed_errors++;
1360 
1361 	if (pending & XAE_INT_RXRJECT_MASK)
1362 		ndev->stats.rx_dropped++;
1363 
1364 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1365 	return IRQ_HANDLED;
1366 }
1367 
1368 static void axienet_dma_err_handler(struct work_struct *work);
1369 
1370 /**
1371  * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine.
1372  * allocate skbuff, map the scatterlist and obtain a descriptor
1373  * and then add the callback information and submit descriptor.
1374  *
1375  * @ndev:	net_device pointer
1376  *
1377  */
1378 static void axienet_rx_submit_desc(struct net_device *ndev)
1379 {
1380 	struct dma_async_tx_descriptor *dma_rx_desc = NULL;
1381 	struct axienet_local *lp = netdev_priv(ndev);
1382 	struct skbuf_dma_descriptor *skbuf_dma;
1383 	struct sk_buff *skb;
1384 	dma_addr_t addr;
1385 
1386 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head);
1387 	if (!skbuf_dma)
1388 		return;
1389 
1390 	lp->rx_ring_head++;
1391 	skb = netdev_alloc_skb(ndev, lp->max_frm_size);
1392 	if (!skb)
1393 		return;
1394 
1395 	sg_init_table(skbuf_dma->sgl, 1);
1396 	addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE);
1397 	if (unlikely(dma_mapping_error(lp->dev, addr))) {
1398 		if (net_ratelimit())
1399 			netdev_err(ndev, "DMA mapping error\n");
1400 		goto rx_submit_err_free_skb;
1401 	}
1402 	sg_dma_address(skbuf_dma->sgl) = addr;
1403 	sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size;
1404 	dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl,
1405 					      1, DMA_DEV_TO_MEM,
1406 					      DMA_PREP_INTERRUPT);
1407 	if (!dma_rx_desc)
1408 		goto rx_submit_err_unmap_skb;
1409 
1410 	skbuf_dma->skb = skb;
1411 	skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl);
1412 	skbuf_dma->desc = dma_rx_desc;
1413 	dma_rx_desc->callback_param = lp;
1414 	dma_rx_desc->callback_result = axienet_dma_rx_cb;
1415 	dmaengine_submit(dma_rx_desc);
1416 
1417 	return;
1418 
1419 rx_submit_err_unmap_skb:
1420 	dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE);
1421 rx_submit_err_free_skb:
1422 	dev_kfree_skb(skb);
1423 }
1424 
1425 /**
1426  * axienet_init_dmaengine - init the dmaengine code.
1427  * @ndev:       Pointer to net_device structure
1428  *
1429  * Return: 0, on success.
1430  *          non-zero error value on failure
1431  *
1432  * This is the dmaengine initialization code.
1433  */
1434 static int axienet_init_dmaengine(struct net_device *ndev)
1435 {
1436 	struct axienet_local *lp = netdev_priv(ndev);
1437 	struct skbuf_dma_descriptor *skbuf_dma;
1438 	int i, ret;
1439 
1440 	lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0");
1441 	if (IS_ERR(lp->tx_chan)) {
1442 		dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n");
1443 		return PTR_ERR(lp->tx_chan);
1444 	}
1445 
1446 	lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0");
1447 	if (IS_ERR(lp->rx_chan)) {
1448 		ret = PTR_ERR(lp->rx_chan);
1449 		dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n");
1450 		goto err_dma_release_tx;
1451 	}
1452 
1453 	lp->tx_ring_tail = 0;
1454 	lp->tx_ring_head = 0;
1455 	lp->rx_ring_tail = 0;
1456 	lp->rx_ring_head = 0;
1457 	lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring),
1458 				  GFP_KERNEL);
1459 	if (!lp->tx_skb_ring) {
1460 		ret = -ENOMEM;
1461 		goto err_dma_release_rx;
1462 	}
1463 	for (i = 0; i < TX_BD_NUM_MAX; i++) {
1464 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1465 		if (!skbuf_dma) {
1466 			ret = -ENOMEM;
1467 			goto err_free_tx_skb_ring;
1468 		}
1469 		lp->tx_skb_ring[i] = skbuf_dma;
1470 	}
1471 
1472 	lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring),
1473 				  GFP_KERNEL);
1474 	if (!lp->rx_skb_ring) {
1475 		ret = -ENOMEM;
1476 		goto err_free_tx_skb_ring;
1477 	}
1478 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) {
1479 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1480 		if (!skbuf_dma) {
1481 			ret = -ENOMEM;
1482 			goto err_free_rx_skb_ring;
1483 		}
1484 		lp->rx_skb_ring[i] = skbuf_dma;
1485 	}
1486 	/* TODO: Instead of BD_NUM_DEFAULT use runtime support */
1487 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1488 		axienet_rx_submit_desc(ndev);
1489 	dma_async_issue_pending(lp->rx_chan);
1490 
1491 	return 0;
1492 
1493 err_free_rx_skb_ring:
1494 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1495 		kfree(lp->rx_skb_ring[i]);
1496 	kfree(lp->rx_skb_ring);
1497 err_free_tx_skb_ring:
1498 	for (i = 0; i < TX_BD_NUM_MAX; i++)
1499 		kfree(lp->tx_skb_ring[i]);
1500 	kfree(lp->tx_skb_ring);
1501 err_dma_release_rx:
1502 	dma_release_channel(lp->rx_chan);
1503 err_dma_release_tx:
1504 	dma_release_channel(lp->tx_chan);
1505 	return ret;
1506 }
1507 
1508 /**
1509  * axienet_init_legacy_dma - init the dma legacy code.
1510  * @ndev:       Pointer to net_device structure
1511  *
1512  * Return: 0, on success.
1513  *          non-zero error value on failure
1514  *
1515  * This is the dma  initialization code. It also allocates interrupt
1516  * service routines, enables the interrupt lines and ISR handling.
1517  *
1518  */
1519 static int axienet_init_legacy_dma(struct net_device *ndev)
1520 {
1521 	int ret;
1522 	struct axienet_local *lp = netdev_priv(ndev);
1523 
1524 	/* Enable worker thread for Axi DMA error handling */
1525 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1526 
1527 	napi_enable(&lp->napi_rx);
1528 	napi_enable(&lp->napi_tx);
1529 
1530 	/* Enable interrupts for Axi DMA Tx */
1531 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1532 			  ndev->name, ndev);
1533 	if (ret)
1534 		goto err_tx_irq;
1535 	/* Enable interrupts for Axi DMA Rx */
1536 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1537 			  ndev->name, ndev);
1538 	if (ret)
1539 		goto err_rx_irq;
1540 	/* Enable interrupts for Axi Ethernet core (if defined) */
1541 	if (lp->eth_irq > 0) {
1542 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1543 				  ndev->name, ndev);
1544 		if (ret)
1545 			goto err_eth_irq;
1546 	}
1547 
1548 	return 0;
1549 
1550 err_eth_irq:
1551 	free_irq(lp->rx_irq, ndev);
1552 err_rx_irq:
1553 	free_irq(lp->tx_irq, ndev);
1554 err_tx_irq:
1555 	napi_disable(&lp->napi_tx);
1556 	napi_disable(&lp->napi_rx);
1557 	cancel_work_sync(&lp->dma_err_task);
1558 	dev_err(lp->dev, "request_irq() failed\n");
1559 	return ret;
1560 }
1561 
1562 /**
1563  * axienet_open - Driver open routine.
1564  * @ndev:	Pointer to net_device structure
1565  *
1566  * Return: 0, on success.
1567  *	    non-zero error value on failure
1568  *
1569  * This is the driver open routine. It calls phylink_start to start the
1570  * PHY device.
1571  * It also allocates interrupt service routines, enables the interrupt lines
1572  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1573  * descriptors are initialized.
1574  */
1575 static int axienet_open(struct net_device *ndev)
1576 {
1577 	int ret;
1578 	struct axienet_local *lp = netdev_priv(ndev);
1579 
1580 	/* When we do an Axi Ethernet reset, it resets the complete core
1581 	 * including the MDIO. MDIO must be disabled before resetting.
1582 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1583 	 */
1584 	axienet_lock_mii(lp);
1585 	ret = axienet_device_reset(ndev);
1586 	axienet_unlock_mii(lp);
1587 
1588 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1589 	if (ret) {
1590 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1591 		return ret;
1592 	}
1593 
1594 	phylink_start(lp->phylink);
1595 
1596 	/* Start the statistics refresh work */
1597 	schedule_delayed_work(&lp->stats_work, 0);
1598 
1599 	if (lp->use_dmaengine) {
1600 		/* Enable interrupts for Axi Ethernet core (if defined) */
1601 		if (lp->eth_irq > 0) {
1602 			ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1603 					  ndev->name, ndev);
1604 			if (ret)
1605 				goto err_phy;
1606 		}
1607 
1608 		ret = axienet_init_dmaengine(ndev);
1609 		if (ret < 0)
1610 			goto err_free_eth_irq;
1611 	} else {
1612 		ret = axienet_init_legacy_dma(ndev);
1613 		if (ret)
1614 			goto err_phy;
1615 	}
1616 
1617 	return 0;
1618 
1619 err_free_eth_irq:
1620 	if (lp->eth_irq > 0)
1621 		free_irq(lp->eth_irq, ndev);
1622 err_phy:
1623 	cancel_delayed_work_sync(&lp->stats_work);
1624 	phylink_stop(lp->phylink);
1625 	phylink_disconnect_phy(lp->phylink);
1626 	return ret;
1627 }
1628 
1629 /**
1630  * axienet_stop - Driver stop routine.
1631  * @ndev:	Pointer to net_device structure
1632  *
1633  * Return: 0, on success.
1634  *
1635  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1636  * device. It also removes the interrupt handlers and disables the interrupts.
1637  * The Axi DMA Tx/Rx BDs are released.
1638  */
1639 static int axienet_stop(struct net_device *ndev)
1640 {
1641 	struct axienet_local *lp = netdev_priv(ndev);
1642 	int i;
1643 
1644 	if (!lp->use_dmaengine) {
1645 		napi_disable(&lp->napi_tx);
1646 		napi_disable(&lp->napi_rx);
1647 	}
1648 
1649 	cancel_delayed_work_sync(&lp->stats_work);
1650 
1651 	phylink_stop(lp->phylink);
1652 	phylink_disconnect_phy(lp->phylink);
1653 
1654 	axienet_setoptions(ndev, lp->options &
1655 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1656 
1657 	if (!lp->use_dmaengine) {
1658 		axienet_dma_stop(lp);
1659 		cancel_work_sync(&lp->dma_err_task);
1660 		free_irq(lp->tx_irq, ndev);
1661 		free_irq(lp->rx_irq, ndev);
1662 		axienet_dma_bd_release(ndev);
1663 	} else {
1664 		dmaengine_terminate_sync(lp->tx_chan);
1665 		dmaengine_synchronize(lp->tx_chan);
1666 		dmaengine_terminate_sync(lp->rx_chan);
1667 		dmaengine_synchronize(lp->rx_chan);
1668 
1669 		for (i = 0; i < TX_BD_NUM_MAX; i++)
1670 			kfree(lp->tx_skb_ring[i]);
1671 		kfree(lp->tx_skb_ring);
1672 		for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1673 			kfree(lp->rx_skb_ring[i]);
1674 		kfree(lp->rx_skb_ring);
1675 
1676 		dma_release_channel(lp->rx_chan);
1677 		dma_release_channel(lp->tx_chan);
1678 	}
1679 
1680 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1681 
1682 	if (lp->eth_irq > 0)
1683 		free_irq(lp->eth_irq, ndev);
1684 	return 0;
1685 }
1686 
1687 /**
1688  * axienet_change_mtu - Driver change mtu routine.
1689  * @ndev:	Pointer to net_device structure
1690  * @new_mtu:	New mtu value to be applied
1691  *
1692  * Return: Always returns 0 (success).
1693  *
1694  * This is the change mtu driver routine. It checks if the Axi Ethernet
1695  * hardware supports jumbo frames before changing the mtu. This can be
1696  * called only when the device is not up.
1697  */
1698 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1699 {
1700 	struct axienet_local *lp = netdev_priv(ndev);
1701 
1702 	if (netif_running(ndev))
1703 		return -EBUSY;
1704 
1705 	if ((new_mtu + VLAN_ETH_HLEN +
1706 		XAE_TRL_SIZE) > lp->rxmem)
1707 		return -EINVAL;
1708 
1709 	WRITE_ONCE(ndev->mtu, new_mtu);
1710 
1711 	return 0;
1712 }
1713 
1714 #ifdef CONFIG_NET_POLL_CONTROLLER
1715 /**
1716  * axienet_poll_controller - Axi Ethernet poll mechanism.
1717  * @ndev:	Pointer to net_device structure
1718  *
1719  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1720  * to polling the ISRs and are enabled back after the polling is done.
1721  */
1722 static void axienet_poll_controller(struct net_device *ndev)
1723 {
1724 	struct axienet_local *lp = netdev_priv(ndev);
1725 
1726 	disable_irq(lp->tx_irq);
1727 	disable_irq(lp->rx_irq);
1728 	axienet_rx_irq(lp->tx_irq, ndev);
1729 	axienet_tx_irq(lp->rx_irq, ndev);
1730 	enable_irq(lp->tx_irq);
1731 	enable_irq(lp->rx_irq);
1732 }
1733 #endif
1734 
1735 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1736 {
1737 	struct axienet_local *lp = netdev_priv(dev);
1738 
1739 	if (!netif_running(dev))
1740 		return -EINVAL;
1741 
1742 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1743 }
1744 
1745 static void
1746 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1747 {
1748 	struct axienet_local *lp = netdev_priv(dev);
1749 	unsigned int start;
1750 
1751 	netdev_stats_to_stats64(stats, &dev->stats);
1752 
1753 	do {
1754 		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1755 		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1756 		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1757 	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1758 
1759 	do {
1760 		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1761 		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1762 		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1763 	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1764 
1765 	if (!(lp->features & XAE_FEATURE_STATS))
1766 		return;
1767 
1768 	do {
1769 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
1770 		stats->rx_length_errors =
1771 			axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
1772 		stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS);
1773 		stats->rx_frame_errors =
1774 			axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
1775 		stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) +
1776 				   axienet_stat(lp, STAT_FRAGMENT_FRAMES) +
1777 				   stats->rx_length_errors +
1778 				   stats->rx_crc_errors +
1779 				   stats->rx_frame_errors;
1780 		stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
1781 
1782 		stats->tx_aborted_errors =
1783 			axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
1784 		stats->tx_fifo_errors =
1785 			axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS);
1786 		stats->tx_window_errors =
1787 			axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
1788 		stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) +
1789 				   stats->tx_aborted_errors +
1790 				   stats->tx_fifo_errors +
1791 				   stats->tx_window_errors;
1792 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
1793 }
1794 
1795 static const struct net_device_ops axienet_netdev_ops = {
1796 	.ndo_open = axienet_open,
1797 	.ndo_stop = axienet_stop,
1798 	.ndo_start_xmit = axienet_start_xmit,
1799 	.ndo_get_stats64 = axienet_get_stats64,
1800 	.ndo_change_mtu	= axienet_change_mtu,
1801 	.ndo_set_mac_address = netdev_set_mac_address,
1802 	.ndo_validate_addr = eth_validate_addr,
1803 	.ndo_eth_ioctl = axienet_ioctl,
1804 	.ndo_set_rx_mode = axienet_set_multicast_list,
1805 #ifdef CONFIG_NET_POLL_CONTROLLER
1806 	.ndo_poll_controller = axienet_poll_controller,
1807 #endif
1808 };
1809 
1810 static const struct net_device_ops axienet_netdev_dmaengine_ops = {
1811 	.ndo_open = axienet_open,
1812 	.ndo_stop = axienet_stop,
1813 	.ndo_start_xmit = axienet_start_xmit_dmaengine,
1814 	.ndo_get_stats64 = axienet_get_stats64,
1815 	.ndo_change_mtu	= axienet_change_mtu,
1816 	.ndo_set_mac_address = netdev_set_mac_address,
1817 	.ndo_validate_addr = eth_validate_addr,
1818 	.ndo_eth_ioctl = axienet_ioctl,
1819 	.ndo_set_rx_mode = axienet_set_multicast_list,
1820 };
1821 
1822 /**
1823  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1824  * @ndev:	Pointer to net_device structure
1825  * @ed:		Pointer to ethtool_drvinfo structure
1826  *
1827  * This implements ethtool command for getting the driver information.
1828  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1829  */
1830 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1831 					 struct ethtool_drvinfo *ed)
1832 {
1833 	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1834 	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1835 }
1836 
1837 /**
1838  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1839  *				   AxiEthernet core.
1840  * @ndev:	Pointer to net_device structure
1841  *
1842  * This implements ethtool command for getting the total register length
1843  * information.
1844  *
1845  * Return: the total regs length
1846  */
1847 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1848 {
1849 	return sizeof(u32) * AXIENET_REGS_N;
1850 }
1851 
1852 /**
1853  * axienet_ethtools_get_regs - Dump the contents of all registers present
1854  *			       in AxiEthernet core.
1855  * @ndev:	Pointer to net_device structure
1856  * @regs:	Pointer to ethtool_regs structure
1857  * @ret:	Void pointer used to return the contents of the registers.
1858  *
1859  * This implements ethtool command for getting the Axi Ethernet register dump.
1860  * Issue "ethtool -d ethX" to execute this function.
1861  */
1862 static void axienet_ethtools_get_regs(struct net_device *ndev,
1863 				      struct ethtool_regs *regs, void *ret)
1864 {
1865 	u32 *data = (u32 *)ret;
1866 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1867 	struct axienet_local *lp = netdev_priv(ndev);
1868 
1869 	regs->version = 0;
1870 	regs->len = len;
1871 
1872 	memset(data, 0, len);
1873 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1874 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1875 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1876 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1877 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1878 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1879 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1880 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1881 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1882 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1883 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1884 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1885 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1886 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1887 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1888 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1889 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1890 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1891 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1892 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1893 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1894 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1895 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1896 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1897 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1898 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1899 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1900 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1901 	if (!lp->use_dmaengine) {
1902 		data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1903 		data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1904 		data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1905 		data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1906 		data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1907 		data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1908 		data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1909 		data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1910 	}
1911 }
1912 
1913 static void
1914 axienet_ethtools_get_ringparam(struct net_device *ndev,
1915 			       struct ethtool_ringparam *ering,
1916 			       struct kernel_ethtool_ringparam *kernel_ering,
1917 			       struct netlink_ext_ack *extack)
1918 {
1919 	struct axienet_local *lp = netdev_priv(ndev);
1920 
1921 	ering->rx_max_pending = RX_BD_NUM_MAX;
1922 	ering->rx_mini_max_pending = 0;
1923 	ering->rx_jumbo_max_pending = 0;
1924 	ering->tx_max_pending = TX_BD_NUM_MAX;
1925 	ering->rx_pending = lp->rx_bd_num;
1926 	ering->rx_mini_pending = 0;
1927 	ering->rx_jumbo_pending = 0;
1928 	ering->tx_pending = lp->tx_bd_num;
1929 }
1930 
1931 static int
1932 axienet_ethtools_set_ringparam(struct net_device *ndev,
1933 			       struct ethtool_ringparam *ering,
1934 			       struct kernel_ethtool_ringparam *kernel_ering,
1935 			       struct netlink_ext_ack *extack)
1936 {
1937 	struct axienet_local *lp = netdev_priv(ndev);
1938 
1939 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1940 	    ering->rx_mini_pending ||
1941 	    ering->rx_jumbo_pending ||
1942 	    ering->tx_pending < TX_BD_NUM_MIN ||
1943 	    ering->tx_pending > TX_BD_NUM_MAX)
1944 		return -EINVAL;
1945 
1946 	if (netif_running(ndev))
1947 		return -EBUSY;
1948 
1949 	lp->rx_bd_num = ering->rx_pending;
1950 	lp->tx_bd_num = ering->tx_pending;
1951 	return 0;
1952 }
1953 
1954 /**
1955  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1956  *				     Tx and Rx paths.
1957  * @ndev:	Pointer to net_device structure
1958  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1959  *
1960  * This implements ethtool command for getting axi ethernet pause frame
1961  * setting. Issue "ethtool -a ethX" to execute this function.
1962  */
1963 static void
1964 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1965 				struct ethtool_pauseparam *epauseparm)
1966 {
1967 	struct axienet_local *lp = netdev_priv(ndev);
1968 
1969 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1970 }
1971 
1972 /**
1973  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1974  *				     settings.
1975  * @ndev:	Pointer to net_device structure
1976  * @epauseparm:Pointer to ethtool_pauseparam structure
1977  *
1978  * This implements ethtool command for enabling flow control on Rx and Tx
1979  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1980  * function.
1981  *
1982  * Return: 0 on success, -EFAULT if device is running
1983  */
1984 static int
1985 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1986 				struct ethtool_pauseparam *epauseparm)
1987 {
1988 	struct axienet_local *lp = netdev_priv(ndev);
1989 
1990 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1991 }
1992 
1993 /**
1994  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1995  * @ndev:	Pointer to net_device structure
1996  * @ecoalesce:	Pointer to ethtool_coalesce structure
1997  * @kernel_coal: ethtool CQE mode setting structure
1998  * @extack:	extack for reporting error messages
1999  *
2000  * This implements ethtool command for getting the DMA interrupt coalescing
2001  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
2002  * execute this function.
2003  *
2004  * Return: 0 always
2005  */
2006 static int
2007 axienet_ethtools_get_coalesce(struct net_device *ndev,
2008 			      struct ethtool_coalesce *ecoalesce,
2009 			      struct kernel_ethtool_coalesce *kernel_coal,
2010 			      struct netlink_ext_ack *extack)
2011 {
2012 	struct axienet_local *lp = netdev_priv(ndev);
2013 
2014 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
2015 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
2016 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
2017 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
2018 	return 0;
2019 }
2020 
2021 /**
2022  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
2023  * @ndev:	Pointer to net_device structure
2024  * @ecoalesce:	Pointer to ethtool_coalesce structure
2025  * @kernel_coal: ethtool CQE mode setting structure
2026  * @extack:	extack for reporting error messages
2027  *
2028  * This implements ethtool command for setting the DMA interrupt coalescing
2029  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
2030  * prompt to execute this function.
2031  *
2032  * Return: 0, on success, Non-zero error value on failure.
2033  */
2034 static int
2035 axienet_ethtools_set_coalesce(struct net_device *ndev,
2036 			      struct ethtool_coalesce *ecoalesce,
2037 			      struct kernel_ethtool_coalesce *kernel_coal,
2038 			      struct netlink_ext_ack *extack)
2039 {
2040 	struct axienet_local *lp = netdev_priv(ndev);
2041 
2042 	if (netif_running(ndev)) {
2043 		NL_SET_ERR_MSG(extack,
2044 			       "Please stop netif before applying configuration");
2045 		return -EBUSY;
2046 	}
2047 
2048 	if (ecoalesce->rx_max_coalesced_frames)
2049 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
2050 	if (ecoalesce->rx_coalesce_usecs)
2051 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
2052 	if (ecoalesce->tx_max_coalesced_frames)
2053 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
2054 	if (ecoalesce->tx_coalesce_usecs)
2055 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
2056 
2057 	return 0;
2058 }
2059 
2060 static int
2061 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
2062 				    struct ethtool_link_ksettings *cmd)
2063 {
2064 	struct axienet_local *lp = netdev_priv(ndev);
2065 
2066 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
2067 }
2068 
2069 static int
2070 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
2071 				    const struct ethtool_link_ksettings *cmd)
2072 {
2073 	struct axienet_local *lp = netdev_priv(ndev);
2074 
2075 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
2076 }
2077 
2078 static int axienet_ethtools_nway_reset(struct net_device *dev)
2079 {
2080 	struct axienet_local *lp = netdev_priv(dev);
2081 
2082 	return phylink_ethtool_nway_reset(lp->phylink);
2083 }
2084 
2085 static void axienet_ethtools_get_ethtool_stats(struct net_device *dev,
2086 					       struct ethtool_stats *stats,
2087 					       u64 *data)
2088 {
2089 	struct axienet_local *lp = netdev_priv(dev);
2090 	unsigned int start;
2091 
2092 	do {
2093 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2094 		data[0] = axienet_stat(lp, STAT_RX_BYTES);
2095 		data[1] = axienet_stat(lp, STAT_TX_BYTES);
2096 		data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES);
2097 		data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES);
2098 		data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES);
2099 		data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES);
2100 		data[8] = axienet_stat(lp, STAT_USER_DEFINED0);
2101 		data[9] = axienet_stat(lp, STAT_USER_DEFINED1);
2102 		data[10] = axienet_stat(lp, STAT_USER_DEFINED2);
2103 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2104 }
2105 
2106 static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = {
2107 	"Received bytes",
2108 	"Transmitted bytes",
2109 	"RX Good VLAN Tagged Frames",
2110 	"TX Good VLAN Tagged Frames",
2111 	"TX Good PFC Frames",
2112 	"RX Good PFC Frames",
2113 	"User Defined Counter 0",
2114 	"User Defined Counter 1",
2115 	"User Defined Counter 2",
2116 };
2117 
2118 static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2119 {
2120 	switch (stringset) {
2121 	case ETH_SS_STATS:
2122 		memcpy(data, axienet_ethtool_stats_strings,
2123 		       sizeof(axienet_ethtool_stats_strings));
2124 		break;
2125 	}
2126 }
2127 
2128 static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset)
2129 {
2130 	struct axienet_local *lp = netdev_priv(dev);
2131 
2132 	switch (sset) {
2133 	case ETH_SS_STATS:
2134 		if (lp->features & XAE_FEATURE_STATS)
2135 			return ARRAY_SIZE(axienet_ethtool_stats_strings);
2136 		fallthrough;
2137 	default:
2138 		return -EOPNOTSUPP;
2139 	}
2140 }
2141 
2142 static void
2143 axienet_ethtools_get_pause_stats(struct net_device *dev,
2144 				 struct ethtool_pause_stats *pause_stats)
2145 {
2146 	struct axienet_local *lp = netdev_priv(dev);
2147 	unsigned int start;
2148 
2149 	if (!(lp->features & XAE_FEATURE_STATS))
2150 		return;
2151 
2152 	do {
2153 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2154 		pause_stats->tx_pause_frames =
2155 			axienet_stat(lp, STAT_TX_PAUSE_FRAMES);
2156 		pause_stats->rx_pause_frames =
2157 			axienet_stat(lp, STAT_RX_PAUSE_FRAMES);
2158 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2159 }
2160 
2161 static void
2162 axienet_ethtool_get_eth_mac_stats(struct net_device *dev,
2163 				  struct ethtool_eth_mac_stats *mac_stats)
2164 {
2165 	struct axienet_local *lp = netdev_priv(dev);
2166 	unsigned int start;
2167 
2168 	if (!(lp->features & XAE_FEATURE_STATS))
2169 		return;
2170 
2171 	do {
2172 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2173 		mac_stats->FramesTransmittedOK =
2174 			axienet_stat(lp, STAT_TX_GOOD_FRAMES);
2175 		mac_stats->SingleCollisionFrames =
2176 			axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES);
2177 		mac_stats->MultipleCollisionFrames =
2178 			axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES);
2179 		mac_stats->FramesReceivedOK =
2180 			axienet_stat(lp, STAT_RX_GOOD_FRAMES);
2181 		mac_stats->FrameCheckSequenceErrors =
2182 			axienet_stat(lp, STAT_RX_FCS_ERRORS);
2183 		mac_stats->AlignmentErrors =
2184 			axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
2185 		mac_stats->FramesWithDeferredXmissions =
2186 			axienet_stat(lp, STAT_TX_DEFERRED_FRAMES);
2187 		mac_stats->LateCollisions =
2188 			axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
2189 		mac_stats->FramesAbortedDueToXSColls =
2190 			axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
2191 		mac_stats->MulticastFramesXmittedOK =
2192 			axienet_stat(lp, STAT_TX_MULTICAST_FRAMES);
2193 		mac_stats->BroadcastFramesXmittedOK =
2194 			axienet_stat(lp, STAT_TX_BROADCAST_FRAMES);
2195 		mac_stats->FramesWithExcessiveDeferral =
2196 			axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL);
2197 		mac_stats->MulticastFramesReceivedOK =
2198 			axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
2199 		mac_stats->BroadcastFramesReceivedOK =
2200 			axienet_stat(lp, STAT_RX_BROADCAST_FRAMES);
2201 		mac_stats->InRangeLengthErrors =
2202 			axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
2203 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2204 }
2205 
2206 static void
2207 axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev,
2208 				   struct ethtool_eth_ctrl_stats *ctrl_stats)
2209 {
2210 	struct axienet_local *lp = netdev_priv(dev);
2211 	unsigned int start;
2212 
2213 	if (!(lp->features & XAE_FEATURE_STATS))
2214 		return;
2215 
2216 	do {
2217 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2218 		ctrl_stats->MACControlFramesTransmitted =
2219 			axienet_stat(lp, STAT_TX_CONTROL_FRAMES);
2220 		ctrl_stats->MACControlFramesReceived =
2221 			axienet_stat(lp, STAT_RX_CONTROL_FRAMES);
2222 		ctrl_stats->UnsupportedOpcodesReceived =
2223 			axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS);
2224 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2225 }
2226 
2227 static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = {
2228 	{   64,    64 },
2229 	{   65,   127 },
2230 	{  128,   255 },
2231 	{  256,   511 },
2232 	{  512,  1023 },
2233 	{ 1024,  1518 },
2234 	{ 1519, 16384 },
2235 	{ },
2236 };
2237 
2238 static void
2239 axienet_ethtool_get_rmon_stats(struct net_device *dev,
2240 			       struct ethtool_rmon_stats *rmon_stats,
2241 			       const struct ethtool_rmon_hist_range **ranges)
2242 {
2243 	struct axienet_local *lp = netdev_priv(dev);
2244 	unsigned int start;
2245 
2246 	if (!(lp->features & XAE_FEATURE_STATS))
2247 		return;
2248 
2249 	do {
2250 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2251 		rmon_stats->undersize_pkts =
2252 			axienet_stat(lp, STAT_UNDERSIZE_FRAMES);
2253 		rmon_stats->oversize_pkts =
2254 			axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES);
2255 		rmon_stats->fragments =
2256 			axienet_stat(lp, STAT_FRAGMENT_FRAMES);
2257 
2258 		rmon_stats->hist[0] =
2259 			axienet_stat(lp, STAT_RX_64_BYTE_FRAMES);
2260 		rmon_stats->hist[1] =
2261 			axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES);
2262 		rmon_stats->hist[2] =
2263 			axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES);
2264 		rmon_stats->hist[3] =
2265 			axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES);
2266 		rmon_stats->hist[4] =
2267 			axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES);
2268 		rmon_stats->hist[5] =
2269 			axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES);
2270 		rmon_stats->hist[6] =
2271 			rmon_stats->oversize_pkts;
2272 
2273 		rmon_stats->hist_tx[0] =
2274 			axienet_stat(lp, STAT_TX_64_BYTE_FRAMES);
2275 		rmon_stats->hist_tx[1] =
2276 			axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES);
2277 		rmon_stats->hist_tx[2] =
2278 			axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES);
2279 		rmon_stats->hist_tx[3] =
2280 			axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES);
2281 		rmon_stats->hist_tx[4] =
2282 			axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES);
2283 		rmon_stats->hist_tx[5] =
2284 			axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES);
2285 		rmon_stats->hist_tx[6] =
2286 			axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES);
2287 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2288 
2289 	*ranges = axienet_rmon_ranges;
2290 }
2291 
2292 static const struct ethtool_ops axienet_ethtool_ops = {
2293 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
2294 				     ETHTOOL_COALESCE_USECS,
2295 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
2296 	.get_regs_len   = axienet_ethtools_get_regs_len,
2297 	.get_regs       = axienet_ethtools_get_regs,
2298 	.get_link       = ethtool_op_get_link,
2299 	.get_ringparam	= axienet_ethtools_get_ringparam,
2300 	.set_ringparam	= axienet_ethtools_set_ringparam,
2301 	.get_pauseparam = axienet_ethtools_get_pauseparam,
2302 	.set_pauseparam = axienet_ethtools_set_pauseparam,
2303 	.get_coalesce   = axienet_ethtools_get_coalesce,
2304 	.set_coalesce   = axienet_ethtools_set_coalesce,
2305 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
2306 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
2307 	.nway_reset	= axienet_ethtools_nway_reset,
2308 	.get_ethtool_stats = axienet_ethtools_get_ethtool_stats,
2309 	.get_strings    = axienet_ethtools_get_strings,
2310 	.get_sset_count = axienet_ethtools_get_sset_count,
2311 	.get_pause_stats = axienet_ethtools_get_pause_stats,
2312 	.get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats,
2313 	.get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats,
2314 	.get_rmon_stats = axienet_ethtool_get_rmon_stats,
2315 };
2316 
2317 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
2318 {
2319 	return container_of(pcs, struct axienet_local, pcs);
2320 }
2321 
2322 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
2323 				  struct phylink_link_state *state)
2324 {
2325 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2326 
2327 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
2328 }
2329 
2330 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
2331 {
2332 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2333 
2334 	phylink_mii_c22_pcs_an_restart(pcs_phy);
2335 }
2336 
2337 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2338 			      phy_interface_t interface,
2339 			      const unsigned long *advertising,
2340 			      bool permit_pause_to_mac)
2341 {
2342 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2343 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
2344 	struct axienet_local *lp = netdev_priv(ndev);
2345 	int ret;
2346 
2347 	if (lp->switch_x_sgmii) {
2348 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
2349 				    interface == PHY_INTERFACE_MODE_SGMII ?
2350 					XLNX_MII_STD_SELECT_SGMII : 0);
2351 		if (ret < 0) {
2352 			netdev_warn(ndev,
2353 				    "Failed to switch PHY interface: %d\n",
2354 				    ret);
2355 			return ret;
2356 		}
2357 	}
2358 
2359 	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
2360 					 neg_mode);
2361 	if (ret < 0)
2362 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
2363 
2364 	return ret;
2365 }
2366 
2367 static const struct phylink_pcs_ops axienet_pcs_ops = {
2368 	.pcs_get_state = axienet_pcs_get_state,
2369 	.pcs_config = axienet_pcs_config,
2370 	.pcs_an_restart = axienet_pcs_an_restart,
2371 };
2372 
2373 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
2374 						  phy_interface_t interface)
2375 {
2376 	struct net_device *ndev = to_net_dev(config->dev);
2377 	struct axienet_local *lp = netdev_priv(ndev);
2378 
2379 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
2380 	    interface ==  PHY_INTERFACE_MODE_SGMII)
2381 		return &lp->pcs;
2382 
2383 	return NULL;
2384 }
2385 
2386 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
2387 			       const struct phylink_link_state *state)
2388 {
2389 	/* nothing meaningful to do */
2390 }
2391 
2392 static void axienet_mac_link_down(struct phylink_config *config,
2393 				  unsigned int mode,
2394 				  phy_interface_t interface)
2395 {
2396 	/* nothing meaningful to do */
2397 }
2398 
2399 static void axienet_mac_link_up(struct phylink_config *config,
2400 				struct phy_device *phy,
2401 				unsigned int mode, phy_interface_t interface,
2402 				int speed, int duplex,
2403 				bool tx_pause, bool rx_pause)
2404 {
2405 	struct net_device *ndev = to_net_dev(config->dev);
2406 	struct axienet_local *lp = netdev_priv(ndev);
2407 	u32 emmc_reg, fcc_reg;
2408 
2409 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
2410 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
2411 
2412 	switch (speed) {
2413 	case SPEED_1000:
2414 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
2415 		break;
2416 	case SPEED_100:
2417 		emmc_reg |= XAE_EMMC_LINKSPD_100;
2418 		break;
2419 	case SPEED_10:
2420 		emmc_reg |= XAE_EMMC_LINKSPD_10;
2421 		break;
2422 	default:
2423 		dev_err(&ndev->dev,
2424 			"Speed other than 10, 100 or 1Gbps is not supported\n");
2425 		break;
2426 	}
2427 
2428 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
2429 
2430 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
2431 	if (tx_pause)
2432 		fcc_reg |= XAE_FCC_FCTX_MASK;
2433 	else
2434 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
2435 	if (rx_pause)
2436 		fcc_reg |= XAE_FCC_FCRX_MASK;
2437 	else
2438 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
2439 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
2440 }
2441 
2442 static const struct phylink_mac_ops axienet_phylink_ops = {
2443 	.mac_select_pcs = axienet_mac_select_pcs,
2444 	.mac_config = axienet_mac_config,
2445 	.mac_link_down = axienet_mac_link_down,
2446 	.mac_link_up = axienet_mac_link_up,
2447 };
2448 
2449 /**
2450  * axienet_dma_err_handler - Work queue task for Axi DMA Error
2451  * @work:	pointer to work_struct
2452  *
2453  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
2454  * Tx/Rx BDs.
2455  */
2456 static void axienet_dma_err_handler(struct work_struct *work)
2457 {
2458 	u32 i;
2459 	u32 axienet_status;
2460 	struct axidma_bd *cur_p;
2461 	struct axienet_local *lp = container_of(work, struct axienet_local,
2462 						dma_err_task);
2463 	struct net_device *ndev = lp->ndev;
2464 
2465 	napi_disable(&lp->napi_tx);
2466 	napi_disable(&lp->napi_rx);
2467 
2468 	axienet_setoptions(ndev, lp->options &
2469 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2470 
2471 	axienet_dma_stop(lp);
2472 
2473 	for (i = 0; i < lp->tx_bd_num; i++) {
2474 		cur_p = &lp->tx_bd_v[i];
2475 		if (cur_p->cntrl) {
2476 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
2477 
2478 			dma_unmap_single(lp->dev, addr,
2479 					 (cur_p->cntrl &
2480 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
2481 					 DMA_TO_DEVICE);
2482 		}
2483 		if (cur_p->skb)
2484 			dev_kfree_skb_irq(cur_p->skb);
2485 		cur_p->phys = 0;
2486 		cur_p->phys_msb = 0;
2487 		cur_p->cntrl = 0;
2488 		cur_p->status = 0;
2489 		cur_p->app0 = 0;
2490 		cur_p->app1 = 0;
2491 		cur_p->app2 = 0;
2492 		cur_p->app3 = 0;
2493 		cur_p->app4 = 0;
2494 		cur_p->skb = NULL;
2495 	}
2496 
2497 	for (i = 0; i < lp->rx_bd_num; i++) {
2498 		cur_p = &lp->rx_bd_v[i];
2499 		cur_p->status = 0;
2500 		cur_p->app0 = 0;
2501 		cur_p->app1 = 0;
2502 		cur_p->app2 = 0;
2503 		cur_p->app3 = 0;
2504 		cur_p->app4 = 0;
2505 	}
2506 
2507 	lp->tx_bd_ci = 0;
2508 	lp->tx_bd_tail = 0;
2509 	lp->rx_bd_ci = 0;
2510 
2511 	axienet_dma_start(lp);
2512 
2513 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
2514 	axienet_status &= ~XAE_RCW1_RX_MASK;
2515 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
2516 
2517 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
2518 	if (axienet_status & XAE_INT_RXRJECT_MASK)
2519 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
2520 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
2521 		    XAE_INT_RECV_ERROR_MASK : 0);
2522 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
2523 
2524 	/* Sync default options with HW but leave receiver and
2525 	 * transmitter disabled.
2526 	 */
2527 	axienet_setoptions(ndev, lp->options &
2528 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2529 	axienet_set_mac_address(ndev, NULL);
2530 	axienet_set_multicast_list(ndev);
2531 	napi_enable(&lp->napi_rx);
2532 	napi_enable(&lp->napi_tx);
2533 	axienet_setoptions(ndev, lp->options);
2534 }
2535 
2536 /**
2537  * axienet_probe - Axi Ethernet probe function.
2538  * @pdev:	Pointer to platform device structure.
2539  *
2540  * Return: 0, on success
2541  *	    Non-zero error value on failure.
2542  *
2543  * This is the probe routine for Axi Ethernet driver. This is called before
2544  * any other driver routines are invoked. It allocates and sets up the Ethernet
2545  * device. Parses through device tree and populates fields of
2546  * axienet_local. It registers the Ethernet device.
2547  */
2548 static int axienet_probe(struct platform_device *pdev)
2549 {
2550 	int ret;
2551 	struct device_node *np;
2552 	struct axienet_local *lp;
2553 	struct net_device *ndev;
2554 	struct resource *ethres;
2555 	u8 mac_addr[ETH_ALEN];
2556 	int addr_width = 32;
2557 	u32 value;
2558 
2559 	ndev = alloc_etherdev(sizeof(*lp));
2560 	if (!ndev)
2561 		return -ENOMEM;
2562 
2563 	platform_set_drvdata(pdev, ndev);
2564 
2565 	SET_NETDEV_DEV(ndev, &pdev->dev);
2566 	ndev->features = NETIF_F_SG;
2567 	ndev->ethtool_ops = &axienet_ethtool_ops;
2568 
2569 	/* MTU range: 64 - 9000 */
2570 	ndev->min_mtu = 64;
2571 	ndev->max_mtu = XAE_JUMBO_MTU;
2572 
2573 	lp = netdev_priv(ndev);
2574 	lp->ndev = ndev;
2575 	lp->dev = &pdev->dev;
2576 	lp->options = XAE_OPTION_DEFAULTS;
2577 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
2578 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
2579 
2580 	u64_stats_init(&lp->rx_stat_sync);
2581 	u64_stats_init(&lp->tx_stat_sync);
2582 
2583 	mutex_init(&lp->stats_lock);
2584 	seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock);
2585 	INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats);
2586 
2587 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
2588 	if (!lp->axi_clk) {
2589 		/* For backward compatibility, if named AXI clock is not present,
2590 		 * treat the first clock specified as the AXI clock.
2591 		 */
2592 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
2593 	}
2594 	if (IS_ERR(lp->axi_clk)) {
2595 		ret = PTR_ERR(lp->axi_clk);
2596 		goto free_netdev;
2597 	}
2598 	ret = clk_prepare_enable(lp->axi_clk);
2599 	if (ret) {
2600 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
2601 		goto free_netdev;
2602 	}
2603 
2604 	lp->misc_clks[0].id = "axis_clk";
2605 	lp->misc_clks[1].id = "ref_clk";
2606 	lp->misc_clks[2].id = "mgt_clk";
2607 
2608 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2609 	if (ret)
2610 		goto cleanup_clk;
2611 
2612 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2613 	if (ret)
2614 		goto cleanup_clk;
2615 
2616 	/* Map device registers */
2617 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
2618 	if (IS_ERR(lp->regs)) {
2619 		ret = PTR_ERR(lp->regs);
2620 		goto cleanup_clk;
2621 	}
2622 	lp->regs_start = ethres->start;
2623 
2624 	/* Setup checksum offload, but default to off if not specified */
2625 	lp->features = 0;
2626 
2627 	if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS)
2628 		lp->features |= XAE_FEATURE_STATS;
2629 
2630 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
2631 	if (!ret) {
2632 		switch (value) {
2633 		case 1:
2634 			lp->csum_offload_on_tx_path =
2635 				XAE_FEATURE_PARTIAL_TX_CSUM;
2636 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
2637 			/* Can checksum TCP/UDP over IPv4. */
2638 			ndev->features |= NETIF_F_IP_CSUM;
2639 			break;
2640 		case 2:
2641 			lp->csum_offload_on_tx_path =
2642 				XAE_FEATURE_FULL_TX_CSUM;
2643 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
2644 			/* Can checksum TCP/UDP over IPv4. */
2645 			ndev->features |= NETIF_F_IP_CSUM;
2646 			break;
2647 		default:
2648 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
2649 		}
2650 	}
2651 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
2652 	if (!ret) {
2653 		switch (value) {
2654 		case 1:
2655 			lp->csum_offload_on_rx_path =
2656 				XAE_FEATURE_PARTIAL_RX_CSUM;
2657 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
2658 			break;
2659 		case 2:
2660 			lp->csum_offload_on_rx_path =
2661 				XAE_FEATURE_FULL_RX_CSUM;
2662 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
2663 			break;
2664 		default:
2665 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
2666 		}
2667 	}
2668 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
2669 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
2670 	 * we can enable jumbo option and start supporting jumbo frames.
2671 	 * Here we check for memory allocated for Rx/Tx in the hardware from
2672 	 * the device-tree and accordingly set flags.
2673 	 */
2674 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
2675 
2676 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
2677 						   "xlnx,switch-x-sgmii");
2678 
2679 	/* Start with the proprietary, and broken phy_type */
2680 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
2681 	if (!ret) {
2682 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
2683 		switch (value) {
2684 		case XAE_PHY_TYPE_MII:
2685 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
2686 			break;
2687 		case XAE_PHY_TYPE_GMII:
2688 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
2689 			break;
2690 		case XAE_PHY_TYPE_RGMII_2_0:
2691 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
2692 			break;
2693 		case XAE_PHY_TYPE_SGMII:
2694 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2695 			break;
2696 		case XAE_PHY_TYPE_1000BASE_X:
2697 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2698 			break;
2699 		default:
2700 			ret = -EINVAL;
2701 			goto cleanup_clk;
2702 		}
2703 	} else {
2704 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2705 		if (ret)
2706 			goto cleanup_clk;
2707 	}
2708 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2709 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2710 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2711 		ret = -EINVAL;
2712 		goto cleanup_clk;
2713 	}
2714 
2715 	if (!of_property_present(pdev->dev.of_node, "dmas")) {
2716 		/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2717 		np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2718 
2719 		if (np) {
2720 			struct resource dmares;
2721 
2722 			ret = of_address_to_resource(np, 0, &dmares);
2723 			if (ret) {
2724 				dev_err(&pdev->dev,
2725 					"unable to get DMA resource\n");
2726 				of_node_put(np);
2727 				goto cleanup_clk;
2728 			}
2729 			lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2730 							     &dmares);
2731 			lp->rx_irq = irq_of_parse_and_map(np, 1);
2732 			lp->tx_irq = irq_of_parse_and_map(np, 0);
2733 			of_node_put(np);
2734 			lp->eth_irq = platform_get_irq_optional(pdev, 0);
2735 		} else {
2736 			/* Check for these resources directly on the Ethernet node. */
2737 			lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2738 			lp->rx_irq = platform_get_irq(pdev, 1);
2739 			lp->tx_irq = platform_get_irq(pdev, 0);
2740 			lp->eth_irq = platform_get_irq_optional(pdev, 2);
2741 		}
2742 		if (IS_ERR(lp->dma_regs)) {
2743 			dev_err(&pdev->dev, "could not map DMA regs\n");
2744 			ret = PTR_ERR(lp->dma_regs);
2745 			goto cleanup_clk;
2746 		}
2747 		if (lp->rx_irq <= 0 || lp->tx_irq <= 0) {
2748 			dev_err(&pdev->dev, "could not determine irqs\n");
2749 			ret = -ENOMEM;
2750 			goto cleanup_clk;
2751 		}
2752 
2753 		/* Reset core now that clocks are enabled, prior to accessing MDIO */
2754 		ret = __axienet_device_reset(lp);
2755 		if (ret)
2756 			goto cleanup_clk;
2757 
2758 		/* Autodetect the need for 64-bit DMA pointers.
2759 		 * When the IP is configured for a bus width bigger than 32 bits,
2760 		 * writing the MSB registers is mandatory, even if they are all 0.
2761 		 * We can detect this case by writing all 1's to one such register
2762 		 * and see if that sticks: when the IP is configured for 32 bits
2763 		 * only, those registers are RES0.
2764 		 * Those MSB registers were introduced in IP v7.1, which we check first.
2765 		 */
2766 		if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2767 			void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2768 
2769 			iowrite32(0x0, desc);
2770 			if (ioread32(desc) == 0) {	/* sanity check */
2771 				iowrite32(0xffffffff, desc);
2772 				if (ioread32(desc) > 0) {
2773 					lp->features |= XAE_FEATURE_DMA_64BIT;
2774 					addr_width = 64;
2775 					dev_info(&pdev->dev,
2776 						 "autodetected 64-bit DMA range\n");
2777 				}
2778 				iowrite32(0x0, desc);
2779 			}
2780 		}
2781 		if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2782 			dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2783 			ret = -EINVAL;
2784 			goto cleanup_clk;
2785 		}
2786 
2787 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2788 		if (ret) {
2789 			dev_err(&pdev->dev, "No suitable DMA available\n");
2790 			goto cleanup_clk;
2791 		}
2792 		netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
2793 		netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
2794 	} else {
2795 		struct xilinx_vdma_config cfg;
2796 		struct dma_chan *tx_chan;
2797 
2798 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2799 		if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) {
2800 			ret = lp->eth_irq;
2801 			goto cleanup_clk;
2802 		}
2803 		tx_chan = dma_request_chan(lp->dev, "tx_chan0");
2804 		if (IS_ERR(tx_chan)) {
2805 			ret = PTR_ERR(tx_chan);
2806 			dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n");
2807 			goto cleanup_clk;
2808 		}
2809 
2810 		cfg.reset = 1;
2811 		/* As name says VDMA but it has support for DMA channel reset */
2812 		ret = xilinx_vdma_channel_set_config(tx_chan, &cfg);
2813 		if (ret < 0) {
2814 			dev_err(&pdev->dev, "Reset channel failed\n");
2815 			dma_release_channel(tx_chan);
2816 			goto cleanup_clk;
2817 		}
2818 
2819 		dma_release_channel(tx_chan);
2820 		lp->use_dmaengine = 1;
2821 	}
2822 
2823 	if (lp->use_dmaengine)
2824 		ndev->netdev_ops = &axienet_netdev_dmaengine_ops;
2825 	else
2826 		ndev->netdev_ops = &axienet_netdev_ops;
2827 	/* Check for Ethernet core IRQ (optional) */
2828 	if (lp->eth_irq <= 0)
2829 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2830 
2831 	/* Retrieve the MAC address */
2832 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2833 	if (!ret) {
2834 		axienet_set_mac_address(ndev, mac_addr);
2835 	} else {
2836 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2837 			 ret);
2838 		axienet_set_mac_address(ndev, NULL);
2839 	}
2840 
2841 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2842 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2843 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2844 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2845 
2846 	ret = axienet_mdio_setup(lp);
2847 	if (ret)
2848 		dev_warn(&pdev->dev,
2849 			 "error registering MDIO bus: %d\n", ret);
2850 
2851 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2852 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2853 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2854 		if (!np) {
2855 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2856 			 * Falling back to "phy-handle" here is only for
2857 			 * backward compatibility with old device trees.
2858 			 */
2859 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2860 		}
2861 		if (!np) {
2862 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2863 			ret = -EINVAL;
2864 			goto cleanup_mdio;
2865 		}
2866 		lp->pcs_phy = of_mdio_find_device(np);
2867 		if (!lp->pcs_phy) {
2868 			ret = -EPROBE_DEFER;
2869 			of_node_put(np);
2870 			goto cleanup_mdio;
2871 		}
2872 		of_node_put(np);
2873 		lp->pcs.ops = &axienet_pcs_ops;
2874 		lp->pcs.neg_mode = true;
2875 		lp->pcs.poll = true;
2876 	}
2877 
2878 	lp->phylink_config.dev = &ndev->dev;
2879 	lp->phylink_config.type = PHYLINK_NETDEV;
2880 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2881 		MAC_10FD | MAC_100FD | MAC_1000FD;
2882 
2883 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2884 	if (lp->switch_x_sgmii) {
2885 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2886 			  lp->phylink_config.supported_interfaces);
2887 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2888 			  lp->phylink_config.supported_interfaces);
2889 	}
2890 
2891 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2892 				     lp->phy_mode,
2893 				     &axienet_phylink_ops);
2894 	if (IS_ERR(lp->phylink)) {
2895 		ret = PTR_ERR(lp->phylink);
2896 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2897 		goto cleanup_mdio;
2898 	}
2899 
2900 	ret = register_netdev(lp->ndev);
2901 	if (ret) {
2902 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2903 		goto cleanup_phylink;
2904 	}
2905 
2906 	return 0;
2907 
2908 cleanup_phylink:
2909 	phylink_destroy(lp->phylink);
2910 
2911 cleanup_mdio:
2912 	if (lp->pcs_phy)
2913 		put_device(&lp->pcs_phy->dev);
2914 	if (lp->mii_bus)
2915 		axienet_mdio_teardown(lp);
2916 cleanup_clk:
2917 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2918 	clk_disable_unprepare(lp->axi_clk);
2919 
2920 free_netdev:
2921 	free_netdev(ndev);
2922 
2923 	return ret;
2924 }
2925 
2926 static void axienet_remove(struct platform_device *pdev)
2927 {
2928 	struct net_device *ndev = platform_get_drvdata(pdev);
2929 	struct axienet_local *lp = netdev_priv(ndev);
2930 
2931 	unregister_netdev(ndev);
2932 
2933 	if (lp->phylink)
2934 		phylink_destroy(lp->phylink);
2935 
2936 	if (lp->pcs_phy)
2937 		put_device(&lp->pcs_phy->dev);
2938 
2939 	axienet_mdio_teardown(lp);
2940 
2941 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2942 	clk_disable_unprepare(lp->axi_clk);
2943 
2944 	free_netdev(ndev);
2945 }
2946 
2947 static void axienet_shutdown(struct platform_device *pdev)
2948 {
2949 	struct net_device *ndev = platform_get_drvdata(pdev);
2950 
2951 	rtnl_lock();
2952 	netif_device_detach(ndev);
2953 
2954 	if (netif_running(ndev))
2955 		dev_close(ndev);
2956 
2957 	rtnl_unlock();
2958 }
2959 
2960 static int axienet_suspend(struct device *dev)
2961 {
2962 	struct net_device *ndev = dev_get_drvdata(dev);
2963 
2964 	if (!netif_running(ndev))
2965 		return 0;
2966 
2967 	netif_device_detach(ndev);
2968 
2969 	rtnl_lock();
2970 	axienet_stop(ndev);
2971 	rtnl_unlock();
2972 
2973 	return 0;
2974 }
2975 
2976 static int axienet_resume(struct device *dev)
2977 {
2978 	struct net_device *ndev = dev_get_drvdata(dev);
2979 
2980 	if (!netif_running(ndev))
2981 		return 0;
2982 
2983 	rtnl_lock();
2984 	axienet_open(ndev);
2985 	rtnl_unlock();
2986 
2987 	netif_device_attach(ndev);
2988 
2989 	return 0;
2990 }
2991 
2992 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2993 				axienet_suspend, axienet_resume);
2994 
2995 static struct platform_driver axienet_driver = {
2996 	.probe = axienet_probe,
2997 	.remove_new = axienet_remove,
2998 	.shutdown = axienet_shutdown,
2999 	.driver = {
3000 		 .name = "xilinx_axienet",
3001 		 .pm = &axienet_pm_ops,
3002 		 .of_match_table = axienet_of_match,
3003 	},
3004 };
3005 
3006 module_platform_driver(axienet_driver);
3007 
3008 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
3009 MODULE_AUTHOR("Xilinx");
3010 MODULE_LICENSE("GPL");
3011