1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xilinx Axi Ethernet device driver 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> 9 * Copyright (c) 2010 - 2011 PetaLogix 10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies 11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. 12 * 13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 14 * and Spartan6. 15 * 16 * TODO: 17 * - Add Axi Fifo support. 18 * - Factor out Axi DMA code into separate driver. 19 * - Test and fix basic multicast filtering. 20 * - Add support for extended multicast filtering. 21 * - Test basic VLAN support. 22 * - Add support for extended VLAN support. 23 */ 24 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/module.h> 29 #include <linux/netdevice.h> 30 #include <linux/of.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_address.h> 35 #include <linux/platform_device.h> 36 #include <linux/skbuff.h> 37 #include <linux/math64.h> 38 #include <linux/phy.h> 39 #include <linux/mii.h> 40 #include <linux/ethtool.h> 41 #include <linux/dmaengine.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/dma/xilinx_dma.h> 44 #include <linux/circ_buf.h> 45 #include <net/netdev_queues.h> 46 47 #include "xilinx_axienet.h" 48 49 /* Descriptors defines for Tx and Rx DMA */ 50 #define TX_BD_NUM_DEFAULT 128 51 #define RX_BD_NUM_DEFAULT 1024 52 #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) 53 #define TX_BD_NUM_MAX 4096 54 #define RX_BD_NUM_MAX 4096 55 #define DMA_NUM_APP_WORDS 5 56 #define LEN_APP 4 57 #define RX_BUF_NUM_DEFAULT 128 58 59 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ 60 #define DRIVER_NAME "xaxienet" 61 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" 62 #define DRIVER_VERSION "1.00a" 63 64 #define AXIENET_REGS_N 40 65 66 static void axienet_rx_submit_desc(struct net_device *ndev); 67 68 /* Match table for of_platform binding */ 69 static const struct of_device_id axienet_of_match[] = { 70 { .compatible = "xlnx,axi-ethernet-1.00.a", }, 71 { .compatible = "xlnx,axi-ethernet-1.01.a", }, 72 { .compatible = "xlnx,axi-ethernet-2.01.a", }, 73 {}, 74 }; 75 76 MODULE_DEVICE_TABLE(of, axienet_of_match); 77 78 /* Option table for setting up Axi Ethernet hardware options */ 79 static struct axienet_option axienet_options[] = { 80 /* Turn on jumbo packet support for both Rx and Tx */ 81 { 82 .opt = XAE_OPTION_JUMBO, 83 .reg = XAE_TC_OFFSET, 84 .m_or = XAE_TC_JUM_MASK, 85 }, { 86 .opt = XAE_OPTION_JUMBO, 87 .reg = XAE_RCW1_OFFSET, 88 .m_or = XAE_RCW1_JUM_MASK, 89 }, { /* Turn on VLAN packet support for both Rx and Tx */ 90 .opt = XAE_OPTION_VLAN, 91 .reg = XAE_TC_OFFSET, 92 .m_or = XAE_TC_VLAN_MASK, 93 }, { 94 .opt = XAE_OPTION_VLAN, 95 .reg = XAE_RCW1_OFFSET, 96 .m_or = XAE_RCW1_VLAN_MASK, 97 }, { /* Turn on FCS stripping on receive packets */ 98 .opt = XAE_OPTION_FCS_STRIP, 99 .reg = XAE_RCW1_OFFSET, 100 .m_or = XAE_RCW1_FCS_MASK, 101 }, { /* Turn on FCS insertion on transmit packets */ 102 .opt = XAE_OPTION_FCS_INSERT, 103 .reg = XAE_TC_OFFSET, 104 .m_or = XAE_TC_FCS_MASK, 105 }, { /* Turn off length/type field checking on receive packets */ 106 .opt = XAE_OPTION_LENTYPE_ERR, 107 .reg = XAE_RCW1_OFFSET, 108 .m_or = XAE_RCW1_LT_DIS_MASK, 109 }, { /* Turn on Rx flow control */ 110 .opt = XAE_OPTION_FLOW_CONTROL, 111 .reg = XAE_FCC_OFFSET, 112 .m_or = XAE_FCC_FCRX_MASK, 113 }, { /* Turn on Tx flow control */ 114 .opt = XAE_OPTION_FLOW_CONTROL, 115 .reg = XAE_FCC_OFFSET, 116 .m_or = XAE_FCC_FCTX_MASK, 117 }, { /* Turn on promiscuous frame filtering */ 118 .opt = XAE_OPTION_PROMISC, 119 .reg = XAE_FMI_OFFSET, 120 .m_or = XAE_FMI_PM_MASK, 121 }, { /* Enable transmitter */ 122 .opt = XAE_OPTION_TXEN, 123 .reg = XAE_TC_OFFSET, 124 .m_or = XAE_TC_TX_MASK, 125 }, { /* Enable receiver */ 126 .opt = XAE_OPTION_RXEN, 127 .reg = XAE_RCW1_OFFSET, 128 .m_or = XAE_RCW1_RX_MASK, 129 }, 130 {} 131 }; 132 133 static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i) 134 { 135 return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)]; 136 } 137 138 static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i) 139 { 140 return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)]; 141 } 142 143 /** 144 * axienet_dma_in32 - Memory mapped Axi DMA register read 145 * @lp: Pointer to axienet local structure 146 * @reg: Address offset from the base address of the Axi DMA core 147 * 148 * Return: The contents of the Axi DMA register 149 * 150 * This function returns the contents of the corresponding Axi DMA register. 151 */ 152 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) 153 { 154 return ioread32(lp->dma_regs + reg); 155 } 156 157 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, 158 struct axidma_bd *desc) 159 { 160 desc->phys = lower_32_bits(addr); 161 if (lp->features & XAE_FEATURE_DMA_64BIT) 162 desc->phys_msb = upper_32_bits(addr); 163 } 164 165 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, 166 struct axidma_bd *desc) 167 { 168 dma_addr_t ret = desc->phys; 169 170 if (lp->features & XAE_FEATURE_DMA_64BIT) 171 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; 172 173 return ret; 174 } 175 176 /** 177 * axienet_dma_bd_release - Release buffer descriptor rings 178 * @ndev: Pointer to the net_device structure 179 * 180 * This function is used to release the descriptors allocated in 181 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet 182 * driver stop api is called. 183 */ 184 static void axienet_dma_bd_release(struct net_device *ndev) 185 { 186 int i; 187 struct axienet_local *lp = netdev_priv(ndev); 188 189 /* If we end up here, tx_bd_v must have been DMA allocated. */ 190 dma_free_coherent(lp->dev, 191 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 192 lp->tx_bd_v, 193 lp->tx_bd_p); 194 195 if (!lp->rx_bd_v) 196 return; 197 198 for (i = 0; i < lp->rx_bd_num; i++) { 199 dma_addr_t phys; 200 201 /* A NULL skb means this descriptor has not been initialised 202 * at all. 203 */ 204 if (!lp->rx_bd_v[i].skb) 205 break; 206 207 dev_kfree_skb(lp->rx_bd_v[i].skb); 208 209 /* For each descriptor, we programmed cntrl with the (non-zero) 210 * descriptor size, after it had been successfully allocated. 211 * So a non-zero value in there means we need to unmap it. 212 */ 213 if (lp->rx_bd_v[i].cntrl) { 214 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); 215 dma_unmap_single(lp->dev, phys, 216 lp->max_frm_size, DMA_FROM_DEVICE); 217 } 218 } 219 220 dma_free_coherent(lp->dev, 221 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 222 lp->rx_bd_v, 223 lp->rx_bd_p); 224 } 225 226 /** 227 * axienet_usec_to_timer - Calculate IRQ delay timer value 228 * @lp: Pointer to the axienet_local structure 229 * @coalesce_usec: Microseconds to convert into timer value 230 */ 231 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec) 232 { 233 u32 result; 234 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */ 235 236 if (lp->axi_clk) 237 clk_rate = clk_get_rate(lp->axi_clk); 238 239 /* 1 Timeout Interval = 125 * (clock period of SG clock) */ 240 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate, 241 (u64)125000000); 242 if (result > 255) 243 result = 255; 244 245 return result; 246 } 247 248 /** 249 * axienet_dma_start - Set up DMA registers and start DMA operation 250 * @lp: Pointer to the axienet_local structure 251 */ 252 static void axienet_dma_start(struct axienet_local *lp) 253 { 254 /* Start updating the Rx channel control register */ 255 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) | 256 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 257 /* Only set interrupt delay timer if not generating an interrupt on 258 * the first RX packet. Otherwise leave at 0 to disable delay interrupt. 259 */ 260 if (lp->coalesce_count_rx > 1) 261 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx) 262 << XAXIDMA_DELAY_SHIFT) | 263 XAXIDMA_IRQ_DELAY_MASK; 264 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 265 266 /* Start updating the Tx channel control register */ 267 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) | 268 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 269 /* Only set interrupt delay timer if not generating an interrupt on 270 * the first TX packet. Otherwise leave at 0 to disable delay interrupt. 271 */ 272 if (lp->coalesce_count_tx > 1) 273 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx) 274 << XAXIDMA_DELAY_SHIFT) | 275 XAXIDMA_IRQ_DELAY_MASK; 276 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 277 278 /* Populate the tail pointer and bring the Rx Axi DMA engine out of 279 * halted state. This will make the Rx side ready for reception. 280 */ 281 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); 282 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 283 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 284 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + 285 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); 286 287 /* Write to the RS (Run-stop) bit in the Tx channel control register. 288 * Tx channel is now ready to run. But only after we write to the 289 * tail pointer register that the Tx channel will start transmitting. 290 */ 291 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); 292 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 293 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 294 } 295 296 /** 297 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA 298 * @ndev: Pointer to the net_device structure 299 * 300 * Return: 0, on success -ENOMEM, on failure 301 * 302 * This function is called to initialize the Rx and Tx DMA descriptor 303 * rings. This initializes the descriptors with required default values 304 * and is called when Axi Ethernet driver reset is called. 305 */ 306 static int axienet_dma_bd_init(struct net_device *ndev) 307 { 308 int i; 309 struct sk_buff *skb; 310 struct axienet_local *lp = netdev_priv(ndev); 311 312 /* Reset the indexes which are used for accessing the BDs */ 313 lp->tx_bd_ci = 0; 314 lp->tx_bd_tail = 0; 315 lp->rx_bd_ci = 0; 316 317 /* Allocate the Tx and Rx buffer descriptors. */ 318 lp->tx_bd_v = dma_alloc_coherent(lp->dev, 319 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 320 &lp->tx_bd_p, GFP_KERNEL); 321 if (!lp->tx_bd_v) 322 return -ENOMEM; 323 324 lp->rx_bd_v = dma_alloc_coherent(lp->dev, 325 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 326 &lp->rx_bd_p, GFP_KERNEL); 327 if (!lp->rx_bd_v) 328 goto out; 329 330 for (i = 0; i < lp->tx_bd_num; i++) { 331 dma_addr_t addr = lp->tx_bd_p + 332 sizeof(*lp->tx_bd_v) * 333 ((i + 1) % lp->tx_bd_num); 334 335 lp->tx_bd_v[i].next = lower_32_bits(addr); 336 if (lp->features & XAE_FEATURE_DMA_64BIT) 337 lp->tx_bd_v[i].next_msb = upper_32_bits(addr); 338 } 339 340 for (i = 0; i < lp->rx_bd_num; i++) { 341 dma_addr_t addr; 342 343 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * 344 ((i + 1) % lp->rx_bd_num); 345 lp->rx_bd_v[i].next = lower_32_bits(addr); 346 if (lp->features & XAE_FEATURE_DMA_64BIT) 347 lp->rx_bd_v[i].next_msb = upper_32_bits(addr); 348 349 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); 350 if (!skb) 351 goto out; 352 353 lp->rx_bd_v[i].skb = skb; 354 addr = dma_map_single(lp->dev, skb->data, 355 lp->max_frm_size, DMA_FROM_DEVICE); 356 if (dma_mapping_error(lp->dev, addr)) { 357 netdev_err(ndev, "DMA mapping error\n"); 358 goto out; 359 } 360 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); 361 362 lp->rx_bd_v[i].cntrl = lp->max_frm_size; 363 } 364 365 axienet_dma_start(lp); 366 367 return 0; 368 out: 369 axienet_dma_bd_release(ndev); 370 return -ENOMEM; 371 } 372 373 /** 374 * axienet_set_mac_address - Write the MAC address 375 * @ndev: Pointer to the net_device structure 376 * @address: 6 byte Address to be written as MAC address 377 * 378 * This function is called to initialize the MAC address of the Axi Ethernet 379 * core. It writes to the UAW0 and UAW1 registers of the core. 380 */ 381 static void axienet_set_mac_address(struct net_device *ndev, 382 const void *address) 383 { 384 struct axienet_local *lp = netdev_priv(ndev); 385 386 if (address) 387 eth_hw_addr_set(ndev, address); 388 if (!is_valid_ether_addr(ndev->dev_addr)) 389 eth_hw_addr_random(ndev); 390 391 /* Set up unicast MAC address filter set its mac address */ 392 axienet_iow(lp, XAE_UAW0_OFFSET, 393 (ndev->dev_addr[0]) | 394 (ndev->dev_addr[1] << 8) | 395 (ndev->dev_addr[2] << 16) | 396 (ndev->dev_addr[3] << 24)); 397 axienet_iow(lp, XAE_UAW1_OFFSET, 398 (((axienet_ior(lp, XAE_UAW1_OFFSET)) & 399 ~XAE_UAW1_UNICASTADDR_MASK) | 400 (ndev->dev_addr[4] | 401 (ndev->dev_addr[5] << 8)))); 402 } 403 404 /** 405 * netdev_set_mac_address - Write the MAC address (from outside the driver) 406 * @ndev: Pointer to the net_device structure 407 * @p: 6 byte Address to be written as MAC address 408 * 409 * Return: 0 for all conditions. Presently, there is no failure case. 410 * 411 * This function is called to initialize the MAC address of the Axi Ethernet 412 * core. It calls the core specific axienet_set_mac_address. This is the 413 * function that goes into net_device_ops structure entry ndo_set_mac_address. 414 */ 415 static int netdev_set_mac_address(struct net_device *ndev, void *p) 416 { 417 struct sockaddr *addr = p; 418 419 axienet_set_mac_address(ndev, addr->sa_data); 420 return 0; 421 } 422 423 /** 424 * axienet_set_multicast_list - Prepare the multicast table 425 * @ndev: Pointer to the net_device structure 426 * 427 * This function is called to initialize the multicast table during 428 * initialization. The Axi Ethernet basic multicast support has a four-entry 429 * multicast table which is initialized here. Additionally this function 430 * goes into the net_device_ops structure entry ndo_set_multicast_list. This 431 * means whenever the multicast table entries need to be updated this 432 * function gets called. 433 */ 434 static void axienet_set_multicast_list(struct net_device *ndev) 435 { 436 int i = 0; 437 u32 reg, af0reg, af1reg; 438 struct axienet_local *lp = netdev_priv(ndev); 439 440 reg = axienet_ior(lp, XAE_FMI_OFFSET); 441 reg &= ~XAE_FMI_PM_MASK; 442 if (ndev->flags & IFF_PROMISC) 443 reg |= XAE_FMI_PM_MASK; 444 else 445 reg &= ~XAE_FMI_PM_MASK; 446 axienet_iow(lp, XAE_FMI_OFFSET, reg); 447 448 if (ndev->flags & IFF_ALLMULTI || 449 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { 450 reg &= 0xFFFFFF00; 451 axienet_iow(lp, XAE_FMI_OFFSET, reg); 452 axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */ 453 axienet_iow(lp, XAE_AF1_OFFSET, 0); 454 axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */ 455 axienet_iow(lp, XAE_AM1_OFFSET, 0); 456 axienet_iow(lp, XAE_FFE_OFFSET, 1); 457 i = 1; 458 } else if (!netdev_mc_empty(ndev)) { 459 struct netdev_hw_addr *ha; 460 461 netdev_for_each_mc_addr(ha, ndev) { 462 if (i >= XAE_MULTICAST_CAM_TABLE_NUM) 463 break; 464 465 af0reg = (ha->addr[0]); 466 af0reg |= (ha->addr[1] << 8); 467 af0reg |= (ha->addr[2] << 16); 468 af0reg |= (ha->addr[3] << 24); 469 470 af1reg = (ha->addr[4]); 471 af1reg |= (ha->addr[5] << 8); 472 473 reg &= 0xFFFFFF00; 474 reg |= i; 475 476 axienet_iow(lp, XAE_FMI_OFFSET, reg); 477 axienet_iow(lp, XAE_AF0_OFFSET, af0reg); 478 axienet_iow(lp, XAE_AF1_OFFSET, af1reg); 479 axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff); 480 axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff); 481 axienet_iow(lp, XAE_FFE_OFFSET, 1); 482 i++; 483 } 484 } 485 486 for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { 487 reg &= 0xFFFFFF00; 488 reg |= i; 489 axienet_iow(lp, XAE_FMI_OFFSET, reg); 490 axienet_iow(lp, XAE_FFE_OFFSET, 0); 491 } 492 } 493 494 /** 495 * axienet_setoptions - Set an Axi Ethernet option 496 * @ndev: Pointer to the net_device structure 497 * @options: Option to be enabled/disabled 498 * 499 * The Axi Ethernet core has multiple features which can be selectively turned 500 * on or off. The typical options could be jumbo frame option, basic VLAN 501 * option, promiscuous mode option etc. This function is used to set or clear 502 * these options in the Axi Ethernet hardware. This is done through 503 * axienet_option structure . 504 */ 505 static void axienet_setoptions(struct net_device *ndev, u32 options) 506 { 507 int reg; 508 struct axienet_local *lp = netdev_priv(ndev); 509 struct axienet_option *tp = &axienet_options[0]; 510 511 while (tp->opt) { 512 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); 513 if (options & tp->opt) 514 reg |= tp->m_or; 515 axienet_iow(lp, tp->reg, reg); 516 tp++; 517 } 518 519 lp->options |= options; 520 } 521 522 static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat) 523 { 524 u32 counter; 525 526 if (lp->reset_in_progress) 527 return lp->hw_stat_base[stat]; 528 529 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 530 return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]); 531 } 532 533 static void axienet_stats_update(struct axienet_local *lp, bool reset) 534 { 535 enum temac_stat stat; 536 537 write_seqcount_begin(&lp->hw_stats_seqcount); 538 lp->reset_in_progress = reset; 539 for (stat = 0; stat < STAT_COUNT; stat++) { 540 u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 541 542 lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat]; 543 lp->hw_last_counter[stat] = counter; 544 } 545 write_seqcount_end(&lp->hw_stats_seqcount); 546 } 547 548 static void axienet_refresh_stats(struct work_struct *work) 549 { 550 struct axienet_local *lp = container_of(work, struct axienet_local, 551 stats_work.work); 552 553 mutex_lock(&lp->stats_lock); 554 axienet_stats_update(lp, false); 555 mutex_unlock(&lp->stats_lock); 556 557 /* Just less than 2^32 bytes at 2.5 GBit/s */ 558 schedule_delayed_work(&lp->stats_work, 13 * HZ); 559 } 560 561 static int __axienet_device_reset(struct axienet_local *lp) 562 { 563 u32 value; 564 int ret; 565 566 /* Save statistics counters in case they will be reset */ 567 mutex_lock(&lp->stats_lock); 568 if (lp->features & XAE_FEATURE_STATS) 569 axienet_stats_update(lp, true); 570 571 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset 572 * process of Axi DMA takes a while to complete as all pending 573 * commands/transfers will be flushed or completed during this 574 * reset process. 575 * Note that even though both TX and RX have their own reset register, 576 * they both reset the entire DMA core, so only one needs to be used. 577 */ 578 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); 579 ret = read_poll_timeout(axienet_dma_in32, value, 580 !(value & XAXIDMA_CR_RESET_MASK), 581 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 582 XAXIDMA_TX_CR_OFFSET); 583 if (ret) { 584 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); 585 goto out; 586 } 587 588 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ 589 ret = read_poll_timeout(axienet_ior, value, 590 value & XAE_INT_PHYRSTCMPLT_MASK, 591 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 592 XAE_IS_OFFSET); 593 if (ret) { 594 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); 595 goto out; 596 } 597 598 /* Update statistics counters with new values */ 599 if (lp->features & XAE_FEATURE_STATS) { 600 enum temac_stat stat; 601 602 write_seqcount_begin(&lp->hw_stats_seqcount); 603 lp->reset_in_progress = false; 604 for (stat = 0; stat < STAT_COUNT; stat++) { 605 u32 counter = 606 axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 607 608 lp->hw_stat_base[stat] += 609 lp->hw_last_counter[stat] - counter; 610 lp->hw_last_counter[stat] = counter; 611 } 612 write_seqcount_end(&lp->hw_stats_seqcount); 613 } 614 615 out: 616 mutex_unlock(&lp->stats_lock); 617 return ret; 618 } 619 620 /** 621 * axienet_dma_stop - Stop DMA operation 622 * @lp: Pointer to the axienet_local structure 623 */ 624 static void axienet_dma_stop(struct axienet_local *lp) 625 { 626 int count; 627 u32 cr, sr; 628 629 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 630 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 631 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 632 synchronize_irq(lp->rx_irq); 633 634 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 635 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 636 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 637 synchronize_irq(lp->tx_irq); 638 639 /* Give DMAs a chance to halt gracefully */ 640 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 641 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 642 msleep(20); 643 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 644 } 645 646 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 647 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 648 msleep(20); 649 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 650 } 651 652 /* Do a reset to ensure DMA is really stopped */ 653 axienet_lock_mii(lp); 654 __axienet_device_reset(lp); 655 axienet_unlock_mii(lp); 656 } 657 658 /** 659 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. 660 * @ndev: Pointer to the net_device structure 661 * 662 * This function is called to reset and initialize the Axi Ethernet core. This 663 * is typically called during initialization. It does a reset of the Axi DMA 664 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines 665 * are connected to Axi Ethernet reset lines, this in turn resets the Axi 666 * Ethernet core. No separate hardware reset is done for the Axi Ethernet 667 * core. 668 * Returns 0 on success or a negative error number otherwise. 669 */ 670 static int axienet_device_reset(struct net_device *ndev) 671 { 672 u32 axienet_status; 673 struct axienet_local *lp = netdev_priv(ndev); 674 int ret; 675 676 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; 677 lp->options |= XAE_OPTION_VLAN; 678 lp->options &= (~XAE_OPTION_JUMBO); 679 680 if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) { 681 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + 682 XAE_TRL_SIZE; 683 684 if (lp->max_frm_size <= lp->rxmem) 685 lp->options |= XAE_OPTION_JUMBO; 686 } 687 688 if (!lp->use_dmaengine) { 689 ret = __axienet_device_reset(lp); 690 if (ret) 691 return ret; 692 693 ret = axienet_dma_bd_init(ndev); 694 if (ret) { 695 netdev_err(ndev, "%s: descriptor allocation failed\n", 696 __func__); 697 return ret; 698 } 699 } 700 701 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 702 axienet_status &= ~XAE_RCW1_RX_MASK; 703 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 704 705 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 706 if (axienet_status & XAE_INT_RXRJECT_MASK) 707 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 708 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 709 XAE_INT_RECV_ERROR_MASK : 0); 710 711 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 712 713 /* Sync default options with HW but leave receiver and 714 * transmitter disabled. 715 */ 716 axienet_setoptions(ndev, lp->options & 717 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 718 axienet_set_mac_address(ndev, NULL); 719 axienet_set_multicast_list(ndev); 720 axienet_setoptions(ndev, lp->options); 721 722 netif_trans_update(ndev); 723 724 return 0; 725 } 726 727 /** 728 * axienet_free_tx_chain - Clean up a series of linked TX descriptors. 729 * @lp: Pointer to the axienet_local structure 730 * @first_bd: Index of first descriptor to clean up 731 * @nr_bds: Max number of descriptors to clean up 732 * @force: Whether to clean descriptors even if not complete 733 * @sizep: Pointer to a u32 filled with the total sum of all bytes 734 * in all cleaned-up descriptors. Ignored if NULL. 735 * @budget: NAPI budget (use 0 when not called from NAPI poll) 736 * 737 * Would either be called after a successful transmit operation, or after 738 * there was an error when setting up the chain. 739 * Returns the number of packets handled. 740 */ 741 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, 742 int nr_bds, bool force, u32 *sizep, int budget) 743 { 744 struct axidma_bd *cur_p; 745 unsigned int status; 746 int i, packets = 0; 747 dma_addr_t phys; 748 749 for (i = 0; i < nr_bds; i++) { 750 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; 751 status = cur_p->status; 752 753 /* If force is not specified, clean up only descriptors 754 * that have been completed by the MAC. 755 */ 756 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) 757 break; 758 759 /* Ensure we see complete descriptor update */ 760 dma_rmb(); 761 phys = desc_get_phys_addr(lp, cur_p); 762 dma_unmap_single(lp->dev, phys, 763 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), 764 DMA_TO_DEVICE); 765 766 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) { 767 napi_consume_skb(cur_p->skb, budget); 768 packets++; 769 } 770 771 cur_p->app0 = 0; 772 cur_p->app1 = 0; 773 cur_p->app2 = 0; 774 cur_p->app4 = 0; 775 cur_p->skb = NULL; 776 /* ensure our transmit path and device don't prematurely see status cleared */ 777 wmb(); 778 cur_p->cntrl = 0; 779 cur_p->status = 0; 780 781 if (sizep) 782 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; 783 } 784 785 if (!force) { 786 lp->tx_bd_ci += i; 787 if (lp->tx_bd_ci >= lp->tx_bd_num) 788 lp->tx_bd_ci %= lp->tx_bd_num; 789 } 790 791 return packets; 792 } 793 794 /** 795 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy 796 * @lp: Pointer to the axienet_local structure 797 * @num_frag: The number of BDs to check for 798 * 799 * Return: 0, on success 800 * NETDEV_TX_BUSY, if any of the descriptors are not free 801 * 802 * This function is invoked before BDs are allocated and transmission starts. 803 * This function returns 0 if a BD or group of BDs can be allocated for 804 * transmission. If the BD or any of the BDs are not free the function 805 * returns a busy status. 806 */ 807 static inline int axienet_check_tx_bd_space(struct axienet_local *lp, 808 int num_frag) 809 { 810 struct axidma_bd *cur_p; 811 812 /* Ensure we see all descriptor updates from device or TX polling */ 813 rmb(); 814 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % 815 lp->tx_bd_num]; 816 if (cur_p->cntrl) 817 return NETDEV_TX_BUSY; 818 return 0; 819 } 820 821 /** 822 * axienet_dma_tx_cb - DMA engine callback for TX channel. 823 * @data: Pointer to the axienet_local structure. 824 * @result: error reporting through dmaengine_result. 825 * This function is called by dmaengine driver for TX channel to notify 826 * that the transmit is done. 827 */ 828 static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result) 829 { 830 struct skbuf_dma_descriptor *skbuf_dma; 831 struct axienet_local *lp = data; 832 struct netdev_queue *txq; 833 int len; 834 835 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++); 836 len = skbuf_dma->skb->len; 837 txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb); 838 u64_stats_update_begin(&lp->tx_stat_sync); 839 u64_stats_add(&lp->tx_bytes, len); 840 u64_stats_add(&lp->tx_packets, 1); 841 u64_stats_update_end(&lp->tx_stat_sync); 842 dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE); 843 dev_consume_skb_any(skbuf_dma->skb); 844 netif_txq_completed_wake(txq, 1, len, 845 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), 846 2 * MAX_SKB_FRAGS); 847 } 848 849 /** 850 * axienet_start_xmit_dmaengine - Starts the transmission. 851 * @skb: sk_buff pointer that contains data to be Txed. 852 * @ndev: Pointer to net_device structure. 853 * 854 * Return: NETDEV_TX_OK on success or any non space errors. 855 * NETDEV_TX_BUSY when free element in TX skb ring buffer 856 * is not available. 857 * 858 * This function is invoked to initiate transmission. The 859 * function sets the skbs, register dma callback API and submit 860 * the dma transaction. 861 * Additionally if checksum offloading is supported, 862 * it populates AXI Stream Control fields with appropriate values. 863 */ 864 static netdev_tx_t 865 axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev) 866 { 867 struct dma_async_tx_descriptor *dma_tx_desc = NULL; 868 struct axienet_local *lp = netdev_priv(ndev); 869 u32 app_metadata[DMA_NUM_APP_WORDS] = {0}; 870 struct skbuf_dma_descriptor *skbuf_dma; 871 struct dma_device *dma_dev; 872 struct netdev_queue *txq; 873 u32 csum_start_off; 874 u32 csum_index_off; 875 int sg_len; 876 int ret; 877 878 dma_dev = lp->tx_chan->device; 879 sg_len = skb_shinfo(skb)->nr_frags + 1; 880 if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) { 881 netif_stop_queue(ndev); 882 if (net_ratelimit()) 883 netdev_warn(ndev, "TX ring unexpectedly full\n"); 884 return NETDEV_TX_BUSY; 885 } 886 887 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head); 888 if (!skbuf_dma) 889 goto xmit_error_drop_skb; 890 891 lp->tx_ring_head++; 892 sg_init_table(skbuf_dma->sgl, sg_len); 893 ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len); 894 if (ret < 0) 895 goto xmit_error_drop_skb; 896 897 ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); 898 if (!ret) 899 goto xmit_error_drop_skb; 900 901 /* Fill up app fields for checksum */ 902 if (skb->ip_summed == CHECKSUM_PARTIAL) { 903 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 904 /* Tx Full Checksum Offload Enabled */ 905 app_metadata[0] |= 2; 906 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 907 csum_start_off = skb_transport_offset(skb); 908 csum_index_off = csum_start_off + skb->csum_offset; 909 /* Tx Partial Checksum Offload Enabled */ 910 app_metadata[0] |= 1; 911 app_metadata[1] = (csum_start_off << 16) | csum_index_off; 912 } 913 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 914 app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */ 915 } 916 917 dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl, 918 sg_len, DMA_MEM_TO_DEV, 919 DMA_PREP_INTERRUPT, (void *)app_metadata); 920 if (!dma_tx_desc) 921 goto xmit_error_unmap_sg; 922 923 skbuf_dma->skb = skb; 924 skbuf_dma->sg_len = sg_len; 925 dma_tx_desc->callback_param = lp; 926 dma_tx_desc->callback_result = axienet_dma_tx_cb; 927 txq = skb_get_tx_queue(lp->ndev, skb); 928 netdev_tx_sent_queue(txq, skb->len); 929 netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), 930 MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS); 931 932 dmaengine_submit(dma_tx_desc); 933 dma_async_issue_pending(lp->tx_chan); 934 return NETDEV_TX_OK; 935 936 xmit_error_unmap_sg: 937 dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); 938 xmit_error_drop_skb: 939 dev_kfree_skb_any(skb); 940 return NETDEV_TX_OK; 941 } 942 943 /** 944 * axienet_tx_poll - Invoked once a transmit is completed by the 945 * Axi DMA Tx channel. 946 * @napi: Pointer to NAPI structure. 947 * @budget: Max number of TX packets to process. 948 * 949 * Return: Number of TX packets processed. 950 * 951 * This function is invoked from the NAPI processing to notify the completion 952 * of transmit operation. It clears fields in the corresponding Tx BDs and 953 * unmaps the corresponding buffer so that CPU can regain ownership of the 954 * buffer. It finally invokes "netif_wake_queue" to restart transmission if 955 * required. 956 */ 957 static int axienet_tx_poll(struct napi_struct *napi, int budget) 958 { 959 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); 960 struct net_device *ndev = lp->ndev; 961 u32 size = 0; 962 int packets; 963 964 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, lp->tx_bd_num, false, 965 &size, budget); 966 967 if (packets) { 968 u64_stats_update_begin(&lp->tx_stat_sync); 969 u64_stats_add(&lp->tx_packets, packets); 970 u64_stats_add(&lp->tx_bytes, size); 971 u64_stats_update_end(&lp->tx_stat_sync); 972 973 /* Matches barrier in axienet_start_xmit */ 974 smp_mb(); 975 976 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 977 netif_wake_queue(ndev); 978 } 979 980 if (packets < budget && napi_complete_done(napi, packets)) { 981 /* Re-enable TX completion interrupts. This should 982 * cause an immediate interrupt if any TX packets are 983 * already pending. 984 */ 985 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 986 } 987 return packets; 988 } 989 990 /** 991 * axienet_start_xmit - Starts the transmission. 992 * @skb: sk_buff pointer that contains data to be Txed. 993 * @ndev: Pointer to net_device structure. 994 * 995 * Return: NETDEV_TX_OK, on success 996 * NETDEV_TX_BUSY, if any of the descriptors are not free 997 * 998 * This function is invoked from upper layers to initiate transmission. The 999 * function uses the next available free BDs and populates their fields to 1000 * start the transmission. Additionally if checksum offloading is supported, 1001 * it populates AXI Stream Control fields with appropriate values. 1002 */ 1003 static netdev_tx_t 1004 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1005 { 1006 u32 ii; 1007 u32 num_frag; 1008 u32 csum_start_off; 1009 u32 csum_index_off; 1010 skb_frag_t *frag; 1011 dma_addr_t tail_p, phys; 1012 u32 orig_tail_ptr, new_tail_ptr; 1013 struct axienet_local *lp = netdev_priv(ndev); 1014 struct axidma_bd *cur_p; 1015 1016 orig_tail_ptr = lp->tx_bd_tail; 1017 new_tail_ptr = orig_tail_ptr; 1018 1019 num_frag = skb_shinfo(skb)->nr_frags; 1020 cur_p = &lp->tx_bd_v[orig_tail_ptr]; 1021 1022 if (axienet_check_tx_bd_space(lp, num_frag + 1)) { 1023 /* Should not happen as last start_xmit call should have 1024 * checked for sufficient space and queue should only be 1025 * woken when sufficient space is available. 1026 */ 1027 netif_stop_queue(ndev); 1028 if (net_ratelimit()) 1029 netdev_warn(ndev, "TX ring unexpectedly full\n"); 1030 return NETDEV_TX_BUSY; 1031 } 1032 1033 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1034 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 1035 /* Tx Full Checksum Offload Enabled */ 1036 cur_p->app0 |= 2; 1037 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 1038 csum_start_off = skb_transport_offset(skb); 1039 csum_index_off = csum_start_off + skb->csum_offset; 1040 /* Tx Partial Checksum Offload Enabled */ 1041 cur_p->app0 |= 1; 1042 cur_p->app1 = (csum_start_off << 16) | csum_index_off; 1043 } 1044 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 1045 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ 1046 } 1047 1048 phys = dma_map_single(lp->dev, skb->data, 1049 skb_headlen(skb), DMA_TO_DEVICE); 1050 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1051 if (net_ratelimit()) 1052 netdev_err(ndev, "TX DMA mapping error\n"); 1053 ndev->stats.tx_dropped++; 1054 dev_kfree_skb_any(skb); 1055 return NETDEV_TX_OK; 1056 } 1057 desc_set_phys_addr(lp, phys, cur_p); 1058 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; 1059 1060 for (ii = 0; ii < num_frag; ii++) { 1061 if (++new_tail_ptr >= lp->tx_bd_num) 1062 new_tail_ptr = 0; 1063 cur_p = &lp->tx_bd_v[new_tail_ptr]; 1064 frag = &skb_shinfo(skb)->frags[ii]; 1065 phys = dma_map_single(lp->dev, 1066 skb_frag_address(frag), 1067 skb_frag_size(frag), 1068 DMA_TO_DEVICE); 1069 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1070 if (net_ratelimit()) 1071 netdev_err(ndev, "TX DMA mapping error\n"); 1072 ndev->stats.tx_dropped++; 1073 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, 1074 true, NULL, 0); 1075 dev_kfree_skb_any(skb); 1076 return NETDEV_TX_OK; 1077 } 1078 desc_set_phys_addr(lp, phys, cur_p); 1079 cur_p->cntrl = skb_frag_size(frag); 1080 } 1081 1082 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; 1083 cur_p->skb = skb; 1084 1085 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; 1086 if (++new_tail_ptr >= lp->tx_bd_num) 1087 new_tail_ptr = 0; 1088 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); 1089 1090 /* Start the transfer */ 1091 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); 1092 1093 /* Stop queue if next transmit may not have space */ 1094 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { 1095 netif_stop_queue(ndev); 1096 1097 /* Matches barrier in axienet_tx_poll */ 1098 smp_mb(); 1099 1100 /* Space might have just been freed - check again */ 1101 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 1102 netif_wake_queue(ndev); 1103 } 1104 1105 return NETDEV_TX_OK; 1106 } 1107 1108 /** 1109 * axienet_dma_rx_cb - DMA engine callback for RX channel. 1110 * @data: Pointer to the skbuf_dma_descriptor structure. 1111 * @result: error reporting through dmaengine_result. 1112 * This function is called by dmaengine driver for RX channel to notify 1113 * that the packet is received. 1114 */ 1115 static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result) 1116 { 1117 struct skbuf_dma_descriptor *skbuf_dma; 1118 size_t meta_len, meta_max_len, rx_len; 1119 struct axienet_local *lp = data; 1120 struct sk_buff *skb; 1121 u32 *app_metadata; 1122 1123 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++); 1124 skb = skbuf_dma->skb; 1125 app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len, 1126 &meta_max_len); 1127 dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size, 1128 DMA_FROM_DEVICE); 1129 /* TODO: Derive app word index programmatically */ 1130 rx_len = (app_metadata[LEN_APP] & 0xFFFF); 1131 skb_put(skb, rx_len); 1132 skb->protocol = eth_type_trans(skb, lp->ndev); 1133 skb->ip_summed = CHECKSUM_NONE; 1134 1135 __netif_rx(skb); 1136 u64_stats_update_begin(&lp->rx_stat_sync); 1137 u64_stats_add(&lp->rx_packets, 1); 1138 u64_stats_add(&lp->rx_bytes, rx_len); 1139 u64_stats_update_end(&lp->rx_stat_sync); 1140 axienet_rx_submit_desc(lp->ndev); 1141 dma_async_issue_pending(lp->rx_chan); 1142 } 1143 1144 /** 1145 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. 1146 * @napi: Pointer to NAPI structure. 1147 * @budget: Max number of RX packets to process. 1148 * 1149 * Return: Number of RX packets processed. 1150 */ 1151 static int axienet_rx_poll(struct napi_struct *napi, int budget) 1152 { 1153 u32 length; 1154 u32 csumstatus; 1155 u32 size = 0; 1156 int packets = 0; 1157 dma_addr_t tail_p = 0; 1158 struct axidma_bd *cur_p; 1159 struct sk_buff *skb, *new_skb; 1160 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); 1161 1162 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 1163 1164 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { 1165 dma_addr_t phys; 1166 1167 /* Ensure we see complete descriptor update */ 1168 dma_rmb(); 1169 1170 skb = cur_p->skb; 1171 cur_p->skb = NULL; 1172 1173 /* skb could be NULL if a previous pass already received the 1174 * packet for this slot in the ring, but failed to refill it 1175 * with a newly allocated buffer. In this case, don't try to 1176 * receive it again. 1177 */ 1178 if (likely(skb)) { 1179 length = cur_p->app4 & 0x0000FFFF; 1180 1181 phys = desc_get_phys_addr(lp, cur_p); 1182 dma_unmap_single(lp->dev, phys, lp->max_frm_size, 1183 DMA_FROM_DEVICE); 1184 1185 skb_put(skb, length); 1186 skb->protocol = eth_type_trans(skb, lp->ndev); 1187 /*skb_checksum_none_assert(skb);*/ 1188 skb->ip_summed = CHECKSUM_NONE; 1189 1190 /* if we're doing Rx csum offload, set it up */ 1191 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { 1192 csumstatus = (cur_p->app2 & 1193 XAE_FULL_CSUM_STATUS_MASK) >> 3; 1194 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || 1195 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { 1196 skb->ip_summed = CHECKSUM_UNNECESSARY; 1197 } 1198 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) { 1199 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); 1200 skb->ip_summed = CHECKSUM_COMPLETE; 1201 } 1202 1203 napi_gro_receive(napi, skb); 1204 1205 size += length; 1206 packets++; 1207 } 1208 1209 new_skb = napi_alloc_skb(napi, lp->max_frm_size); 1210 if (!new_skb) 1211 break; 1212 1213 phys = dma_map_single(lp->dev, new_skb->data, 1214 lp->max_frm_size, 1215 DMA_FROM_DEVICE); 1216 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1217 if (net_ratelimit()) 1218 netdev_err(lp->ndev, "RX DMA mapping error\n"); 1219 dev_kfree_skb(new_skb); 1220 break; 1221 } 1222 desc_set_phys_addr(lp, phys, cur_p); 1223 1224 cur_p->cntrl = lp->max_frm_size; 1225 cur_p->status = 0; 1226 cur_p->skb = new_skb; 1227 1228 /* Only update tail_p to mark this slot as usable after it has 1229 * been successfully refilled. 1230 */ 1231 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; 1232 1233 if (++lp->rx_bd_ci >= lp->rx_bd_num) 1234 lp->rx_bd_ci = 0; 1235 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 1236 } 1237 1238 u64_stats_update_begin(&lp->rx_stat_sync); 1239 u64_stats_add(&lp->rx_packets, packets); 1240 u64_stats_add(&lp->rx_bytes, size); 1241 u64_stats_update_end(&lp->rx_stat_sync); 1242 1243 if (tail_p) 1244 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); 1245 1246 if (packets < budget && napi_complete_done(napi, packets)) { 1247 /* Re-enable RX completion interrupts. This should 1248 * cause an immediate interrupt if any RX packets are 1249 * already pending. 1250 */ 1251 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 1252 } 1253 return packets; 1254 } 1255 1256 /** 1257 * axienet_tx_irq - Tx Done Isr. 1258 * @irq: irq number 1259 * @_ndev: net_device pointer 1260 * 1261 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. 1262 * 1263 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the 1264 * TX BD processing. 1265 */ 1266 static irqreturn_t axienet_tx_irq(int irq, void *_ndev) 1267 { 1268 unsigned int status; 1269 struct net_device *ndev = _ndev; 1270 struct axienet_local *lp = netdev_priv(ndev); 1271 1272 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1273 1274 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1275 return IRQ_NONE; 1276 1277 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); 1278 1279 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1280 netdev_err(ndev, "DMA Tx error 0x%x\n", status); 1281 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1282 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, 1283 (lp->tx_bd_v[lp->tx_bd_ci]).phys); 1284 schedule_work(&lp->dma_err_task); 1285 } else { 1286 /* Disable further TX completion interrupts and schedule 1287 * NAPI to handle the completions. 1288 */ 1289 u32 cr = lp->tx_dma_cr; 1290 1291 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1292 if (napi_schedule_prep(&lp->napi_tx)) { 1293 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 1294 __napi_schedule(&lp->napi_tx); 1295 } 1296 } 1297 1298 return IRQ_HANDLED; 1299 } 1300 1301 /** 1302 * axienet_rx_irq - Rx Isr. 1303 * @irq: irq number 1304 * @_ndev: net_device pointer 1305 * 1306 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. 1307 * 1308 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD 1309 * processing. 1310 */ 1311 static irqreturn_t axienet_rx_irq(int irq, void *_ndev) 1312 { 1313 unsigned int status; 1314 struct net_device *ndev = _ndev; 1315 struct axienet_local *lp = netdev_priv(ndev); 1316 1317 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1318 1319 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1320 return IRQ_NONE; 1321 1322 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); 1323 1324 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1325 netdev_err(ndev, "DMA Rx error 0x%x\n", status); 1326 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1327 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, 1328 (lp->rx_bd_v[lp->rx_bd_ci]).phys); 1329 schedule_work(&lp->dma_err_task); 1330 } else { 1331 /* Disable further RX completion interrupts and schedule 1332 * NAPI receive. 1333 */ 1334 u32 cr = lp->rx_dma_cr; 1335 1336 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1337 if (napi_schedule_prep(&lp->napi_rx)) { 1338 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 1339 __napi_schedule(&lp->napi_rx); 1340 } 1341 } 1342 1343 return IRQ_HANDLED; 1344 } 1345 1346 /** 1347 * axienet_eth_irq - Ethernet core Isr. 1348 * @irq: irq number 1349 * @_ndev: net_device pointer 1350 * 1351 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. 1352 * 1353 * Handle miscellaneous conditions indicated by Ethernet core IRQ. 1354 */ 1355 static irqreturn_t axienet_eth_irq(int irq, void *_ndev) 1356 { 1357 struct net_device *ndev = _ndev; 1358 struct axienet_local *lp = netdev_priv(ndev); 1359 unsigned int pending; 1360 1361 pending = axienet_ior(lp, XAE_IP_OFFSET); 1362 if (!pending) 1363 return IRQ_NONE; 1364 1365 if (pending & XAE_INT_RXFIFOOVR_MASK) 1366 ndev->stats.rx_missed_errors++; 1367 1368 if (pending & XAE_INT_RXRJECT_MASK) 1369 ndev->stats.rx_dropped++; 1370 1371 axienet_iow(lp, XAE_IS_OFFSET, pending); 1372 return IRQ_HANDLED; 1373 } 1374 1375 static void axienet_dma_err_handler(struct work_struct *work); 1376 1377 /** 1378 * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine. 1379 * allocate skbuff, map the scatterlist and obtain a descriptor 1380 * and then add the callback information and submit descriptor. 1381 * 1382 * @ndev: net_device pointer 1383 * 1384 */ 1385 static void axienet_rx_submit_desc(struct net_device *ndev) 1386 { 1387 struct dma_async_tx_descriptor *dma_rx_desc = NULL; 1388 struct axienet_local *lp = netdev_priv(ndev); 1389 struct skbuf_dma_descriptor *skbuf_dma; 1390 struct sk_buff *skb; 1391 dma_addr_t addr; 1392 1393 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head); 1394 if (!skbuf_dma) 1395 return; 1396 1397 lp->rx_ring_head++; 1398 skb = netdev_alloc_skb(ndev, lp->max_frm_size); 1399 if (!skb) 1400 return; 1401 1402 sg_init_table(skbuf_dma->sgl, 1); 1403 addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE); 1404 if (unlikely(dma_mapping_error(lp->dev, addr))) { 1405 if (net_ratelimit()) 1406 netdev_err(ndev, "DMA mapping error\n"); 1407 goto rx_submit_err_free_skb; 1408 } 1409 sg_dma_address(skbuf_dma->sgl) = addr; 1410 sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size; 1411 dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl, 1412 1, DMA_DEV_TO_MEM, 1413 DMA_PREP_INTERRUPT); 1414 if (!dma_rx_desc) 1415 goto rx_submit_err_unmap_skb; 1416 1417 skbuf_dma->skb = skb; 1418 skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl); 1419 skbuf_dma->desc = dma_rx_desc; 1420 dma_rx_desc->callback_param = lp; 1421 dma_rx_desc->callback_result = axienet_dma_rx_cb; 1422 dmaengine_submit(dma_rx_desc); 1423 1424 return; 1425 1426 rx_submit_err_unmap_skb: 1427 dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE); 1428 rx_submit_err_free_skb: 1429 dev_kfree_skb(skb); 1430 } 1431 1432 /** 1433 * axienet_init_dmaengine - init the dmaengine code. 1434 * @ndev: Pointer to net_device structure 1435 * 1436 * Return: 0, on success. 1437 * non-zero error value on failure 1438 * 1439 * This is the dmaengine initialization code. 1440 */ 1441 static int axienet_init_dmaengine(struct net_device *ndev) 1442 { 1443 struct axienet_local *lp = netdev_priv(ndev); 1444 struct skbuf_dma_descriptor *skbuf_dma; 1445 int i, ret; 1446 1447 lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0"); 1448 if (IS_ERR(lp->tx_chan)) { 1449 dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n"); 1450 return PTR_ERR(lp->tx_chan); 1451 } 1452 1453 lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0"); 1454 if (IS_ERR(lp->rx_chan)) { 1455 ret = PTR_ERR(lp->rx_chan); 1456 dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n"); 1457 goto err_dma_release_tx; 1458 } 1459 1460 lp->tx_ring_tail = 0; 1461 lp->tx_ring_head = 0; 1462 lp->rx_ring_tail = 0; 1463 lp->rx_ring_head = 0; 1464 lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring), 1465 GFP_KERNEL); 1466 if (!lp->tx_skb_ring) { 1467 ret = -ENOMEM; 1468 goto err_dma_release_rx; 1469 } 1470 for (i = 0; i < TX_BD_NUM_MAX; i++) { 1471 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); 1472 if (!skbuf_dma) { 1473 ret = -ENOMEM; 1474 goto err_free_tx_skb_ring; 1475 } 1476 lp->tx_skb_ring[i] = skbuf_dma; 1477 } 1478 1479 lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring), 1480 GFP_KERNEL); 1481 if (!lp->rx_skb_ring) { 1482 ret = -ENOMEM; 1483 goto err_free_tx_skb_ring; 1484 } 1485 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) { 1486 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); 1487 if (!skbuf_dma) { 1488 ret = -ENOMEM; 1489 goto err_free_rx_skb_ring; 1490 } 1491 lp->rx_skb_ring[i] = skbuf_dma; 1492 } 1493 /* TODO: Instead of BD_NUM_DEFAULT use runtime support */ 1494 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1495 axienet_rx_submit_desc(ndev); 1496 dma_async_issue_pending(lp->rx_chan); 1497 1498 return 0; 1499 1500 err_free_rx_skb_ring: 1501 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1502 kfree(lp->rx_skb_ring[i]); 1503 kfree(lp->rx_skb_ring); 1504 err_free_tx_skb_ring: 1505 for (i = 0; i < TX_BD_NUM_MAX; i++) 1506 kfree(lp->tx_skb_ring[i]); 1507 kfree(lp->tx_skb_ring); 1508 err_dma_release_rx: 1509 dma_release_channel(lp->rx_chan); 1510 err_dma_release_tx: 1511 dma_release_channel(lp->tx_chan); 1512 return ret; 1513 } 1514 1515 /** 1516 * axienet_init_legacy_dma - init the dma legacy code. 1517 * @ndev: Pointer to net_device structure 1518 * 1519 * Return: 0, on success. 1520 * non-zero error value on failure 1521 * 1522 * This is the dma initialization code. It also allocates interrupt 1523 * service routines, enables the interrupt lines and ISR handling. 1524 * 1525 */ 1526 static int axienet_init_legacy_dma(struct net_device *ndev) 1527 { 1528 int ret; 1529 struct axienet_local *lp = netdev_priv(ndev); 1530 1531 /* Enable worker thread for Axi DMA error handling */ 1532 lp->stopping = false; 1533 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); 1534 1535 napi_enable(&lp->napi_rx); 1536 napi_enable(&lp->napi_tx); 1537 1538 /* Enable interrupts for Axi DMA Tx */ 1539 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, 1540 ndev->name, ndev); 1541 if (ret) 1542 goto err_tx_irq; 1543 /* Enable interrupts for Axi DMA Rx */ 1544 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, 1545 ndev->name, ndev); 1546 if (ret) 1547 goto err_rx_irq; 1548 /* Enable interrupts for Axi Ethernet core (if defined) */ 1549 if (lp->eth_irq > 0) { 1550 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1551 ndev->name, ndev); 1552 if (ret) 1553 goto err_eth_irq; 1554 } 1555 1556 return 0; 1557 1558 err_eth_irq: 1559 free_irq(lp->rx_irq, ndev); 1560 err_rx_irq: 1561 free_irq(lp->tx_irq, ndev); 1562 err_tx_irq: 1563 napi_disable(&lp->napi_tx); 1564 napi_disable(&lp->napi_rx); 1565 cancel_work_sync(&lp->dma_err_task); 1566 dev_err(lp->dev, "request_irq() failed\n"); 1567 return ret; 1568 } 1569 1570 /** 1571 * axienet_open - Driver open routine. 1572 * @ndev: Pointer to net_device structure 1573 * 1574 * Return: 0, on success. 1575 * non-zero error value on failure 1576 * 1577 * This is the driver open routine. It calls phylink_start to start the 1578 * PHY device. 1579 * It also allocates interrupt service routines, enables the interrupt lines 1580 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer 1581 * descriptors are initialized. 1582 */ 1583 static int axienet_open(struct net_device *ndev) 1584 { 1585 int ret; 1586 struct axienet_local *lp = netdev_priv(ndev); 1587 1588 /* When we do an Axi Ethernet reset, it resets the complete core 1589 * including the MDIO. MDIO must be disabled before resetting. 1590 * Hold MDIO bus lock to avoid MDIO accesses during the reset. 1591 */ 1592 axienet_lock_mii(lp); 1593 ret = axienet_device_reset(ndev); 1594 axienet_unlock_mii(lp); 1595 1596 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); 1597 if (ret) { 1598 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); 1599 return ret; 1600 } 1601 1602 phylink_start(lp->phylink); 1603 1604 /* Start the statistics refresh work */ 1605 schedule_delayed_work(&lp->stats_work, 0); 1606 1607 if (lp->use_dmaengine) { 1608 /* Enable interrupts for Axi Ethernet core (if defined) */ 1609 if (lp->eth_irq > 0) { 1610 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1611 ndev->name, ndev); 1612 if (ret) 1613 goto err_phy; 1614 } 1615 1616 ret = axienet_init_dmaengine(ndev); 1617 if (ret < 0) 1618 goto err_free_eth_irq; 1619 } else { 1620 ret = axienet_init_legacy_dma(ndev); 1621 if (ret) 1622 goto err_phy; 1623 } 1624 1625 return 0; 1626 1627 err_free_eth_irq: 1628 if (lp->eth_irq > 0) 1629 free_irq(lp->eth_irq, ndev); 1630 err_phy: 1631 cancel_delayed_work_sync(&lp->stats_work); 1632 phylink_stop(lp->phylink); 1633 phylink_disconnect_phy(lp->phylink); 1634 return ret; 1635 } 1636 1637 /** 1638 * axienet_stop - Driver stop routine. 1639 * @ndev: Pointer to net_device structure 1640 * 1641 * Return: 0, on success. 1642 * 1643 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY 1644 * device. It also removes the interrupt handlers and disables the interrupts. 1645 * The Axi DMA Tx/Rx BDs are released. 1646 */ 1647 static int axienet_stop(struct net_device *ndev) 1648 { 1649 struct axienet_local *lp = netdev_priv(ndev); 1650 int i; 1651 1652 if (!lp->use_dmaengine) { 1653 WRITE_ONCE(lp->stopping, true); 1654 flush_work(&lp->dma_err_task); 1655 1656 napi_disable(&lp->napi_tx); 1657 napi_disable(&lp->napi_rx); 1658 } 1659 1660 cancel_delayed_work_sync(&lp->stats_work); 1661 1662 phylink_stop(lp->phylink); 1663 phylink_disconnect_phy(lp->phylink); 1664 1665 axienet_setoptions(ndev, lp->options & 1666 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1667 1668 if (!lp->use_dmaengine) { 1669 axienet_dma_stop(lp); 1670 cancel_work_sync(&lp->dma_err_task); 1671 free_irq(lp->tx_irq, ndev); 1672 free_irq(lp->rx_irq, ndev); 1673 axienet_dma_bd_release(ndev); 1674 } else { 1675 dmaengine_terminate_sync(lp->tx_chan); 1676 dmaengine_synchronize(lp->tx_chan); 1677 dmaengine_terminate_sync(lp->rx_chan); 1678 dmaengine_synchronize(lp->rx_chan); 1679 1680 for (i = 0; i < TX_BD_NUM_MAX; i++) 1681 kfree(lp->tx_skb_ring[i]); 1682 kfree(lp->tx_skb_ring); 1683 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1684 kfree(lp->rx_skb_ring[i]); 1685 kfree(lp->rx_skb_ring); 1686 1687 dma_release_channel(lp->rx_chan); 1688 dma_release_channel(lp->tx_chan); 1689 } 1690 1691 axienet_iow(lp, XAE_IE_OFFSET, 0); 1692 1693 if (lp->eth_irq > 0) 1694 free_irq(lp->eth_irq, ndev); 1695 return 0; 1696 } 1697 1698 /** 1699 * axienet_change_mtu - Driver change mtu routine. 1700 * @ndev: Pointer to net_device structure 1701 * @new_mtu: New mtu value to be applied 1702 * 1703 * Return: Always returns 0 (success). 1704 * 1705 * This is the change mtu driver routine. It checks if the Axi Ethernet 1706 * hardware supports jumbo frames before changing the mtu. This can be 1707 * called only when the device is not up. 1708 */ 1709 static int axienet_change_mtu(struct net_device *ndev, int new_mtu) 1710 { 1711 struct axienet_local *lp = netdev_priv(ndev); 1712 1713 if (netif_running(ndev)) 1714 return -EBUSY; 1715 1716 if ((new_mtu + VLAN_ETH_HLEN + 1717 XAE_TRL_SIZE) > lp->rxmem) 1718 return -EINVAL; 1719 1720 WRITE_ONCE(ndev->mtu, new_mtu); 1721 1722 return 0; 1723 } 1724 1725 #ifdef CONFIG_NET_POLL_CONTROLLER 1726 /** 1727 * axienet_poll_controller - Axi Ethernet poll mechanism. 1728 * @ndev: Pointer to net_device structure 1729 * 1730 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior 1731 * to polling the ISRs and are enabled back after the polling is done. 1732 */ 1733 static void axienet_poll_controller(struct net_device *ndev) 1734 { 1735 struct axienet_local *lp = netdev_priv(ndev); 1736 1737 disable_irq(lp->tx_irq); 1738 disable_irq(lp->rx_irq); 1739 axienet_rx_irq(lp->tx_irq, ndev); 1740 axienet_tx_irq(lp->rx_irq, ndev); 1741 enable_irq(lp->tx_irq); 1742 enable_irq(lp->rx_irq); 1743 } 1744 #endif 1745 1746 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1747 { 1748 struct axienet_local *lp = netdev_priv(dev); 1749 1750 if (!netif_running(dev)) 1751 return -EINVAL; 1752 1753 return phylink_mii_ioctl(lp->phylink, rq, cmd); 1754 } 1755 1756 static void 1757 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 1758 { 1759 struct axienet_local *lp = netdev_priv(dev); 1760 unsigned int start; 1761 1762 netdev_stats_to_stats64(stats, &dev->stats); 1763 1764 do { 1765 start = u64_stats_fetch_begin(&lp->rx_stat_sync); 1766 stats->rx_packets = u64_stats_read(&lp->rx_packets); 1767 stats->rx_bytes = u64_stats_read(&lp->rx_bytes); 1768 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); 1769 1770 do { 1771 start = u64_stats_fetch_begin(&lp->tx_stat_sync); 1772 stats->tx_packets = u64_stats_read(&lp->tx_packets); 1773 stats->tx_bytes = u64_stats_read(&lp->tx_bytes); 1774 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); 1775 1776 if (!(lp->features & XAE_FEATURE_STATS)) 1777 return; 1778 1779 do { 1780 start = read_seqcount_begin(&lp->hw_stats_seqcount); 1781 stats->rx_length_errors = 1782 axienet_stat(lp, STAT_RX_LENGTH_ERRORS); 1783 stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS); 1784 stats->rx_frame_errors = 1785 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); 1786 stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) + 1787 axienet_stat(lp, STAT_FRAGMENT_FRAMES) + 1788 stats->rx_length_errors + 1789 stats->rx_crc_errors + 1790 stats->rx_frame_errors; 1791 stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); 1792 1793 stats->tx_aborted_errors = 1794 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); 1795 stats->tx_fifo_errors = 1796 axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS); 1797 stats->tx_window_errors = 1798 axienet_stat(lp, STAT_TX_LATE_COLLISIONS); 1799 stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) + 1800 stats->tx_aborted_errors + 1801 stats->tx_fifo_errors + 1802 stats->tx_window_errors; 1803 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 1804 } 1805 1806 static const struct net_device_ops axienet_netdev_ops = { 1807 .ndo_open = axienet_open, 1808 .ndo_stop = axienet_stop, 1809 .ndo_start_xmit = axienet_start_xmit, 1810 .ndo_get_stats64 = axienet_get_stats64, 1811 .ndo_change_mtu = axienet_change_mtu, 1812 .ndo_set_mac_address = netdev_set_mac_address, 1813 .ndo_validate_addr = eth_validate_addr, 1814 .ndo_eth_ioctl = axienet_ioctl, 1815 .ndo_set_rx_mode = axienet_set_multicast_list, 1816 #ifdef CONFIG_NET_POLL_CONTROLLER 1817 .ndo_poll_controller = axienet_poll_controller, 1818 #endif 1819 }; 1820 1821 static const struct net_device_ops axienet_netdev_dmaengine_ops = { 1822 .ndo_open = axienet_open, 1823 .ndo_stop = axienet_stop, 1824 .ndo_start_xmit = axienet_start_xmit_dmaengine, 1825 .ndo_get_stats64 = axienet_get_stats64, 1826 .ndo_change_mtu = axienet_change_mtu, 1827 .ndo_set_mac_address = netdev_set_mac_address, 1828 .ndo_validate_addr = eth_validate_addr, 1829 .ndo_eth_ioctl = axienet_ioctl, 1830 .ndo_set_rx_mode = axienet_set_multicast_list, 1831 }; 1832 1833 /** 1834 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. 1835 * @ndev: Pointer to net_device structure 1836 * @ed: Pointer to ethtool_drvinfo structure 1837 * 1838 * This implements ethtool command for getting the driver information. 1839 * Issue "ethtool -i ethX" under linux prompt to execute this function. 1840 */ 1841 static void axienet_ethtools_get_drvinfo(struct net_device *ndev, 1842 struct ethtool_drvinfo *ed) 1843 { 1844 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); 1845 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); 1846 } 1847 1848 /** 1849 * axienet_ethtools_get_regs_len - Get the total regs length present in the 1850 * AxiEthernet core. 1851 * @ndev: Pointer to net_device structure 1852 * 1853 * This implements ethtool command for getting the total register length 1854 * information. 1855 * 1856 * Return: the total regs length 1857 */ 1858 static int axienet_ethtools_get_regs_len(struct net_device *ndev) 1859 { 1860 return sizeof(u32) * AXIENET_REGS_N; 1861 } 1862 1863 /** 1864 * axienet_ethtools_get_regs - Dump the contents of all registers present 1865 * in AxiEthernet core. 1866 * @ndev: Pointer to net_device structure 1867 * @regs: Pointer to ethtool_regs structure 1868 * @ret: Void pointer used to return the contents of the registers. 1869 * 1870 * This implements ethtool command for getting the Axi Ethernet register dump. 1871 * Issue "ethtool -d ethX" to execute this function. 1872 */ 1873 static void axienet_ethtools_get_regs(struct net_device *ndev, 1874 struct ethtool_regs *regs, void *ret) 1875 { 1876 u32 *data = (u32 *)ret; 1877 size_t len = sizeof(u32) * AXIENET_REGS_N; 1878 struct axienet_local *lp = netdev_priv(ndev); 1879 1880 regs->version = 0; 1881 regs->len = len; 1882 1883 memset(data, 0, len); 1884 data[0] = axienet_ior(lp, XAE_RAF_OFFSET); 1885 data[1] = axienet_ior(lp, XAE_TPF_OFFSET); 1886 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); 1887 data[3] = axienet_ior(lp, XAE_IS_OFFSET); 1888 data[4] = axienet_ior(lp, XAE_IP_OFFSET); 1889 data[5] = axienet_ior(lp, XAE_IE_OFFSET); 1890 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); 1891 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); 1892 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); 1893 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); 1894 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); 1895 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); 1896 data[12] = axienet_ior(lp, XAE_PPST_OFFSET); 1897 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); 1898 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); 1899 data[15] = axienet_ior(lp, XAE_TC_OFFSET); 1900 data[16] = axienet_ior(lp, XAE_FCC_OFFSET); 1901 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); 1902 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); 1903 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); 1904 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); 1905 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); 1906 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); 1907 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); 1908 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); 1909 data[29] = axienet_ior(lp, XAE_FMI_OFFSET); 1910 data[30] = axienet_ior(lp, XAE_AF0_OFFSET); 1911 data[31] = axienet_ior(lp, XAE_AF1_OFFSET); 1912 if (!lp->use_dmaengine) { 1913 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 1914 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1915 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); 1916 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); 1917 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 1918 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1919 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); 1920 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); 1921 } 1922 } 1923 1924 static void 1925 axienet_ethtools_get_ringparam(struct net_device *ndev, 1926 struct ethtool_ringparam *ering, 1927 struct kernel_ethtool_ringparam *kernel_ering, 1928 struct netlink_ext_ack *extack) 1929 { 1930 struct axienet_local *lp = netdev_priv(ndev); 1931 1932 ering->rx_max_pending = RX_BD_NUM_MAX; 1933 ering->rx_mini_max_pending = 0; 1934 ering->rx_jumbo_max_pending = 0; 1935 ering->tx_max_pending = TX_BD_NUM_MAX; 1936 ering->rx_pending = lp->rx_bd_num; 1937 ering->rx_mini_pending = 0; 1938 ering->rx_jumbo_pending = 0; 1939 ering->tx_pending = lp->tx_bd_num; 1940 } 1941 1942 static int 1943 axienet_ethtools_set_ringparam(struct net_device *ndev, 1944 struct ethtool_ringparam *ering, 1945 struct kernel_ethtool_ringparam *kernel_ering, 1946 struct netlink_ext_ack *extack) 1947 { 1948 struct axienet_local *lp = netdev_priv(ndev); 1949 1950 if (ering->rx_pending > RX_BD_NUM_MAX || 1951 ering->rx_mini_pending || 1952 ering->rx_jumbo_pending || 1953 ering->tx_pending < TX_BD_NUM_MIN || 1954 ering->tx_pending > TX_BD_NUM_MAX) 1955 return -EINVAL; 1956 1957 if (netif_running(ndev)) 1958 return -EBUSY; 1959 1960 lp->rx_bd_num = ering->rx_pending; 1961 lp->tx_bd_num = ering->tx_pending; 1962 return 0; 1963 } 1964 1965 /** 1966 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for 1967 * Tx and Rx paths. 1968 * @ndev: Pointer to net_device structure 1969 * @epauseparm: Pointer to ethtool_pauseparam structure. 1970 * 1971 * This implements ethtool command for getting axi ethernet pause frame 1972 * setting. Issue "ethtool -a ethX" to execute this function. 1973 */ 1974 static void 1975 axienet_ethtools_get_pauseparam(struct net_device *ndev, 1976 struct ethtool_pauseparam *epauseparm) 1977 { 1978 struct axienet_local *lp = netdev_priv(ndev); 1979 1980 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); 1981 } 1982 1983 /** 1984 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) 1985 * settings. 1986 * @ndev: Pointer to net_device structure 1987 * @epauseparm:Pointer to ethtool_pauseparam structure 1988 * 1989 * This implements ethtool command for enabling flow control on Rx and Tx 1990 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this 1991 * function. 1992 * 1993 * Return: 0 on success, -EFAULT if device is running 1994 */ 1995 static int 1996 axienet_ethtools_set_pauseparam(struct net_device *ndev, 1997 struct ethtool_pauseparam *epauseparm) 1998 { 1999 struct axienet_local *lp = netdev_priv(ndev); 2000 2001 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); 2002 } 2003 2004 /** 2005 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. 2006 * @ndev: Pointer to net_device structure 2007 * @ecoalesce: Pointer to ethtool_coalesce structure 2008 * @kernel_coal: ethtool CQE mode setting structure 2009 * @extack: extack for reporting error messages 2010 * 2011 * This implements ethtool command for getting the DMA interrupt coalescing 2012 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to 2013 * execute this function. 2014 * 2015 * Return: 0 always 2016 */ 2017 static int 2018 axienet_ethtools_get_coalesce(struct net_device *ndev, 2019 struct ethtool_coalesce *ecoalesce, 2020 struct kernel_ethtool_coalesce *kernel_coal, 2021 struct netlink_ext_ack *extack) 2022 { 2023 struct axienet_local *lp = netdev_priv(ndev); 2024 2025 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx; 2026 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx; 2027 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx; 2028 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx; 2029 return 0; 2030 } 2031 2032 /** 2033 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. 2034 * @ndev: Pointer to net_device structure 2035 * @ecoalesce: Pointer to ethtool_coalesce structure 2036 * @kernel_coal: ethtool CQE mode setting structure 2037 * @extack: extack for reporting error messages 2038 * 2039 * This implements ethtool command for setting the DMA interrupt coalescing 2040 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux 2041 * prompt to execute this function. 2042 * 2043 * Return: 0, on success, Non-zero error value on failure. 2044 */ 2045 static int 2046 axienet_ethtools_set_coalesce(struct net_device *ndev, 2047 struct ethtool_coalesce *ecoalesce, 2048 struct kernel_ethtool_coalesce *kernel_coal, 2049 struct netlink_ext_ack *extack) 2050 { 2051 struct axienet_local *lp = netdev_priv(ndev); 2052 2053 if (netif_running(ndev)) { 2054 NL_SET_ERR_MSG(extack, 2055 "Please stop netif before applying configuration"); 2056 return -EBUSY; 2057 } 2058 2059 if (ecoalesce->rx_max_coalesced_frames) 2060 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; 2061 if (ecoalesce->rx_coalesce_usecs) 2062 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs; 2063 if (ecoalesce->tx_max_coalesced_frames) 2064 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; 2065 if (ecoalesce->tx_coalesce_usecs) 2066 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs; 2067 2068 return 0; 2069 } 2070 2071 static int 2072 axienet_ethtools_get_link_ksettings(struct net_device *ndev, 2073 struct ethtool_link_ksettings *cmd) 2074 { 2075 struct axienet_local *lp = netdev_priv(ndev); 2076 2077 return phylink_ethtool_ksettings_get(lp->phylink, cmd); 2078 } 2079 2080 static int 2081 axienet_ethtools_set_link_ksettings(struct net_device *ndev, 2082 const struct ethtool_link_ksettings *cmd) 2083 { 2084 struct axienet_local *lp = netdev_priv(ndev); 2085 2086 return phylink_ethtool_ksettings_set(lp->phylink, cmd); 2087 } 2088 2089 static int axienet_ethtools_nway_reset(struct net_device *dev) 2090 { 2091 struct axienet_local *lp = netdev_priv(dev); 2092 2093 return phylink_ethtool_nway_reset(lp->phylink); 2094 } 2095 2096 static void axienet_ethtools_get_ethtool_stats(struct net_device *dev, 2097 struct ethtool_stats *stats, 2098 u64 *data) 2099 { 2100 struct axienet_local *lp = netdev_priv(dev); 2101 unsigned int start; 2102 2103 do { 2104 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2105 data[0] = axienet_stat(lp, STAT_RX_BYTES); 2106 data[1] = axienet_stat(lp, STAT_TX_BYTES); 2107 data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES); 2108 data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES); 2109 data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES); 2110 data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES); 2111 data[8] = axienet_stat(lp, STAT_USER_DEFINED0); 2112 data[9] = axienet_stat(lp, STAT_USER_DEFINED1); 2113 data[10] = axienet_stat(lp, STAT_USER_DEFINED2); 2114 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2115 } 2116 2117 static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = { 2118 "Received bytes", 2119 "Transmitted bytes", 2120 "RX Good VLAN Tagged Frames", 2121 "TX Good VLAN Tagged Frames", 2122 "TX Good PFC Frames", 2123 "RX Good PFC Frames", 2124 "User Defined Counter 0", 2125 "User Defined Counter 1", 2126 "User Defined Counter 2", 2127 }; 2128 2129 static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2130 { 2131 switch (stringset) { 2132 case ETH_SS_STATS: 2133 memcpy(data, axienet_ethtool_stats_strings, 2134 sizeof(axienet_ethtool_stats_strings)); 2135 break; 2136 } 2137 } 2138 2139 static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset) 2140 { 2141 struct axienet_local *lp = netdev_priv(dev); 2142 2143 switch (sset) { 2144 case ETH_SS_STATS: 2145 if (lp->features & XAE_FEATURE_STATS) 2146 return ARRAY_SIZE(axienet_ethtool_stats_strings); 2147 fallthrough; 2148 default: 2149 return -EOPNOTSUPP; 2150 } 2151 } 2152 2153 static void 2154 axienet_ethtools_get_pause_stats(struct net_device *dev, 2155 struct ethtool_pause_stats *pause_stats) 2156 { 2157 struct axienet_local *lp = netdev_priv(dev); 2158 unsigned int start; 2159 2160 if (!(lp->features & XAE_FEATURE_STATS)) 2161 return; 2162 2163 do { 2164 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2165 pause_stats->tx_pause_frames = 2166 axienet_stat(lp, STAT_TX_PAUSE_FRAMES); 2167 pause_stats->rx_pause_frames = 2168 axienet_stat(lp, STAT_RX_PAUSE_FRAMES); 2169 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2170 } 2171 2172 static void 2173 axienet_ethtool_get_eth_mac_stats(struct net_device *dev, 2174 struct ethtool_eth_mac_stats *mac_stats) 2175 { 2176 struct axienet_local *lp = netdev_priv(dev); 2177 unsigned int start; 2178 2179 if (!(lp->features & XAE_FEATURE_STATS)) 2180 return; 2181 2182 do { 2183 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2184 mac_stats->FramesTransmittedOK = 2185 axienet_stat(lp, STAT_TX_GOOD_FRAMES); 2186 mac_stats->SingleCollisionFrames = 2187 axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES); 2188 mac_stats->MultipleCollisionFrames = 2189 axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES); 2190 mac_stats->FramesReceivedOK = 2191 axienet_stat(lp, STAT_RX_GOOD_FRAMES); 2192 mac_stats->FrameCheckSequenceErrors = 2193 axienet_stat(lp, STAT_RX_FCS_ERRORS); 2194 mac_stats->AlignmentErrors = 2195 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); 2196 mac_stats->FramesWithDeferredXmissions = 2197 axienet_stat(lp, STAT_TX_DEFERRED_FRAMES); 2198 mac_stats->LateCollisions = 2199 axienet_stat(lp, STAT_TX_LATE_COLLISIONS); 2200 mac_stats->FramesAbortedDueToXSColls = 2201 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); 2202 mac_stats->MulticastFramesXmittedOK = 2203 axienet_stat(lp, STAT_TX_MULTICAST_FRAMES); 2204 mac_stats->BroadcastFramesXmittedOK = 2205 axienet_stat(lp, STAT_TX_BROADCAST_FRAMES); 2206 mac_stats->FramesWithExcessiveDeferral = 2207 axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL); 2208 mac_stats->MulticastFramesReceivedOK = 2209 axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); 2210 mac_stats->BroadcastFramesReceivedOK = 2211 axienet_stat(lp, STAT_RX_BROADCAST_FRAMES); 2212 mac_stats->InRangeLengthErrors = 2213 axienet_stat(lp, STAT_RX_LENGTH_ERRORS); 2214 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2215 } 2216 2217 static void 2218 axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev, 2219 struct ethtool_eth_ctrl_stats *ctrl_stats) 2220 { 2221 struct axienet_local *lp = netdev_priv(dev); 2222 unsigned int start; 2223 2224 if (!(lp->features & XAE_FEATURE_STATS)) 2225 return; 2226 2227 do { 2228 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2229 ctrl_stats->MACControlFramesTransmitted = 2230 axienet_stat(lp, STAT_TX_CONTROL_FRAMES); 2231 ctrl_stats->MACControlFramesReceived = 2232 axienet_stat(lp, STAT_RX_CONTROL_FRAMES); 2233 ctrl_stats->UnsupportedOpcodesReceived = 2234 axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS); 2235 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2236 } 2237 2238 static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = { 2239 { 64, 64 }, 2240 { 65, 127 }, 2241 { 128, 255 }, 2242 { 256, 511 }, 2243 { 512, 1023 }, 2244 { 1024, 1518 }, 2245 { 1519, 16384 }, 2246 { }, 2247 }; 2248 2249 static void 2250 axienet_ethtool_get_rmon_stats(struct net_device *dev, 2251 struct ethtool_rmon_stats *rmon_stats, 2252 const struct ethtool_rmon_hist_range **ranges) 2253 { 2254 struct axienet_local *lp = netdev_priv(dev); 2255 unsigned int start; 2256 2257 if (!(lp->features & XAE_FEATURE_STATS)) 2258 return; 2259 2260 do { 2261 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2262 rmon_stats->undersize_pkts = 2263 axienet_stat(lp, STAT_UNDERSIZE_FRAMES); 2264 rmon_stats->oversize_pkts = 2265 axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES); 2266 rmon_stats->fragments = 2267 axienet_stat(lp, STAT_FRAGMENT_FRAMES); 2268 2269 rmon_stats->hist[0] = 2270 axienet_stat(lp, STAT_RX_64_BYTE_FRAMES); 2271 rmon_stats->hist[1] = 2272 axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES); 2273 rmon_stats->hist[2] = 2274 axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES); 2275 rmon_stats->hist[3] = 2276 axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES); 2277 rmon_stats->hist[4] = 2278 axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES); 2279 rmon_stats->hist[5] = 2280 axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES); 2281 rmon_stats->hist[6] = 2282 rmon_stats->oversize_pkts; 2283 2284 rmon_stats->hist_tx[0] = 2285 axienet_stat(lp, STAT_TX_64_BYTE_FRAMES); 2286 rmon_stats->hist_tx[1] = 2287 axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES); 2288 rmon_stats->hist_tx[2] = 2289 axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES); 2290 rmon_stats->hist_tx[3] = 2291 axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES); 2292 rmon_stats->hist_tx[4] = 2293 axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES); 2294 rmon_stats->hist_tx[5] = 2295 axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES); 2296 rmon_stats->hist_tx[6] = 2297 axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES); 2298 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2299 2300 *ranges = axienet_rmon_ranges; 2301 } 2302 2303 static const struct ethtool_ops axienet_ethtool_ops = { 2304 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | 2305 ETHTOOL_COALESCE_USECS, 2306 .get_drvinfo = axienet_ethtools_get_drvinfo, 2307 .get_regs_len = axienet_ethtools_get_regs_len, 2308 .get_regs = axienet_ethtools_get_regs, 2309 .get_link = ethtool_op_get_link, 2310 .get_ringparam = axienet_ethtools_get_ringparam, 2311 .set_ringparam = axienet_ethtools_set_ringparam, 2312 .get_pauseparam = axienet_ethtools_get_pauseparam, 2313 .set_pauseparam = axienet_ethtools_set_pauseparam, 2314 .get_coalesce = axienet_ethtools_get_coalesce, 2315 .set_coalesce = axienet_ethtools_set_coalesce, 2316 .get_link_ksettings = axienet_ethtools_get_link_ksettings, 2317 .set_link_ksettings = axienet_ethtools_set_link_ksettings, 2318 .nway_reset = axienet_ethtools_nway_reset, 2319 .get_ethtool_stats = axienet_ethtools_get_ethtool_stats, 2320 .get_strings = axienet_ethtools_get_strings, 2321 .get_sset_count = axienet_ethtools_get_sset_count, 2322 .get_pause_stats = axienet_ethtools_get_pause_stats, 2323 .get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats, 2324 .get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats, 2325 .get_rmon_stats = axienet_ethtool_get_rmon_stats, 2326 }; 2327 2328 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) 2329 { 2330 return container_of(pcs, struct axienet_local, pcs); 2331 } 2332 2333 static void axienet_pcs_get_state(struct phylink_pcs *pcs, 2334 struct phylink_link_state *state) 2335 { 2336 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2337 2338 phylink_mii_c22_pcs_get_state(pcs_phy, state); 2339 } 2340 2341 static void axienet_pcs_an_restart(struct phylink_pcs *pcs) 2342 { 2343 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2344 2345 phylink_mii_c22_pcs_an_restart(pcs_phy); 2346 } 2347 2348 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, 2349 phy_interface_t interface, 2350 const unsigned long *advertising, 2351 bool permit_pause_to_mac) 2352 { 2353 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2354 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; 2355 struct axienet_local *lp = netdev_priv(ndev); 2356 int ret; 2357 2358 if (lp->switch_x_sgmii) { 2359 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, 2360 interface == PHY_INTERFACE_MODE_SGMII ? 2361 XLNX_MII_STD_SELECT_SGMII : 0); 2362 if (ret < 0) { 2363 netdev_warn(ndev, 2364 "Failed to switch PHY interface: %d\n", 2365 ret); 2366 return ret; 2367 } 2368 } 2369 2370 ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, 2371 neg_mode); 2372 if (ret < 0) 2373 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); 2374 2375 return ret; 2376 } 2377 2378 static const struct phylink_pcs_ops axienet_pcs_ops = { 2379 .pcs_get_state = axienet_pcs_get_state, 2380 .pcs_config = axienet_pcs_config, 2381 .pcs_an_restart = axienet_pcs_an_restart, 2382 }; 2383 2384 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, 2385 phy_interface_t interface) 2386 { 2387 struct net_device *ndev = to_net_dev(config->dev); 2388 struct axienet_local *lp = netdev_priv(ndev); 2389 2390 if (interface == PHY_INTERFACE_MODE_1000BASEX || 2391 interface == PHY_INTERFACE_MODE_SGMII) 2392 return &lp->pcs; 2393 2394 return NULL; 2395 } 2396 2397 static void axienet_mac_config(struct phylink_config *config, unsigned int mode, 2398 const struct phylink_link_state *state) 2399 { 2400 /* nothing meaningful to do */ 2401 } 2402 2403 static void axienet_mac_link_down(struct phylink_config *config, 2404 unsigned int mode, 2405 phy_interface_t interface) 2406 { 2407 /* nothing meaningful to do */ 2408 } 2409 2410 static void axienet_mac_link_up(struct phylink_config *config, 2411 struct phy_device *phy, 2412 unsigned int mode, phy_interface_t interface, 2413 int speed, int duplex, 2414 bool tx_pause, bool rx_pause) 2415 { 2416 struct net_device *ndev = to_net_dev(config->dev); 2417 struct axienet_local *lp = netdev_priv(ndev); 2418 u32 emmc_reg, fcc_reg; 2419 2420 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); 2421 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; 2422 2423 switch (speed) { 2424 case SPEED_1000: 2425 emmc_reg |= XAE_EMMC_LINKSPD_1000; 2426 break; 2427 case SPEED_100: 2428 emmc_reg |= XAE_EMMC_LINKSPD_100; 2429 break; 2430 case SPEED_10: 2431 emmc_reg |= XAE_EMMC_LINKSPD_10; 2432 break; 2433 default: 2434 dev_err(&ndev->dev, 2435 "Speed other than 10, 100 or 1Gbps is not supported\n"); 2436 break; 2437 } 2438 2439 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); 2440 2441 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); 2442 if (tx_pause) 2443 fcc_reg |= XAE_FCC_FCTX_MASK; 2444 else 2445 fcc_reg &= ~XAE_FCC_FCTX_MASK; 2446 if (rx_pause) 2447 fcc_reg |= XAE_FCC_FCRX_MASK; 2448 else 2449 fcc_reg &= ~XAE_FCC_FCRX_MASK; 2450 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); 2451 } 2452 2453 static const struct phylink_mac_ops axienet_phylink_ops = { 2454 .mac_select_pcs = axienet_mac_select_pcs, 2455 .mac_config = axienet_mac_config, 2456 .mac_link_down = axienet_mac_link_down, 2457 .mac_link_up = axienet_mac_link_up, 2458 }; 2459 2460 /** 2461 * axienet_dma_err_handler - Work queue task for Axi DMA Error 2462 * @work: pointer to work_struct 2463 * 2464 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the 2465 * Tx/Rx BDs. 2466 */ 2467 static void axienet_dma_err_handler(struct work_struct *work) 2468 { 2469 u32 i; 2470 u32 axienet_status; 2471 struct axidma_bd *cur_p; 2472 struct axienet_local *lp = container_of(work, struct axienet_local, 2473 dma_err_task); 2474 struct net_device *ndev = lp->ndev; 2475 2476 /* Don't bother if we are going to stop anyway */ 2477 if (READ_ONCE(lp->stopping)) 2478 return; 2479 2480 napi_disable(&lp->napi_tx); 2481 napi_disable(&lp->napi_rx); 2482 2483 axienet_setoptions(ndev, lp->options & 2484 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 2485 2486 axienet_dma_stop(lp); 2487 2488 for (i = 0; i < lp->tx_bd_num; i++) { 2489 cur_p = &lp->tx_bd_v[i]; 2490 if (cur_p->cntrl) { 2491 dma_addr_t addr = desc_get_phys_addr(lp, cur_p); 2492 2493 dma_unmap_single(lp->dev, addr, 2494 (cur_p->cntrl & 2495 XAXIDMA_BD_CTRL_LENGTH_MASK), 2496 DMA_TO_DEVICE); 2497 } 2498 if (cur_p->skb) 2499 dev_kfree_skb_irq(cur_p->skb); 2500 cur_p->phys = 0; 2501 cur_p->phys_msb = 0; 2502 cur_p->cntrl = 0; 2503 cur_p->status = 0; 2504 cur_p->app0 = 0; 2505 cur_p->app1 = 0; 2506 cur_p->app2 = 0; 2507 cur_p->app3 = 0; 2508 cur_p->app4 = 0; 2509 cur_p->skb = NULL; 2510 } 2511 2512 for (i = 0; i < lp->rx_bd_num; i++) { 2513 cur_p = &lp->rx_bd_v[i]; 2514 cur_p->status = 0; 2515 cur_p->app0 = 0; 2516 cur_p->app1 = 0; 2517 cur_p->app2 = 0; 2518 cur_p->app3 = 0; 2519 cur_p->app4 = 0; 2520 } 2521 2522 lp->tx_bd_ci = 0; 2523 lp->tx_bd_tail = 0; 2524 lp->rx_bd_ci = 0; 2525 2526 axienet_dma_start(lp); 2527 2528 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 2529 axienet_status &= ~XAE_RCW1_RX_MASK; 2530 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 2531 2532 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 2533 if (axienet_status & XAE_INT_RXRJECT_MASK) 2534 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 2535 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 2536 XAE_INT_RECV_ERROR_MASK : 0); 2537 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 2538 2539 /* Sync default options with HW but leave receiver and 2540 * transmitter disabled. 2541 */ 2542 axienet_setoptions(ndev, lp->options & 2543 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 2544 axienet_set_mac_address(ndev, NULL); 2545 axienet_set_multicast_list(ndev); 2546 napi_enable(&lp->napi_rx); 2547 napi_enable(&lp->napi_tx); 2548 axienet_setoptions(ndev, lp->options); 2549 } 2550 2551 /** 2552 * axienet_probe - Axi Ethernet probe function. 2553 * @pdev: Pointer to platform device structure. 2554 * 2555 * Return: 0, on success 2556 * Non-zero error value on failure. 2557 * 2558 * This is the probe routine for Axi Ethernet driver. This is called before 2559 * any other driver routines are invoked. It allocates and sets up the Ethernet 2560 * device. Parses through device tree and populates fields of 2561 * axienet_local. It registers the Ethernet device. 2562 */ 2563 static int axienet_probe(struct platform_device *pdev) 2564 { 2565 int ret; 2566 struct device_node *np; 2567 struct axienet_local *lp; 2568 struct net_device *ndev; 2569 struct resource *ethres; 2570 u8 mac_addr[ETH_ALEN]; 2571 int addr_width = 32; 2572 u32 value; 2573 2574 ndev = alloc_etherdev(sizeof(*lp)); 2575 if (!ndev) 2576 return -ENOMEM; 2577 2578 platform_set_drvdata(pdev, ndev); 2579 2580 SET_NETDEV_DEV(ndev, &pdev->dev); 2581 ndev->features = NETIF_F_SG; 2582 ndev->ethtool_ops = &axienet_ethtool_ops; 2583 2584 /* MTU range: 64 - 9000 */ 2585 ndev->min_mtu = 64; 2586 ndev->max_mtu = XAE_JUMBO_MTU; 2587 2588 lp = netdev_priv(ndev); 2589 lp->ndev = ndev; 2590 lp->dev = &pdev->dev; 2591 lp->options = XAE_OPTION_DEFAULTS; 2592 lp->rx_bd_num = RX_BD_NUM_DEFAULT; 2593 lp->tx_bd_num = TX_BD_NUM_DEFAULT; 2594 2595 u64_stats_init(&lp->rx_stat_sync); 2596 u64_stats_init(&lp->tx_stat_sync); 2597 2598 mutex_init(&lp->stats_lock); 2599 seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock); 2600 INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats); 2601 2602 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); 2603 if (!lp->axi_clk) { 2604 /* For backward compatibility, if named AXI clock is not present, 2605 * treat the first clock specified as the AXI clock. 2606 */ 2607 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); 2608 } 2609 if (IS_ERR(lp->axi_clk)) { 2610 ret = PTR_ERR(lp->axi_clk); 2611 goto free_netdev; 2612 } 2613 ret = clk_prepare_enable(lp->axi_clk); 2614 if (ret) { 2615 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); 2616 goto free_netdev; 2617 } 2618 2619 lp->misc_clks[0].id = "axis_clk"; 2620 lp->misc_clks[1].id = "ref_clk"; 2621 lp->misc_clks[2].id = "mgt_clk"; 2622 2623 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2624 if (ret) 2625 goto cleanup_clk; 2626 2627 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2628 if (ret) 2629 goto cleanup_clk; 2630 2631 /* Map device registers */ 2632 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); 2633 if (IS_ERR(lp->regs)) { 2634 ret = PTR_ERR(lp->regs); 2635 goto cleanup_clk; 2636 } 2637 lp->regs_start = ethres->start; 2638 2639 /* Setup checksum offload, but default to off if not specified */ 2640 lp->features = 0; 2641 2642 if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS) 2643 lp->features |= XAE_FEATURE_STATS; 2644 2645 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); 2646 if (!ret) { 2647 switch (value) { 2648 case 1: 2649 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; 2650 /* Can checksum any contiguous range */ 2651 ndev->features |= NETIF_F_HW_CSUM; 2652 break; 2653 case 2: 2654 lp->features |= XAE_FEATURE_FULL_TX_CSUM; 2655 /* Can checksum TCP/UDP over IPv4. */ 2656 ndev->features |= NETIF_F_IP_CSUM; 2657 break; 2658 } 2659 } 2660 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); 2661 if (!ret) { 2662 switch (value) { 2663 case 1: 2664 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; 2665 ndev->features |= NETIF_F_RXCSUM; 2666 break; 2667 case 2: 2668 lp->features |= XAE_FEATURE_FULL_RX_CSUM; 2669 ndev->features |= NETIF_F_RXCSUM; 2670 break; 2671 } 2672 } 2673 /* For supporting jumbo frames, the Axi Ethernet hardware must have 2674 * a larger Rx/Tx Memory. Typically, the size must be large so that 2675 * we can enable jumbo option and start supporting jumbo frames. 2676 * Here we check for memory allocated for Rx/Tx in the hardware from 2677 * the device-tree and accordingly set flags. 2678 */ 2679 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); 2680 2681 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, 2682 "xlnx,switch-x-sgmii"); 2683 2684 /* Start with the proprietary, and broken phy_type */ 2685 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); 2686 if (!ret) { 2687 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); 2688 switch (value) { 2689 case XAE_PHY_TYPE_MII: 2690 lp->phy_mode = PHY_INTERFACE_MODE_MII; 2691 break; 2692 case XAE_PHY_TYPE_GMII: 2693 lp->phy_mode = PHY_INTERFACE_MODE_GMII; 2694 break; 2695 case XAE_PHY_TYPE_RGMII_2_0: 2696 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; 2697 break; 2698 case XAE_PHY_TYPE_SGMII: 2699 lp->phy_mode = PHY_INTERFACE_MODE_SGMII; 2700 break; 2701 case XAE_PHY_TYPE_1000BASE_X: 2702 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; 2703 break; 2704 default: 2705 ret = -EINVAL; 2706 goto cleanup_clk; 2707 } 2708 } else { 2709 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); 2710 if (ret) 2711 goto cleanup_clk; 2712 } 2713 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && 2714 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { 2715 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); 2716 ret = -EINVAL; 2717 goto cleanup_clk; 2718 } 2719 2720 if (!of_property_present(pdev->dev.of_node, "dmas")) { 2721 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ 2722 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); 2723 2724 if (np) { 2725 struct resource dmares; 2726 2727 ret = of_address_to_resource(np, 0, &dmares); 2728 if (ret) { 2729 dev_err(&pdev->dev, 2730 "unable to get DMA resource\n"); 2731 of_node_put(np); 2732 goto cleanup_clk; 2733 } 2734 lp->dma_regs = devm_ioremap_resource(&pdev->dev, 2735 &dmares); 2736 lp->rx_irq = irq_of_parse_and_map(np, 1); 2737 lp->tx_irq = irq_of_parse_and_map(np, 0); 2738 of_node_put(np); 2739 lp->eth_irq = platform_get_irq_optional(pdev, 0); 2740 } else { 2741 /* Check for these resources directly on the Ethernet node. */ 2742 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); 2743 lp->rx_irq = platform_get_irq(pdev, 1); 2744 lp->tx_irq = platform_get_irq(pdev, 0); 2745 lp->eth_irq = platform_get_irq_optional(pdev, 2); 2746 } 2747 if (IS_ERR(lp->dma_regs)) { 2748 dev_err(&pdev->dev, "could not map DMA regs\n"); 2749 ret = PTR_ERR(lp->dma_regs); 2750 goto cleanup_clk; 2751 } 2752 if (lp->rx_irq <= 0 || lp->tx_irq <= 0) { 2753 dev_err(&pdev->dev, "could not determine irqs\n"); 2754 ret = -ENOMEM; 2755 goto cleanup_clk; 2756 } 2757 2758 /* Reset core now that clocks are enabled, prior to accessing MDIO */ 2759 ret = __axienet_device_reset(lp); 2760 if (ret) 2761 goto cleanup_clk; 2762 2763 /* Autodetect the need for 64-bit DMA pointers. 2764 * When the IP is configured for a bus width bigger than 32 bits, 2765 * writing the MSB registers is mandatory, even if they are all 0. 2766 * We can detect this case by writing all 1's to one such register 2767 * and see if that sticks: when the IP is configured for 32 bits 2768 * only, those registers are RES0. 2769 * Those MSB registers were introduced in IP v7.1, which we check first. 2770 */ 2771 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { 2772 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; 2773 2774 iowrite32(0x0, desc); 2775 if (ioread32(desc) == 0) { /* sanity check */ 2776 iowrite32(0xffffffff, desc); 2777 if (ioread32(desc) > 0) { 2778 lp->features |= XAE_FEATURE_DMA_64BIT; 2779 addr_width = 64; 2780 dev_info(&pdev->dev, 2781 "autodetected 64-bit DMA range\n"); 2782 } 2783 iowrite32(0x0, desc); 2784 } 2785 } 2786 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { 2787 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); 2788 ret = -EINVAL; 2789 goto cleanup_clk; 2790 } 2791 2792 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); 2793 if (ret) { 2794 dev_err(&pdev->dev, "No suitable DMA available\n"); 2795 goto cleanup_clk; 2796 } 2797 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); 2798 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); 2799 } else { 2800 struct xilinx_vdma_config cfg; 2801 struct dma_chan *tx_chan; 2802 2803 lp->eth_irq = platform_get_irq_optional(pdev, 0); 2804 if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) { 2805 ret = lp->eth_irq; 2806 goto cleanup_clk; 2807 } 2808 tx_chan = dma_request_chan(lp->dev, "tx_chan0"); 2809 if (IS_ERR(tx_chan)) { 2810 ret = PTR_ERR(tx_chan); 2811 dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n"); 2812 goto cleanup_clk; 2813 } 2814 2815 cfg.reset = 1; 2816 /* As name says VDMA but it has support for DMA channel reset */ 2817 ret = xilinx_vdma_channel_set_config(tx_chan, &cfg); 2818 if (ret < 0) { 2819 dev_err(&pdev->dev, "Reset channel failed\n"); 2820 dma_release_channel(tx_chan); 2821 goto cleanup_clk; 2822 } 2823 2824 dma_release_channel(tx_chan); 2825 lp->use_dmaengine = 1; 2826 } 2827 2828 if (lp->use_dmaengine) 2829 ndev->netdev_ops = &axienet_netdev_dmaengine_ops; 2830 else 2831 ndev->netdev_ops = &axienet_netdev_ops; 2832 /* Check for Ethernet core IRQ (optional) */ 2833 if (lp->eth_irq <= 0) 2834 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); 2835 2836 /* Retrieve the MAC address */ 2837 ret = of_get_mac_address(pdev->dev.of_node, mac_addr); 2838 if (!ret) { 2839 axienet_set_mac_address(ndev, mac_addr); 2840 } else { 2841 dev_warn(&pdev->dev, "could not find MAC address property: %d\n", 2842 ret); 2843 axienet_set_mac_address(ndev, NULL); 2844 } 2845 2846 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; 2847 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; 2848 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; 2849 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC; 2850 2851 ret = axienet_mdio_setup(lp); 2852 if (ret) 2853 dev_warn(&pdev->dev, 2854 "error registering MDIO bus: %d\n", ret); 2855 2856 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || 2857 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { 2858 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); 2859 if (!np) { 2860 /* Deprecated: Always use "pcs-handle" for pcs_phy. 2861 * Falling back to "phy-handle" here is only for 2862 * backward compatibility with old device trees. 2863 */ 2864 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 2865 } 2866 if (!np) { 2867 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); 2868 ret = -EINVAL; 2869 goto cleanup_mdio; 2870 } 2871 lp->pcs_phy = of_mdio_find_device(np); 2872 if (!lp->pcs_phy) { 2873 ret = -EPROBE_DEFER; 2874 of_node_put(np); 2875 goto cleanup_mdio; 2876 } 2877 of_node_put(np); 2878 lp->pcs.ops = &axienet_pcs_ops; 2879 lp->pcs.neg_mode = true; 2880 lp->pcs.poll = true; 2881 } 2882 2883 lp->phylink_config.dev = &ndev->dev; 2884 lp->phylink_config.type = PHYLINK_NETDEV; 2885 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | 2886 MAC_10FD | MAC_100FD | MAC_1000FD; 2887 2888 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); 2889 if (lp->switch_x_sgmii) { 2890 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 2891 lp->phylink_config.supported_interfaces); 2892 __set_bit(PHY_INTERFACE_MODE_SGMII, 2893 lp->phylink_config.supported_interfaces); 2894 } 2895 2896 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, 2897 lp->phy_mode, 2898 &axienet_phylink_ops); 2899 if (IS_ERR(lp->phylink)) { 2900 ret = PTR_ERR(lp->phylink); 2901 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); 2902 goto cleanup_mdio; 2903 } 2904 2905 ret = register_netdev(lp->ndev); 2906 if (ret) { 2907 dev_err(lp->dev, "register_netdev() error (%i)\n", ret); 2908 goto cleanup_phylink; 2909 } 2910 2911 return 0; 2912 2913 cleanup_phylink: 2914 phylink_destroy(lp->phylink); 2915 2916 cleanup_mdio: 2917 if (lp->pcs_phy) 2918 put_device(&lp->pcs_phy->dev); 2919 if (lp->mii_bus) 2920 axienet_mdio_teardown(lp); 2921 cleanup_clk: 2922 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2923 clk_disable_unprepare(lp->axi_clk); 2924 2925 free_netdev: 2926 free_netdev(ndev); 2927 2928 return ret; 2929 } 2930 2931 static void axienet_remove(struct platform_device *pdev) 2932 { 2933 struct net_device *ndev = platform_get_drvdata(pdev); 2934 struct axienet_local *lp = netdev_priv(ndev); 2935 2936 unregister_netdev(ndev); 2937 2938 if (lp->phylink) 2939 phylink_destroy(lp->phylink); 2940 2941 if (lp->pcs_phy) 2942 put_device(&lp->pcs_phy->dev); 2943 2944 axienet_mdio_teardown(lp); 2945 2946 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2947 clk_disable_unprepare(lp->axi_clk); 2948 2949 free_netdev(ndev); 2950 } 2951 2952 static void axienet_shutdown(struct platform_device *pdev) 2953 { 2954 struct net_device *ndev = platform_get_drvdata(pdev); 2955 2956 rtnl_lock(); 2957 netif_device_detach(ndev); 2958 2959 if (netif_running(ndev)) 2960 dev_close(ndev); 2961 2962 rtnl_unlock(); 2963 } 2964 2965 static int axienet_suspend(struct device *dev) 2966 { 2967 struct net_device *ndev = dev_get_drvdata(dev); 2968 2969 if (!netif_running(ndev)) 2970 return 0; 2971 2972 netif_device_detach(ndev); 2973 2974 rtnl_lock(); 2975 axienet_stop(ndev); 2976 rtnl_unlock(); 2977 2978 return 0; 2979 } 2980 2981 static int axienet_resume(struct device *dev) 2982 { 2983 struct net_device *ndev = dev_get_drvdata(dev); 2984 2985 if (!netif_running(ndev)) 2986 return 0; 2987 2988 rtnl_lock(); 2989 axienet_open(ndev); 2990 rtnl_unlock(); 2991 2992 netif_device_attach(ndev); 2993 2994 return 0; 2995 } 2996 2997 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, 2998 axienet_suspend, axienet_resume); 2999 3000 static struct platform_driver axienet_driver = { 3001 .probe = axienet_probe, 3002 .remove_new = axienet_remove, 3003 .shutdown = axienet_shutdown, 3004 .driver = { 3005 .name = "xilinx_axienet", 3006 .pm = &axienet_pm_ops, 3007 .of_match_table = axienet_of_match, 3008 }, 3009 }; 3010 3011 module_platform_driver(axienet_driver); 3012 3013 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); 3014 MODULE_AUTHOR("Xilinx"); 3015 MODULE_LICENSE("GPL"); 3016