1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xilinx Axi Ethernet device driver 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> 9 * Copyright (c) 2010 - 2011 PetaLogix 10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies 11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. 12 * 13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 14 * and Spartan6. 15 * 16 * TODO: 17 * - Add Axi Fifo support. 18 * - Factor out Axi DMA code into separate driver. 19 * - Test and fix basic multicast filtering. 20 * - Add support for extended multicast filtering. 21 * - Test basic VLAN support. 22 * - Add support for extended VLAN support. 23 */ 24 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/module.h> 29 #include <linux/netdevice.h> 30 #include <linux/of.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_address.h> 35 #include <linux/platform_device.h> 36 #include <linux/skbuff.h> 37 #include <linux/math64.h> 38 #include <linux/phy.h> 39 #include <linux/mii.h> 40 #include <linux/ethtool.h> 41 #include <linux/dmaengine.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/dma/xilinx_dma.h> 44 #include <linux/circ_buf.h> 45 #include <net/netdev_queues.h> 46 47 #include "xilinx_axienet.h" 48 49 /* Descriptors defines for Tx and Rx DMA */ 50 #define TX_BD_NUM_DEFAULT 128 51 #define RX_BD_NUM_DEFAULT 1024 52 #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) 53 #define TX_BD_NUM_MAX 4096 54 #define RX_BD_NUM_MAX 4096 55 #define DMA_NUM_APP_WORDS 5 56 #define LEN_APP 4 57 #define RX_BUF_NUM_DEFAULT 128 58 59 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ 60 #define DRIVER_NAME "xaxienet" 61 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" 62 #define DRIVER_VERSION "1.00a" 63 64 #define AXIENET_REGS_N 40 65 66 static void axienet_rx_submit_desc(struct net_device *ndev); 67 68 /* Match table for of_platform binding */ 69 static const struct of_device_id axienet_of_match[] = { 70 { .compatible = "xlnx,axi-ethernet-1.00.a", }, 71 { .compatible = "xlnx,axi-ethernet-1.01.a", }, 72 { .compatible = "xlnx,axi-ethernet-2.01.a", }, 73 {}, 74 }; 75 76 MODULE_DEVICE_TABLE(of, axienet_of_match); 77 78 /* Option table for setting up Axi Ethernet hardware options */ 79 static struct axienet_option axienet_options[] = { 80 /* Turn on jumbo packet support for both Rx and Tx */ 81 { 82 .opt = XAE_OPTION_JUMBO, 83 .reg = XAE_TC_OFFSET, 84 .m_or = XAE_TC_JUM_MASK, 85 }, { 86 .opt = XAE_OPTION_JUMBO, 87 .reg = XAE_RCW1_OFFSET, 88 .m_or = XAE_RCW1_JUM_MASK, 89 }, { /* Turn on VLAN packet support for both Rx and Tx */ 90 .opt = XAE_OPTION_VLAN, 91 .reg = XAE_TC_OFFSET, 92 .m_or = XAE_TC_VLAN_MASK, 93 }, { 94 .opt = XAE_OPTION_VLAN, 95 .reg = XAE_RCW1_OFFSET, 96 .m_or = XAE_RCW1_VLAN_MASK, 97 }, { /* Turn on FCS stripping on receive packets */ 98 .opt = XAE_OPTION_FCS_STRIP, 99 .reg = XAE_RCW1_OFFSET, 100 .m_or = XAE_RCW1_FCS_MASK, 101 }, { /* Turn on FCS insertion on transmit packets */ 102 .opt = XAE_OPTION_FCS_INSERT, 103 .reg = XAE_TC_OFFSET, 104 .m_or = XAE_TC_FCS_MASK, 105 }, { /* Turn off length/type field checking on receive packets */ 106 .opt = XAE_OPTION_LENTYPE_ERR, 107 .reg = XAE_RCW1_OFFSET, 108 .m_or = XAE_RCW1_LT_DIS_MASK, 109 }, { /* Turn on Rx flow control */ 110 .opt = XAE_OPTION_FLOW_CONTROL, 111 .reg = XAE_FCC_OFFSET, 112 .m_or = XAE_FCC_FCRX_MASK, 113 }, { /* Turn on Tx flow control */ 114 .opt = XAE_OPTION_FLOW_CONTROL, 115 .reg = XAE_FCC_OFFSET, 116 .m_or = XAE_FCC_FCTX_MASK, 117 }, { /* Turn on promiscuous frame filtering */ 118 .opt = XAE_OPTION_PROMISC, 119 .reg = XAE_FMI_OFFSET, 120 .m_or = XAE_FMI_PM_MASK, 121 }, { /* Enable transmitter */ 122 .opt = XAE_OPTION_TXEN, 123 .reg = XAE_TC_OFFSET, 124 .m_or = XAE_TC_TX_MASK, 125 }, { /* Enable receiver */ 126 .opt = XAE_OPTION_RXEN, 127 .reg = XAE_RCW1_OFFSET, 128 .m_or = XAE_RCW1_RX_MASK, 129 }, 130 {} 131 }; 132 133 static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i) 134 { 135 return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)]; 136 } 137 138 static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i) 139 { 140 return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)]; 141 } 142 143 /** 144 * axienet_dma_in32 - Memory mapped Axi DMA register read 145 * @lp: Pointer to axienet local structure 146 * @reg: Address offset from the base address of the Axi DMA core 147 * 148 * Return: The contents of the Axi DMA register 149 * 150 * This function returns the contents of the corresponding Axi DMA register. 151 */ 152 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) 153 { 154 return ioread32(lp->dma_regs + reg); 155 } 156 157 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, 158 struct axidma_bd *desc) 159 { 160 desc->phys = lower_32_bits(addr); 161 if (lp->features & XAE_FEATURE_DMA_64BIT) 162 desc->phys_msb = upper_32_bits(addr); 163 } 164 165 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, 166 struct axidma_bd *desc) 167 { 168 dma_addr_t ret = desc->phys; 169 170 if (lp->features & XAE_FEATURE_DMA_64BIT) 171 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; 172 173 return ret; 174 } 175 176 /** 177 * axienet_dma_bd_release - Release buffer descriptor rings 178 * @ndev: Pointer to the net_device structure 179 * 180 * This function is used to release the descriptors allocated in 181 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet 182 * driver stop api is called. 183 */ 184 static void axienet_dma_bd_release(struct net_device *ndev) 185 { 186 int i; 187 struct axienet_local *lp = netdev_priv(ndev); 188 189 /* If we end up here, tx_bd_v must have been DMA allocated. */ 190 dma_free_coherent(lp->dev, 191 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 192 lp->tx_bd_v, 193 lp->tx_bd_p); 194 195 if (!lp->rx_bd_v) 196 return; 197 198 for (i = 0; i < lp->rx_bd_num; i++) { 199 dma_addr_t phys; 200 201 /* A NULL skb means this descriptor has not been initialised 202 * at all. 203 */ 204 if (!lp->rx_bd_v[i].skb) 205 break; 206 207 dev_kfree_skb(lp->rx_bd_v[i].skb); 208 209 /* For each descriptor, we programmed cntrl with the (non-zero) 210 * descriptor size, after it had been successfully allocated. 211 * So a non-zero value in there means we need to unmap it. 212 */ 213 if (lp->rx_bd_v[i].cntrl) { 214 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); 215 dma_unmap_single(lp->dev, phys, 216 lp->max_frm_size, DMA_FROM_DEVICE); 217 } 218 } 219 220 dma_free_coherent(lp->dev, 221 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 222 lp->rx_bd_v, 223 lp->rx_bd_p); 224 } 225 226 /** 227 * axienet_usec_to_timer - Calculate IRQ delay timer value 228 * @lp: Pointer to the axienet_local structure 229 * @coalesce_usec: Microseconds to convert into timer value 230 */ 231 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec) 232 { 233 u32 result; 234 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */ 235 236 if (lp->axi_clk) 237 clk_rate = clk_get_rate(lp->axi_clk); 238 239 /* 1 Timeout Interval = 125 * (clock period of SG clock) */ 240 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate, 241 (u64)125000000); 242 if (result > 255) 243 result = 255; 244 245 return result; 246 } 247 248 /** 249 * axienet_dma_start - Set up DMA registers and start DMA operation 250 * @lp: Pointer to the axienet_local structure 251 */ 252 static void axienet_dma_start(struct axienet_local *lp) 253 { 254 /* Start updating the Rx channel control register */ 255 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) | 256 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 257 /* Only set interrupt delay timer if not generating an interrupt on 258 * the first RX packet. Otherwise leave at 0 to disable delay interrupt. 259 */ 260 if (lp->coalesce_count_rx > 1) 261 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx) 262 << XAXIDMA_DELAY_SHIFT) | 263 XAXIDMA_IRQ_DELAY_MASK; 264 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 265 266 /* Start updating the Tx channel control register */ 267 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) | 268 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 269 /* Only set interrupt delay timer if not generating an interrupt on 270 * the first TX packet. Otherwise leave at 0 to disable delay interrupt. 271 */ 272 if (lp->coalesce_count_tx > 1) 273 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx) 274 << XAXIDMA_DELAY_SHIFT) | 275 XAXIDMA_IRQ_DELAY_MASK; 276 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 277 278 /* Populate the tail pointer and bring the Rx Axi DMA engine out of 279 * halted state. This will make the Rx side ready for reception. 280 */ 281 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); 282 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 283 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 284 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + 285 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); 286 287 /* Write to the RS (Run-stop) bit in the Tx channel control register. 288 * Tx channel is now ready to run. But only after we write to the 289 * tail pointer register that the Tx channel will start transmitting. 290 */ 291 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); 292 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 293 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 294 } 295 296 /** 297 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA 298 * @ndev: Pointer to the net_device structure 299 * 300 * Return: 0, on success -ENOMEM, on failure 301 * 302 * This function is called to initialize the Rx and Tx DMA descriptor 303 * rings. This initializes the descriptors with required default values 304 * and is called when Axi Ethernet driver reset is called. 305 */ 306 static int axienet_dma_bd_init(struct net_device *ndev) 307 { 308 int i; 309 struct sk_buff *skb; 310 struct axienet_local *lp = netdev_priv(ndev); 311 312 /* Reset the indexes which are used for accessing the BDs */ 313 lp->tx_bd_ci = 0; 314 lp->tx_bd_tail = 0; 315 lp->rx_bd_ci = 0; 316 317 /* Allocate the Tx and Rx buffer descriptors. */ 318 lp->tx_bd_v = dma_alloc_coherent(lp->dev, 319 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 320 &lp->tx_bd_p, GFP_KERNEL); 321 if (!lp->tx_bd_v) 322 return -ENOMEM; 323 324 lp->rx_bd_v = dma_alloc_coherent(lp->dev, 325 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 326 &lp->rx_bd_p, GFP_KERNEL); 327 if (!lp->rx_bd_v) 328 goto out; 329 330 for (i = 0; i < lp->tx_bd_num; i++) { 331 dma_addr_t addr = lp->tx_bd_p + 332 sizeof(*lp->tx_bd_v) * 333 ((i + 1) % lp->tx_bd_num); 334 335 lp->tx_bd_v[i].next = lower_32_bits(addr); 336 if (lp->features & XAE_FEATURE_DMA_64BIT) 337 lp->tx_bd_v[i].next_msb = upper_32_bits(addr); 338 } 339 340 for (i = 0; i < lp->rx_bd_num; i++) { 341 dma_addr_t addr; 342 343 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * 344 ((i + 1) % lp->rx_bd_num); 345 lp->rx_bd_v[i].next = lower_32_bits(addr); 346 if (lp->features & XAE_FEATURE_DMA_64BIT) 347 lp->rx_bd_v[i].next_msb = upper_32_bits(addr); 348 349 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); 350 if (!skb) 351 goto out; 352 353 lp->rx_bd_v[i].skb = skb; 354 addr = dma_map_single(lp->dev, skb->data, 355 lp->max_frm_size, DMA_FROM_DEVICE); 356 if (dma_mapping_error(lp->dev, addr)) { 357 netdev_err(ndev, "DMA mapping error\n"); 358 goto out; 359 } 360 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); 361 362 lp->rx_bd_v[i].cntrl = lp->max_frm_size; 363 } 364 365 axienet_dma_start(lp); 366 367 return 0; 368 out: 369 axienet_dma_bd_release(ndev); 370 return -ENOMEM; 371 } 372 373 /** 374 * axienet_set_mac_address - Write the MAC address 375 * @ndev: Pointer to the net_device structure 376 * @address: 6 byte Address to be written as MAC address 377 * 378 * This function is called to initialize the MAC address of the Axi Ethernet 379 * core. It writes to the UAW0 and UAW1 registers of the core. 380 */ 381 static void axienet_set_mac_address(struct net_device *ndev, 382 const void *address) 383 { 384 struct axienet_local *lp = netdev_priv(ndev); 385 386 if (address) 387 eth_hw_addr_set(ndev, address); 388 if (!is_valid_ether_addr(ndev->dev_addr)) 389 eth_hw_addr_random(ndev); 390 391 /* Set up unicast MAC address filter set its mac address */ 392 axienet_iow(lp, XAE_UAW0_OFFSET, 393 (ndev->dev_addr[0]) | 394 (ndev->dev_addr[1] << 8) | 395 (ndev->dev_addr[2] << 16) | 396 (ndev->dev_addr[3] << 24)); 397 axienet_iow(lp, XAE_UAW1_OFFSET, 398 (((axienet_ior(lp, XAE_UAW1_OFFSET)) & 399 ~XAE_UAW1_UNICASTADDR_MASK) | 400 (ndev->dev_addr[4] | 401 (ndev->dev_addr[5] << 8)))); 402 } 403 404 /** 405 * netdev_set_mac_address - Write the MAC address (from outside the driver) 406 * @ndev: Pointer to the net_device structure 407 * @p: 6 byte Address to be written as MAC address 408 * 409 * Return: 0 for all conditions. Presently, there is no failure case. 410 * 411 * This function is called to initialize the MAC address of the Axi Ethernet 412 * core. It calls the core specific axienet_set_mac_address. This is the 413 * function that goes into net_device_ops structure entry ndo_set_mac_address. 414 */ 415 static int netdev_set_mac_address(struct net_device *ndev, void *p) 416 { 417 struct sockaddr *addr = p; 418 419 axienet_set_mac_address(ndev, addr->sa_data); 420 return 0; 421 } 422 423 /** 424 * axienet_set_multicast_list - Prepare the multicast table 425 * @ndev: Pointer to the net_device structure 426 * 427 * This function is called to initialize the multicast table during 428 * initialization. The Axi Ethernet basic multicast support has a four-entry 429 * multicast table which is initialized here. Additionally this function 430 * goes into the net_device_ops structure entry ndo_set_multicast_list. This 431 * means whenever the multicast table entries need to be updated this 432 * function gets called. 433 */ 434 static void axienet_set_multicast_list(struct net_device *ndev) 435 { 436 int i = 0; 437 u32 reg, af0reg, af1reg; 438 struct axienet_local *lp = netdev_priv(ndev); 439 440 reg = axienet_ior(lp, XAE_FMI_OFFSET); 441 reg &= ~XAE_FMI_PM_MASK; 442 if (ndev->flags & IFF_PROMISC) 443 reg |= XAE_FMI_PM_MASK; 444 else 445 reg &= ~XAE_FMI_PM_MASK; 446 axienet_iow(lp, XAE_FMI_OFFSET, reg); 447 448 if (ndev->flags & IFF_ALLMULTI || 449 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { 450 reg &= 0xFFFFFF00; 451 axienet_iow(lp, XAE_FMI_OFFSET, reg); 452 axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */ 453 axienet_iow(lp, XAE_AF1_OFFSET, 0); 454 axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */ 455 axienet_iow(lp, XAE_AM1_OFFSET, 0); 456 axienet_iow(lp, XAE_FFE_OFFSET, 1); 457 i = 1; 458 } else if (!netdev_mc_empty(ndev)) { 459 struct netdev_hw_addr *ha; 460 461 netdev_for_each_mc_addr(ha, ndev) { 462 if (i >= XAE_MULTICAST_CAM_TABLE_NUM) 463 break; 464 465 af0reg = (ha->addr[0]); 466 af0reg |= (ha->addr[1] << 8); 467 af0reg |= (ha->addr[2] << 16); 468 af0reg |= (ha->addr[3] << 24); 469 470 af1reg = (ha->addr[4]); 471 af1reg |= (ha->addr[5] << 8); 472 473 reg &= 0xFFFFFF00; 474 reg |= i; 475 476 axienet_iow(lp, XAE_FMI_OFFSET, reg); 477 axienet_iow(lp, XAE_AF0_OFFSET, af0reg); 478 axienet_iow(lp, XAE_AF1_OFFSET, af1reg); 479 axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff); 480 axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff); 481 axienet_iow(lp, XAE_FFE_OFFSET, 1); 482 i++; 483 } 484 } 485 486 for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { 487 reg &= 0xFFFFFF00; 488 reg |= i; 489 axienet_iow(lp, XAE_FMI_OFFSET, reg); 490 axienet_iow(lp, XAE_FFE_OFFSET, 0); 491 } 492 } 493 494 /** 495 * axienet_setoptions - Set an Axi Ethernet option 496 * @ndev: Pointer to the net_device structure 497 * @options: Option to be enabled/disabled 498 * 499 * The Axi Ethernet core has multiple features which can be selectively turned 500 * on or off. The typical options could be jumbo frame option, basic VLAN 501 * option, promiscuous mode option etc. This function is used to set or clear 502 * these options in the Axi Ethernet hardware. This is done through 503 * axienet_option structure . 504 */ 505 static void axienet_setoptions(struct net_device *ndev, u32 options) 506 { 507 int reg; 508 struct axienet_local *lp = netdev_priv(ndev); 509 struct axienet_option *tp = &axienet_options[0]; 510 511 while (tp->opt) { 512 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); 513 if (options & tp->opt) 514 reg |= tp->m_or; 515 axienet_iow(lp, tp->reg, reg); 516 tp++; 517 } 518 519 lp->options |= options; 520 } 521 522 static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat) 523 { 524 u32 counter; 525 526 if (lp->reset_in_progress) 527 return lp->hw_stat_base[stat]; 528 529 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 530 return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]); 531 } 532 533 static void axienet_stats_update(struct axienet_local *lp, bool reset) 534 { 535 enum temac_stat stat; 536 537 write_seqcount_begin(&lp->hw_stats_seqcount); 538 lp->reset_in_progress = reset; 539 for (stat = 0; stat < STAT_COUNT; stat++) { 540 u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 541 542 lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat]; 543 lp->hw_last_counter[stat] = counter; 544 } 545 write_seqcount_end(&lp->hw_stats_seqcount); 546 } 547 548 static void axienet_refresh_stats(struct work_struct *work) 549 { 550 struct axienet_local *lp = container_of(work, struct axienet_local, 551 stats_work.work); 552 553 mutex_lock(&lp->stats_lock); 554 axienet_stats_update(lp, false); 555 mutex_unlock(&lp->stats_lock); 556 557 /* Just less than 2^32 bytes at 2.5 GBit/s */ 558 schedule_delayed_work(&lp->stats_work, 13 * HZ); 559 } 560 561 static int __axienet_device_reset(struct axienet_local *lp) 562 { 563 u32 value; 564 int ret; 565 566 /* Save statistics counters in case they will be reset */ 567 mutex_lock(&lp->stats_lock); 568 if (lp->features & XAE_FEATURE_STATS) 569 axienet_stats_update(lp, true); 570 571 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset 572 * process of Axi DMA takes a while to complete as all pending 573 * commands/transfers will be flushed or completed during this 574 * reset process. 575 * Note that even though both TX and RX have their own reset register, 576 * they both reset the entire DMA core, so only one needs to be used. 577 */ 578 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); 579 ret = read_poll_timeout(axienet_dma_in32, value, 580 !(value & XAXIDMA_CR_RESET_MASK), 581 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 582 XAXIDMA_TX_CR_OFFSET); 583 if (ret) { 584 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); 585 goto out; 586 } 587 588 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ 589 ret = read_poll_timeout(axienet_ior, value, 590 value & XAE_INT_PHYRSTCMPLT_MASK, 591 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 592 XAE_IS_OFFSET); 593 if (ret) { 594 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); 595 goto out; 596 } 597 598 /* Update statistics counters with new values */ 599 if (lp->features & XAE_FEATURE_STATS) { 600 enum temac_stat stat; 601 602 write_seqcount_begin(&lp->hw_stats_seqcount); 603 lp->reset_in_progress = false; 604 for (stat = 0; stat < STAT_COUNT; stat++) { 605 u32 counter = 606 axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 607 608 lp->hw_stat_base[stat] += 609 lp->hw_last_counter[stat] - counter; 610 lp->hw_last_counter[stat] = counter; 611 } 612 write_seqcount_end(&lp->hw_stats_seqcount); 613 } 614 615 out: 616 mutex_unlock(&lp->stats_lock); 617 return ret; 618 } 619 620 /** 621 * axienet_dma_stop - Stop DMA operation 622 * @lp: Pointer to the axienet_local structure 623 */ 624 static void axienet_dma_stop(struct axienet_local *lp) 625 { 626 int count; 627 u32 cr, sr; 628 629 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 630 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 631 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 632 synchronize_irq(lp->rx_irq); 633 634 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 635 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 636 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 637 synchronize_irq(lp->tx_irq); 638 639 /* Give DMAs a chance to halt gracefully */ 640 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 641 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 642 msleep(20); 643 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 644 } 645 646 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 647 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 648 msleep(20); 649 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 650 } 651 652 /* Do a reset to ensure DMA is really stopped */ 653 axienet_lock_mii(lp); 654 __axienet_device_reset(lp); 655 axienet_unlock_mii(lp); 656 } 657 658 /** 659 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. 660 * @ndev: Pointer to the net_device structure 661 * 662 * This function is called to reset and initialize the Axi Ethernet core. This 663 * is typically called during initialization. It does a reset of the Axi DMA 664 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines 665 * are connected to Axi Ethernet reset lines, this in turn resets the Axi 666 * Ethernet core. No separate hardware reset is done for the Axi Ethernet 667 * core. 668 * Returns 0 on success or a negative error number otherwise. 669 */ 670 static int axienet_device_reset(struct net_device *ndev) 671 { 672 u32 axienet_status; 673 struct axienet_local *lp = netdev_priv(ndev); 674 int ret; 675 676 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; 677 lp->options |= XAE_OPTION_VLAN; 678 lp->options &= (~XAE_OPTION_JUMBO); 679 680 if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) { 681 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + 682 XAE_TRL_SIZE; 683 684 if (lp->max_frm_size <= lp->rxmem) 685 lp->options |= XAE_OPTION_JUMBO; 686 } 687 688 if (!lp->use_dmaengine) { 689 ret = __axienet_device_reset(lp); 690 if (ret) 691 return ret; 692 693 ret = axienet_dma_bd_init(ndev); 694 if (ret) { 695 netdev_err(ndev, "%s: descriptor allocation failed\n", 696 __func__); 697 return ret; 698 } 699 } 700 701 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 702 axienet_status &= ~XAE_RCW1_RX_MASK; 703 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 704 705 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 706 if (axienet_status & XAE_INT_RXRJECT_MASK) 707 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 708 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 709 XAE_INT_RECV_ERROR_MASK : 0); 710 711 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 712 713 /* Sync default options with HW but leave receiver and 714 * transmitter disabled. 715 */ 716 axienet_setoptions(ndev, lp->options & 717 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 718 axienet_set_mac_address(ndev, NULL); 719 axienet_set_multicast_list(ndev); 720 axienet_setoptions(ndev, lp->options); 721 722 netif_trans_update(ndev); 723 724 return 0; 725 } 726 727 /** 728 * axienet_free_tx_chain - Clean up a series of linked TX descriptors. 729 * @lp: Pointer to the axienet_local structure 730 * @first_bd: Index of first descriptor to clean up 731 * @nr_bds: Max number of descriptors to clean up 732 * @force: Whether to clean descriptors even if not complete 733 * @sizep: Pointer to a u32 filled with the total sum of all bytes 734 * in all cleaned-up descriptors. Ignored if NULL. 735 * @budget: NAPI budget (use 0 when not called from NAPI poll) 736 * 737 * Would either be called after a successful transmit operation, or after 738 * there was an error when setting up the chain. 739 * Returns the number of descriptors handled. 740 */ 741 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, 742 int nr_bds, bool force, u32 *sizep, int budget) 743 { 744 struct axidma_bd *cur_p; 745 unsigned int status; 746 dma_addr_t phys; 747 int i; 748 749 for (i = 0; i < nr_bds; i++) { 750 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; 751 status = cur_p->status; 752 753 /* If force is not specified, clean up only descriptors 754 * that have been completed by the MAC. 755 */ 756 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) 757 break; 758 759 /* Ensure we see complete descriptor update */ 760 dma_rmb(); 761 phys = desc_get_phys_addr(lp, cur_p); 762 dma_unmap_single(lp->dev, phys, 763 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), 764 DMA_TO_DEVICE); 765 766 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) 767 napi_consume_skb(cur_p->skb, budget); 768 769 cur_p->app0 = 0; 770 cur_p->app1 = 0; 771 cur_p->app2 = 0; 772 cur_p->app4 = 0; 773 cur_p->skb = NULL; 774 /* ensure our transmit path and device don't prematurely see status cleared */ 775 wmb(); 776 cur_p->cntrl = 0; 777 cur_p->status = 0; 778 779 if (sizep) 780 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; 781 } 782 783 return i; 784 } 785 786 /** 787 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy 788 * @lp: Pointer to the axienet_local structure 789 * @num_frag: The number of BDs to check for 790 * 791 * Return: 0, on success 792 * NETDEV_TX_BUSY, if any of the descriptors are not free 793 * 794 * This function is invoked before BDs are allocated and transmission starts. 795 * This function returns 0 if a BD or group of BDs can be allocated for 796 * transmission. If the BD or any of the BDs are not free the function 797 * returns a busy status. 798 */ 799 static inline int axienet_check_tx_bd_space(struct axienet_local *lp, 800 int num_frag) 801 { 802 struct axidma_bd *cur_p; 803 804 /* Ensure we see all descriptor updates from device or TX polling */ 805 rmb(); 806 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % 807 lp->tx_bd_num]; 808 if (cur_p->cntrl) 809 return NETDEV_TX_BUSY; 810 return 0; 811 } 812 813 /** 814 * axienet_dma_tx_cb - DMA engine callback for TX channel. 815 * @data: Pointer to the axienet_local structure. 816 * @result: error reporting through dmaengine_result. 817 * This function is called by dmaengine driver for TX channel to notify 818 * that the transmit is done. 819 */ 820 static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result) 821 { 822 struct skbuf_dma_descriptor *skbuf_dma; 823 struct axienet_local *lp = data; 824 struct netdev_queue *txq; 825 int len; 826 827 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++); 828 len = skbuf_dma->skb->len; 829 txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb); 830 u64_stats_update_begin(&lp->tx_stat_sync); 831 u64_stats_add(&lp->tx_bytes, len); 832 u64_stats_add(&lp->tx_packets, 1); 833 u64_stats_update_end(&lp->tx_stat_sync); 834 dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE); 835 dev_consume_skb_any(skbuf_dma->skb); 836 netif_txq_completed_wake(txq, 1, len, 837 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), 838 2 * MAX_SKB_FRAGS); 839 } 840 841 /** 842 * axienet_start_xmit_dmaengine - Starts the transmission. 843 * @skb: sk_buff pointer that contains data to be Txed. 844 * @ndev: Pointer to net_device structure. 845 * 846 * Return: NETDEV_TX_OK on success or any non space errors. 847 * NETDEV_TX_BUSY when free element in TX skb ring buffer 848 * is not available. 849 * 850 * This function is invoked to initiate transmission. The 851 * function sets the skbs, register dma callback API and submit 852 * the dma transaction. 853 * Additionally if checksum offloading is supported, 854 * it populates AXI Stream Control fields with appropriate values. 855 */ 856 static netdev_tx_t 857 axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev) 858 { 859 struct dma_async_tx_descriptor *dma_tx_desc = NULL; 860 struct axienet_local *lp = netdev_priv(ndev); 861 u32 app_metadata[DMA_NUM_APP_WORDS] = {0}; 862 struct skbuf_dma_descriptor *skbuf_dma; 863 struct dma_device *dma_dev; 864 struct netdev_queue *txq; 865 u32 csum_start_off; 866 u32 csum_index_off; 867 int sg_len; 868 int ret; 869 870 dma_dev = lp->tx_chan->device; 871 sg_len = skb_shinfo(skb)->nr_frags + 1; 872 if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) { 873 netif_stop_queue(ndev); 874 if (net_ratelimit()) 875 netdev_warn(ndev, "TX ring unexpectedly full\n"); 876 return NETDEV_TX_BUSY; 877 } 878 879 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head); 880 if (!skbuf_dma) 881 goto xmit_error_drop_skb; 882 883 lp->tx_ring_head++; 884 sg_init_table(skbuf_dma->sgl, sg_len); 885 ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len); 886 if (ret < 0) 887 goto xmit_error_drop_skb; 888 889 ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); 890 if (!ret) 891 goto xmit_error_drop_skb; 892 893 /* Fill up app fields for checksum */ 894 if (skb->ip_summed == CHECKSUM_PARTIAL) { 895 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 896 /* Tx Full Checksum Offload Enabled */ 897 app_metadata[0] |= 2; 898 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 899 csum_start_off = skb_transport_offset(skb); 900 csum_index_off = csum_start_off + skb->csum_offset; 901 /* Tx Partial Checksum Offload Enabled */ 902 app_metadata[0] |= 1; 903 app_metadata[1] = (csum_start_off << 16) | csum_index_off; 904 } 905 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 906 app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */ 907 } 908 909 dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl, 910 sg_len, DMA_MEM_TO_DEV, 911 DMA_PREP_INTERRUPT, (void *)app_metadata); 912 if (!dma_tx_desc) 913 goto xmit_error_unmap_sg; 914 915 skbuf_dma->skb = skb; 916 skbuf_dma->sg_len = sg_len; 917 dma_tx_desc->callback_param = lp; 918 dma_tx_desc->callback_result = axienet_dma_tx_cb; 919 dmaengine_submit(dma_tx_desc); 920 dma_async_issue_pending(lp->tx_chan); 921 txq = skb_get_tx_queue(lp->ndev, skb); 922 netdev_tx_sent_queue(txq, skb->len); 923 netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), 924 MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS); 925 926 return NETDEV_TX_OK; 927 928 xmit_error_unmap_sg: 929 dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); 930 xmit_error_drop_skb: 931 dev_kfree_skb_any(skb); 932 return NETDEV_TX_OK; 933 } 934 935 /** 936 * axienet_tx_poll - Invoked once a transmit is completed by the 937 * Axi DMA Tx channel. 938 * @napi: Pointer to NAPI structure. 939 * @budget: Max number of TX packets to process. 940 * 941 * Return: Number of TX packets processed. 942 * 943 * This function is invoked from the NAPI processing to notify the completion 944 * of transmit operation. It clears fields in the corresponding Tx BDs and 945 * unmaps the corresponding buffer so that CPU can regain ownership of the 946 * buffer. It finally invokes "netif_wake_queue" to restart transmission if 947 * required. 948 */ 949 static int axienet_tx_poll(struct napi_struct *napi, int budget) 950 { 951 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); 952 struct net_device *ndev = lp->ndev; 953 u32 size = 0; 954 int packets; 955 956 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget); 957 958 if (packets) { 959 lp->tx_bd_ci += packets; 960 if (lp->tx_bd_ci >= lp->tx_bd_num) 961 lp->tx_bd_ci %= lp->tx_bd_num; 962 963 u64_stats_update_begin(&lp->tx_stat_sync); 964 u64_stats_add(&lp->tx_packets, packets); 965 u64_stats_add(&lp->tx_bytes, size); 966 u64_stats_update_end(&lp->tx_stat_sync); 967 968 /* Matches barrier in axienet_start_xmit */ 969 smp_mb(); 970 971 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 972 netif_wake_queue(ndev); 973 } 974 975 if (packets < budget && napi_complete_done(napi, packets)) { 976 /* Re-enable TX completion interrupts. This should 977 * cause an immediate interrupt if any TX packets are 978 * already pending. 979 */ 980 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 981 } 982 return packets; 983 } 984 985 /** 986 * axienet_start_xmit - Starts the transmission. 987 * @skb: sk_buff pointer that contains data to be Txed. 988 * @ndev: Pointer to net_device structure. 989 * 990 * Return: NETDEV_TX_OK, on success 991 * NETDEV_TX_BUSY, if any of the descriptors are not free 992 * 993 * This function is invoked from upper layers to initiate transmission. The 994 * function uses the next available free BDs and populates their fields to 995 * start the transmission. Additionally if checksum offloading is supported, 996 * it populates AXI Stream Control fields with appropriate values. 997 */ 998 static netdev_tx_t 999 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1000 { 1001 u32 ii; 1002 u32 num_frag; 1003 u32 csum_start_off; 1004 u32 csum_index_off; 1005 skb_frag_t *frag; 1006 dma_addr_t tail_p, phys; 1007 u32 orig_tail_ptr, new_tail_ptr; 1008 struct axienet_local *lp = netdev_priv(ndev); 1009 struct axidma_bd *cur_p; 1010 1011 orig_tail_ptr = lp->tx_bd_tail; 1012 new_tail_ptr = orig_tail_ptr; 1013 1014 num_frag = skb_shinfo(skb)->nr_frags; 1015 cur_p = &lp->tx_bd_v[orig_tail_ptr]; 1016 1017 if (axienet_check_tx_bd_space(lp, num_frag + 1)) { 1018 /* Should not happen as last start_xmit call should have 1019 * checked for sufficient space and queue should only be 1020 * woken when sufficient space is available. 1021 */ 1022 netif_stop_queue(ndev); 1023 if (net_ratelimit()) 1024 netdev_warn(ndev, "TX ring unexpectedly full\n"); 1025 return NETDEV_TX_BUSY; 1026 } 1027 1028 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1029 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 1030 /* Tx Full Checksum Offload Enabled */ 1031 cur_p->app0 |= 2; 1032 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 1033 csum_start_off = skb_transport_offset(skb); 1034 csum_index_off = csum_start_off + skb->csum_offset; 1035 /* Tx Partial Checksum Offload Enabled */ 1036 cur_p->app0 |= 1; 1037 cur_p->app1 = (csum_start_off << 16) | csum_index_off; 1038 } 1039 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 1040 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ 1041 } 1042 1043 phys = dma_map_single(lp->dev, skb->data, 1044 skb_headlen(skb), DMA_TO_DEVICE); 1045 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1046 if (net_ratelimit()) 1047 netdev_err(ndev, "TX DMA mapping error\n"); 1048 ndev->stats.tx_dropped++; 1049 return NETDEV_TX_OK; 1050 } 1051 desc_set_phys_addr(lp, phys, cur_p); 1052 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; 1053 1054 for (ii = 0; ii < num_frag; ii++) { 1055 if (++new_tail_ptr >= lp->tx_bd_num) 1056 new_tail_ptr = 0; 1057 cur_p = &lp->tx_bd_v[new_tail_ptr]; 1058 frag = &skb_shinfo(skb)->frags[ii]; 1059 phys = dma_map_single(lp->dev, 1060 skb_frag_address(frag), 1061 skb_frag_size(frag), 1062 DMA_TO_DEVICE); 1063 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1064 if (net_ratelimit()) 1065 netdev_err(ndev, "TX DMA mapping error\n"); 1066 ndev->stats.tx_dropped++; 1067 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, 1068 true, NULL, 0); 1069 return NETDEV_TX_OK; 1070 } 1071 desc_set_phys_addr(lp, phys, cur_p); 1072 cur_p->cntrl = skb_frag_size(frag); 1073 } 1074 1075 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; 1076 cur_p->skb = skb; 1077 1078 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; 1079 if (++new_tail_ptr >= lp->tx_bd_num) 1080 new_tail_ptr = 0; 1081 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); 1082 1083 /* Start the transfer */ 1084 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); 1085 1086 /* Stop queue if next transmit may not have space */ 1087 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { 1088 netif_stop_queue(ndev); 1089 1090 /* Matches barrier in axienet_tx_poll */ 1091 smp_mb(); 1092 1093 /* Space might have just been freed - check again */ 1094 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 1095 netif_wake_queue(ndev); 1096 } 1097 1098 return NETDEV_TX_OK; 1099 } 1100 1101 /** 1102 * axienet_dma_rx_cb - DMA engine callback for RX channel. 1103 * @data: Pointer to the skbuf_dma_descriptor structure. 1104 * @result: error reporting through dmaengine_result. 1105 * This function is called by dmaengine driver for RX channel to notify 1106 * that the packet is received. 1107 */ 1108 static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result) 1109 { 1110 struct skbuf_dma_descriptor *skbuf_dma; 1111 size_t meta_len, meta_max_len, rx_len; 1112 struct axienet_local *lp = data; 1113 struct sk_buff *skb; 1114 u32 *app_metadata; 1115 1116 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++); 1117 skb = skbuf_dma->skb; 1118 app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len, 1119 &meta_max_len); 1120 dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size, 1121 DMA_FROM_DEVICE); 1122 /* TODO: Derive app word index programmatically */ 1123 rx_len = (app_metadata[LEN_APP] & 0xFFFF); 1124 skb_put(skb, rx_len); 1125 skb->protocol = eth_type_trans(skb, lp->ndev); 1126 skb->ip_summed = CHECKSUM_NONE; 1127 1128 __netif_rx(skb); 1129 u64_stats_update_begin(&lp->rx_stat_sync); 1130 u64_stats_add(&lp->rx_packets, 1); 1131 u64_stats_add(&lp->rx_bytes, rx_len); 1132 u64_stats_update_end(&lp->rx_stat_sync); 1133 axienet_rx_submit_desc(lp->ndev); 1134 dma_async_issue_pending(lp->rx_chan); 1135 } 1136 1137 /** 1138 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. 1139 * @napi: Pointer to NAPI structure. 1140 * @budget: Max number of RX packets to process. 1141 * 1142 * Return: Number of RX packets processed. 1143 */ 1144 static int axienet_rx_poll(struct napi_struct *napi, int budget) 1145 { 1146 u32 length; 1147 u32 csumstatus; 1148 u32 size = 0; 1149 int packets = 0; 1150 dma_addr_t tail_p = 0; 1151 struct axidma_bd *cur_p; 1152 struct sk_buff *skb, *new_skb; 1153 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); 1154 1155 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 1156 1157 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { 1158 dma_addr_t phys; 1159 1160 /* Ensure we see complete descriptor update */ 1161 dma_rmb(); 1162 1163 skb = cur_p->skb; 1164 cur_p->skb = NULL; 1165 1166 /* skb could be NULL if a previous pass already received the 1167 * packet for this slot in the ring, but failed to refill it 1168 * with a newly allocated buffer. In this case, don't try to 1169 * receive it again. 1170 */ 1171 if (likely(skb)) { 1172 length = cur_p->app4 & 0x0000FFFF; 1173 1174 phys = desc_get_phys_addr(lp, cur_p); 1175 dma_unmap_single(lp->dev, phys, lp->max_frm_size, 1176 DMA_FROM_DEVICE); 1177 1178 skb_put(skb, length); 1179 skb->protocol = eth_type_trans(skb, lp->ndev); 1180 /*skb_checksum_none_assert(skb);*/ 1181 skb->ip_summed = CHECKSUM_NONE; 1182 1183 /* if we're doing Rx csum offload, set it up */ 1184 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { 1185 csumstatus = (cur_p->app2 & 1186 XAE_FULL_CSUM_STATUS_MASK) >> 3; 1187 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || 1188 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { 1189 skb->ip_summed = CHECKSUM_UNNECESSARY; 1190 } 1191 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) { 1192 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); 1193 skb->ip_summed = CHECKSUM_COMPLETE; 1194 } 1195 1196 napi_gro_receive(napi, skb); 1197 1198 size += length; 1199 packets++; 1200 } 1201 1202 new_skb = napi_alloc_skb(napi, lp->max_frm_size); 1203 if (!new_skb) 1204 break; 1205 1206 phys = dma_map_single(lp->dev, new_skb->data, 1207 lp->max_frm_size, 1208 DMA_FROM_DEVICE); 1209 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1210 if (net_ratelimit()) 1211 netdev_err(lp->ndev, "RX DMA mapping error\n"); 1212 dev_kfree_skb(new_skb); 1213 break; 1214 } 1215 desc_set_phys_addr(lp, phys, cur_p); 1216 1217 cur_p->cntrl = lp->max_frm_size; 1218 cur_p->status = 0; 1219 cur_p->skb = new_skb; 1220 1221 /* Only update tail_p to mark this slot as usable after it has 1222 * been successfully refilled. 1223 */ 1224 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; 1225 1226 if (++lp->rx_bd_ci >= lp->rx_bd_num) 1227 lp->rx_bd_ci = 0; 1228 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 1229 } 1230 1231 u64_stats_update_begin(&lp->rx_stat_sync); 1232 u64_stats_add(&lp->rx_packets, packets); 1233 u64_stats_add(&lp->rx_bytes, size); 1234 u64_stats_update_end(&lp->rx_stat_sync); 1235 1236 if (tail_p) 1237 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); 1238 1239 if (packets < budget && napi_complete_done(napi, packets)) { 1240 /* Re-enable RX completion interrupts. This should 1241 * cause an immediate interrupt if any RX packets are 1242 * already pending. 1243 */ 1244 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 1245 } 1246 return packets; 1247 } 1248 1249 /** 1250 * axienet_tx_irq - Tx Done Isr. 1251 * @irq: irq number 1252 * @_ndev: net_device pointer 1253 * 1254 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. 1255 * 1256 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the 1257 * TX BD processing. 1258 */ 1259 static irqreturn_t axienet_tx_irq(int irq, void *_ndev) 1260 { 1261 unsigned int status; 1262 struct net_device *ndev = _ndev; 1263 struct axienet_local *lp = netdev_priv(ndev); 1264 1265 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1266 1267 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1268 return IRQ_NONE; 1269 1270 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); 1271 1272 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1273 netdev_err(ndev, "DMA Tx error 0x%x\n", status); 1274 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1275 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, 1276 (lp->tx_bd_v[lp->tx_bd_ci]).phys); 1277 schedule_work(&lp->dma_err_task); 1278 } else { 1279 /* Disable further TX completion interrupts and schedule 1280 * NAPI to handle the completions. 1281 */ 1282 u32 cr = lp->tx_dma_cr; 1283 1284 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1285 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 1286 1287 napi_schedule(&lp->napi_tx); 1288 } 1289 1290 return IRQ_HANDLED; 1291 } 1292 1293 /** 1294 * axienet_rx_irq - Rx Isr. 1295 * @irq: irq number 1296 * @_ndev: net_device pointer 1297 * 1298 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. 1299 * 1300 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD 1301 * processing. 1302 */ 1303 static irqreturn_t axienet_rx_irq(int irq, void *_ndev) 1304 { 1305 unsigned int status; 1306 struct net_device *ndev = _ndev; 1307 struct axienet_local *lp = netdev_priv(ndev); 1308 1309 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1310 1311 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1312 return IRQ_NONE; 1313 1314 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); 1315 1316 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1317 netdev_err(ndev, "DMA Rx error 0x%x\n", status); 1318 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1319 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, 1320 (lp->rx_bd_v[lp->rx_bd_ci]).phys); 1321 schedule_work(&lp->dma_err_task); 1322 } else { 1323 /* Disable further RX completion interrupts and schedule 1324 * NAPI receive. 1325 */ 1326 u32 cr = lp->rx_dma_cr; 1327 1328 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1329 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 1330 1331 napi_schedule(&lp->napi_rx); 1332 } 1333 1334 return IRQ_HANDLED; 1335 } 1336 1337 /** 1338 * axienet_eth_irq - Ethernet core Isr. 1339 * @irq: irq number 1340 * @_ndev: net_device pointer 1341 * 1342 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. 1343 * 1344 * Handle miscellaneous conditions indicated by Ethernet core IRQ. 1345 */ 1346 static irqreturn_t axienet_eth_irq(int irq, void *_ndev) 1347 { 1348 struct net_device *ndev = _ndev; 1349 struct axienet_local *lp = netdev_priv(ndev); 1350 unsigned int pending; 1351 1352 pending = axienet_ior(lp, XAE_IP_OFFSET); 1353 if (!pending) 1354 return IRQ_NONE; 1355 1356 if (pending & XAE_INT_RXFIFOOVR_MASK) 1357 ndev->stats.rx_missed_errors++; 1358 1359 if (pending & XAE_INT_RXRJECT_MASK) 1360 ndev->stats.rx_dropped++; 1361 1362 axienet_iow(lp, XAE_IS_OFFSET, pending); 1363 return IRQ_HANDLED; 1364 } 1365 1366 static void axienet_dma_err_handler(struct work_struct *work); 1367 1368 /** 1369 * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine. 1370 * allocate skbuff, map the scatterlist and obtain a descriptor 1371 * and then add the callback information and submit descriptor. 1372 * 1373 * @ndev: net_device pointer 1374 * 1375 */ 1376 static void axienet_rx_submit_desc(struct net_device *ndev) 1377 { 1378 struct dma_async_tx_descriptor *dma_rx_desc = NULL; 1379 struct axienet_local *lp = netdev_priv(ndev); 1380 struct skbuf_dma_descriptor *skbuf_dma; 1381 struct sk_buff *skb; 1382 dma_addr_t addr; 1383 1384 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head); 1385 if (!skbuf_dma) 1386 return; 1387 1388 lp->rx_ring_head++; 1389 skb = netdev_alloc_skb(ndev, lp->max_frm_size); 1390 if (!skb) 1391 return; 1392 1393 sg_init_table(skbuf_dma->sgl, 1); 1394 addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE); 1395 if (unlikely(dma_mapping_error(lp->dev, addr))) { 1396 if (net_ratelimit()) 1397 netdev_err(ndev, "DMA mapping error\n"); 1398 goto rx_submit_err_free_skb; 1399 } 1400 sg_dma_address(skbuf_dma->sgl) = addr; 1401 sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size; 1402 dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl, 1403 1, DMA_DEV_TO_MEM, 1404 DMA_PREP_INTERRUPT); 1405 if (!dma_rx_desc) 1406 goto rx_submit_err_unmap_skb; 1407 1408 skbuf_dma->skb = skb; 1409 skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl); 1410 skbuf_dma->desc = dma_rx_desc; 1411 dma_rx_desc->callback_param = lp; 1412 dma_rx_desc->callback_result = axienet_dma_rx_cb; 1413 dmaengine_submit(dma_rx_desc); 1414 1415 return; 1416 1417 rx_submit_err_unmap_skb: 1418 dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE); 1419 rx_submit_err_free_skb: 1420 dev_kfree_skb(skb); 1421 } 1422 1423 /** 1424 * axienet_init_dmaengine - init the dmaengine code. 1425 * @ndev: Pointer to net_device structure 1426 * 1427 * Return: 0, on success. 1428 * non-zero error value on failure 1429 * 1430 * This is the dmaengine initialization code. 1431 */ 1432 static int axienet_init_dmaengine(struct net_device *ndev) 1433 { 1434 struct axienet_local *lp = netdev_priv(ndev); 1435 struct skbuf_dma_descriptor *skbuf_dma; 1436 int i, ret; 1437 1438 lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0"); 1439 if (IS_ERR(lp->tx_chan)) { 1440 dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n"); 1441 return PTR_ERR(lp->tx_chan); 1442 } 1443 1444 lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0"); 1445 if (IS_ERR(lp->rx_chan)) { 1446 ret = PTR_ERR(lp->rx_chan); 1447 dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n"); 1448 goto err_dma_release_tx; 1449 } 1450 1451 lp->tx_ring_tail = 0; 1452 lp->tx_ring_head = 0; 1453 lp->rx_ring_tail = 0; 1454 lp->rx_ring_head = 0; 1455 lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring), 1456 GFP_KERNEL); 1457 if (!lp->tx_skb_ring) { 1458 ret = -ENOMEM; 1459 goto err_dma_release_rx; 1460 } 1461 for (i = 0; i < TX_BD_NUM_MAX; i++) { 1462 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); 1463 if (!skbuf_dma) { 1464 ret = -ENOMEM; 1465 goto err_free_tx_skb_ring; 1466 } 1467 lp->tx_skb_ring[i] = skbuf_dma; 1468 } 1469 1470 lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring), 1471 GFP_KERNEL); 1472 if (!lp->rx_skb_ring) { 1473 ret = -ENOMEM; 1474 goto err_free_tx_skb_ring; 1475 } 1476 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) { 1477 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); 1478 if (!skbuf_dma) { 1479 ret = -ENOMEM; 1480 goto err_free_rx_skb_ring; 1481 } 1482 lp->rx_skb_ring[i] = skbuf_dma; 1483 } 1484 /* TODO: Instead of BD_NUM_DEFAULT use runtime support */ 1485 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1486 axienet_rx_submit_desc(ndev); 1487 dma_async_issue_pending(lp->rx_chan); 1488 1489 return 0; 1490 1491 err_free_rx_skb_ring: 1492 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1493 kfree(lp->rx_skb_ring[i]); 1494 kfree(lp->rx_skb_ring); 1495 err_free_tx_skb_ring: 1496 for (i = 0; i < TX_BD_NUM_MAX; i++) 1497 kfree(lp->tx_skb_ring[i]); 1498 kfree(lp->tx_skb_ring); 1499 err_dma_release_rx: 1500 dma_release_channel(lp->rx_chan); 1501 err_dma_release_tx: 1502 dma_release_channel(lp->tx_chan); 1503 return ret; 1504 } 1505 1506 /** 1507 * axienet_init_legacy_dma - init the dma legacy code. 1508 * @ndev: Pointer to net_device structure 1509 * 1510 * Return: 0, on success. 1511 * non-zero error value on failure 1512 * 1513 * This is the dma initialization code. It also allocates interrupt 1514 * service routines, enables the interrupt lines and ISR handling. 1515 * 1516 */ 1517 static int axienet_init_legacy_dma(struct net_device *ndev) 1518 { 1519 int ret; 1520 struct axienet_local *lp = netdev_priv(ndev); 1521 1522 /* Enable worker thread for Axi DMA error handling */ 1523 lp->stopping = false; 1524 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); 1525 1526 napi_enable(&lp->napi_rx); 1527 napi_enable(&lp->napi_tx); 1528 1529 /* Enable interrupts for Axi DMA Tx */ 1530 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, 1531 ndev->name, ndev); 1532 if (ret) 1533 goto err_tx_irq; 1534 /* Enable interrupts for Axi DMA Rx */ 1535 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, 1536 ndev->name, ndev); 1537 if (ret) 1538 goto err_rx_irq; 1539 /* Enable interrupts for Axi Ethernet core (if defined) */ 1540 if (lp->eth_irq > 0) { 1541 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1542 ndev->name, ndev); 1543 if (ret) 1544 goto err_eth_irq; 1545 } 1546 1547 return 0; 1548 1549 err_eth_irq: 1550 free_irq(lp->rx_irq, ndev); 1551 err_rx_irq: 1552 free_irq(lp->tx_irq, ndev); 1553 err_tx_irq: 1554 napi_disable(&lp->napi_tx); 1555 napi_disable(&lp->napi_rx); 1556 cancel_work_sync(&lp->dma_err_task); 1557 dev_err(lp->dev, "request_irq() failed\n"); 1558 return ret; 1559 } 1560 1561 /** 1562 * axienet_open - Driver open routine. 1563 * @ndev: Pointer to net_device structure 1564 * 1565 * Return: 0, on success. 1566 * non-zero error value on failure 1567 * 1568 * This is the driver open routine. It calls phylink_start to start the 1569 * PHY device. 1570 * It also allocates interrupt service routines, enables the interrupt lines 1571 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer 1572 * descriptors are initialized. 1573 */ 1574 static int axienet_open(struct net_device *ndev) 1575 { 1576 int ret; 1577 struct axienet_local *lp = netdev_priv(ndev); 1578 1579 /* When we do an Axi Ethernet reset, it resets the complete core 1580 * including the MDIO. MDIO must be disabled before resetting. 1581 * Hold MDIO bus lock to avoid MDIO accesses during the reset. 1582 */ 1583 axienet_lock_mii(lp); 1584 ret = axienet_device_reset(ndev); 1585 axienet_unlock_mii(lp); 1586 1587 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); 1588 if (ret) { 1589 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); 1590 return ret; 1591 } 1592 1593 phylink_start(lp->phylink); 1594 1595 /* Start the statistics refresh work */ 1596 schedule_delayed_work(&lp->stats_work, 0); 1597 1598 if (lp->use_dmaengine) { 1599 /* Enable interrupts for Axi Ethernet core (if defined) */ 1600 if (lp->eth_irq > 0) { 1601 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1602 ndev->name, ndev); 1603 if (ret) 1604 goto err_phy; 1605 } 1606 1607 ret = axienet_init_dmaengine(ndev); 1608 if (ret < 0) 1609 goto err_free_eth_irq; 1610 } else { 1611 ret = axienet_init_legacy_dma(ndev); 1612 if (ret) 1613 goto err_phy; 1614 } 1615 1616 return 0; 1617 1618 err_free_eth_irq: 1619 if (lp->eth_irq > 0) 1620 free_irq(lp->eth_irq, ndev); 1621 err_phy: 1622 cancel_delayed_work_sync(&lp->stats_work); 1623 phylink_stop(lp->phylink); 1624 phylink_disconnect_phy(lp->phylink); 1625 return ret; 1626 } 1627 1628 /** 1629 * axienet_stop - Driver stop routine. 1630 * @ndev: Pointer to net_device structure 1631 * 1632 * Return: 0, on success. 1633 * 1634 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY 1635 * device. It also removes the interrupt handlers and disables the interrupts. 1636 * The Axi DMA Tx/Rx BDs are released. 1637 */ 1638 static int axienet_stop(struct net_device *ndev) 1639 { 1640 struct axienet_local *lp = netdev_priv(ndev); 1641 int i; 1642 1643 if (!lp->use_dmaengine) { 1644 WRITE_ONCE(lp->stopping, true); 1645 flush_work(&lp->dma_err_task); 1646 1647 napi_disable(&lp->napi_tx); 1648 napi_disable(&lp->napi_rx); 1649 } 1650 1651 cancel_delayed_work_sync(&lp->stats_work); 1652 1653 phylink_stop(lp->phylink); 1654 phylink_disconnect_phy(lp->phylink); 1655 1656 axienet_setoptions(ndev, lp->options & 1657 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1658 1659 if (!lp->use_dmaengine) { 1660 axienet_dma_stop(lp); 1661 cancel_work_sync(&lp->dma_err_task); 1662 free_irq(lp->tx_irq, ndev); 1663 free_irq(lp->rx_irq, ndev); 1664 axienet_dma_bd_release(ndev); 1665 } else { 1666 dmaengine_terminate_sync(lp->tx_chan); 1667 dmaengine_synchronize(lp->tx_chan); 1668 dmaengine_terminate_sync(lp->rx_chan); 1669 dmaengine_synchronize(lp->rx_chan); 1670 1671 for (i = 0; i < TX_BD_NUM_MAX; i++) 1672 kfree(lp->tx_skb_ring[i]); 1673 kfree(lp->tx_skb_ring); 1674 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1675 kfree(lp->rx_skb_ring[i]); 1676 kfree(lp->rx_skb_ring); 1677 1678 dma_release_channel(lp->rx_chan); 1679 dma_release_channel(lp->tx_chan); 1680 } 1681 1682 axienet_iow(lp, XAE_IE_OFFSET, 0); 1683 1684 if (lp->eth_irq > 0) 1685 free_irq(lp->eth_irq, ndev); 1686 return 0; 1687 } 1688 1689 /** 1690 * axienet_change_mtu - Driver change mtu routine. 1691 * @ndev: Pointer to net_device structure 1692 * @new_mtu: New mtu value to be applied 1693 * 1694 * Return: Always returns 0 (success). 1695 * 1696 * This is the change mtu driver routine. It checks if the Axi Ethernet 1697 * hardware supports jumbo frames before changing the mtu. This can be 1698 * called only when the device is not up. 1699 */ 1700 static int axienet_change_mtu(struct net_device *ndev, int new_mtu) 1701 { 1702 struct axienet_local *lp = netdev_priv(ndev); 1703 1704 if (netif_running(ndev)) 1705 return -EBUSY; 1706 1707 if ((new_mtu + VLAN_ETH_HLEN + 1708 XAE_TRL_SIZE) > lp->rxmem) 1709 return -EINVAL; 1710 1711 WRITE_ONCE(ndev->mtu, new_mtu); 1712 1713 return 0; 1714 } 1715 1716 #ifdef CONFIG_NET_POLL_CONTROLLER 1717 /** 1718 * axienet_poll_controller - Axi Ethernet poll mechanism. 1719 * @ndev: Pointer to net_device structure 1720 * 1721 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior 1722 * to polling the ISRs and are enabled back after the polling is done. 1723 */ 1724 static void axienet_poll_controller(struct net_device *ndev) 1725 { 1726 struct axienet_local *lp = netdev_priv(ndev); 1727 1728 disable_irq(lp->tx_irq); 1729 disable_irq(lp->rx_irq); 1730 axienet_rx_irq(lp->tx_irq, ndev); 1731 axienet_tx_irq(lp->rx_irq, ndev); 1732 enable_irq(lp->tx_irq); 1733 enable_irq(lp->rx_irq); 1734 } 1735 #endif 1736 1737 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1738 { 1739 struct axienet_local *lp = netdev_priv(dev); 1740 1741 if (!netif_running(dev)) 1742 return -EINVAL; 1743 1744 return phylink_mii_ioctl(lp->phylink, rq, cmd); 1745 } 1746 1747 static void 1748 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 1749 { 1750 struct axienet_local *lp = netdev_priv(dev); 1751 unsigned int start; 1752 1753 netdev_stats_to_stats64(stats, &dev->stats); 1754 1755 do { 1756 start = u64_stats_fetch_begin(&lp->rx_stat_sync); 1757 stats->rx_packets = u64_stats_read(&lp->rx_packets); 1758 stats->rx_bytes = u64_stats_read(&lp->rx_bytes); 1759 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); 1760 1761 do { 1762 start = u64_stats_fetch_begin(&lp->tx_stat_sync); 1763 stats->tx_packets = u64_stats_read(&lp->tx_packets); 1764 stats->tx_bytes = u64_stats_read(&lp->tx_bytes); 1765 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); 1766 1767 if (!(lp->features & XAE_FEATURE_STATS)) 1768 return; 1769 1770 do { 1771 start = read_seqcount_begin(&lp->hw_stats_seqcount); 1772 stats->rx_length_errors = 1773 axienet_stat(lp, STAT_RX_LENGTH_ERRORS); 1774 stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS); 1775 stats->rx_frame_errors = 1776 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); 1777 stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) + 1778 axienet_stat(lp, STAT_FRAGMENT_FRAMES) + 1779 stats->rx_length_errors + 1780 stats->rx_crc_errors + 1781 stats->rx_frame_errors; 1782 stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); 1783 1784 stats->tx_aborted_errors = 1785 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); 1786 stats->tx_fifo_errors = 1787 axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS); 1788 stats->tx_window_errors = 1789 axienet_stat(lp, STAT_TX_LATE_COLLISIONS); 1790 stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) + 1791 stats->tx_aborted_errors + 1792 stats->tx_fifo_errors + 1793 stats->tx_window_errors; 1794 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 1795 } 1796 1797 static const struct net_device_ops axienet_netdev_ops = { 1798 .ndo_open = axienet_open, 1799 .ndo_stop = axienet_stop, 1800 .ndo_start_xmit = axienet_start_xmit, 1801 .ndo_get_stats64 = axienet_get_stats64, 1802 .ndo_change_mtu = axienet_change_mtu, 1803 .ndo_set_mac_address = netdev_set_mac_address, 1804 .ndo_validate_addr = eth_validate_addr, 1805 .ndo_eth_ioctl = axienet_ioctl, 1806 .ndo_set_rx_mode = axienet_set_multicast_list, 1807 #ifdef CONFIG_NET_POLL_CONTROLLER 1808 .ndo_poll_controller = axienet_poll_controller, 1809 #endif 1810 }; 1811 1812 static const struct net_device_ops axienet_netdev_dmaengine_ops = { 1813 .ndo_open = axienet_open, 1814 .ndo_stop = axienet_stop, 1815 .ndo_start_xmit = axienet_start_xmit_dmaengine, 1816 .ndo_get_stats64 = axienet_get_stats64, 1817 .ndo_change_mtu = axienet_change_mtu, 1818 .ndo_set_mac_address = netdev_set_mac_address, 1819 .ndo_validate_addr = eth_validate_addr, 1820 .ndo_eth_ioctl = axienet_ioctl, 1821 .ndo_set_rx_mode = axienet_set_multicast_list, 1822 }; 1823 1824 /** 1825 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. 1826 * @ndev: Pointer to net_device structure 1827 * @ed: Pointer to ethtool_drvinfo structure 1828 * 1829 * This implements ethtool command for getting the driver information. 1830 * Issue "ethtool -i ethX" under linux prompt to execute this function. 1831 */ 1832 static void axienet_ethtools_get_drvinfo(struct net_device *ndev, 1833 struct ethtool_drvinfo *ed) 1834 { 1835 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); 1836 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); 1837 } 1838 1839 /** 1840 * axienet_ethtools_get_regs_len - Get the total regs length present in the 1841 * AxiEthernet core. 1842 * @ndev: Pointer to net_device structure 1843 * 1844 * This implements ethtool command for getting the total register length 1845 * information. 1846 * 1847 * Return: the total regs length 1848 */ 1849 static int axienet_ethtools_get_regs_len(struct net_device *ndev) 1850 { 1851 return sizeof(u32) * AXIENET_REGS_N; 1852 } 1853 1854 /** 1855 * axienet_ethtools_get_regs - Dump the contents of all registers present 1856 * in AxiEthernet core. 1857 * @ndev: Pointer to net_device structure 1858 * @regs: Pointer to ethtool_regs structure 1859 * @ret: Void pointer used to return the contents of the registers. 1860 * 1861 * This implements ethtool command for getting the Axi Ethernet register dump. 1862 * Issue "ethtool -d ethX" to execute this function. 1863 */ 1864 static void axienet_ethtools_get_regs(struct net_device *ndev, 1865 struct ethtool_regs *regs, void *ret) 1866 { 1867 u32 *data = (u32 *)ret; 1868 size_t len = sizeof(u32) * AXIENET_REGS_N; 1869 struct axienet_local *lp = netdev_priv(ndev); 1870 1871 regs->version = 0; 1872 regs->len = len; 1873 1874 memset(data, 0, len); 1875 data[0] = axienet_ior(lp, XAE_RAF_OFFSET); 1876 data[1] = axienet_ior(lp, XAE_TPF_OFFSET); 1877 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); 1878 data[3] = axienet_ior(lp, XAE_IS_OFFSET); 1879 data[4] = axienet_ior(lp, XAE_IP_OFFSET); 1880 data[5] = axienet_ior(lp, XAE_IE_OFFSET); 1881 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); 1882 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); 1883 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); 1884 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); 1885 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); 1886 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); 1887 data[12] = axienet_ior(lp, XAE_PPST_OFFSET); 1888 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); 1889 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); 1890 data[15] = axienet_ior(lp, XAE_TC_OFFSET); 1891 data[16] = axienet_ior(lp, XAE_FCC_OFFSET); 1892 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); 1893 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); 1894 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); 1895 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); 1896 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); 1897 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); 1898 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); 1899 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); 1900 data[29] = axienet_ior(lp, XAE_FMI_OFFSET); 1901 data[30] = axienet_ior(lp, XAE_AF0_OFFSET); 1902 data[31] = axienet_ior(lp, XAE_AF1_OFFSET); 1903 if (!lp->use_dmaengine) { 1904 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 1905 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1906 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); 1907 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); 1908 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 1909 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1910 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); 1911 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); 1912 } 1913 } 1914 1915 static void 1916 axienet_ethtools_get_ringparam(struct net_device *ndev, 1917 struct ethtool_ringparam *ering, 1918 struct kernel_ethtool_ringparam *kernel_ering, 1919 struct netlink_ext_ack *extack) 1920 { 1921 struct axienet_local *lp = netdev_priv(ndev); 1922 1923 ering->rx_max_pending = RX_BD_NUM_MAX; 1924 ering->rx_mini_max_pending = 0; 1925 ering->rx_jumbo_max_pending = 0; 1926 ering->tx_max_pending = TX_BD_NUM_MAX; 1927 ering->rx_pending = lp->rx_bd_num; 1928 ering->rx_mini_pending = 0; 1929 ering->rx_jumbo_pending = 0; 1930 ering->tx_pending = lp->tx_bd_num; 1931 } 1932 1933 static int 1934 axienet_ethtools_set_ringparam(struct net_device *ndev, 1935 struct ethtool_ringparam *ering, 1936 struct kernel_ethtool_ringparam *kernel_ering, 1937 struct netlink_ext_ack *extack) 1938 { 1939 struct axienet_local *lp = netdev_priv(ndev); 1940 1941 if (ering->rx_pending > RX_BD_NUM_MAX || 1942 ering->rx_mini_pending || 1943 ering->rx_jumbo_pending || 1944 ering->tx_pending < TX_BD_NUM_MIN || 1945 ering->tx_pending > TX_BD_NUM_MAX) 1946 return -EINVAL; 1947 1948 if (netif_running(ndev)) 1949 return -EBUSY; 1950 1951 lp->rx_bd_num = ering->rx_pending; 1952 lp->tx_bd_num = ering->tx_pending; 1953 return 0; 1954 } 1955 1956 /** 1957 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for 1958 * Tx and Rx paths. 1959 * @ndev: Pointer to net_device structure 1960 * @epauseparm: Pointer to ethtool_pauseparam structure. 1961 * 1962 * This implements ethtool command for getting axi ethernet pause frame 1963 * setting. Issue "ethtool -a ethX" to execute this function. 1964 */ 1965 static void 1966 axienet_ethtools_get_pauseparam(struct net_device *ndev, 1967 struct ethtool_pauseparam *epauseparm) 1968 { 1969 struct axienet_local *lp = netdev_priv(ndev); 1970 1971 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); 1972 } 1973 1974 /** 1975 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) 1976 * settings. 1977 * @ndev: Pointer to net_device structure 1978 * @epauseparm:Pointer to ethtool_pauseparam structure 1979 * 1980 * This implements ethtool command for enabling flow control on Rx and Tx 1981 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this 1982 * function. 1983 * 1984 * Return: 0 on success, -EFAULT if device is running 1985 */ 1986 static int 1987 axienet_ethtools_set_pauseparam(struct net_device *ndev, 1988 struct ethtool_pauseparam *epauseparm) 1989 { 1990 struct axienet_local *lp = netdev_priv(ndev); 1991 1992 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); 1993 } 1994 1995 /** 1996 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. 1997 * @ndev: Pointer to net_device structure 1998 * @ecoalesce: Pointer to ethtool_coalesce structure 1999 * @kernel_coal: ethtool CQE mode setting structure 2000 * @extack: extack for reporting error messages 2001 * 2002 * This implements ethtool command for getting the DMA interrupt coalescing 2003 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to 2004 * execute this function. 2005 * 2006 * Return: 0 always 2007 */ 2008 static int 2009 axienet_ethtools_get_coalesce(struct net_device *ndev, 2010 struct ethtool_coalesce *ecoalesce, 2011 struct kernel_ethtool_coalesce *kernel_coal, 2012 struct netlink_ext_ack *extack) 2013 { 2014 struct axienet_local *lp = netdev_priv(ndev); 2015 2016 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx; 2017 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx; 2018 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx; 2019 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx; 2020 return 0; 2021 } 2022 2023 /** 2024 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. 2025 * @ndev: Pointer to net_device structure 2026 * @ecoalesce: Pointer to ethtool_coalesce structure 2027 * @kernel_coal: ethtool CQE mode setting structure 2028 * @extack: extack for reporting error messages 2029 * 2030 * This implements ethtool command for setting the DMA interrupt coalescing 2031 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux 2032 * prompt to execute this function. 2033 * 2034 * Return: 0, on success, Non-zero error value on failure. 2035 */ 2036 static int 2037 axienet_ethtools_set_coalesce(struct net_device *ndev, 2038 struct ethtool_coalesce *ecoalesce, 2039 struct kernel_ethtool_coalesce *kernel_coal, 2040 struct netlink_ext_ack *extack) 2041 { 2042 struct axienet_local *lp = netdev_priv(ndev); 2043 2044 if (netif_running(ndev)) { 2045 NL_SET_ERR_MSG(extack, 2046 "Please stop netif before applying configuration"); 2047 return -EBUSY; 2048 } 2049 2050 if (ecoalesce->rx_max_coalesced_frames) 2051 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; 2052 if (ecoalesce->rx_coalesce_usecs) 2053 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs; 2054 if (ecoalesce->tx_max_coalesced_frames) 2055 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; 2056 if (ecoalesce->tx_coalesce_usecs) 2057 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs; 2058 2059 return 0; 2060 } 2061 2062 static int 2063 axienet_ethtools_get_link_ksettings(struct net_device *ndev, 2064 struct ethtool_link_ksettings *cmd) 2065 { 2066 struct axienet_local *lp = netdev_priv(ndev); 2067 2068 return phylink_ethtool_ksettings_get(lp->phylink, cmd); 2069 } 2070 2071 static int 2072 axienet_ethtools_set_link_ksettings(struct net_device *ndev, 2073 const struct ethtool_link_ksettings *cmd) 2074 { 2075 struct axienet_local *lp = netdev_priv(ndev); 2076 2077 return phylink_ethtool_ksettings_set(lp->phylink, cmd); 2078 } 2079 2080 static int axienet_ethtools_nway_reset(struct net_device *dev) 2081 { 2082 struct axienet_local *lp = netdev_priv(dev); 2083 2084 return phylink_ethtool_nway_reset(lp->phylink); 2085 } 2086 2087 static void axienet_ethtools_get_ethtool_stats(struct net_device *dev, 2088 struct ethtool_stats *stats, 2089 u64 *data) 2090 { 2091 struct axienet_local *lp = netdev_priv(dev); 2092 unsigned int start; 2093 2094 do { 2095 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2096 data[0] = axienet_stat(lp, STAT_RX_BYTES); 2097 data[1] = axienet_stat(lp, STAT_TX_BYTES); 2098 data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES); 2099 data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES); 2100 data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES); 2101 data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES); 2102 data[8] = axienet_stat(lp, STAT_USER_DEFINED0); 2103 data[9] = axienet_stat(lp, STAT_USER_DEFINED1); 2104 data[10] = axienet_stat(lp, STAT_USER_DEFINED2); 2105 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2106 } 2107 2108 static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = { 2109 "Received bytes", 2110 "Transmitted bytes", 2111 "RX Good VLAN Tagged Frames", 2112 "TX Good VLAN Tagged Frames", 2113 "TX Good PFC Frames", 2114 "RX Good PFC Frames", 2115 "User Defined Counter 0", 2116 "User Defined Counter 1", 2117 "User Defined Counter 2", 2118 }; 2119 2120 static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2121 { 2122 switch (stringset) { 2123 case ETH_SS_STATS: 2124 memcpy(data, axienet_ethtool_stats_strings, 2125 sizeof(axienet_ethtool_stats_strings)); 2126 break; 2127 } 2128 } 2129 2130 static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset) 2131 { 2132 struct axienet_local *lp = netdev_priv(dev); 2133 2134 switch (sset) { 2135 case ETH_SS_STATS: 2136 if (lp->features & XAE_FEATURE_STATS) 2137 return ARRAY_SIZE(axienet_ethtool_stats_strings); 2138 fallthrough; 2139 default: 2140 return -EOPNOTSUPP; 2141 } 2142 } 2143 2144 static void 2145 axienet_ethtools_get_pause_stats(struct net_device *dev, 2146 struct ethtool_pause_stats *pause_stats) 2147 { 2148 struct axienet_local *lp = netdev_priv(dev); 2149 unsigned int start; 2150 2151 if (!(lp->features & XAE_FEATURE_STATS)) 2152 return; 2153 2154 do { 2155 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2156 pause_stats->tx_pause_frames = 2157 axienet_stat(lp, STAT_TX_PAUSE_FRAMES); 2158 pause_stats->rx_pause_frames = 2159 axienet_stat(lp, STAT_RX_PAUSE_FRAMES); 2160 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2161 } 2162 2163 static void 2164 axienet_ethtool_get_eth_mac_stats(struct net_device *dev, 2165 struct ethtool_eth_mac_stats *mac_stats) 2166 { 2167 struct axienet_local *lp = netdev_priv(dev); 2168 unsigned int start; 2169 2170 if (!(lp->features & XAE_FEATURE_STATS)) 2171 return; 2172 2173 do { 2174 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2175 mac_stats->FramesTransmittedOK = 2176 axienet_stat(lp, STAT_TX_GOOD_FRAMES); 2177 mac_stats->SingleCollisionFrames = 2178 axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES); 2179 mac_stats->MultipleCollisionFrames = 2180 axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES); 2181 mac_stats->FramesReceivedOK = 2182 axienet_stat(lp, STAT_RX_GOOD_FRAMES); 2183 mac_stats->FrameCheckSequenceErrors = 2184 axienet_stat(lp, STAT_RX_FCS_ERRORS); 2185 mac_stats->AlignmentErrors = 2186 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); 2187 mac_stats->FramesWithDeferredXmissions = 2188 axienet_stat(lp, STAT_TX_DEFERRED_FRAMES); 2189 mac_stats->LateCollisions = 2190 axienet_stat(lp, STAT_TX_LATE_COLLISIONS); 2191 mac_stats->FramesAbortedDueToXSColls = 2192 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); 2193 mac_stats->MulticastFramesXmittedOK = 2194 axienet_stat(lp, STAT_TX_MULTICAST_FRAMES); 2195 mac_stats->BroadcastFramesXmittedOK = 2196 axienet_stat(lp, STAT_TX_BROADCAST_FRAMES); 2197 mac_stats->FramesWithExcessiveDeferral = 2198 axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL); 2199 mac_stats->MulticastFramesReceivedOK = 2200 axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); 2201 mac_stats->BroadcastFramesReceivedOK = 2202 axienet_stat(lp, STAT_RX_BROADCAST_FRAMES); 2203 mac_stats->InRangeLengthErrors = 2204 axienet_stat(lp, STAT_RX_LENGTH_ERRORS); 2205 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2206 } 2207 2208 static void 2209 axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev, 2210 struct ethtool_eth_ctrl_stats *ctrl_stats) 2211 { 2212 struct axienet_local *lp = netdev_priv(dev); 2213 unsigned int start; 2214 2215 if (!(lp->features & XAE_FEATURE_STATS)) 2216 return; 2217 2218 do { 2219 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2220 ctrl_stats->MACControlFramesTransmitted = 2221 axienet_stat(lp, STAT_TX_CONTROL_FRAMES); 2222 ctrl_stats->MACControlFramesReceived = 2223 axienet_stat(lp, STAT_RX_CONTROL_FRAMES); 2224 ctrl_stats->UnsupportedOpcodesReceived = 2225 axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS); 2226 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2227 } 2228 2229 static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = { 2230 { 64, 64 }, 2231 { 65, 127 }, 2232 { 128, 255 }, 2233 { 256, 511 }, 2234 { 512, 1023 }, 2235 { 1024, 1518 }, 2236 { 1519, 16384 }, 2237 { }, 2238 }; 2239 2240 static void 2241 axienet_ethtool_get_rmon_stats(struct net_device *dev, 2242 struct ethtool_rmon_stats *rmon_stats, 2243 const struct ethtool_rmon_hist_range **ranges) 2244 { 2245 struct axienet_local *lp = netdev_priv(dev); 2246 unsigned int start; 2247 2248 if (!(lp->features & XAE_FEATURE_STATS)) 2249 return; 2250 2251 do { 2252 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2253 rmon_stats->undersize_pkts = 2254 axienet_stat(lp, STAT_UNDERSIZE_FRAMES); 2255 rmon_stats->oversize_pkts = 2256 axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES); 2257 rmon_stats->fragments = 2258 axienet_stat(lp, STAT_FRAGMENT_FRAMES); 2259 2260 rmon_stats->hist[0] = 2261 axienet_stat(lp, STAT_RX_64_BYTE_FRAMES); 2262 rmon_stats->hist[1] = 2263 axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES); 2264 rmon_stats->hist[2] = 2265 axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES); 2266 rmon_stats->hist[3] = 2267 axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES); 2268 rmon_stats->hist[4] = 2269 axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES); 2270 rmon_stats->hist[5] = 2271 axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES); 2272 rmon_stats->hist[6] = 2273 rmon_stats->oversize_pkts; 2274 2275 rmon_stats->hist_tx[0] = 2276 axienet_stat(lp, STAT_TX_64_BYTE_FRAMES); 2277 rmon_stats->hist_tx[1] = 2278 axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES); 2279 rmon_stats->hist_tx[2] = 2280 axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES); 2281 rmon_stats->hist_tx[3] = 2282 axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES); 2283 rmon_stats->hist_tx[4] = 2284 axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES); 2285 rmon_stats->hist_tx[5] = 2286 axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES); 2287 rmon_stats->hist_tx[6] = 2288 axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES); 2289 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2290 2291 *ranges = axienet_rmon_ranges; 2292 } 2293 2294 static const struct ethtool_ops axienet_ethtool_ops = { 2295 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | 2296 ETHTOOL_COALESCE_USECS, 2297 .get_drvinfo = axienet_ethtools_get_drvinfo, 2298 .get_regs_len = axienet_ethtools_get_regs_len, 2299 .get_regs = axienet_ethtools_get_regs, 2300 .get_link = ethtool_op_get_link, 2301 .get_ringparam = axienet_ethtools_get_ringparam, 2302 .set_ringparam = axienet_ethtools_set_ringparam, 2303 .get_pauseparam = axienet_ethtools_get_pauseparam, 2304 .set_pauseparam = axienet_ethtools_set_pauseparam, 2305 .get_coalesce = axienet_ethtools_get_coalesce, 2306 .set_coalesce = axienet_ethtools_set_coalesce, 2307 .get_link_ksettings = axienet_ethtools_get_link_ksettings, 2308 .set_link_ksettings = axienet_ethtools_set_link_ksettings, 2309 .nway_reset = axienet_ethtools_nway_reset, 2310 .get_ethtool_stats = axienet_ethtools_get_ethtool_stats, 2311 .get_strings = axienet_ethtools_get_strings, 2312 .get_sset_count = axienet_ethtools_get_sset_count, 2313 .get_pause_stats = axienet_ethtools_get_pause_stats, 2314 .get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats, 2315 .get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats, 2316 .get_rmon_stats = axienet_ethtool_get_rmon_stats, 2317 }; 2318 2319 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) 2320 { 2321 return container_of(pcs, struct axienet_local, pcs); 2322 } 2323 2324 static void axienet_pcs_get_state(struct phylink_pcs *pcs, 2325 struct phylink_link_state *state) 2326 { 2327 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2328 2329 phylink_mii_c22_pcs_get_state(pcs_phy, state); 2330 } 2331 2332 static void axienet_pcs_an_restart(struct phylink_pcs *pcs) 2333 { 2334 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2335 2336 phylink_mii_c22_pcs_an_restart(pcs_phy); 2337 } 2338 2339 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, 2340 phy_interface_t interface, 2341 const unsigned long *advertising, 2342 bool permit_pause_to_mac) 2343 { 2344 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2345 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; 2346 struct axienet_local *lp = netdev_priv(ndev); 2347 int ret; 2348 2349 if (lp->switch_x_sgmii) { 2350 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, 2351 interface == PHY_INTERFACE_MODE_SGMII ? 2352 XLNX_MII_STD_SELECT_SGMII : 0); 2353 if (ret < 0) { 2354 netdev_warn(ndev, 2355 "Failed to switch PHY interface: %d\n", 2356 ret); 2357 return ret; 2358 } 2359 } 2360 2361 ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, 2362 neg_mode); 2363 if (ret < 0) 2364 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); 2365 2366 return ret; 2367 } 2368 2369 static const struct phylink_pcs_ops axienet_pcs_ops = { 2370 .pcs_get_state = axienet_pcs_get_state, 2371 .pcs_config = axienet_pcs_config, 2372 .pcs_an_restart = axienet_pcs_an_restart, 2373 }; 2374 2375 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, 2376 phy_interface_t interface) 2377 { 2378 struct net_device *ndev = to_net_dev(config->dev); 2379 struct axienet_local *lp = netdev_priv(ndev); 2380 2381 if (interface == PHY_INTERFACE_MODE_1000BASEX || 2382 interface == PHY_INTERFACE_MODE_SGMII) 2383 return &lp->pcs; 2384 2385 return NULL; 2386 } 2387 2388 static void axienet_mac_config(struct phylink_config *config, unsigned int mode, 2389 const struct phylink_link_state *state) 2390 { 2391 /* nothing meaningful to do */ 2392 } 2393 2394 static void axienet_mac_link_down(struct phylink_config *config, 2395 unsigned int mode, 2396 phy_interface_t interface) 2397 { 2398 /* nothing meaningful to do */ 2399 } 2400 2401 static void axienet_mac_link_up(struct phylink_config *config, 2402 struct phy_device *phy, 2403 unsigned int mode, phy_interface_t interface, 2404 int speed, int duplex, 2405 bool tx_pause, bool rx_pause) 2406 { 2407 struct net_device *ndev = to_net_dev(config->dev); 2408 struct axienet_local *lp = netdev_priv(ndev); 2409 u32 emmc_reg, fcc_reg; 2410 2411 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); 2412 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; 2413 2414 switch (speed) { 2415 case SPEED_1000: 2416 emmc_reg |= XAE_EMMC_LINKSPD_1000; 2417 break; 2418 case SPEED_100: 2419 emmc_reg |= XAE_EMMC_LINKSPD_100; 2420 break; 2421 case SPEED_10: 2422 emmc_reg |= XAE_EMMC_LINKSPD_10; 2423 break; 2424 default: 2425 dev_err(&ndev->dev, 2426 "Speed other than 10, 100 or 1Gbps is not supported\n"); 2427 break; 2428 } 2429 2430 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); 2431 2432 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); 2433 if (tx_pause) 2434 fcc_reg |= XAE_FCC_FCTX_MASK; 2435 else 2436 fcc_reg &= ~XAE_FCC_FCTX_MASK; 2437 if (rx_pause) 2438 fcc_reg |= XAE_FCC_FCRX_MASK; 2439 else 2440 fcc_reg &= ~XAE_FCC_FCRX_MASK; 2441 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); 2442 } 2443 2444 static const struct phylink_mac_ops axienet_phylink_ops = { 2445 .mac_select_pcs = axienet_mac_select_pcs, 2446 .mac_config = axienet_mac_config, 2447 .mac_link_down = axienet_mac_link_down, 2448 .mac_link_up = axienet_mac_link_up, 2449 }; 2450 2451 /** 2452 * axienet_dma_err_handler - Work queue task for Axi DMA Error 2453 * @work: pointer to work_struct 2454 * 2455 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the 2456 * Tx/Rx BDs. 2457 */ 2458 static void axienet_dma_err_handler(struct work_struct *work) 2459 { 2460 u32 i; 2461 u32 axienet_status; 2462 struct axidma_bd *cur_p; 2463 struct axienet_local *lp = container_of(work, struct axienet_local, 2464 dma_err_task); 2465 struct net_device *ndev = lp->ndev; 2466 2467 /* Don't bother if we are going to stop anyway */ 2468 if (READ_ONCE(lp->stopping)) 2469 return; 2470 2471 napi_disable(&lp->napi_tx); 2472 napi_disable(&lp->napi_rx); 2473 2474 axienet_setoptions(ndev, lp->options & 2475 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 2476 2477 axienet_dma_stop(lp); 2478 2479 for (i = 0; i < lp->tx_bd_num; i++) { 2480 cur_p = &lp->tx_bd_v[i]; 2481 if (cur_p->cntrl) { 2482 dma_addr_t addr = desc_get_phys_addr(lp, cur_p); 2483 2484 dma_unmap_single(lp->dev, addr, 2485 (cur_p->cntrl & 2486 XAXIDMA_BD_CTRL_LENGTH_MASK), 2487 DMA_TO_DEVICE); 2488 } 2489 if (cur_p->skb) 2490 dev_kfree_skb_irq(cur_p->skb); 2491 cur_p->phys = 0; 2492 cur_p->phys_msb = 0; 2493 cur_p->cntrl = 0; 2494 cur_p->status = 0; 2495 cur_p->app0 = 0; 2496 cur_p->app1 = 0; 2497 cur_p->app2 = 0; 2498 cur_p->app3 = 0; 2499 cur_p->app4 = 0; 2500 cur_p->skb = NULL; 2501 } 2502 2503 for (i = 0; i < lp->rx_bd_num; i++) { 2504 cur_p = &lp->rx_bd_v[i]; 2505 cur_p->status = 0; 2506 cur_p->app0 = 0; 2507 cur_p->app1 = 0; 2508 cur_p->app2 = 0; 2509 cur_p->app3 = 0; 2510 cur_p->app4 = 0; 2511 } 2512 2513 lp->tx_bd_ci = 0; 2514 lp->tx_bd_tail = 0; 2515 lp->rx_bd_ci = 0; 2516 2517 axienet_dma_start(lp); 2518 2519 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 2520 axienet_status &= ~XAE_RCW1_RX_MASK; 2521 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 2522 2523 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 2524 if (axienet_status & XAE_INT_RXRJECT_MASK) 2525 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 2526 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 2527 XAE_INT_RECV_ERROR_MASK : 0); 2528 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 2529 2530 /* Sync default options with HW but leave receiver and 2531 * transmitter disabled. 2532 */ 2533 axienet_setoptions(ndev, lp->options & 2534 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 2535 axienet_set_mac_address(ndev, NULL); 2536 axienet_set_multicast_list(ndev); 2537 napi_enable(&lp->napi_rx); 2538 napi_enable(&lp->napi_tx); 2539 axienet_setoptions(ndev, lp->options); 2540 } 2541 2542 /** 2543 * axienet_probe - Axi Ethernet probe function. 2544 * @pdev: Pointer to platform device structure. 2545 * 2546 * Return: 0, on success 2547 * Non-zero error value on failure. 2548 * 2549 * This is the probe routine for Axi Ethernet driver. This is called before 2550 * any other driver routines are invoked. It allocates and sets up the Ethernet 2551 * device. Parses through device tree and populates fields of 2552 * axienet_local. It registers the Ethernet device. 2553 */ 2554 static int axienet_probe(struct platform_device *pdev) 2555 { 2556 int ret; 2557 struct device_node *np; 2558 struct axienet_local *lp; 2559 struct net_device *ndev; 2560 struct resource *ethres; 2561 u8 mac_addr[ETH_ALEN]; 2562 int addr_width = 32; 2563 u32 value; 2564 2565 ndev = alloc_etherdev(sizeof(*lp)); 2566 if (!ndev) 2567 return -ENOMEM; 2568 2569 platform_set_drvdata(pdev, ndev); 2570 2571 SET_NETDEV_DEV(ndev, &pdev->dev); 2572 ndev->features = NETIF_F_SG; 2573 ndev->ethtool_ops = &axienet_ethtool_ops; 2574 2575 /* MTU range: 64 - 9000 */ 2576 ndev->min_mtu = 64; 2577 ndev->max_mtu = XAE_JUMBO_MTU; 2578 2579 lp = netdev_priv(ndev); 2580 lp->ndev = ndev; 2581 lp->dev = &pdev->dev; 2582 lp->options = XAE_OPTION_DEFAULTS; 2583 lp->rx_bd_num = RX_BD_NUM_DEFAULT; 2584 lp->tx_bd_num = TX_BD_NUM_DEFAULT; 2585 2586 u64_stats_init(&lp->rx_stat_sync); 2587 u64_stats_init(&lp->tx_stat_sync); 2588 2589 mutex_init(&lp->stats_lock); 2590 seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock); 2591 INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats); 2592 2593 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); 2594 if (!lp->axi_clk) { 2595 /* For backward compatibility, if named AXI clock is not present, 2596 * treat the first clock specified as the AXI clock. 2597 */ 2598 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); 2599 } 2600 if (IS_ERR(lp->axi_clk)) { 2601 ret = PTR_ERR(lp->axi_clk); 2602 goto free_netdev; 2603 } 2604 ret = clk_prepare_enable(lp->axi_clk); 2605 if (ret) { 2606 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); 2607 goto free_netdev; 2608 } 2609 2610 lp->misc_clks[0].id = "axis_clk"; 2611 lp->misc_clks[1].id = "ref_clk"; 2612 lp->misc_clks[2].id = "mgt_clk"; 2613 2614 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2615 if (ret) 2616 goto cleanup_clk; 2617 2618 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2619 if (ret) 2620 goto cleanup_clk; 2621 2622 /* Map device registers */ 2623 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); 2624 if (IS_ERR(lp->regs)) { 2625 ret = PTR_ERR(lp->regs); 2626 goto cleanup_clk; 2627 } 2628 lp->regs_start = ethres->start; 2629 2630 /* Setup checksum offload, but default to off if not specified */ 2631 lp->features = 0; 2632 2633 if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS) 2634 lp->features |= XAE_FEATURE_STATS; 2635 2636 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); 2637 if (!ret) { 2638 switch (value) { 2639 case 1: 2640 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; 2641 /* Can checksum any contiguous range */ 2642 ndev->features |= NETIF_F_HW_CSUM; 2643 break; 2644 case 2: 2645 lp->features |= XAE_FEATURE_FULL_TX_CSUM; 2646 /* Can checksum TCP/UDP over IPv4. */ 2647 ndev->features |= NETIF_F_IP_CSUM; 2648 break; 2649 } 2650 } 2651 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); 2652 if (!ret) { 2653 switch (value) { 2654 case 1: 2655 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; 2656 ndev->features |= NETIF_F_RXCSUM; 2657 break; 2658 case 2: 2659 lp->features |= XAE_FEATURE_FULL_RX_CSUM; 2660 ndev->features |= NETIF_F_RXCSUM; 2661 break; 2662 } 2663 } 2664 /* For supporting jumbo frames, the Axi Ethernet hardware must have 2665 * a larger Rx/Tx Memory. Typically, the size must be large so that 2666 * we can enable jumbo option and start supporting jumbo frames. 2667 * Here we check for memory allocated for Rx/Tx in the hardware from 2668 * the device-tree and accordingly set flags. 2669 */ 2670 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); 2671 2672 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, 2673 "xlnx,switch-x-sgmii"); 2674 2675 /* Start with the proprietary, and broken phy_type */ 2676 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); 2677 if (!ret) { 2678 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); 2679 switch (value) { 2680 case XAE_PHY_TYPE_MII: 2681 lp->phy_mode = PHY_INTERFACE_MODE_MII; 2682 break; 2683 case XAE_PHY_TYPE_GMII: 2684 lp->phy_mode = PHY_INTERFACE_MODE_GMII; 2685 break; 2686 case XAE_PHY_TYPE_RGMII_2_0: 2687 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; 2688 break; 2689 case XAE_PHY_TYPE_SGMII: 2690 lp->phy_mode = PHY_INTERFACE_MODE_SGMII; 2691 break; 2692 case XAE_PHY_TYPE_1000BASE_X: 2693 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; 2694 break; 2695 default: 2696 ret = -EINVAL; 2697 goto cleanup_clk; 2698 } 2699 } else { 2700 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); 2701 if (ret) 2702 goto cleanup_clk; 2703 } 2704 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && 2705 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { 2706 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); 2707 ret = -EINVAL; 2708 goto cleanup_clk; 2709 } 2710 2711 if (!of_property_present(pdev->dev.of_node, "dmas")) { 2712 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ 2713 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); 2714 2715 if (np) { 2716 struct resource dmares; 2717 2718 ret = of_address_to_resource(np, 0, &dmares); 2719 if (ret) { 2720 dev_err(&pdev->dev, 2721 "unable to get DMA resource\n"); 2722 of_node_put(np); 2723 goto cleanup_clk; 2724 } 2725 lp->dma_regs = devm_ioremap_resource(&pdev->dev, 2726 &dmares); 2727 lp->rx_irq = irq_of_parse_and_map(np, 1); 2728 lp->tx_irq = irq_of_parse_and_map(np, 0); 2729 of_node_put(np); 2730 lp->eth_irq = platform_get_irq_optional(pdev, 0); 2731 } else { 2732 /* Check for these resources directly on the Ethernet node. */ 2733 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); 2734 lp->rx_irq = platform_get_irq(pdev, 1); 2735 lp->tx_irq = platform_get_irq(pdev, 0); 2736 lp->eth_irq = platform_get_irq_optional(pdev, 2); 2737 } 2738 if (IS_ERR(lp->dma_regs)) { 2739 dev_err(&pdev->dev, "could not map DMA regs\n"); 2740 ret = PTR_ERR(lp->dma_regs); 2741 goto cleanup_clk; 2742 } 2743 if (lp->rx_irq <= 0 || lp->tx_irq <= 0) { 2744 dev_err(&pdev->dev, "could not determine irqs\n"); 2745 ret = -ENOMEM; 2746 goto cleanup_clk; 2747 } 2748 2749 /* Reset core now that clocks are enabled, prior to accessing MDIO */ 2750 ret = __axienet_device_reset(lp); 2751 if (ret) 2752 goto cleanup_clk; 2753 2754 /* Autodetect the need for 64-bit DMA pointers. 2755 * When the IP is configured for a bus width bigger than 32 bits, 2756 * writing the MSB registers is mandatory, even if they are all 0. 2757 * We can detect this case by writing all 1's to one such register 2758 * and see if that sticks: when the IP is configured for 32 bits 2759 * only, those registers are RES0. 2760 * Those MSB registers were introduced in IP v7.1, which we check first. 2761 */ 2762 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { 2763 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; 2764 2765 iowrite32(0x0, desc); 2766 if (ioread32(desc) == 0) { /* sanity check */ 2767 iowrite32(0xffffffff, desc); 2768 if (ioread32(desc) > 0) { 2769 lp->features |= XAE_FEATURE_DMA_64BIT; 2770 addr_width = 64; 2771 dev_info(&pdev->dev, 2772 "autodetected 64-bit DMA range\n"); 2773 } 2774 iowrite32(0x0, desc); 2775 } 2776 } 2777 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { 2778 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); 2779 ret = -EINVAL; 2780 goto cleanup_clk; 2781 } 2782 2783 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); 2784 if (ret) { 2785 dev_err(&pdev->dev, "No suitable DMA available\n"); 2786 goto cleanup_clk; 2787 } 2788 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); 2789 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); 2790 } else { 2791 struct xilinx_vdma_config cfg; 2792 struct dma_chan *tx_chan; 2793 2794 lp->eth_irq = platform_get_irq_optional(pdev, 0); 2795 if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) { 2796 ret = lp->eth_irq; 2797 goto cleanup_clk; 2798 } 2799 tx_chan = dma_request_chan(lp->dev, "tx_chan0"); 2800 if (IS_ERR(tx_chan)) { 2801 ret = PTR_ERR(tx_chan); 2802 dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n"); 2803 goto cleanup_clk; 2804 } 2805 2806 cfg.reset = 1; 2807 /* As name says VDMA but it has support for DMA channel reset */ 2808 ret = xilinx_vdma_channel_set_config(tx_chan, &cfg); 2809 if (ret < 0) { 2810 dev_err(&pdev->dev, "Reset channel failed\n"); 2811 dma_release_channel(tx_chan); 2812 goto cleanup_clk; 2813 } 2814 2815 dma_release_channel(tx_chan); 2816 lp->use_dmaengine = 1; 2817 } 2818 2819 if (lp->use_dmaengine) 2820 ndev->netdev_ops = &axienet_netdev_dmaengine_ops; 2821 else 2822 ndev->netdev_ops = &axienet_netdev_ops; 2823 /* Check for Ethernet core IRQ (optional) */ 2824 if (lp->eth_irq <= 0) 2825 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); 2826 2827 /* Retrieve the MAC address */ 2828 ret = of_get_mac_address(pdev->dev.of_node, mac_addr); 2829 if (!ret) { 2830 axienet_set_mac_address(ndev, mac_addr); 2831 } else { 2832 dev_warn(&pdev->dev, "could not find MAC address property: %d\n", 2833 ret); 2834 axienet_set_mac_address(ndev, NULL); 2835 } 2836 2837 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; 2838 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; 2839 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; 2840 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC; 2841 2842 ret = axienet_mdio_setup(lp); 2843 if (ret) 2844 dev_warn(&pdev->dev, 2845 "error registering MDIO bus: %d\n", ret); 2846 2847 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || 2848 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { 2849 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); 2850 if (!np) { 2851 /* Deprecated: Always use "pcs-handle" for pcs_phy. 2852 * Falling back to "phy-handle" here is only for 2853 * backward compatibility with old device trees. 2854 */ 2855 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 2856 } 2857 if (!np) { 2858 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); 2859 ret = -EINVAL; 2860 goto cleanup_mdio; 2861 } 2862 lp->pcs_phy = of_mdio_find_device(np); 2863 if (!lp->pcs_phy) { 2864 ret = -EPROBE_DEFER; 2865 of_node_put(np); 2866 goto cleanup_mdio; 2867 } 2868 of_node_put(np); 2869 lp->pcs.ops = &axienet_pcs_ops; 2870 lp->pcs.neg_mode = true; 2871 lp->pcs.poll = true; 2872 } 2873 2874 lp->phylink_config.dev = &ndev->dev; 2875 lp->phylink_config.type = PHYLINK_NETDEV; 2876 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | 2877 MAC_10FD | MAC_100FD | MAC_1000FD; 2878 2879 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); 2880 if (lp->switch_x_sgmii) { 2881 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 2882 lp->phylink_config.supported_interfaces); 2883 __set_bit(PHY_INTERFACE_MODE_SGMII, 2884 lp->phylink_config.supported_interfaces); 2885 } 2886 2887 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, 2888 lp->phy_mode, 2889 &axienet_phylink_ops); 2890 if (IS_ERR(lp->phylink)) { 2891 ret = PTR_ERR(lp->phylink); 2892 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); 2893 goto cleanup_mdio; 2894 } 2895 2896 ret = register_netdev(lp->ndev); 2897 if (ret) { 2898 dev_err(lp->dev, "register_netdev() error (%i)\n", ret); 2899 goto cleanup_phylink; 2900 } 2901 2902 return 0; 2903 2904 cleanup_phylink: 2905 phylink_destroy(lp->phylink); 2906 2907 cleanup_mdio: 2908 if (lp->pcs_phy) 2909 put_device(&lp->pcs_phy->dev); 2910 if (lp->mii_bus) 2911 axienet_mdio_teardown(lp); 2912 cleanup_clk: 2913 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2914 clk_disable_unprepare(lp->axi_clk); 2915 2916 free_netdev: 2917 free_netdev(ndev); 2918 2919 return ret; 2920 } 2921 2922 static void axienet_remove(struct platform_device *pdev) 2923 { 2924 struct net_device *ndev = platform_get_drvdata(pdev); 2925 struct axienet_local *lp = netdev_priv(ndev); 2926 2927 unregister_netdev(ndev); 2928 2929 if (lp->phylink) 2930 phylink_destroy(lp->phylink); 2931 2932 if (lp->pcs_phy) 2933 put_device(&lp->pcs_phy->dev); 2934 2935 axienet_mdio_teardown(lp); 2936 2937 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2938 clk_disable_unprepare(lp->axi_clk); 2939 2940 free_netdev(ndev); 2941 } 2942 2943 static void axienet_shutdown(struct platform_device *pdev) 2944 { 2945 struct net_device *ndev = platform_get_drvdata(pdev); 2946 2947 rtnl_lock(); 2948 netif_device_detach(ndev); 2949 2950 if (netif_running(ndev)) 2951 dev_close(ndev); 2952 2953 rtnl_unlock(); 2954 } 2955 2956 static int axienet_suspend(struct device *dev) 2957 { 2958 struct net_device *ndev = dev_get_drvdata(dev); 2959 2960 if (!netif_running(ndev)) 2961 return 0; 2962 2963 netif_device_detach(ndev); 2964 2965 rtnl_lock(); 2966 axienet_stop(ndev); 2967 rtnl_unlock(); 2968 2969 return 0; 2970 } 2971 2972 static int axienet_resume(struct device *dev) 2973 { 2974 struct net_device *ndev = dev_get_drvdata(dev); 2975 2976 if (!netif_running(ndev)) 2977 return 0; 2978 2979 rtnl_lock(); 2980 axienet_open(ndev); 2981 rtnl_unlock(); 2982 2983 netif_device_attach(ndev); 2984 2985 return 0; 2986 } 2987 2988 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, 2989 axienet_suspend, axienet_resume); 2990 2991 static struct platform_driver axienet_driver = { 2992 .probe = axienet_probe, 2993 .remove_new = axienet_remove, 2994 .shutdown = axienet_shutdown, 2995 .driver = { 2996 .name = "xilinx_axienet", 2997 .pm = &axienet_pm_ops, 2998 .of_match_table = axienet_of_match, 2999 }, 3000 }; 3001 3002 module_platform_driver(axienet_driver); 3003 3004 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); 3005 MODULE_AUTHOR("Xilinx"); 3006 MODULE_LICENSE("GPL"); 3007