xref: /linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/math64.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 
41 #include "xilinx_axienet.h"
42 
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT		128
45 #define RX_BD_NUM_DEFAULT		1024
46 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
47 #define TX_BD_NUM_MAX			4096
48 #define RX_BD_NUM_MAX			4096
49 
50 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
51 #define DRIVER_NAME		"xaxienet"
52 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
53 #define DRIVER_VERSION		"1.00a"
54 
55 #define AXIENET_REGS_N		40
56 
57 /* Match table for of_platform binding */
58 static const struct of_device_id axienet_of_match[] = {
59 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
60 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
61 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
62 	{},
63 };
64 
65 MODULE_DEVICE_TABLE(of, axienet_of_match);
66 
67 /* Option table for setting up Axi Ethernet hardware options */
68 static struct axienet_option axienet_options[] = {
69 	/* Turn on jumbo packet support for both Rx and Tx */
70 	{
71 		.opt = XAE_OPTION_JUMBO,
72 		.reg = XAE_TC_OFFSET,
73 		.m_or = XAE_TC_JUM_MASK,
74 	}, {
75 		.opt = XAE_OPTION_JUMBO,
76 		.reg = XAE_RCW1_OFFSET,
77 		.m_or = XAE_RCW1_JUM_MASK,
78 	}, { /* Turn on VLAN packet support for both Rx and Tx */
79 		.opt = XAE_OPTION_VLAN,
80 		.reg = XAE_TC_OFFSET,
81 		.m_or = XAE_TC_VLAN_MASK,
82 	}, {
83 		.opt = XAE_OPTION_VLAN,
84 		.reg = XAE_RCW1_OFFSET,
85 		.m_or = XAE_RCW1_VLAN_MASK,
86 	}, { /* Turn on FCS stripping on receive packets */
87 		.opt = XAE_OPTION_FCS_STRIP,
88 		.reg = XAE_RCW1_OFFSET,
89 		.m_or = XAE_RCW1_FCS_MASK,
90 	}, { /* Turn on FCS insertion on transmit packets */
91 		.opt = XAE_OPTION_FCS_INSERT,
92 		.reg = XAE_TC_OFFSET,
93 		.m_or = XAE_TC_FCS_MASK,
94 	}, { /* Turn off length/type field checking on receive packets */
95 		.opt = XAE_OPTION_LENTYPE_ERR,
96 		.reg = XAE_RCW1_OFFSET,
97 		.m_or = XAE_RCW1_LT_DIS_MASK,
98 	}, { /* Turn on Rx flow control */
99 		.opt = XAE_OPTION_FLOW_CONTROL,
100 		.reg = XAE_FCC_OFFSET,
101 		.m_or = XAE_FCC_FCRX_MASK,
102 	}, { /* Turn on Tx flow control */
103 		.opt = XAE_OPTION_FLOW_CONTROL,
104 		.reg = XAE_FCC_OFFSET,
105 		.m_or = XAE_FCC_FCTX_MASK,
106 	}, { /* Turn on promiscuous frame filtering */
107 		.opt = XAE_OPTION_PROMISC,
108 		.reg = XAE_FMI_OFFSET,
109 		.m_or = XAE_FMI_PM_MASK,
110 	}, { /* Enable transmitter */
111 		.opt = XAE_OPTION_TXEN,
112 		.reg = XAE_TC_OFFSET,
113 		.m_or = XAE_TC_TX_MASK,
114 	}, { /* Enable receiver */
115 		.opt = XAE_OPTION_RXEN,
116 		.reg = XAE_RCW1_OFFSET,
117 		.m_or = XAE_RCW1_RX_MASK,
118 	},
119 	{}
120 };
121 
122 /**
123  * axienet_dma_in32 - Memory mapped Axi DMA register read
124  * @lp:		Pointer to axienet local structure
125  * @reg:	Address offset from the base address of the Axi DMA core
126  *
127  * Return: The contents of the Axi DMA register
128  *
129  * This function returns the contents of the corresponding Axi DMA register.
130  */
131 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132 {
133 	return ioread32(lp->dma_regs + reg);
134 }
135 
136 /**
137  * axienet_dma_out32 - Memory mapped Axi DMA register write.
138  * @lp:		Pointer to axienet local structure
139  * @reg:	Address offset from the base address of the Axi DMA core
140  * @value:	Value to be written into the Axi DMA register
141  *
142  * This function writes the desired value into the corresponding Axi DMA
143  * register.
144  */
145 static inline void axienet_dma_out32(struct axienet_local *lp,
146 				     off_t reg, u32 value)
147 {
148 	iowrite32(value, lp->dma_regs + reg);
149 }
150 
151 static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
152 				 dma_addr_t addr)
153 {
154 	axienet_dma_out32(lp, reg, lower_32_bits(addr));
155 
156 	if (lp->features & XAE_FEATURE_DMA_64BIT)
157 		axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
158 }
159 
160 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
161 			       struct axidma_bd *desc)
162 {
163 	desc->phys = lower_32_bits(addr);
164 	if (lp->features & XAE_FEATURE_DMA_64BIT)
165 		desc->phys_msb = upper_32_bits(addr);
166 }
167 
168 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
169 				     struct axidma_bd *desc)
170 {
171 	dma_addr_t ret = desc->phys;
172 
173 	if (lp->features & XAE_FEATURE_DMA_64BIT)
174 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
175 
176 	return ret;
177 }
178 
179 /**
180  * axienet_dma_bd_release - Release buffer descriptor rings
181  * @ndev:	Pointer to the net_device structure
182  *
183  * This function is used to release the descriptors allocated in
184  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
185  * driver stop api is called.
186  */
187 static void axienet_dma_bd_release(struct net_device *ndev)
188 {
189 	int i;
190 	struct axienet_local *lp = netdev_priv(ndev);
191 
192 	/* If we end up here, tx_bd_v must have been DMA allocated. */
193 	dma_free_coherent(lp->dev,
194 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
195 			  lp->tx_bd_v,
196 			  lp->tx_bd_p);
197 
198 	if (!lp->rx_bd_v)
199 		return;
200 
201 	for (i = 0; i < lp->rx_bd_num; i++) {
202 		dma_addr_t phys;
203 
204 		/* A NULL skb means this descriptor has not been initialised
205 		 * at all.
206 		 */
207 		if (!lp->rx_bd_v[i].skb)
208 			break;
209 
210 		dev_kfree_skb(lp->rx_bd_v[i].skb);
211 
212 		/* For each descriptor, we programmed cntrl with the (non-zero)
213 		 * descriptor size, after it had been successfully allocated.
214 		 * So a non-zero value in there means we need to unmap it.
215 		 */
216 		if (lp->rx_bd_v[i].cntrl) {
217 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
218 			dma_unmap_single(lp->dev, phys,
219 					 lp->max_frm_size, DMA_FROM_DEVICE);
220 		}
221 	}
222 
223 	dma_free_coherent(lp->dev,
224 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
225 			  lp->rx_bd_v,
226 			  lp->rx_bd_p);
227 }
228 
229 /**
230  * axienet_usec_to_timer - Calculate IRQ delay timer value
231  * @lp:		Pointer to the axienet_local structure
232  * @coalesce_usec: Microseconds to convert into timer value
233  */
234 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
235 {
236 	u32 result;
237 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
238 
239 	if (lp->axi_clk)
240 		clk_rate = clk_get_rate(lp->axi_clk);
241 
242 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
243 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
244 					 (u64)125000000);
245 	if (result > 255)
246 		result = 255;
247 
248 	return result;
249 }
250 
251 /**
252  * axienet_dma_start - Set up DMA registers and start DMA operation
253  * @lp:		Pointer to the axienet_local structure
254  */
255 static void axienet_dma_start(struct axienet_local *lp)
256 {
257 	u32 tx_cr;
258 
259 	/* Start updating the Rx channel control register */
260 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
261 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
262 	/* Only set interrupt delay timer if not generating an interrupt on
263 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
264 	 */
265 	if (lp->coalesce_count_rx > 1)
266 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
267 					<< XAXIDMA_DELAY_SHIFT) |
268 				 XAXIDMA_IRQ_DELAY_MASK;
269 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
270 
271 	/* Start updating the Tx channel control register */
272 	tx_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
273 		XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
274 	/* Only set interrupt delay timer if not generating an interrupt on
275 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
276 	 */
277 	if (lp->coalesce_count_tx > 1)
278 		tx_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
279 				<< XAXIDMA_DELAY_SHIFT) |
280 			 XAXIDMA_IRQ_DELAY_MASK;
281 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, tx_cr);
282 
283 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
284 	 * halted state. This will make the Rx side ready for reception.
285 	 */
286 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
287 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
288 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
289 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
290 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
291 
292 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
293 	 * Tx channel is now ready to run. But only after we write to the
294 	 * tail pointer register that the Tx channel will start transmitting.
295 	 */
296 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
297 	tx_cr |= XAXIDMA_CR_RUNSTOP_MASK;
298 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, tx_cr);
299 }
300 
301 /**
302  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
303  * @ndev:	Pointer to the net_device structure
304  *
305  * Return: 0, on success -ENOMEM, on failure
306  *
307  * This function is called to initialize the Rx and Tx DMA descriptor
308  * rings. This initializes the descriptors with required default values
309  * and is called when Axi Ethernet driver reset is called.
310  */
311 static int axienet_dma_bd_init(struct net_device *ndev)
312 {
313 	int i;
314 	struct sk_buff *skb;
315 	struct axienet_local *lp = netdev_priv(ndev);
316 
317 	/* Reset the indexes which are used for accessing the BDs */
318 	lp->tx_bd_ci = 0;
319 	lp->tx_bd_tail = 0;
320 	lp->rx_bd_ci = 0;
321 
322 	/* Allocate the Tx and Rx buffer descriptors. */
323 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
324 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
325 					 &lp->tx_bd_p, GFP_KERNEL);
326 	if (!lp->tx_bd_v)
327 		return -ENOMEM;
328 
329 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
330 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
331 					 &lp->rx_bd_p, GFP_KERNEL);
332 	if (!lp->rx_bd_v)
333 		goto out;
334 
335 	for (i = 0; i < lp->tx_bd_num; i++) {
336 		dma_addr_t addr = lp->tx_bd_p +
337 				  sizeof(*lp->tx_bd_v) *
338 				  ((i + 1) % lp->tx_bd_num);
339 
340 		lp->tx_bd_v[i].next = lower_32_bits(addr);
341 		if (lp->features & XAE_FEATURE_DMA_64BIT)
342 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
343 	}
344 
345 	for (i = 0; i < lp->rx_bd_num; i++) {
346 		dma_addr_t addr;
347 
348 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
349 			((i + 1) % lp->rx_bd_num);
350 		lp->rx_bd_v[i].next = lower_32_bits(addr);
351 		if (lp->features & XAE_FEATURE_DMA_64BIT)
352 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
353 
354 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
355 		if (!skb)
356 			goto out;
357 
358 		lp->rx_bd_v[i].skb = skb;
359 		addr = dma_map_single(lp->dev, skb->data,
360 				      lp->max_frm_size, DMA_FROM_DEVICE);
361 		if (dma_mapping_error(lp->dev, addr)) {
362 			netdev_err(ndev, "DMA mapping error\n");
363 			goto out;
364 		}
365 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
366 
367 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
368 	}
369 
370 	axienet_dma_start(lp);
371 
372 	return 0;
373 out:
374 	axienet_dma_bd_release(ndev);
375 	return -ENOMEM;
376 }
377 
378 /**
379  * axienet_set_mac_address - Write the MAC address
380  * @ndev:	Pointer to the net_device structure
381  * @address:	6 byte Address to be written as MAC address
382  *
383  * This function is called to initialize the MAC address of the Axi Ethernet
384  * core. It writes to the UAW0 and UAW1 registers of the core.
385  */
386 static void axienet_set_mac_address(struct net_device *ndev,
387 				    const void *address)
388 {
389 	struct axienet_local *lp = netdev_priv(ndev);
390 
391 	if (address)
392 		eth_hw_addr_set(ndev, address);
393 	if (!is_valid_ether_addr(ndev->dev_addr))
394 		eth_hw_addr_random(ndev);
395 
396 	/* Set up unicast MAC address filter set its mac address */
397 	axienet_iow(lp, XAE_UAW0_OFFSET,
398 		    (ndev->dev_addr[0]) |
399 		    (ndev->dev_addr[1] << 8) |
400 		    (ndev->dev_addr[2] << 16) |
401 		    (ndev->dev_addr[3] << 24));
402 	axienet_iow(lp, XAE_UAW1_OFFSET,
403 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
404 		      ~XAE_UAW1_UNICASTADDR_MASK) |
405 		     (ndev->dev_addr[4] |
406 		     (ndev->dev_addr[5] << 8))));
407 }
408 
409 /**
410  * netdev_set_mac_address - Write the MAC address (from outside the driver)
411  * @ndev:	Pointer to the net_device structure
412  * @p:		6 byte Address to be written as MAC address
413  *
414  * Return: 0 for all conditions. Presently, there is no failure case.
415  *
416  * This function is called to initialize the MAC address of the Axi Ethernet
417  * core. It calls the core specific axienet_set_mac_address. This is the
418  * function that goes into net_device_ops structure entry ndo_set_mac_address.
419  */
420 static int netdev_set_mac_address(struct net_device *ndev, void *p)
421 {
422 	struct sockaddr *addr = p;
423 	axienet_set_mac_address(ndev, addr->sa_data);
424 	return 0;
425 }
426 
427 /**
428  * axienet_set_multicast_list - Prepare the multicast table
429  * @ndev:	Pointer to the net_device structure
430  *
431  * This function is called to initialize the multicast table during
432  * initialization. The Axi Ethernet basic multicast support has a four-entry
433  * multicast table which is initialized here. Additionally this function
434  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
435  * means whenever the multicast table entries need to be updated this
436  * function gets called.
437  */
438 static void axienet_set_multicast_list(struct net_device *ndev)
439 {
440 	int i;
441 	u32 reg, af0reg, af1reg;
442 	struct axienet_local *lp = netdev_priv(ndev);
443 
444 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
445 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
446 		/* We must make the kernel realize we had to move into
447 		 * promiscuous mode. If it was a promiscuous mode request
448 		 * the flag is already set. If not we set it.
449 		 */
450 		ndev->flags |= IFF_PROMISC;
451 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
452 		reg |= XAE_FMI_PM_MASK;
453 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
454 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
455 	} else if (!netdev_mc_empty(ndev)) {
456 		struct netdev_hw_addr *ha;
457 
458 		i = 0;
459 		netdev_for_each_mc_addr(ha, ndev) {
460 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
461 				break;
462 
463 			af0reg = (ha->addr[0]);
464 			af0reg |= (ha->addr[1] << 8);
465 			af0reg |= (ha->addr[2] << 16);
466 			af0reg |= (ha->addr[3] << 24);
467 
468 			af1reg = (ha->addr[4]);
469 			af1reg |= (ha->addr[5] << 8);
470 
471 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
472 			reg |= i;
473 
474 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
475 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
476 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
477 			i++;
478 		}
479 	} else {
480 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
481 		reg &= ~XAE_FMI_PM_MASK;
482 
483 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
484 
485 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
486 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
487 			reg |= i;
488 
489 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
490 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
491 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
492 		}
493 
494 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
495 	}
496 }
497 
498 /**
499  * axienet_setoptions - Set an Axi Ethernet option
500  * @ndev:	Pointer to the net_device structure
501  * @options:	Option to be enabled/disabled
502  *
503  * The Axi Ethernet core has multiple features which can be selectively turned
504  * on or off. The typical options could be jumbo frame option, basic VLAN
505  * option, promiscuous mode option etc. This function is used to set or clear
506  * these options in the Axi Ethernet hardware. This is done through
507  * axienet_option structure .
508  */
509 static void axienet_setoptions(struct net_device *ndev, u32 options)
510 {
511 	int reg;
512 	struct axienet_local *lp = netdev_priv(ndev);
513 	struct axienet_option *tp = &axienet_options[0];
514 
515 	while (tp->opt) {
516 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
517 		if (options & tp->opt)
518 			reg |= tp->m_or;
519 		axienet_iow(lp, tp->reg, reg);
520 		tp++;
521 	}
522 
523 	lp->options |= options;
524 }
525 
526 static int __axienet_device_reset(struct axienet_local *lp)
527 {
528 	u32 value;
529 	int ret;
530 
531 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
532 	 * process of Axi DMA takes a while to complete as all pending
533 	 * commands/transfers will be flushed or completed during this
534 	 * reset process.
535 	 * Note that even though both TX and RX have their own reset register,
536 	 * they both reset the entire DMA core, so only one needs to be used.
537 	 */
538 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
539 	ret = read_poll_timeout(axienet_dma_in32, value,
540 				!(value & XAXIDMA_CR_RESET_MASK),
541 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
542 				XAXIDMA_TX_CR_OFFSET);
543 	if (ret) {
544 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
545 		return ret;
546 	}
547 
548 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
549 	ret = read_poll_timeout(axienet_ior, value,
550 				value & XAE_INT_PHYRSTCMPLT_MASK,
551 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
552 				XAE_IS_OFFSET);
553 	if (ret) {
554 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
555 		return ret;
556 	}
557 
558 	return 0;
559 }
560 
561 /**
562  * axienet_dma_stop - Stop DMA operation
563  * @lp:		Pointer to the axienet_local structure
564  */
565 static void axienet_dma_stop(struct axienet_local *lp)
566 {
567 	int count;
568 	u32 cr, sr;
569 
570 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
571 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
572 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
573 	synchronize_irq(lp->rx_irq);
574 
575 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
576 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
577 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
578 	synchronize_irq(lp->tx_irq);
579 
580 	/* Give DMAs a chance to halt gracefully */
581 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
582 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
583 		msleep(20);
584 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
585 	}
586 
587 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
588 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
589 		msleep(20);
590 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
591 	}
592 
593 	/* Do a reset to ensure DMA is really stopped */
594 	axienet_lock_mii(lp);
595 	__axienet_device_reset(lp);
596 	axienet_unlock_mii(lp);
597 }
598 
599 /**
600  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
601  * @ndev:	Pointer to the net_device structure
602  *
603  * This function is called to reset and initialize the Axi Ethernet core. This
604  * is typically called during initialization. It does a reset of the Axi DMA
605  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
606  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
607  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
608  * core.
609  * Returns 0 on success or a negative error number otherwise.
610  */
611 static int axienet_device_reset(struct net_device *ndev)
612 {
613 	u32 axienet_status;
614 	struct axienet_local *lp = netdev_priv(ndev);
615 	int ret;
616 
617 	ret = __axienet_device_reset(lp);
618 	if (ret)
619 		return ret;
620 
621 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
622 	lp->options |= XAE_OPTION_VLAN;
623 	lp->options &= (~XAE_OPTION_JUMBO);
624 
625 	if ((ndev->mtu > XAE_MTU) &&
626 		(ndev->mtu <= XAE_JUMBO_MTU)) {
627 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
628 					XAE_TRL_SIZE;
629 
630 		if (lp->max_frm_size <= lp->rxmem)
631 			lp->options |= XAE_OPTION_JUMBO;
632 	}
633 
634 	ret = axienet_dma_bd_init(ndev);
635 	if (ret) {
636 		netdev_err(ndev, "%s: descriptor allocation failed\n",
637 			   __func__);
638 		return ret;
639 	}
640 
641 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
642 	axienet_status &= ~XAE_RCW1_RX_MASK;
643 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
644 
645 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
646 	if (axienet_status & XAE_INT_RXRJECT_MASK)
647 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
648 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
649 		    XAE_INT_RECV_ERROR_MASK : 0);
650 
651 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
652 
653 	/* Sync default options with HW but leave receiver and
654 	 * transmitter disabled.
655 	 */
656 	axienet_setoptions(ndev, lp->options &
657 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
658 	axienet_set_mac_address(ndev, NULL);
659 	axienet_set_multicast_list(ndev);
660 	axienet_setoptions(ndev, lp->options);
661 
662 	netif_trans_update(ndev);
663 
664 	return 0;
665 }
666 
667 /**
668  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
669  * @ndev:	Pointer to the net_device structure
670  * @first_bd:	Index of first descriptor to clean up
671  * @nr_bds:	Number of descriptors to clean up, can be -1 if unknown.
672  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
673  * 		in all cleaned-up descriptors. Ignored if NULL.
674  *
675  * Would either be called after a successful transmit operation, or after
676  * there was an error when setting up the chain.
677  * Returns the number of descriptors handled.
678  */
679 static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
680 				 int nr_bds, u32 *sizep)
681 {
682 	struct axienet_local *lp = netdev_priv(ndev);
683 	struct axidma_bd *cur_p;
684 	int max_bds = nr_bds;
685 	unsigned int status;
686 	dma_addr_t phys;
687 	int i;
688 
689 	if (max_bds == -1)
690 		max_bds = lp->tx_bd_num;
691 
692 	for (i = 0; i < max_bds; i++) {
693 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
694 		status = cur_p->status;
695 
696 		/* If no number is given, clean up *all* descriptors that have
697 		 * been completed by the MAC.
698 		 */
699 		if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
700 			break;
701 
702 		/* Ensure we see complete descriptor update */
703 		dma_rmb();
704 		phys = desc_get_phys_addr(lp, cur_p);
705 		dma_unmap_single(lp->dev, phys,
706 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
707 				 DMA_TO_DEVICE);
708 
709 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
710 			dev_consume_skb_irq(cur_p->skb);
711 
712 		cur_p->app0 = 0;
713 		cur_p->app1 = 0;
714 		cur_p->app2 = 0;
715 		cur_p->app4 = 0;
716 		cur_p->skb = NULL;
717 		/* ensure our transmit path and device don't prematurely see status cleared */
718 		wmb();
719 		cur_p->cntrl = 0;
720 		cur_p->status = 0;
721 
722 		if (sizep)
723 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
724 	}
725 
726 	return i;
727 }
728 
729 /**
730  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
731  * @lp:		Pointer to the axienet_local structure
732  * @num_frag:	The number of BDs to check for
733  *
734  * Return: 0, on success
735  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
736  *
737  * This function is invoked before BDs are allocated and transmission starts.
738  * This function returns 0 if a BD or group of BDs can be allocated for
739  * transmission. If the BD or any of the BDs are not free the function
740  * returns a busy status. This is invoked from axienet_start_xmit.
741  */
742 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
743 					    int num_frag)
744 {
745 	struct axidma_bd *cur_p;
746 
747 	/* Ensure we see all descriptor updates from device or TX IRQ path */
748 	rmb();
749 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
750 	if (cur_p->cntrl)
751 		return NETDEV_TX_BUSY;
752 	return 0;
753 }
754 
755 /**
756  * axienet_start_xmit_done - Invoked once a transmit is completed by the
757  * Axi DMA Tx channel.
758  * @ndev:	Pointer to the net_device structure
759  *
760  * This function is invoked from the Axi DMA Tx isr to notify the completion
761  * of transmit operation. It clears fields in the corresponding Tx BDs and
762  * unmaps the corresponding buffer so that CPU can regain ownership of the
763  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
764  * required.
765  */
766 static void axienet_start_xmit_done(struct net_device *ndev)
767 {
768 	struct axienet_local *lp = netdev_priv(ndev);
769 	u32 packets = 0;
770 	u32 size = 0;
771 
772 	packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);
773 
774 	lp->tx_bd_ci += packets;
775 	if (lp->tx_bd_ci >= lp->tx_bd_num)
776 		lp->tx_bd_ci -= lp->tx_bd_num;
777 
778 	ndev->stats.tx_packets += packets;
779 	ndev->stats.tx_bytes += size;
780 
781 	/* Matches barrier in axienet_start_xmit */
782 	smp_mb();
783 
784 	if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
785 		netif_wake_queue(ndev);
786 }
787 
788 /**
789  * axienet_start_xmit - Starts the transmission.
790  * @skb:	sk_buff pointer that contains data to be Txed.
791  * @ndev:	Pointer to net_device structure.
792  *
793  * Return: NETDEV_TX_OK, on success
794  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
795  *
796  * This function is invoked from upper layers to initiate transmission. The
797  * function uses the next available free BDs and populates their fields to
798  * start the transmission. Additionally if checksum offloading is supported,
799  * it populates AXI Stream Control fields with appropriate values.
800  */
801 static netdev_tx_t
802 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
803 {
804 	u32 ii;
805 	u32 num_frag;
806 	u32 csum_start_off;
807 	u32 csum_index_off;
808 	skb_frag_t *frag;
809 	dma_addr_t tail_p, phys;
810 	struct axienet_local *lp = netdev_priv(ndev);
811 	struct axidma_bd *cur_p;
812 	u32 orig_tail_ptr = lp->tx_bd_tail;
813 
814 	num_frag = skb_shinfo(skb)->nr_frags;
815 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
816 
817 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
818 		/* Should not happen as last start_xmit call should have
819 		 * checked for sufficient space and queue should only be
820 		 * woken when sufficient space is available.
821 		 */
822 		netif_stop_queue(ndev);
823 		if (net_ratelimit())
824 			netdev_warn(ndev, "TX ring unexpectedly full\n");
825 		return NETDEV_TX_BUSY;
826 	}
827 
828 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
829 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
830 			/* Tx Full Checksum Offload Enabled */
831 			cur_p->app0 |= 2;
832 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
833 			csum_start_off = skb_transport_offset(skb);
834 			csum_index_off = csum_start_off + skb->csum_offset;
835 			/* Tx Partial Checksum Offload Enabled */
836 			cur_p->app0 |= 1;
837 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
838 		}
839 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
840 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
841 	}
842 
843 	phys = dma_map_single(lp->dev, skb->data,
844 			      skb_headlen(skb), DMA_TO_DEVICE);
845 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
846 		if (net_ratelimit())
847 			netdev_err(ndev, "TX DMA mapping error\n");
848 		ndev->stats.tx_dropped++;
849 		return NETDEV_TX_OK;
850 	}
851 	desc_set_phys_addr(lp, phys, cur_p);
852 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
853 
854 	for (ii = 0; ii < num_frag; ii++) {
855 		if (++lp->tx_bd_tail >= lp->tx_bd_num)
856 			lp->tx_bd_tail = 0;
857 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
858 		frag = &skb_shinfo(skb)->frags[ii];
859 		phys = dma_map_single(lp->dev,
860 				      skb_frag_address(frag),
861 				      skb_frag_size(frag),
862 				      DMA_TO_DEVICE);
863 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
864 			if (net_ratelimit())
865 				netdev_err(ndev, "TX DMA mapping error\n");
866 			ndev->stats.tx_dropped++;
867 			axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
868 					      NULL);
869 			lp->tx_bd_tail = orig_tail_ptr;
870 
871 			return NETDEV_TX_OK;
872 		}
873 		desc_set_phys_addr(lp, phys, cur_p);
874 		cur_p->cntrl = skb_frag_size(frag);
875 	}
876 
877 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
878 	cur_p->skb = skb;
879 
880 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
881 	/* Start the transfer */
882 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
883 	if (++lp->tx_bd_tail >= lp->tx_bd_num)
884 		lp->tx_bd_tail = 0;
885 
886 	/* Stop queue if next transmit may not have space */
887 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
888 		netif_stop_queue(ndev);
889 
890 		/* Matches barrier in axienet_start_xmit_done */
891 		smp_mb();
892 
893 		/* Space might have just been freed - check again */
894 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
895 			netif_wake_queue(ndev);
896 	}
897 
898 	return NETDEV_TX_OK;
899 }
900 
901 /**
902  * axienet_poll - Triggered by RX ISR to complete the received BD processing.
903  * @napi:	Pointer to NAPI structure.
904  * @budget:	Max number of packets to process.
905  *
906  * Return: Number of RX packets processed.
907  */
908 static int axienet_poll(struct napi_struct *napi, int budget)
909 {
910 	u32 length;
911 	u32 csumstatus;
912 	u32 size = 0;
913 	int packets = 0;
914 	dma_addr_t tail_p = 0;
915 	struct axidma_bd *cur_p;
916 	struct sk_buff *skb, *new_skb;
917 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi);
918 
919 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
920 
921 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
922 		dma_addr_t phys;
923 
924 		/* Ensure we see complete descriptor update */
925 		dma_rmb();
926 
927 		skb = cur_p->skb;
928 		cur_p->skb = NULL;
929 
930 		/* skb could be NULL if a previous pass already received the
931 		 * packet for this slot in the ring, but failed to refill it
932 		 * with a newly allocated buffer. In this case, don't try to
933 		 * receive it again.
934 		 */
935 		if (likely(skb)) {
936 			length = cur_p->app4 & 0x0000FFFF;
937 
938 			phys = desc_get_phys_addr(lp, cur_p);
939 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
940 					 DMA_FROM_DEVICE);
941 
942 			skb_put(skb, length);
943 			skb->protocol = eth_type_trans(skb, lp->ndev);
944 			/*skb_checksum_none_assert(skb);*/
945 			skb->ip_summed = CHECKSUM_NONE;
946 
947 			/* if we're doing Rx csum offload, set it up */
948 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
949 				csumstatus = (cur_p->app2 &
950 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
951 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
952 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
953 					skb->ip_summed = CHECKSUM_UNNECESSARY;
954 				}
955 			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
956 				   skb->protocol == htons(ETH_P_IP) &&
957 				   skb->len > 64) {
958 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
959 				skb->ip_summed = CHECKSUM_COMPLETE;
960 			}
961 
962 			napi_gro_receive(napi, skb);
963 
964 			size += length;
965 			packets++;
966 		}
967 
968 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
969 		if (!new_skb)
970 			break;
971 
972 		phys = dma_map_single(lp->dev, new_skb->data,
973 				      lp->max_frm_size,
974 				      DMA_FROM_DEVICE);
975 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
976 			if (net_ratelimit())
977 				netdev_err(lp->ndev, "RX DMA mapping error\n");
978 			dev_kfree_skb(new_skb);
979 			break;
980 		}
981 		desc_set_phys_addr(lp, phys, cur_p);
982 
983 		cur_p->cntrl = lp->max_frm_size;
984 		cur_p->status = 0;
985 		cur_p->skb = new_skb;
986 
987 		/* Only update tail_p to mark this slot as usable after it has
988 		 * been successfully refilled.
989 		 */
990 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
991 
992 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
993 			lp->rx_bd_ci = 0;
994 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
995 	}
996 
997 	lp->ndev->stats.rx_packets += packets;
998 	lp->ndev->stats.rx_bytes += size;
999 
1000 	if (tail_p)
1001 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1002 
1003 	if (packets < budget && napi_complete_done(napi, packets)) {
1004 		/* Re-enable RX completion interrupts. This should
1005 		 * cause an immediate interrupt if any RX packets are
1006 		 * already pending.
1007 		 */
1008 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1009 	}
1010 	return packets;
1011 }
1012 
1013 /**
1014  * axienet_tx_irq - Tx Done Isr.
1015  * @irq:	irq number
1016  * @_ndev:	net_device pointer
1017  *
1018  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1019  *
1020  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
1021  * to complete the BD processing.
1022  */
1023 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1024 {
1025 	unsigned int status;
1026 	struct net_device *ndev = _ndev;
1027 	struct axienet_local *lp = netdev_priv(ndev);
1028 
1029 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1030 
1031 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1032 		return IRQ_NONE;
1033 
1034 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1035 
1036 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1037 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1038 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1039 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1040 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1041 		schedule_work(&lp->dma_err_task);
1042 	} else {
1043 		axienet_start_xmit_done(lp->ndev);
1044 	}
1045 
1046 	return IRQ_HANDLED;
1047 }
1048 
1049 /**
1050  * axienet_rx_irq - Rx Isr.
1051  * @irq:	irq number
1052  * @_ndev:	net_device pointer
1053  *
1054  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1055  *
1056  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1057  * processing.
1058  */
1059 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1060 {
1061 	unsigned int status;
1062 	struct net_device *ndev = _ndev;
1063 	struct axienet_local *lp = netdev_priv(ndev);
1064 
1065 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1066 
1067 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1068 		return IRQ_NONE;
1069 
1070 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1071 
1072 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1073 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1074 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1075 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1076 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1077 		schedule_work(&lp->dma_err_task);
1078 	} else {
1079 		/* Disable further RX completion interrupts and schedule
1080 		 * NAPI receive.
1081 		 */
1082 		u32 cr = lp->rx_dma_cr;
1083 
1084 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1085 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1086 
1087 		napi_schedule(&lp->napi);
1088 	}
1089 
1090 	return IRQ_HANDLED;
1091 }
1092 
1093 /**
1094  * axienet_eth_irq - Ethernet core Isr.
1095  * @irq:	irq number
1096  * @_ndev:	net_device pointer
1097  *
1098  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1099  *
1100  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1101  */
1102 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1103 {
1104 	struct net_device *ndev = _ndev;
1105 	struct axienet_local *lp = netdev_priv(ndev);
1106 	unsigned int pending;
1107 
1108 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1109 	if (!pending)
1110 		return IRQ_NONE;
1111 
1112 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1113 		ndev->stats.rx_missed_errors++;
1114 
1115 	if (pending & XAE_INT_RXRJECT_MASK)
1116 		ndev->stats.rx_frame_errors++;
1117 
1118 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1119 	return IRQ_HANDLED;
1120 }
1121 
1122 static void axienet_dma_err_handler(struct work_struct *work);
1123 
1124 /**
1125  * axienet_open - Driver open routine.
1126  * @ndev:	Pointer to net_device structure
1127  *
1128  * Return: 0, on success.
1129  *	    non-zero error value on failure
1130  *
1131  * This is the driver open routine. It calls phylink_start to start the
1132  * PHY device.
1133  * It also allocates interrupt service routines, enables the interrupt lines
1134  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1135  * descriptors are initialized.
1136  */
1137 static int axienet_open(struct net_device *ndev)
1138 {
1139 	int ret;
1140 	struct axienet_local *lp = netdev_priv(ndev);
1141 
1142 	dev_dbg(&ndev->dev, "axienet_open()\n");
1143 
1144 	/* When we do an Axi Ethernet reset, it resets the complete core
1145 	 * including the MDIO. MDIO must be disabled before resetting.
1146 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1147 	 */
1148 	axienet_lock_mii(lp);
1149 	ret = axienet_device_reset(ndev);
1150 	axienet_unlock_mii(lp);
1151 
1152 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1153 	if (ret) {
1154 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1155 		return ret;
1156 	}
1157 
1158 	phylink_start(lp->phylink);
1159 
1160 	/* Enable worker thread for Axi DMA error handling */
1161 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1162 
1163 	napi_enable(&lp->napi);
1164 
1165 	/* Enable interrupts for Axi DMA Tx */
1166 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1167 			  ndev->name, ndev);
1168 	if (ret)
1169 		goto err_tx_irq;
1170 	/* Enable interrupts for Axi DMA Rx */
1171 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1172 			  ndev->name, ndev);
1173 	if (ret)
1174 		goto err_rx_irq;
1175 	/* Enable interrupts for Axi Ethernet core (if defined) */
1176 	if (lp->eth_irq > 0) {
1177 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1178 				  ndev->name, ndev);
1179 		if (ret)
1180 			goto err_eth_irq;
1181 	}
1182 
1183 	return 0;
1184 
1185 err_eth_irq:
1186 	free_irq(lp->rx_irq, ndev);
1187 err_rx_irq:
1188 	free_irq(lp->tx_irq, ndev);
1189 err_tx_irq:
1190 	napi_disable(&lp->napi);
1191 	phylink_stop(lp->phylink);
1192 	phylink_disconnect_phy(lp->phylink);
1193 	cancel_work_sync(&lp->dma_err_task);
1194 	dev_err(lp->dev, "request_irq() failed\n");
1195 	return ret;
1196 }
1197 
1198 /**
1199  * axienet_stop - Driver stop routine.
1200  * @ndev:	Pointer to net_device structure
1201  *
1202  * Return: 0, on success.
1203  *
1204  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1205  * device. It also removes the interrupt handlers and disables the interrupts.
1206  * The Axi DMA Tx/Rx BDs are released.
1207  */
1208 static int axienet_stop(struct net_device *ndev)
1209 {
1210 	struct axienet_local *lp = netdev_priv(ndev);
1211 
1212 	dev_dbg(&ndev->dev, "axienet_close()\n");
1213 
1214 	napi_disable(&lp->napi);
1215 
1216 	phylink_stop(lp->phylink);
1217 	phylink_disconnect_phy(lp->phylink);
1218 
1219 	axienet_setoptions(ndev, lp->options &
1220 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1221 
1222 	axienet_dma_stop(lp);
1223 
1224 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1225 
1226 	cancel_work_sync(&lp->dma_err_task);
1227 
1228 	if (lp->eth_irq > 0)
1229 		free_irq(lp->eth_irq, ndev);
1230 	free_irq(lp->tx_irq, ndev);
1231 	free_irq(lp->rx_irq, ndev);
1232 
1233 	axienet_dma_bd_release(ndev);
1234 	return 0;
1235 }
1236 
1237 /**
1238  * axienet_change_mtu - Driver change mtu routine.
1239  * @ndev:	Pointer to net_device structure
1240  * @new_mtu:	New mtu value to be applied
1241  *
1242  * Return: Always returns 0 (success).
1243  *
1244  * This is the change mtu driver routine. It checks if the Axi Ethernet
1245  * hardware supports jumbo frames before changing the mtu. This can be
1246  * called only when the device is not up.
1247  */
1248 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1249 {
1250 	struct axienet_local *lp = netdev_priv(ndev);
1251 
1252 	if (netif_running(ndev))
1253 		return -EBUSY;
1254 
1255 	if ((new_mtu + VLAN_ETH_HLEN +
1256 		XAE_TRL_SIZE) > lp->rxmem)
1257 		return -EINVAL;
1258 
1259 	ndev->mtu = new_mtu;
1260 
1261 	return 0;
1262 }
1263 
1264 #ifdef CONFIG_NET_POLL_CONTROLLER
1265 /**
1266  * axienet_poll_controller - Axi Ethernet poll mechanism.
1267  * @ndev:	Pointer to net_device structure
1268  *
1269  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1270  * to polling the ISRs and are enabled back after the polling is done.
1271  */
1272 static void axienet_poll_controller(struct net_device *ndev)
1273 {
1274 	struct axienet_local *lp = netdev_priv(ndev);
1275 	disable_irq(lp->tx_irq);
1276 	disable_irq(lp->rx_irq);
1277 	axienet_rx_irq(lp->tx_irq, ndev);
1278 	axienet_tx_irq(lp->rx_irq, ndev);
1279 	enable_irq(lp->tx_irq);
1280 	enable_irq(lp->rx_irq);
1281 }
1282 #endif
1283 
1284 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1285 {
1286 	struct axienet_local *lp = netdev_priv(dev);
1287 
1288 	if (!netif_running(dev))
1289 		return -EINVAL;
1290 
1291 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1292 }
1293 
1294 static const struct net_device_ops axienet_netdev_ops = {
1295 	.ndo_open = axienet_open,
1296 	.ndo_stop = axienet_stop,
1297 	.ndo_start_xmit = axienet_start_xmit,
1298 	.ndo_change_mtu	= axienet_change_mtu,
1299 	.ndo_set_mac_address = netdev_set_mac_address,
1300 	.ndo_validate_addr = eth_validate_addr,
1301 	.ndo_eth_ioctl = axienet_ioctl,
1302 	.ndo_set_rx_mode = axienet_set_multicast_list,
1303 #ifdef CONFIG_NET_POLL_CONTROLLER
1304 	.ndo_poll_controller = axienet_poll_controller,
1305 #endif
1306 };
1307 
1308 /**
1309  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1310  * @ndev:	Pointer to net_device structure
1311  * @ed:		Pointer to ethtool_drvinfo structure
1312  *
1313  * This implements ethtool command for getting the driver information.
1314  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1315  */
1316 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1317 					 struct ethtool_drvinfo *ed)
1318 {
1319 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1320 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1321 }
1322 
1323 /**
1324  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1325  *				   AxiEthernet core.
1326  * @ndev:	Pointer to net_device structure
1327  *
1328  * This implements ethtool command for getting the total register length
1329  * information.
1330  *
1331  * Return: the total regs length
1332  */
1333 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1334 {
1335 	return sizeof(u32) * AXIENET_REGS_N;
1336 }
1337 
1338 /**
1339  * axienet_ethtools_get_regs - Dump the contents of all registers present
1340  *			       in AxiEthernet core.
1341  * @ndev:	Pointer to net_device structure
1342  * @regs:	Pointer to ethtool_regs structure
1343  * @ret:	Void pointer used to return the contents of the registers.
1344  *
1345  * This implements ethtool command for getting the Axi Ethernet register dump.
1346  * Issue "ethtool -d ethX" to execute this function.
1347  */
1348 static void axienet_ethtools_get_regs(struct net_device *ndev,
1349 				      struct ethtool_regs *regs, void *ret)
1350 {
1351 	u32 *data = (u32 *) ret;
1352 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1353 	struct axienet_local *lp = netdev_priv(ndev);
1354 
1355 	regs->version = 0;
1356 	regs->len = len;
1357 
1358 	memset(data, 0, len);
1359 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1360 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1361 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1362 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1363 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1364 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1365 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1366 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1367 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1368 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1369 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1370 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1371 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1372 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1373 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1374 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1375 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1376 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1377 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1378 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1379 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1380 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1381 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1382 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1383 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1384 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1385 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1386 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1387 	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1388 	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1389 	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1390 	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1391 	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1392 	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1393 	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1394 	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1395 }
1396 
1397 static void
1398 axienet_ethtools_get_ringparam(struct net_device *ndev,
1399 			       struct ethtool_ringparam *ering,
1400 			       struct kernel_ethtool_ringparam *kernel_ering,
1401 			       struct netlink_ext_ack *extack)
1402 {
1403 	struct axienet_local *lp = netdev_priv(ndev);
1404 
1405 	ering->rx_max_pending = RX_BD_NUM_MAX;
1406 	ering->rx_mini_max_pending = 0;
1407 	ering->rx_jumbo_max_pending = 0;
1408 	ering->tx_max_pending = TX_BD_NUM_MAX;
1409 	ering->rx_pending = lp->rx_bd_num;
1410 	ering->rx_mini_pending = 0;
1411 	ering->rx_jumbo_pending = 0;
1412 	ering->tx_pending = lp->tx_bd_num;
1413 }
1414 
1415 static int
1416 axienet_ethtools_set_ringparam(struct net_device *ndev,
1417 			       struct ethtool_ringparam *ering,
1418 			       struct kernel_ethtool_ringparam *kernel_ering,
1419 			       struct netlink_ext_ack *extack)
1420 {
1421 	struct axienet_local *lp = netdev_priv(ndev);
1422 
1423 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1424 	    ering->rx_mini_pending ||
1425 	    ering->rx_jumbo_pending ||
1426 	    ering->tx_pending < TX_BD_NUM_MIN ||
1427 	    ering->tx_pending > TX_BD_NUM_MAX)
1428 		return -EINVAL;
1429 
1430 	if (netif_running(ndev))
1431 		return -EBUSY;
1432 
1433 	lp->rx_bd_num = ering->rx_pending;
1434 	lp->tx_bd_num = ering->tx_pending;
1435 	return 0;
1436 }
1437 
1438 /**
1439  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1440  *				     Tx and Rx paths.
1441  * @ndev:	Pointer to net_device structure
1442  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1443  *
1444  * This implements ethtool command for getting axi ethernet pause frame
1445  * setting. Issue "ethtool -a ethX" to execute this function.
1446  */
1447 static void
1448 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1449 				struct ethtool_pauseparam *epauseparm)
1450 {
1451 	struct axienet_local *lp = netdev_priv(ndev);
1452 
1453 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1454 }
1455 
1456 /**
1457  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1458  *				     settings.
1459  * @ndev:	Pointer to net_device structure
1460  * @epauseparm:Pointer to ethtool_pauseparam structure
1461  *
1462  * This implements ethtool command for enabling flow control on Rx and Tx
1463  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1464  * function.
1465  *
1466  * Return: 0 on success, -EFAULT if device is running
1467  */
1468 static int
1469 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1470 				struct ethtool_pauseparam *epauseparm)
1471 {
1472 	struct axienet_local *lp = netdev_priv(ndev);
1473 
1474 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1475 }
1476 
1477 /**
1478  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1479  * @ndev:	Pointer to net_device structure
1480  * @ecoalesce:	Pointer to ethtool_coalesce structure
1481  * @kernel_coal: ethtool CQE mode setting structure
1482  * @extack:	extack for reporting error messages
1483  *
1484  * This implements ethtool command for getting the DMA interrupt coalescing
1485  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1486  * execute this function.
1487  *
1488  * Return: 0 always
1489  */
1490 static int
1491 axienet_ethtools_get_coalesce(struct net_device *ndev,
1492 			      struct ethtool_coalesce *ecoalesce,
1493 			      struct kernel_ethtool_coalesce *kernel_coal,
1494 			      struct netlink_ext_ack *extack)
1495 {
1496 	struct axienet_local *lp = netdev_priv(ndev);
1497 
1498 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1499 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1500 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1501 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1502 	return 0;
1503 }
1504 
1505 /**
1506  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1507  * @ndev:	Pointer to net_device structure
1508  * @ecoalesce:	Pointer to ethtool_coalesce structure
1509  * @kernel_coal: ethtool CQE mode setting structure
1510  * @extack:	extack for reporting error messages
1511  *
1512  * This implements ethtool command for setting the DMA interrupt coalescing
1513  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1514  * prompt to execute this function.
1515  *
1516  * Return: 0, on success, Non-zero error value on failure.
1517  */
1518 static int
1519 axienet_ethtools_set_coalesce(struct net_device *ndev,
1520 			      struct ethtool_coalesce *ecoalesce,
1521 			      struct kernel_ethtool_coalesce *kernel_coal,
1522 			      struct netlink_ext_ack *extack)
1523 {
1524 	struct axienet_local *lp = netdev_priv(ndev);
1525 
1526 	if (netif_running(ndev)) {
1527 		netdev_err(ndev,
1528 			   "Please stop netif before applying configuration\n");
1529 		return -EFAULT;
1530 	}
1531 
1532 	if (ecoalesce->rx_max_coalesced_frames)
1533 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1534 	if (ecoalesce->rx_coalesce_usecs)
1535 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1536 	if (ecoalesce->tx_max_coalesced_frames)
1537 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1538 	if (ecoalesce->tx_coalesce_usecs)
1539 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1540 
1541 	return 0;
1542 }
1543 
1544 static int
1545 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1546 				    struct ethtool_link_ksettings *cmd)
1547 {
1548 	struct axienet_local *lp = netdev_priv(ndev);
1549 
1550 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1551 }
1552 
1553 static int
1554 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1555 				    const struct ethtool_link_ksettings *cmd)
1556 {
1557 	struct axienet_local *lp = netdev_priv(ndev);
1558 
1559 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1560 }
1561 
1562 static int axienet_ethtools_nway_reset(struct net_device *dev)
1563 {
1564 	struct axienet_local *lp = netdev_priv(dev);
1565 
1566 	return phylink_ethtool_nway_reset(lp->phylink);
1567 }
1568 
1569 static const struct ethtool_ops axienet_ethtool_ops = {
1570 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1571 				     ETHTOOL_COALESCE_USECS,
1572 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1573 	.get_regs_len   = axienet_ethtools_get_regs_len,
1574 	.get_regs       = axienet_ethtools_get_regs,
1575 	.get_link       = ethtool_op_get_link,
1576 	.get_ringparam	= axienet_ethtools_get_ringparam,
1577 	.set_ringparam	= axienet_ethtools_set_ringparam,
1578 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1579 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1580 	.get_coalesce   = axienet_ethtools_get_coalesce,
1581 	.set_coalesce   = axienet_ethtools_set_coalesce,
1582 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1583 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1584 	.nway_reset	= axienet_ethtools_nway_reset,
1585 };
1586 
1587 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1588 {
1589 	return container_of(pcs, struct axienet_local, pcs);
1590 }
1591 
1592 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1593 				  struct phylink_link_state *state)
1594 {
1595 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1596 
1597 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1598 }
1599 
1600 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1601 {
1602 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1603 
1604 	phylink_mii_c22_pcs_an_restart(pcs_phy);
1605 }
1606 
1607 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
1608 			      phy_interface_t interface,
1609 			      const unsigned long *advertising,
1610 			      bool permit_pause_to_mac)
1611 {
1612 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1613 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1614 	struct axienet_local *lp = netdev_priv(ndev);
1615 	int ret;
1616 
1617 	if (lp->switch_x_sgmii) {
1618 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1619 				    interface == PHY_INTERFACE_MODE_SGMII ?
1620 					XLNX_MII_STD_SELECT_SGMII : 0);
1621 		if (ret < 0) {
1622 			netdev_warn(ndev,
1623 				    "Failed to switch PHY interface: %d\n",
1624 				    ret);
1625 			return ret;
1626 		}
1627 	}
1628 
1629 	ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
1630 	if (ret < 0)
1631 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1632 
1633 	return ret;
1634 }
1635 
1636 static const struct phylink_pcs_ops axienet_pcs_ops = {
1637 	.pcs_get_state = axienet_pcs_get_state,
1638 	.pcs_config = axienet_pcs_config,
1639 	.pcs_an_restart = axienet_pcs_an_restart,
1640 };
1641 
1642 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1643 						  phy_interface_t interface)
1644 {
1645 	struct net_device *ndev = to_net_dev(config->dev);
1646 	struct axienet_local *lp = netdev_priv(ndev);
1647 
1648 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1649 	    interface ==  PHY_INTERFACE_MODE_SGMII)
1650 		return &lp->pcs;
1651 
1652 	return NULL;
1653 }
1654 
1655 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1656 			       const struct phylink_link_state *state)
1657 {
1658 	/* nothing meaningful to do */
1659 }
1660 
1661 static void axienet_mac_link_down(struct phylink_config *config,
1662 				  unsigned int mode,
1663 				  phy_interface_t interface)
1664 {
1665 	/* nothing meaningful to do */
1666 }
1667 
1668 static void axienet_mac_link_up(struct phylink_config *config,
1669 				struct phy_device *phy,
1670 				unsigned int mode, phy_interface_t interface,
1671 				int speed, int duplex,
1672 				bool tx_pause, bool rx_pause)
1673 {
1674 	struct net_device *ndev = to_net_dev(config->dev);
1675 	struct axienet_local *lp = netdev_priv(ndev);
1676 	u32 emmc_reg, fcc_reg;
1677 
1678 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1679 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1680 
1681 	switch (speed) {
1682 	case SPEED_1000:
1683 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1684 		break;
1685 	case SPEED_100:
1686 		emmc_reg |= XAE_EMMC_LINKSPD_100;
1687 		break;
1688 	case SPEED_10:
1689 		emmc_reg |= XAE_EMMC_LINKSPD_10;
1690 		break;
1691 	default:
1692 		dev_err(&ndev->dev,
1693 			"Speed other than 10, 100 or 1Gbps is not supported\n");
1694 		break;
1695 	}
1696 
1697 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1698 
1699 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1700 	if (tx_pause)
1701 		fcc_reg |= XAE_FCC_FCTX_MASK;
1702 	else
1703 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1704 	if (rx_pause)
1705 		fcc_reg |= XAE_FCC_FCRX_MASK;
1706 	else
1707 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1708 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1709 }
1710 
1711 static const struct phylink_mac_ops axienet_phylink_ops = {
1712 	.validate = phylink_generic_validate,
1713 	.mac_select_pcs = axienet_mac_select_pcs,
1714 	.mac_config = axienet_mac_config,
1715 	.mac_link_down = axienet_mac_link_down,
1716 	.mac_link_up = axienet_mac_link_up,
1717 };
1718 
1719 /**
1720  * axienet_dma_err_handler - Work queue task for Axi DMA Error
1721  * @work:	pointer to work_struct
1722  *
1723  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1724  * Tx/Rx BDs.
1725  */
1726 static void axienet_dma_err_handler(struct work_struct *work)
1727 {
1728 	u32 i;
1729 	u32 axienet_status;
1730 	struct axidma_bd *cur_p;
1731 	struct axienet_local *lp = container_of(work, struct axienet_local,
1732 						dma_err_task);
1733 	struct net_device *ndev = lp->ndev;
1734 
1735 	napi_disable(&lp->napi);
1736 
1737 	axienet_setoptions(ndev, lp->options &
1738 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1739 
1740 	axienet_dma_stop(lp);
1741 
1742 	for (i = 0; i < lp->tx_bd_num; i++) {
1743 		cur_p = &lp->tx_bd_v[i];
1744 		if (cur_p->cntrl) {
1745 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1746 
1747 			dma_unmap_single(lp->dev, addr,
1748 					 (cur_p->cntrl &
1749 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1750 					 DMA_TO_DEVICE);
1751 		}
1752 		if (cur_p->skb)
1753 			dev_kfree_skb_irq(cur_p->skb);
1754 		cur_p->phys = 0;
1755 		cur_p->phys_msb = 0;
1756 		cur_p->cntrl = 0;
1757 		cur_p->status = 0;
1758 		cur_p->app0 = 0;
1759 		cur_p->app1 = 0;
1760 		cur_p->app2 = 0;
1761 		cur_p->app3 = 0;
1762 		cur_p->app4 = 0;
1763 		cur_p->skb = NULL;
1764 	}
1765 
1766 	for (i = 0; i < lp->rx_bd_num; i++) {
1767 		cur_p = &lp->rx_bd_v[i];
1768 		cur_p->status = 0;
1769 		cur_p->app0 = 0;
1770 		cur_p->app1 = 0;
1771 		cur_p->app2 = 0;
1772 		cur_p->app3 = 0;
1773 		cur_p->app4 = 0;
1774 	}
1775 
1776 	lp->tx_bd_ci = 0;
1777 	lp->tx_bd_tail = 0;
1778 	lp->rx_bd_ci = 0;
1779 
1780 	axienet_dma_start(lp);
1781 
1782 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1783 	axienet_status &= ~XAE_RCW1_RX_MASK;
1784 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1785 
1786 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1787 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1788 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1789 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1790 		    XAE_INT_RECV_ERROR_MASK : 0);
1791 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1792 
1793 	/* Sync default options with HW but leave receiver and
1794 	 * transmitter disabled.
1795 	 */
1796 	axienet_setoptions(ndev, lp->options &
1797 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1798 	axienet_set_mac_address(ndev, NULL);
1799 	axienet_set_multicast_list(ndev);
1800 	axienet_setoptions(ndev, lp->options);
1801 	napi_enable(&lp->napi);
1802 }
1803 
1804 /**
1805  * axienet_probe - Axi Ethernet probe function.
1806  * @pdev:	Pointer to platform device structure.
1807  *
1808  * Return: 0, on success
1809  *	    Non-zero error value on failure.
1810  *
1811  * This is the probe routine for Axi Ethernet driver. This is called before
1812  * any other driver routines are invoked. It allocates and sets up the Ethernet
1813  * device. Parses through device tree and populates fields of
1814  * axienet_local. It registers the Ethernet device.
1815  */
1816 static int axienet_probe(struct platform_device *pdev)
1817 {
1818 	int ret;
1819 	struct device_node *np;
1820 	struct axienet_local *lp;
1821 	struct net_device *ndev;
1822 	struct resource *ethres;
1823 	u8 mac_addr[ETH_ALEN];
1824 	int addr_width = 32;
1825 	u32 value;
1826 
1827 	ndev = alloc_etherdev(sizeof(*lp));
1828 	if (!ndev)
1829 		return -ENOMEM;
1830 
1831 	platform_set_drvdata(pdev, ndev);
1832 
1833 	SET_NETDEV_DEV(ndev, &pdev->dev);
1834 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1835 	ndev->features = NETIF_F_SG;
1836 	ndev->netdev_ops = &axienet_netdev_ops;
1837 	ndev->ethtool_ops = &axienet_ethtool_ops;
1838 
1839 	/* MTU range: 64 - 9000 */
1840 	ndev->min_mtu = 64;
1841 	ndev->max_mtu = XAE_JUMBO_MTU;
1842 
1843 	lp = netdev_priv(ndev);
1844 	lp->ndev = ndev;
1845 	lp->dev = &pdev->dev;
1846 	lp->options = XAE_OPTION_DEFAULTS;
1847 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1848 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1849 
1850 	netif_napi_add(ndev, &lp->napi, axienet_poll, NAPI_POLL_WEIGHT);
1851 
1852 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1853 	if (!lp->axi_clk) {
1854 		/* For backward compatibility, if named AXI clock is not present,
1855 		 * treat the first clock specified as the AXI clock.
1856 		 */
1857 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1858 	}
1859 	if (IS_ERR(lp->axi_clk)) {
1860 		ret = PTR_ERR(lp->axi_clk);
1861 		goto free_netdev;
1862 	}
1863 	ret = clk_prepare_enable(lp->axi_clk);
1864 	if (ret) {
1865 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1866 		goto free_netdev;
1867 	}
1868 
1869 	lp->misc_clks[0].id = "axis_clk";
1870 	lp->misc_clks[1].id = "ref_clk";
1871 	lp->misc_clks[2].id = "mgt_clk";
1872 
1873 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1874 	if (ret)
1875 		goto cleanup_clk;
1876 
1877 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1878 	if (ret)
1879 		goto cleanup_clk;
1880 
1881 	/* Map device registers */
1882 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1883 	if (IS_ERR(lp->regs)) {
1884 		ret = PTR_ERR(lp->regs);
1885 		goto cleanup_clk;
1886 	}
1887 	lp->regs_start = ethres->start;
1888 
1889 	/* Setup checksum offload, but default to off if not specified */
1890 	lp->features = 0;
1891 
1892 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1893 	if (!ret) {
1894 		switch (value) {
1895 		case 1:
1896 			lp->csum_offload_on_tx_path =
1897 				XAE_FEATURE_PARTIAL_TX_CSUM;
1898 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1899 			/* Can checksum TCP/UDP over IPv4. */
1900 			ndev->features |= NETIF_F_IP_CSUM;
1901 			break;
1902 		case 2:
1903 			lp->csum_offload_on_tx_path =
1904 				XAE_FEATURE_FULL_TX_CSUM;
1905 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1906 			/* Can checksum TCP/UDP over IPv4. */
1907 			ndev->features |= NETIF_F_IP_CSUM;
1908 			break;
1909 		default:
1910 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1911 		}
1912 	}
1913 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1914 	if (!ret) {
1915 		switch (value) {
1916 		case 1:
1917 			lp->csum_offload_on_rx_path =
1918 				XAE_FEATURE_PARTIAL_RX_CSUM;
1919 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1920 			break;
1921 		case 2:
1922 			lp->csum_offload_on_rx_path =
1923 				XAE_FEATURE_FULL_RX_CSUM;
1924 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1925 			break;
1926 		default:
1927 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1928 		}
1929 	}
1930 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1931 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1932 	 * we can enable jumbo option and start supporting jumbo frames.
1933 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1934 	 * the device-tree and accordingly set flags.
1935 	 */
1936 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1937 
1938 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1939 						   "xlnx,switch-x-sgmii");
1940 
1941 	/* Start with the proprietary, and broken phy_type */
1942 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1943 	if (!ret) {
1944 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1945 		switch (value) {
1946 		case XAE_PHY_TYPE_MII:
1947 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1948 			break;
1949 		case XAE_PHY_TYPE_GMII:
1950 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1951 			break;
1952 		case XAE_PHY_TYPE_RGMII_2_0:
1953 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1954 			break;
1955 		case XAE_PHY_TYPE_SGMII:
1956 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1957 			break;
1958 		case XAE_PHY_TYPE_1000BASE_X:
1959 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1960 			break;
1961 		default:
1962 			ret = -EINVAL;
1963 			goto cleanup_clk;
1964 		}
1965 	} else {
1966 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1967 		if (ret)
1968 			goto cleanup_clk;
1969 	}
1970 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
1971 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
1972 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
1973 		ret = -EINVAL;
1974 		goto cleanup_clk;
1975 	}
1976 
1977 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1978 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1979 	if (np) {
1980 		struct resource dmares;
1981 
1982 		ret = of_address_to_resource(np, 0, &dmares);
1983 		if (ret) {
1984 			dev_err(&pdev->dev,
1985 				"unable to get DMA resource\n");
1986 			of_node_put(np);
1987 			goto cleanup_clk;
1988 		}
1989 		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1990 						     &dmares);
1991 		lp->rx_irq = irq_of_parse_and_map(np, 1);
1992 		lp->tx_irq = irq_of_parse_and_map(np, 0);
1993 		of_node_put(np);
1994 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
1995 	} else {
1996 		/* Check for these resources directly on the Ethernet node. */
1997 		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
1998 		lp->rx_irq = platform_get_irq(pdev, 1);
1999 		lp->tx_irq = platform_get_irq(pdev, 0);
2000 		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2001 	}
2002 	if (IS_ERR(lp->dma_regs)) {
2003 		dev_err(&pdev->dev, "could not map DMA regs\n");
2004 		ret = PTR_ERR(lp->dma_regs);
2005 		goto cleanup_clk;
2006 	}
2007 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2008 		dev_err(&pdev->dev, "could not determine irqs\n");
2009 		ret = -ENOMEM;
2010 		goto cleanup_clk;
2011 	}
2012 
2013 	/* Autodetect the need for 64-bit DMA pointers.
2014 	 * When the IP is configured for a bus width bigger than 32 bits,
2015 	 * writing the MSB registers is mandatory, even if they are all 0.
2016 	 * We can detect this case by writing all 1's to one such register
2017 	 * and see if that sticks: when the IP is configured for 32 bits
2018 	 * only, those registers are RES0.
2019 	 * Those MSB registers were introduced in IP v7.1, which we check first.
2020 	 */
2021 	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2022 		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2023 
2024 		iowrite32(0x0, desc);
2025 		if (ioread32(desc) == 0) {	/* sanity check */
2026 			iowrite32(0xffffffff, desc);
2027 			if (ioread32(desc) > 0) {
2028 				lp->features |= XAE_FEATURE_DMA_64BIT;
2029 				addr_width = 64;
2030 				dev_info(&pdev->dev,
2031 					 "autodetected 64-bit DMA range\n");
2032 			}
2033 			iowrite32(0x0, desc);
2034 		}
2035 	}
2036 
2037 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2038 	if (ret) {
2039 		dev_err(&pdev->dev, "No suitable DMA available\n");
2040 		goto cleanup_clk;
2041 	}
2042 
2043 	/* Check for Ethernet core IRQ (optional) */
2044 	if (lp->eth_irq <= 0)
2045 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2046 
2047 	/* Retrieve the MAC address */
2048 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2049 	if (!ret) {
2050 		axienet_set_mac_address(ndev, mac_addr);
2051 	} else {
2052 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2053 			 ret);
2054 		axienet_set_mac_address(ndev, NULL);
2055 	}
2056 
2057 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2058 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2059 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2060 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2061 
2062 	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2063 	ret = __axienet_device_reset(lp);
2064 	if (ret)
2065 		goto cleanup_clk;
2066 
2067 	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2068 	if (lp->phy_node) {
2069 		ret = axienet_mdio_setup(lp);
2070 		if (ret)
2071 			dev_warn(&pdev->dev,
2072 				 "error registering MDIO bus: %d\n", ret);
2073 	}
2074 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2075 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2076 		if (!lp->phy_node) {
2077 			dev_err(&pdev->dev, "phy-handle required for 1000BaseX/SGMII\n");
2078 			ret = -EINVAL;
2079 			goto cleanup_mdio;
2080 		}
2081 		lp->pcs_phy = of_mdio_find_device(lp->phy_node);
2082 		if (!lp->pcs_phy) {
2083 			ret = -EPROBE_DEFER;
2084 			goto cleanup_mdio;
2085 		}
2086 		lp->pcs.ops = &axienet_pcs_ops;
2087 		lp->pcs.poll = true;
2088 	}
2089 
2090 	lp->phylink_config.dev = &ndev->dev;
2091 	lp->phylink_config.type = PHYLINK_NETDEV;
2092 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2093 		MAC_10FD | MAC_100FD | MAC_1000FD;
2094 
2095 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2096 	if (lp->switch_x_sgmii) {
2097 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2098 			  lp->phylink_config.supported_interfaces);
2099 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2100 			  lp->phylink_config.supported_interfaces);
2101 	}
2102 
2103 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2104 				     lp->phy_mode,
2105 				     &axienet_phylink_ops);
2106 	if (IS_ERR(lp->phylink)) {
2107 		ret = PTR_ERR(lp->phylink);
2108 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2109 		goto cleanup_mdio;
2110 	}
2111 
2112 	ret = register_netdev(lp->ndev);
2113 	if (ret) {
2114 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2115 		goto cleanup_phylink;
2116 	}
2117 
2118 	return 0;
2119 
2120 cleanup_phylink:
2121 	phylink_destroy(lp->phylink);
2122 
2123 cleanup_mdio:
2124 	if (lp->pcs_phy)
2125 		put_device(&lp->pcs_phy->dev);
2126 	if (lp->mii_bus)
2127 		axienet_mdio_teardown(lp);
2128 	of_node_put(lp->phy_node);
2129 
2130 cleanup_clk:
2131 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2132 	clk_disable_unprepare(lp->axi_clk);
2133 
2134 free_netdev:
2135 	free_netdev(ndev);
2136 
2137 	return ret;
2138 }
2139 
2140 static int axienet_remove(struct platform_device *pdev)
2141 {
2142 	struct net_device *ndev = platform_get_drvdata(pdev);
2143 	struct axienet_local *lp = netdev_priv(ndev);
2144 
2145 	unregister_netdev(ndev);
2146 
2147 	if (lp->phylink)
2148 		phylink_destroy(lp->phylink);
2149 
2150 	if (lp->pcs_phy)
2151 		put_device(&lp->pcs_phy->dev);
2152 
2153 	axienet_mdio_teardown(lp);
2154 
2155 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2156 	clk_disable_unprepare(lp->axi_clk);
2157 
2158 	of_node_put(lp->phy_node);
2159 	lp->phy_node = NULL;
2160 
2161 	free_netdev(ndev);
2162 
2163 	return 0;
2164 }
2165 
2166 static void axienet_shutdown(struct platform_device *pdev)
2167 {
2168 	struct net_device *ndev = platform_get_drvdata(pdev);
2169 
2170 	rtnl_lock();
2171 	netif_device_detach(ndev);
2172 
2173 	if (netif_running(ndev))
2174 		dev_close(ndev);
2175 
2176 	rtnl_unlock();
2177 }
2178 
2179 static struct platform_driver axienet_driver = {
2180 	.probe = axienet_probe,
2181 	.remove = axienet_remove,
2182 	.shutdown = axienet_shutdown,
2183 	.driver = {
2184 		 .name = "xilinx_axienet",
2185 		 .of_match_table = axienet_of_match,
2186 	},
2187 };
2188 
2189 module_platform_driver(axienet_driver);
2190 
2191 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2192 MODULE_AUTHOR("Xilinx");
2193 MODULE_LICENSE("GPL");
2194