xref: /linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c (revision 1e123fd73deb16cb362ecefb55c90c9196f4a6c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/platform_device.h>
36 #include <linux/skbuff.h>
37 #include <linux/math64.h>
38 #include <linux/phy.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/dmaengine.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dma/xilinx_dma.h>
44 #include <linux/circ_buf.h>
45 #include <net/netdev_queues.h>
46 
47 #include "xilinx_axienet.h"
48 
49 /* Descriptors defines for Tx and Rx DMA */
50 #define TX_BD_NUM_DEFAULT		128
51 #define RX_BD_NUM_DEFAULT		1024
52 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
53 #define TX_BD_NUM_MAX			4096
54 #define RX_BD_NUM_MAX			4096
55 #define DMA_NUM_APP_WORDS		5
56 #define LEN_APP				4
57 #define RX_BUF_NUM_DEFAULT		128
58 
59 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
60 #define DRIVER_NAME		"xaxienet"
61 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
62 #define DRIVER_VERSION		"1.00a"
63 
64 #define AXIENET_REGS_N		40
65 
66 static void axienet_rx_submit_desc(struct net_device *ndev);
67 
68 /* Match table for of_platform binding */
69 static const struct of_device_id axienet_of_match[] = {
70 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
71 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
72 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
73 	{},
74 };
75 
76 MODULE_DEVICE_TABLE(of, axienet_of_match);
77 
78 /* Option table for setting up Axi Ethernet hardware options */
79 static struct axienet_option axienet_options[] = {
80 	/* Turn on jumbo packet support for both Rx and Tx */
81 	{
82 		.opt = XAE_OPTION_JUMBO,
83 		.reg = XAE_TC_OFFSET,
84 		.m_or = XAE_TC_JUM_MASK,
85 	}, {
86 		.opt = XAE_OPTION_JUMBO,
87 		.reg = XAE_RCW1_OFFSET,
88 		.m_or = XAE_RCW1_JUM_MASK,
89 	}, { /* Turn on VLAN packet support for both Rx and Tx */
90 		.opt = XAE_OPTION_VLAN,
91 		.reg = XAE_TC_OFFSET,
92 		.m_or = XAE_TC_VLAN_MASK,
93 	}, {
94 		.opt = XAE_OPTION_VLAN,
95 		.reg = XAE_RCW1_OFFSET,
96 		.m_or = XAE_RCW1_VLAN_MASK,
97 	}, { /* Turn on FCS stripping on receive packets */
98 		.opt = XAE_OPTION_FCS_STRIP,
99 		.reg = XAE_RCW1_OFFSET,
100 		.m_or = XAE_RCW1_FCS_MASK,
101 	}, { /* Turn on FCS insertion on transmit packets */
102 		.opt = XAE_OPTION_FCS_INSERT,
103 		.reg = XAE_TC_OFFSET,
104 		.m_or = XAE_TC_FCS_MASK,
105 	}, { /* Turn off length/type field checking on receive packets */
106 		.opt = XAE_OPTION_LENTYPE_ERR,
107 		.reg = XAE_RCW1_OFFSET,
108 		.m_or = XAE_RCW1_LT_DIS_MASK,
109 	}, { /* Turn on Rx flow control */
110 		.opt = XAE_OPTION_FLOW_CONTROL,
111 		.reg = XAE_FCC_OFFSET,
112 		.m_or = XAE_FCC_FCRX_MASK,
113 	}, { /* Turn on Tx flow control */
114 		.opt = XAE_OPTION_FLOW_CONTROL,
115 		.reg = XAE_FCC_OFFSET,
116 		.m_or = XAE_FCC_FCTX_MASK,
117 	}, { /* Turn on promiscuous frame filtering */
118 		.opt = XAE_OPTION_PROMISC,
119 		.reg = XAE_FMI_OFFSET,
120 		.m_or = XAE_FMI_PM_MASK,
121 	}, { /* Enable transmitter */
122 		.opt = XAE_OPTION_TXEN,
123 		.reg = XAE_TC_OFFSET,
124 		.m_or = XAE_TC_TX_MASK,
125 	}, { /* Enable receiver */
126 		.opt = XAE_OPTION_RXEN,
127 		.reg = XAE_RCW1_OFFSET,
128 		.m_or = XAE_RCW1_RX_MASK,
129 	},
130 	{}
131 };
132 
133 static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i)
134 {
135 	return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)];
136 }
137 
138 static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i)
139 {
140 	return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)];
141 }
142 
143 /**
144  * axienet_dma_in32 - Memory mapped Axi DMA register read
145  * @lp:		Pointer to axienet local structure
146  * @reg:	Address offset from the base address of the Axi DMA core
147  *
148  * Return: The contents of the Axi DMA register
149  *
150  * This function returns the contents of the corresponding Axi DMA register.
151  */
152 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
153 {
154 	return ioread32(lp->dma_regs + reg);
155 }
156 
157 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
158 			       struct axidma_bd *desc)
159 {
160 	desc->phys = lower_32_bits(addr);
161 	if (lp->features & XAE_FEATURE_DMA_64BIT)
162 		desc->phys_msb = upper_32_bits(addr);
163 }
164 
165 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
166 				     struct axidma_bd *desc)
167 {
168 	dma_addr_t ret = desc->phys;
169 
170 	if (lp->features & XAE_FEATURE_DMA_64BIT)
171 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
172 
173 	return ret;
174 }
175 
176 /**
177  * axienet_dma_bd_release - Release buffer descriptor rings
178  * @ndev:	Pointer to the net_device structure
179  *
180  * This function is used to release the descriptors allocated in
181  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
182  * driver stop api is called.
183  */
184 static void axienet_dma_bd_release(struct net_device *ndev)
185 {
186 	int i;
187 	struct axienet_local *lp = netdev_priv(ndev);
188 
189 	/* If we end up here, tx_bd_v must have been DMA allocated. */
190 	dma_free_coherent(lp->dev,
191 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
192 			  lp->tx_bd_v,
193 			  lp->tx_bd_p);
194 
195 	if (!lp->rx_bd_v)
196 		return;
197 
198 	for (i = 0; i < lp->rx_bd_num; i++) {
199 		dma_addr_t phys;
200 
201 		/* A NULL skb means this descriptor has not been initialised
202 		 * at all.
203 		 */
204 		if (!lp->rx_bd_v[i].skb)
205 			break;
206 
207 		dev_kfree_skb(lp->rx_bd_v[i].skb);
208 
209 		/* For each descriptor, we programmed cntrl with the (non-zero)
210 		 * descriptor size, after it had been successfully allocated.
211 		 * So a non-zero value in there means we need to unmap it.
212 		 */
213 		if (lp->rx_bd_v[i].cntrl) {
214 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
215 			dma_unmap_single(lp->dev, phys,
216 					 lp->max_frm_size, DMA_FROM_DEVICE);
217 		}
218 	}
219 
220 	dma_free_coherent(lp->dev,
221 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
222 			  lp->rx_bd_v,
223 			  lp->rx_bd_p);
224 }
225 
226 /**
227  * axienet_usec_to_timer - Calculate IRQ delay timer value
228  * @lp:		Pointer to the axienet_local structure
229  * @coalesce_usec: Microseconds to convert into timer value
230  */
231 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
232 {
233 	u32 result;
234 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
235 
236 	if (lp->axi_clk)
237 		clk_rate = clk_get_rate(lp->axi_clk);
238 
239 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
240 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
241 					 (u64)125000000);
242 	if (result > 255)
243 		result = 255;
244 
245 	return result;
246 }
247 
248 /**
249  * axienet_dma_start - Set up DMA registers and start DMA operation
250  * @lp:		Pointer to the axienet_local structure
251  */
252 static void axienet_dma_start(struct axienet_local *lp)
253 {
254 	/* Start updating the Rx channel control register */
255 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
256 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
257 	/* Only set interrupt delay timer if not generating an interrupt on
258 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
259 	 */
260 	if (lp->coalesce_count_rx > 1)
261 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
262 					<< XAXIDMA_DELAY_SHIFT) |
263 				 XAXIDMA_IRQ_DELAY_MASK;
264 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
265 
266 	/* Start updating the Tx channel control register */
267 	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
268 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
269 	/* Only set interrupt delay timer if not generating an interrupt on
270 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
271 	 */
272 	if (lp->coalesce_count_tx > 1)
273 		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
274 					<< XAXIDMA_DELAY_SHIFT) |
275 				 XAXIDMA_IRQ_DELAY_MASK;
276 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
277 
278 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
279 	 * halted state. This will make the Rx side ready for reception.
280 	 */
281 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
282 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
283 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
284 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
285 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
286 
287 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
288 	 * Tx channel is now ready to run. But only after we write to the
289 	 * tail pointer register that the Tx channel will start transmitting.
290 	 */
291 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
292 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
293 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
294 }
295 
296 /**
297  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
298  * @ndev:	Pointer to the net_device structure
299  *
300  * Return: 0, on success -ENOMEM, on failure
301  *
302  * This function is called to initialize the Rx and Tx DMA descriptor
303  * rings. This initializes the descriptors with required default values
304  * and is called when Axi Ethernet driver reset is called.
305  */
306 static int axienet_dma_bd_init(struct net_device *ndev)
307 {
308 	int i;
309 	struct sk_buff *skb;
310 	struct axienet_local *lp = netdev_priv(ndev);
311 
312 	/* Reset the indexes which are used for accessing the BDs */
313 	lp->tx_bd_ci = 0;
314 	lp->tx_bd_tail = 0;
315 	lp->rx_bd_ci = 0;
316 
317 	/* Allocate the Tx and Rx buffer descriptors. */
318 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
319 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
320 					 &lp->tx_bd_p, GFP_KERNEL);
321 	if (!lp->tx_bd_v)
322 		return -ENOMEM;
323 
324 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
325 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
326 					 &lp->rx_bd_p, GFP_KERNEL);
327 	if (!lp->rx_bd_v)
328 		goto out;
329 
330 	for (i = 0; i < lp->tx_bd_num; i++) {
331 		dma_addr_t addr = lp->tx_bd_p +
332 				  sizeof(*lp->tx_bd_v) *
333 				  ((i + 1) % lp->tx_bd_num);
334 
335 		lp->tx_bd_v[i].next = lower_32_bits(addr);
336 		if (lp->features & XAE_FEATURE_DMA_64BIT)
337 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
338 	}
339 
340 	for (i = 0; i < lp->rx_bd_num; i++) {
341 		dma_addr_t addr;
342 
343 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
344 			((i + 1) % lp->rx_bd_num);
345 		lp->rx_bd_v[i].next = lower_32_bits(addr);
346 		if (lp->features & XAE_FEATURE_DMA_64BIT)
347 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
348 
349 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
350 		if (!skb)
351 			goto out;
352 
353 		lp->rx_bd_v[i].skb = skb;
354 		addr = dma_map_single(lp->dev, skb->data,
355 				      lp->max_frm_size, DMA_FROM_DEVICE);
356 		if (dma_mapping_error(lp->dev, addr)) {
357 			netdev_err(ndev, "DMA mapping error\n");
358 			goto out;
359 		}
360 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
361 
362 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
363 	}
364 
365 	axienet_dma_start(lp);
366 
367 	return 0;
368 out:
369 	axienet_dma_bd_release(ndev);
370 	return -ENOMEM;
371 }
372 
373 /**
374  * axienet_set_mac_address - Write the MAC address
375  * @ndev:	Pointer to the net_device structure
376  * @address:	6 byte Address to be written as MAC address
377  *
378  * This function is called to initialize the MAC address of the Axi Ethernet
379  * core. It writes to the UAW0 and UAW1 registers of the core.
380  */
381 static void axienet_set_mac_address(struct net_device *ndev,
382 				    const void *address)
383 {
384 	struct axienet_local *lp = netdev_priv(ndev);
385 
386 	if (address)
387 		eth_hw_addr_set(ndev, address);
388 	if (!is_valid_ether_addr(ndev->dev_addr))
389 		eth_hw_addr_random(ndev);
390 
391 	/* Set up unicast MAC address filter set its mac address */
392 	axienet_iow(lp, XAE_UAW0_OFFSET,
393 		    (ndev->dev_addr[0]) |
394 		    (ndev->dev_addr[1] << 8) |
395 		    (ndev->dev_addr[2] << 16) |
396 		    (ndev->dev_addr[3] << 24));
397 	axienet_iow(lp, XAE_UAW1_OFFSET,
398 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
399 		      ~XAE_UAW1_UNICASTADDR_MASK) |
400 		     (ndev->dev_addr[4] |
401 		     (ndev->dev_addr[5] << 8))));
402 }
403 
404 /**
405  * netdev_set_mac_address - Write the MAC address (from outside the driver)
406  * @ndev:	Pointer to the net_device structure
407  * @p:		6 byte Address to be written as MAC address
408  *
409  * Return: 0 for all conditions. Presently, there is no failure case.
410  *
411  * This function is called to initialize the MAC address of the Axi Ethernet
412  * core. It calls the core specific axienet_set_mac_address. This is the
413  * function that goes into net_device_ops structure entry ndo_set_mac_address.
414  */
415 static int netdev_set_mac_address(struct net_device *ndev, void *p)
416 {
417 	struct sockaddr *addr = p;
418 
419 	axienet_set_mac_address(ndev, addr->sa_data);
420 	return 0;
421 }
422 
423 /**
424  * axienet_set_multicast_list - Prepare the multicast table
425  * @ndev:	Pointer to the net_device structure
426  *
427  * This function is called to initialize the multicast table during
428  * initialization. The Axi Ethernet basic multicast support has a four-entry
429  * multicast table which is initialized here. Additionally this function
430  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
431  * means whenever the multicast table entries need to be updated this
432  * function gets called.
433  */
434 static void axienet_set_multicast_list(struct net_device *ndev)
435 {
436 	int i = 0;
437 	u32 reg, af0reg, af1reg;
438 	struct axienet_local *lp = netdev_priv(ndev);
439 
440 	reg = axienet_ior(lp, XAE_FMI_OFFSET);
441 	reg &= ~XAE_FMI_PM_MASK;
442 	if (ndev->flags & IFF_PROMISC)
443 		reg |= XAE_FMI_PM_MASK;
444 	else
445 		reg &= ~XAE_FMI_PM_MASK;
446 	axienet_iow(lp, XAE_FMI_OFFSET, reg);
447 
448 	if (ndev->flags & IFF_ALLMULTI ||
449 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
450 		reg &= 0xFFFFFF00;
451 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
452 		axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */
453 		axienet_iow(lp, XAE_AF1_OFFSET, 0);
454 		axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */
455 		axienet_iow(lp, XAE_AM1_OFFSET, 0);
456 		axienet_iow(lp, XAE_FFE_OFFSET, 1);
457 		i = 1;
458 	} else if (!netdev_mc_empty(ndev)) {
459 		struct netdev_hw_addr *ha;
460 
461 		netdev_for_each_mc_addr(ha, ndev) {
462 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
463 				break;
464 
465 			af0reg = (ha->addr[0]);
466 			af0reg |= (ha->addr[1] << 8);
467 			af0reg |= (ha->addr[2] << 16);
468 			af0reg |= (ha->addr[3] << 24);
469 
470 			af1reg = (ha->addr[4]);
471 			af1reg |= (ha->addr[5] << 8);
472 
473 			reg &= 0xFFFFFF00;
474 			reg |= i;
475 
476 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
477 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
478 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
479 			axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff);
480 			axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff);
481 			axienet_iow(lp, XAE_FFE_OFFSET, 1);
482 			i++;
483 		}
484 	}
485 
486 	for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
487 		reg &= 0xFFFFFF00;
488 		reg |= i;
489 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
490 		axienet_iow(lp, XAE_FFE_OFFSET, 0);
491 	}
492 }
493 
494 /**
495  * axienet_setoptions - Set an Axi Ethernet option
496  * @ndev:	Pointer to the net_device structure
497  * @options:	Option to be enabled/disabled
498  *
499  * The Axi Ethernet core has multiple features which can be selectively turned
500  * on or off. The typical options could be jumbo frame option, basic VLAN
501  * option, promiscuous mode option etc. This function is used to set or clear
502  * these options in the Axi Ethernet hardware. This is done through
503  * axienet_option structure .
504  */
505 static void axienet_setoptions(struct net_device *ndev, u32 options)
506 {
507 	int reg;
508 	struct axienet_local *lp = netdev_priv(ndev);
509 	struct axienet_option *tp = &axienet_options[0];
510 
511 	while (tp->opt) {
512 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
513 		if (options & tp->opt)
514 			reg |= tp->m_or;
515 		axienet_iow(lp, tp->reg, reg);
516 		tp++;
517 	}
518 
519 	lp->options |= options;
520 }
521 
522 static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat)
523 {
524 	u32 counter;
525 
526 	if (lp->reset_in_progress)
527 		return lp->hw_stat_base[stat];
528 
529 	counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
530 	return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]);
531 }
532 
533 static void axienet_stats_update(struct axienet_local *lp, bool reset)
534 {
535 	enum temac_stat stat;
536 
537 	write_seqcount_begin(&lp->hw_stats_seqcount);
538 	lp->reset_in_progress = reset;
539 	for (stat = 0; stat < STAT_COUNT; stat++) {
540 		u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
541 
542 		lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat];
543 		lp->hw_last_counter[stat] = counter;
544 	}
545 	write_seqcount_end(&lp->hw_stats_seqcount);
546 }
547 
548 static void axienet_refresh_stats(struct work_struct *work)
549 {
550 	struct axienet_local *lp = container_of(work, struct axienet_local,
551 						stats_work.work);
552 
553 	mutex_lock(&lp->stats_lock);
554 	axienet_stats_update(lp, false);
555 	mutex_unlock(&lp->stats_lock);
556 
557 	/* Just less than 2^32 bytes at 2.5 GBit/s */
558 	schedule_delayed_work(&lp->stats_work, 13 * HZ);
559 }
560 
561 static int __axienet_device_reset(struct axienet_local *lp)
562 {
563 	u32 value;
564 	int ret;
565 
566 	/* Save statistics counters in case they will be reset */
567 	mutex_lock(&lp->stats_lock);
568 	if (lp->features & XAE_FEATURE_STATS)
569 		axienet_stats_update(lp, true);
570 
571 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
572 	 * process of Axi DMA takes a while to complete as all pending
573 	 * commands/transfers will be flushed or completed during this
574 	 * reset process.
575 	 * Note that even though both TX and RX have their own reset register,
576 	 * they both reset the entire DMA core, so only one needs to be used.
577 	 */
578 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
579 	ret = read_poll_timeout(axienet_dma_in32, value,
580 				!(value & XAXIDMA_CR_RESET_MASK),
581 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
582 				XAXIDMA_TX_CR_OFFSET);
583 	if (ret) {
584 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
585 		goto out;
586 	}
587 
588 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
589 	ret = read_poll_timeout(axienet_ior, value,
590 				value & XAE_INT_PHYRSTCMPLT_MASK,
591 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
592 				XAE_IS_OFFSET);
593 	if (ret) {
594 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
595 		goto out;
596 	}
597 
598 	/* Update statistics counters with new values */
599 	if (lp->features & XAE_FEATURE_STATS) {
600 		enum temac_stat stat;
601 
602 		write_seqcount_begin(&lp->hw_stats_seqcount);
603 		lp->reset_in_progress = false;
604 		for (stat = 0; stat < STAT_COUNT; stat++) {
605 			u32 counter =
606 				axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
607 
608 			lp->hw_stat_base[stat] +=
609 				lp->hw_last_counter[stat] - counter;
610 			lp->hw_last_counter[stat] = counter;
611 		}
612 		write_seqcount_end(&lp->hw_stats_seqcount);
613 	}
614 
615 out:
616 	mutex_unlock(&lp->stats_lock);
617 	return ret;
618 }
619 
620 /**
621  * axienet_dma_stop - Stop DMA operation
622  * @lp:		Pointer to the axienet_local structure
623  */
624 static void axienet_dma_stop(struct axienet_local *lp)
625 {
626 	int count;
627 	u32 cr, sr;
628 
629 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
630 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
631 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
632 	synchronize_irq(lp->rx_irq);
633 
634 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
635 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
636 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
637 	synchronize_irq(lp->tx_irq);
638 
639 	/* Give DMAs a chance to halt gracefully */
640 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
641 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
642 		msleep(20);
643 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
644 	}
645 
646 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
647 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
648 		msleep(20);
649 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
650 	}
651 
652 	/* Do a reset to ensure DMA is really stopped */
653 	axienet_lock_mii(lp);
654 	__axienet_device_reset(lp);
655 	axienet_unlock_mii(lp);
656 }
657 
658 /**
659  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
660  * @ndev:	Pointer to the net_device structure
661  *
662  * This function is called to reset and initialize the Axi Ethernet core. This
663  * is typically called during initialization. It does a reset of the Axi DMA
664  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
665  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
666  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
667  * core.
668  * Returns 0 on success or a negative error number otherwise.
669  */
670 static int axienet_device_reset(struct net_device *ndev)
671 {
672 	u32 axienet_status;
673 	struct axienet_local *lp = netdev_priv(ndev);
674 	int ret;
675 
676 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
677 	lp->options |= XAE_OPTION_VLAN;
678 	lp->options &= (~XAE_OPTION_JUMBO);
679 
680 	if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) {
681 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
682 					XAE_TRL_SIZE;
683 
684 		if (lp->max_frm_size <= lp->rxmem)
685 			lp->options |= XAE_OPTION_JUMBO;
686 	}
687 
688 	if (!lp->use_dmaengine) {
689 		ret = __axienet_device_reset(lp);
690 		if (ret)
691 			return ret;
692 
693 		ret = axienet_dma_bd_init(ndev);
694 		if (ret) {
695 			netdev_err(ndev, "%s: descriptor allocation failed\n",
696 				   __func__);
697 			return ret;
698 		}
699 	}
700 
701 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
702 	axienet_status &= ~XAE_RCW1_RX_MASK;
703 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
704 
705 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
706 	if (axienet_status & XAE_INT_RXRJECT_MASK)
707 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
708 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
709 		    XAE_INT_RECV_ERROR_MASK : 0);
710 
711 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
712 
713 	/* Sync default options with HW but leave receiver and
714 	 * transmitter disabled.
715 	 */
716 	axienet_setoptions(ndev, lp->options &
717 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
718 	axienet_set_mac_address(ndev, NULL);
719 	axienet_set_multicast_list(ndev);
720 	axienet_setoptions(ndev, lp->options);
721 
722 	netif_trans_update(ndev);
723 
724 	return 0;
725 }
726 
727 /**
728  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
729  * @lp:		Pointer to the axienet_local structure
730  * @first_bd:	Index of first descriptor to clean up
731  * @nr_bds:	Max number of descriptors to clean up
732  * @force:	Whether to clean descriptors even if not complete
733  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
734  *		in all cleaned-up descriptors. Ignored if NULL.
735  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
736  *
737  * Would either be called after a successful transmit operation, or after
738  * there was an error when setting up the chain.
739  * Returns the number of descriptors handled.
740  */
741 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
742 				 int nr_bds, bool force, u32 *sizep, int budget)
743 {
744 	struct axidma_bd *cur_p;
745 	unsigned int status;
746 	dma_addr_t phys;
747 	int i;
748 
749 	for (i = 0; i < nr_bds; i++) {
750 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
751 		status = cur_p->status;
752 
753 		/* If force is not specified, clean up only descriptors
754 		 * that have been completed by the MAC.
755 		 */
756 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
757 			break;
758 
759 		/* Ensure we see complete descriptor update */
760 		dma_rmb();
761 		phys = desc_get_phys_addr(lp, cur_p);
762 		dma_unmap_single(lp->dev, phys,
763 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
764 				 DMA_TO_DEVICE);
765 
766 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
767 			napi_consume_skb(cur_p->skb, budget);
768 
769 		cur_p->app0 = 0;
770 		cur_p->app1 = 0;
771 		cur_p->app2 = 0;
772 		cur_p->app4 = 0;
773 		cur_p->skb = NULL;
774 		/* ensure our transmit path and device don't prematurely see status cleared */
775 		wmb();
776 		cur_p->cntrl = 0;
777 		cur_p->status = 0;
778 
779 		if (sizep)
780 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
781 	}
782 
783 	return i;
784 }
785 
786 /**
787  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
788  * @lp:		Pointer to the axienet_local structure
789  * @num_frag:	The number of BDs to check for
790  *
791  * Return: 0, on success
792  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
793  *
794  * This function is invoked before BDs are allocated and transmission starts.
795  * This function returns 0 if a BD or group of BDs can be allocated for
796  * transmission. If the BD or any of the BDs are not free the function
797  * returns a busy status.
798  */
799 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
800 					    int num_frag)
801 {
802 	struct axidma_bd *cur_p;
803 
804 	/* Ensure we see all descriptor updates from device or TX polling */
805 	rmb();
806 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
807 			     lp->tx_bd_num];
808 	if (cur_p->cntrl)
809 		return NETDEV_TX_BUSY;
810 	return 0;
811 }
812 
813 /**
814  * axienet_dma_tx_cb - DMA engine callback for TX channel.
815  * @data:       Pointer to the axienet_local structure.
816  * @result:     error reporting through dmaengine_result.
817  * This function is called by dmaengine driver for TX channel to notify
818  * that the transmit is done.
819  */
820 static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result)
821 {
822 	struct skbuf_dma_descriptor *skbuf_dma;
823 	struct axienet_local *lp = data;
824 	struct netdev_queue *txq;
825 	int len;
826 
827 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++);
828 	len = skbuf_dma->skb->len;
829 	txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb);
830 	u64_stats_update_begin(&lp->tx_stat_sync);
831 	u64_stats_add(&lp->tx_bytes, len);
832 	u64_stats_add(&lp->tx_packets, 1);
833 	u64_stats_update_end(&lp->tx_stat_sync);
834 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE);
835 	dev_consume_skb_any(skbuf_dma->skb);
836 	netif_txq_completed_wake(txq, 1, len,
837 				 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
838 				 2 * MAX_SKB_FRAGS);
839 }
840 
841 /**
842  * axienet_start_xmit_dmaengine - Starts the transmission.
843  * @skb:        sk_buff pointer that contains data to be Txed.
844  * @ndev:       Pointer to net_device structure.
845  *
846  * Return: NETDEV_TX_OK on success or any non space errors.
847  *         NETDEV_TX_BUSY when free element in TX skb ring buffer
848  *         is not available.
849  *
850  * This function is invoked to initiate transmission. The
851  * function sets the skbs, register dma callback API and submit
852  * the dma transaction.
853  * Additionally if checksum offloading is supported,
854  * it populates AXI Stream Control fields with appropriate values.
855  */
856 static netdev_tx_t
857 axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev)
858 {
859 	struct dma_async_tx_descriptor *dma_tx_desc = NULL;
860 	struct axienet_local *lp = netdev_priv(ndev);
861 	u32 app_metadata[DMA_NUM_APP_WORDS] = {0};
862 	struct skbuf_dma_descriptor *skbuf_dma;
863 	struct dma_device *dma_dev;
864 	struct netdev_queue *txq;
865 	u32 csum_start_off;
866 	u32 csum_index_off;
867 	int sg_len;
868 	int ret;
869 
870 	dma_dev = lp->tx_chan->device;
871 	sg_len = skb_shinfo(skb)->nr_frags + 1;
872 	if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) {
873 		netif_stop_queue(ndev);
874 		if (net_ratelimit())
875 			netdev_warn(ndev, "TX ring unexpectedly full\n");
876 		return NETDEV_TX_BUSY;
877 	}
878 
879 	skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head);
880 	if (!skbuf_dma)
881 		goto xmit_error_drop_skb;
882 
883 	lp->tx_ring_head++;
884 	sg_init_table(skbuf_dma->sgl, sg_len);
885 	ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len);
886 	if (ret < 0)
887 		goto xmit_error_drop_skb;
888 
889 	ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
890 	if (!ret)
891 		goto xmit_error_drop_skb;
892 
893 	/* Fill up app fields for checksum */
894 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
895 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
896 			/* Tx Full Checksum Offload Enabled */
897 			app_metadata[0] |= 2;
898 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
899 			csum_start_off = skb_transport_offset(skb);
900 			csum_index_off = csum_start_off + skb->csum_offset;
901 			/* Tx Partial Checksum Offload Enabled */
902 			app_metadata[0] |= 1;
903 			app_metadata[1] = (csum_start_off << 16) | csum_index_off;
904 		}
905 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
906 		app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */
907 	}
908 
909 	dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl,
910 			sg_len, DMA_MEM_TO_DEV,
911 			DMA_PREP_INTERRUPT, (void *)app_metadata);
912 	if (!dma_tx_desc)
913 		goto xmit_error_unmap_sg;
914 
915 	skbuf_dma->skb = skb;
916 	skbuf_dma->sg_len = sg_len;
917 	dma_tx_desc->callback_param = lp;
918 	dma_tx_desc->callback_result = axienet_dma_tx_cb;
919 	dmaengine_submit(dma_tx_desc);
920 	dma_async_issue_pending(lp->tx_chan);
921 	txq = skb_get_tx_queue(lp->ndev, skb);
922 	netdev_tx_sent_queue(txq, skb->len);
923 	netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
924 			     MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS);
925 
926 	return NETDEV_TX_OK;
927 
928 xmit_error_unmap_sg:
929 	dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
930 xmit_error_drop_skb:
931 	dev_kfree_skb_any(skb);
932 	return NETDEV_TX_OK;
933 }
934 
935 /**
936  * axienet_tx_poll - Invoked once a transmit is completed by the
937  * Axi DMA Tx channel.
938  * @napi:	Pointer to NAPI structure.
939  * @budget:	Max number of TX packets to process.
940  *
941  * Return: Number of TX packets processed.
942  *
943  * This function is invoked from the NAPI processing to notify the completion
944  * of transmit operation. It clears fields in the corresponding Tx BDs and
945  * unmaps the corresponding buffer so that CPU can regain ownership of the
946  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
947  * required.
948  */
949 static int axienet_tx_poll(struct napi_struct *napi, int budget)
950 {
951 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
952 	struct net_device *ndev = lp->ndev;
953 	u32 size = 0;
954 	int packets;
955 
956 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
957 
958 	if (packets) {
959 		lp->tx_bd_ci += packets;
960 		if (lp->tx_bd_ci >= lp->tx_bd_num)
961 			lp->tx_bd_ci %= lp->tx_bd_num;
962 
963 		u64_stats_update_begin(&lp->tx_stat_sync);
964 		u64_stats_add(&lp->tx_packets, packets);
965 		u64_stats_add(&lp->tx_bytes, size);
966 		u64_stats_update_end(&lp->tx_stat_sync);
967 
968 		/* Matches barrier in axienet_start_xmit */
969 		smp_mb();
970 
971 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
972 			netif_wake_queue(ndev);
973 	}
974 
975 	if (packets < budget && napi_complete_done(napi, packets)) {
976 		/* Re-enable TX completion interrupts. This should
977 		 * cause an immediate interrupt if any TX packets are
978 		 * already pending.
979 		 */
980 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
981 	}
982 	return packets;
983 }
984 
985 /**
986  * axienet_start_xmit - Starts the transmission.
987  * @skb:	sk_buff pointer that contains data to be Txed.
988  * @ndev:	Pointer to net_device structure.
989  *
990  * Return: NETDEV_TX_OK, on success
991  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
992  *
993  * This function is invoked from upper layers to initiate transmission. The
994  * function uses the next available free BDs and populates their fields to
995  * start the transmission. Additionally if checksum offloading is supported,
996  * it populates AXI Stream Control fields with appropriate values.
997  */
998 static netdev_tx_t
999 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1000 {
1001 	u32 ii;
1002 	u32 num_frag;
1003 	u32 csum_start_off;
1004 	u32 csum_index_off;
1005 	skb_frag_t *frag;
1006 	dma_addr_t tail_p, phys;
1007 	u32 orig_tail_ptr, new_tail_ptr;
1008 	struct axienet_local *lp = netdev_priv(ndev);
1009 	struct axidma_bd *cur_p;
1010 
1011 	orig_tail_ptr = lp->tx_bd_tail;
1012 	new_tail_ptr = orig_tail_ptr;
1013 
1014 	num_frag = skb_shinfo(skb)->nr_frags;
1015 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
1016 
1017 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
1018 		/* Should not happen as last start_xmit call should have
1019 		 * checked for sufficient space and queue should only be
1020 		 * woken when sufficient space is available.
1021 		 */
1022 		netif_stop_queue(ndev);
1023 		if (net_ratelimit())
1024 			netdev_warn(ndev, "TX ring unexpectedly full\n");
1025 		return NETDEV_TX_BUSY;
1026 	}
1027 
1028 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1029 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
1030 			/* Tx Full Checksum Offload Enabled */
1031 			cur_p->app0 |= 2;
1032 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
1033 			csum_start_off = skb_transport_offset(skb);
1034 			csum_index_off = csum_start_off + skb->csum_offset;
1035 			/* Tx Partial Checksum Offload Enabled */
1036 			cur_p->app0 |= 1;
1037 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
1038 		}
1039 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1040 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
1041 	}
1042 
1043 	phys = dma_map_single(lp->dev, skb->data,
1044 			      skb_headlen(skb), DMA_TO_DEVICE);
1045 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
1046 		if (net_ratelimit())
1047 			netdev_err(ndev, "TX DMA mapping error\n");
1048 		ndev->stats.tx_dropped++;
1049 		return NETDEV_TX_OK;
1050 	}
1051 	desc_set_phys_addr(lp, phys, cur_p);
1052 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
1053 
1054 	for (ii = 0; ii < num_frag; ii++) {
1055 		if (++new_tail_ptr >= lp->tx_bd_num)
1056 			new_tail_ptr = 0;
1057 		cur_p = &lp->tx_bd_v[new_tail_ptr];
1058 		frag = &skb_shinfo(skb)->frags[ii];
1059 		phys = dma_map_single(lp->dev,
1060 				      skb_frag_address(frag),
1061 				      skb_frag_size(frag),
1062 				      DMA_TO_DEVICE);
1063 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1064 			if (net_ratelimit())
1065 				netdev_err(ndev, "TX DMA mapping error\n");
1066 			ndev->stats.tx_dropped++;
1067 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
1068 					      true, NULL, 0);
1069 			return NETDEV_TX_OK;
1070 		}
1071 		desc_set_phys_addr(lp, phys, cur_p);
1072 		cur_p->cntrl = skb_frag_size(frag);
1073 	}
1074 
1075 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
1076 	cur_p->skb = skb;
1077 
1078 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
1079 	if (++new_tail_ptr >= lp->tx_bd_num)
1080 		new_tail_ptr = 0;
1081 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
1082 
1083 	/* Start the transfer */
1084 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
1085 
1086 	/* Stop queue if next transmit may not have space */
1087 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
1088 		netif_stop_queue(ndev);
1089 
1090 		/* Matches barrier in axienet_tx_poll */
1091 		smp_mb();
1092 
1093 		/* Space might have just been freed - check again */
1094 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
1095 			netif_wake_queue(ndev);
1096 	}
1097 
1098 	return NETDEV_TX_OK;
1099 }
1100 
1101 /**
1102  * axienet_dma_rx_cb - DMA engine callback for RX channel.
1103  * @data:       Pointer to the skbuf_dma_descriptor structure.
1104  * @result:     error reporting through dmaengine_result.
1105  * This function is called by dmaengine driver for RX channel to notify
1106  * that the packet is received.
1107  */
1108 static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result)
1109 {
1110 	struct skbuf_dma_descriptor *skbuf_dma;
1111 	size_t meta_len, meta_max_len, rx_len;
1112 	struct axienet_local *lp = data;
1113 	struct sk_buff *skb;
1114 	u32 *app_metadata;
1115 
1116 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++);
1117 	skb = skbuf_dma->skb;
1118 	app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len,
1119 						       &meta_max_len);
1120 	dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size,
1121 			 DMA_FROM_DEVICE);
1122 	/* TODO: Derive app word index programmatically */
1123 	rx_len = (app_metadata[LEN_APP] & 0xFFFF);
1124 	skb_put(skb, rx_len);
1125 	skb->protocol = eth_type_trans(skb, lp->ndev);
1126 	skb->ip_summed = CHECKSUM_NONE;
1127 
1128 	__netif_rx(skb);
1129 	u64_stats_update_begin(&lp->rx_stat_sync);
1130 	u64_stats_add(&lp->rx_packets, 1);
1131 	u64_stats_add(&lp->rx_bytes, rx_len);
1132 	u64_stats_update_end(&lp->rx_stat_sync);
1133 	axienet_rx_submit_desc(lp->ndev);
1134 	dma_async_issue_pending(lp->rx_chan);
1135 }
1136 
1137 /**
1138  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
1139  * @napi:	Pointer to NAPI structure.
1140  * @budget:	Max number of RX packets to process.
1141  *
1142  * Return: Number of RX packets processed.
1143  */
1144 static int axienet_rx_poll(struct napi_struct *napi, int budget)
1145 {
1146 	u32 length;
1147 	u32 csumstatus;
1148 	u32 size = 0;
1149 	int packets = 0;
1150 	dma_addr_t tail_p = 0;
1151 	struct axidma_bd *cur_p;
1152 	struct sk_buff *skb, *new_skb;
1153 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
1154 
1155 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1156 
1157 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
1158 		dma_addr_t phys;
1159 
1160 		/* Ensure we see complete descriptor update */
1161 		dma_rmb();
1162 
1163 		skb = cur_p->skb;
1164 		cur_p->skb = NULL;
1165 
1166 		/* skb could be NULL if a previous pass already received the
1167 		 * packet for this slot in the ring, but failed to refill it
1168 		 * with a newly allocated buffer. In this case, don't try to
1169 		 * receive it again.
1170 		 */
1171 		if (likely(skb)) {
1172 			length = cur_p->app4 & 0x0000FFFF;
1173 
1174 			phys = desc_get_phys_addr(lp, cur_p);
1175 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
1176 					 DMA_FROM_DEVICE);
1177 
1178 			skb_put(skb, length);
1179 			skb->protocol = eth_type_trans(skb, lp->ndev);
1180 			/*skb_checksum_none_assert(skb);*/
1181 			skb->ip_summed = CHECKSUM_NONE;
1182 
1183 			/* if we're doing Rx csum offload, set it up */
1184 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
1185 				csumstatus = (cur_p->app2 &
1186 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
1187 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
1188 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
1189 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1190 				}
1191 			} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
1192 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
1193 				skb->ip_summed = CHECKSUM_COMPLETE;
1194 			}
1195 
1196 			napi_gro_receive(napi, skb);
1197 
1198 			size += length;
1199 			packets++;
1200 		}
1201 
1202 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
1203 		if (!new_skb)
1204 			break;
1205 
1206 		phys = dma_map_single(lp->dev, new_skb->data,
1207 				      lp->max_frm_size,
1208 				      DMA_FROM_DEVICE);
1209 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
1210 			if (net_ratelimit())
1211 				netdev_err(lp->ndev, "RX DMA mapping error\n");
1212 			dev_kfree_skb(new_skb);
1213 			break;
1214 		}
1215 		desc_set_phys_addr(lp, phys, cur_p);
1216 
1217 		cur_p->cntrl = lp->max_frm_size;
1218 		cur_p->status = 0;
1219 		cur_p->skb = new_skb;
1220 
1221 		/* Only update tail_p to mark this slot as usable after it has
1222 		 * been successfully refilled.
1223 		 */
1224 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
1225 
1226 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
1227 			lp->rx_bd_ci = 0;
1228 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1229 	}
1230 
1231 	u64_stats_update_begin(&lp->rx_stat_sync);
1232 	u64_stats_add(&lp->rx_packets, packets);
1233 	u64_stats_add(&lp->rx_bytes, size);
1234 	u64_stats_update_end(&lp->rx_stat_sync);
1235 
1236 	if (tail_p)
1237 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1238 
1239 	if (packets < budget && napi_complete_done(napi, packets)) {
1240 		/* Re-enable RX completion interrupts. This should
1241 		 * cause an immediate interrupt if any RX packets are
1242 		 * already pending.
1243 		 */
1244 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1245 	}
1246 	return packets;
1247 }
1248 
1249 /**
1250  * axienet_tx_irq - Tx Done Isr.
1251  * @irq:	irq number
1252  * @_ndev:	net_device pointer
1253  *
1254  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1255  *
1256  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1257  * TX BD processing.
1258  */
1259 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1260 {
1261 	unsigned int status;
1262 	struct net_device *ndev = _ndev;
1263 	struct axienet_local *lp = netdev_priv(ndev);
1264 
1265 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1266 
1267 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1268 		return IRQ_NONE;
1269 
1270 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1271 
1272 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1273 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1274 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1275 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1276 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1277 		schedule_work(&lp->dma_err_task);
1278 	} else {
1279 		/* Disable further TX completion interrupts and schedule
1280 		 * NAPI to handle the completions.
1281 		 */
1282 		u32 cr = lp->tx_dma_cr;
1283 
1284 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1285 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1286 
1287 		napi_schedule(&lp->napi_tx);
1288 	}
1289 
1290 	return IRQ_HANDLED;
1291 }
1292 
1293 /**
1294  * axienet_rx_irq - Rx Isr.
1295  * @irq:	irq number
1296  * @_ndev:	net_device pointer
1297  *
1298  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1299  *
1300  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1301  * processing.
1302  */
1303 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1304 {
1305 	unsigned int status;
1306 	struct net_device *ndev = _ndev;
1307 	struct axienet_local *lp = netdev_priv(ndev);
1308 
1309 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1310 
1311 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1312 		return IRQ_NONE;
1313 
1314 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1315 
1316 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1317 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1318 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1319 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1320 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1321 		schedule_work(&lp->dma_err_task);
1322 	} else {
1323 		/* Disable further RX completion interrupts and schedule
1324 		 * NAPI receive.
1325 		 */
1326 		u32 cr = lp->rx_dma_cr;
1327 
1328 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1329 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1330 
1331 		napi_schedule(&lp->napi_rx);
1332 	}
1333 
1334 	return IRQ_HANDLED;
1335 }
1336 
1337 /**
1338  * axienet_eth_irq - Ethernet core Isr.
1339  * @irq:	irq number
1340  * @_ndev:	net_device pointer
1341  *
1342  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1343  *
1344  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1345  */
1346 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1347 {
1348 	struct net_device *ndev = _ndev;
1349 	struct axienet_local *lp = netdev_priv(ndev);
1350 	unsigned int pending;
1351 
1352 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1353 	if (!pending)
1354 		return IRQ_NONE;
1355 
1356 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1357 		ndev->stats.rx_missed_errors++;
1358 
1359 	if (pending & XAE_INT_RXRJECT_MASK)
1360 		ndev->stats.rx_dropped++;
1361 
1362 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1363 	return IRQ_HANDLED;
1364 }
1365 
1366 static void axienet_dma_err_handler(struct work_struct *work);
1367 
1368 /**
1369  * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine.
1370  * allocate skbuff, map the scatterlist and obtain a descriptor
1371  * and then add the callback information and submit descriptor.
1372  *
1373  * @ndev:	net_device pointer
1374  *
1375  */
1376 static void axienet_rx_submit_desc(struct net_device *ndev)
1377 {
1378 	struct dma_async_tx_descriptor *dma_rx_desc = NULL;
1379 	struct axienet_local *lp = netdev_priv(ndev);
1380 	struct skbuf_dma_descriptor *skbuf_dma;
1381 	struct sk_buff *skb;
1382 	dma_addr_t addr;
1383 
1384 	skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head);
1385 	if (!skbuf_dma)
1386 		return;
1387 
1388 	lp->rx_ring_head++;
1389 	skb = netdev_alloc_skb(ndev, lp->max_frm_size);
1390 	if (!skb)
1391 		return;
1392 
1393 	sg_init_table(skbuf_dma->sgl, 1);
1394 	addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE);
1395 	if (unlikely(dma_mapping_error(lp->dev, addr))) {
1396 		if (net_ratelimit())
1397 			netdev_err(ndev, "DMA mapping error\n");
1398 		goto rx_submit_err_free_skb;
1399 	}
1400 	sg_dma_address(skbuf_dma->sgl) = addr;
1401 	sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size;
1402 	dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl,
1403 					      1, DMA_DEV_TO_MEM,
1404 					      DMA_PREP_INTERRUPT);
1405 	if (!dma_rx_desc)
1406 		goto rx_submit_err_unmap_skb;
1407 
1408 	skbuf_dma->skb = skb;
1409 	skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl);
1410 	skbuf_dma->desc = dma_rx_desc;
1411 	dma_rx_desc->callback_param = lp;
1412 	dma_rx_desc->callback_result = axienet_dma_rx_cb;
1413 	dmaengine_submit(dma_rx_desc);
1414 
1415 	return;
1416 
1417 rx_submit_err_unmap_skb:
1418 	dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE);
1419 rx_submit_err_free_skb:
1420 	dev_kfree_skb(skb);
1421 }
1422 
1423 /**
1424  * axienet_init_dmaengine - init the dmaengine code.
1425  * @ndev:       Pointer to net_device structure
1426  *
1427  * Return: 0, on success.
1428  *          non-zero error value on failure
1429  *
1430  * This is the dmaengine initialization code.
1431  */
1432 static int axienet_init_dmaengine(struct net_device *ndev)
1433 {
1434 	struct axienet_local *lp = netdev_priv(ndev);
1435 	struct skbuf_dma_descriptor *skbuf_dma;
1436 	int i, ret;
1437 
1438 	lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0");
1439 	if (IS_ERR(lp->tx_chan)) {
1440 		dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n");
1441 		return PTR_ERR(lp->tx_chan);
1442 	}
1443 
1444 	lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0");
1445 	if (IS_ERR(lp->rx_chan)) {
1446 		ret = PTR_ERR(lp->rx_chan);
1447 		dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n");
1448 		goto err_dma_release_tx;
1449 	}
1450 
1451 	lp->tx_ring_tail = 0;
1452 	lp->tx_ring_head = 0;
1453 	lp->rx_ring_tail = 0;
1454 	lp->rx_ring_head = 0;
1455 	lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring),
1456 				  GFP_KERNEL);
1457 	if (!lp->tx_skb_ring) {
1458 		ret = -ENOMEM;
1459 		goto err_dma_release_rx;
1460 	}
1461 	for (i = 0; i < TX_BD_NUM_MAX; i++) {
1462 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1463 		if (!skbuf_dma) {
1464 			ret = -ENOMEM;
1465 			goto err_free_tx_skb_ring;
1466 		}
1467 		lp->tx_skb_ring[i] = skbuf_dma;
1468 	}
1469 
1470 	lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring),
1471 				  GFP_KERNEL);
1472 	if (!lp->rx_skb_ring) {
1473 		ret = -ENOMEM;
1474 		goto err_free_tx_skb_ring;
1475 	}
1476 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) {
1477 		skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1478 		if (!skbuf_dma) {
1479 			ret = -ENOMEM;
1480 			goto err_free_rx_skb_ring;
1481 		}
1482 		lp->rx_skb_ring[i] = skbuf_dma;
1483 	}
1484 	/* TODO: Instead of BD_NUM_DEFAULT use runtime support */
1485 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1486 		axienet_rx_submit_desc(ndev);
1487 	dma_async_issue_pending(lp->rx_chan);
1488 
1489 	return 0;
1490 
1491 err_free_rx_skb_ring:
1492 	for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1493 		kfree(lp->rx_skb_ring[i]);
1494 	kfree(lp->rx_skb_ring);
1495 err_free_tx_skb_ring:
1496 	for (i = 0; i < TX_BD_NUM_MAX; i++)
1497 		kfree(lp->tx_skb_ring[i]);
1498 	kfree(lp->tx_skb_ring);
1499 err_dma_release_rx:
1500 	dma_release_channel(lp->rx_chan);
1501 err_dma_release_tx:
1502 	dma_release_channel(lp->tx_chan);
1503 	return ret;
1504 }
1505 
1506 /**
1507  * axienet_init_legacy_dma - init the dma legacy code.
1508  * @ndev:       Pointer to net_device structure
1509  *
1510  * Return: 0, on success.
1511  *          non-zero error value on failure
1512  *
1513  * This is the dma  initialization code. It also allocates interrupt
1514  * service routines, enables the interrupt lines and ISR handling.
1515  *
1516  */
1517 static int axienet_init_legacy_dma(struct net_device *ndev)
1518 {
1519 	int ret;
1520 	struct axienet_local *lp = netdev_priv(ndev);
1521 
1522 	/* Enable worker thread for Axi DMA error handling */
1523 	lp->stopping = false;
1524 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1525 
1526 	napi_enable(&lp->napi_rx);
1527 	napi_enable(&lp->napi_tx);
1528 
1529 	/* Enable interrupts for Axi DMA Tx */
1530 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1531 			  ndev->name, ndev);
1532 	if (ret)
1533 		goto err_tx_irq;
1534 	/* Enable interrupts for Axi DMA Rx */
1535 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1536 			  ndev->name, ndev);
1537 	if (ret)
1538 		goto err_rx_irq;
1539 	/* Enable interrupts for Axi Ethernet core (if defined) */
1540 	if (lp->eth_irq > 0) {
1541 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1542 				  ndev->name, ndev);
1543 		if (ret)
1544 			goto err_eth_irq;
1545 	}
1546 
1547 	return 0;
1548 
1549 err_eth_irq:
1550 	free_irq(lp->rx_irq, ndev);
1551 err_rx_irq:
1552 	free_irq(lp->tx_irq, ndev);
1553 err_tx_irq:
1554 	napi_disable(&lp->napi_tx);
1555 	napi_disable(&lp->napi_rx);
1556 	cancel_work_sync(&lp->dma_err_task);
1557 	dev_err(lp->dev, "request_irq() failed\n");
1558 	return ret;
1559 }
1560 
1561 /**
1562  * axienet_open - Driver open routine.
1563  * @ndev:	Pointer to net_device structure
1564  *
1565  * Return: 0, on success.
1566  *	    non-zero error value on failure
1567  *
1568  * This is the driver open routine. It calls phylink_start to start the
1569  * PHY device.
1570  * It also allocates interrupt service routines, enables the interrupt lines
1571  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1572  * descriptors are initialized.
1573  */
1574 static int axienet_open(struct net_device *ndev)
1575 {
1576 	int ret;
1577 	struct axienet_local *lp = netdev_priv(ndev);
1578 
1579 	/* When we do an Axi Ethernet reset, it resets the complete core
1580 	 * including the MDIO. MDIO must be disabled before resetting.
1581 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1582 	 */
1583 	axienet_lock_mii(lp);
1584 	ret = axienet_device_reset(ndev);
1585 	axienet_unlock_mii(lp);
1586 
1587 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1588 	if (ret) {
1589 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1590 		return ret;
1591 	}
1592 
1593 	phylink_start(lp->phylink);
1594 
1595 	/* Start the statistics refresh work */
1596 	schedule_delayed_work(&lp->stats_work, 0);
1597 
1598 	if (lp->use_dmaengine) {
1599 		/* Enable interrupts for Axi Ethernet core (if defined) */
1600 		if (lp->eth_irq > 0) {
1601 			ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1602 					  ndev->name, ndev);
1603 			if (ret)
1604 				goto err_phy;
1605 		}
1606 
1607 		ret = axienet_init_dmaengine(ndev);
1608 		if (ret < 0)
1609 			goto err_free_eth_irq;
1610 	} else {
1611 		ret = axienet_init_legacy_dma(ndev);
1612 		if (ret)
1613 			goto err_phy;
1614 	}
1615 
1616 	return 0;
1617 
1618 err_free_eth_irq:
1619 	if (lp->eth_irq > 0)
1620 		free_irq(lp->eth_irq, ndev);
1621 err_phy:
1622 	cancel_delayed_work_sync(&lp->stats_work);
1623 	phylink_stop(lp->phylink);
1624 	phylink_disconnect_phy(lp->phylink);
1625 	return ret;
1626 }
1627 
1628 /**
1629  * axienet_stop - Driver stop routine.
1630  * @ndev:	Pointer to net_device structure
1631  *
1632  * Return: 0, on success.
1633  *
1634  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1635  * device. It also removes the interrupt handlers and disables the interrupts.
1636  * The Axi DMA Tx/Rx BDs are released.
1637  */
1638 static int axienet_stop(struct net_device *ndev)
1639 {
1640 	struct axienet_local *lp = netdev_priv(ndev);
1641 	int i;
1642 
1643 	if (!lp->use_dmaengine) {
1644 		WRITE_ONCE(lp->stopping, true);
1645 		flush_work(&lp->dma_err_task);
1646 
1647 		napi_disable(&lp->napi_tx);
1648 		napi_disable(&lp->napi_rx);
1649 	}
1650 
1651 	cancel_delayed_work_sync(&lp->stats_work);
1652 
1653 	phylink_stop(lp->phylink);
1654 	phylink_disconnect_phy(lp->phylink);
1655 
1656 	axienet_setoptions(ndev, lp->options &
1657 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1658 
1659 	if (!lp->use_dmaengine) {
1660 		axienet_dma_stop(lp);
1661 		cancel_work_sync(&lp->dma_err_task);
1662 		free_irq(lp->tx_irq, ndev);
1663 		free_irq(lp->rx_irq, ndev);
1664 		axienet_dma_bd_release(ndev);
1665 	} else {
1666 		dmaengine_terminate_sync(lp->tx_chan);
1667 		dmaengine_synchronize(lp->tx_chan);
1668 		dmaengine_terminate_sync(lp->rx_chan);
1669 		dmaengine_synchronize(lp->rx_chan);
1670 
1671 		for (i = 0; i < TX_BD_NUM_MAX; i++)
1672 			kfree(lp->tx_skb_ring[i]);
1673 		kfree(lp->tx_skb_ring);
1674 		for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1675 			kfree(lp->rx_skb_ring[i]);
1676 		kfree(lp->rx_skb_ring);
1677 
1678 		dma_release_channel(lp->rx_chan);
1679 		dma_release_channel(lp->tx_chan);
1680 	}
1681 
1682 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1683 
1684 	if (lp->eth_irq > 0)
1685 		free_irq(lp->eth_irq, ndev);
1686 	return 0;
1687 }
1688 
1689 /**
1690  * axienet_change_mtu - Driver change mtu routine.
1691  * @ndev:	Pointer to net_device structure
1692  * @new_mtu:	New mtu value to be applied
1693  *
1694  * Return: Always returns 0 (success).
1695  *
1696  * This is the change mtu driver routine. It checks if the Axi Ethernet
1697  * hardware supports jumbo frames before changing the mtu. This can be
1698  * called only when the device is not up.
1699  */
1700 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1701 {
1702 	struct axienet_local *lp = netdev_priv(ndev);
1703 
1704 	if (netif_running(ndev))
1705 		return -EBUSY;
1706 
1707 	if ((new_mtu + VLAN_ETH_HLEN +
1708 		XAE_TRL_SIZE) > lp->rxmem)
1709 		return -EINVAL;
1710 
1711 	WRITE_ONCE(ndev->mtu, new_mtu);
1712 
1713 	return 0;
1714 }
1715 
1716 #ifdef CONFIG_NET_POLL_CONTROLLER
1717 /**
1718  * axienet_poll_controller - Axi Ethernet poll mechanism.
1719  * @ndev:	Pointer to net_device structure
1720  *
1721  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1722  * to polling the ISRs and are enabled back after the polling is done.
1723  */
1724 static void axienet_poll_controller(struct net_device *ndev)
1725 {
1726 	struct axienet_local *lp = netdev_priv(ndev);
1727 
1728 	disable_irq(lp->tx_irq);
1729 	disable_irq(lp->rx_irq);
1730 	axienet_rx_irq(lp->tx_irq, ndev);
1731 	axienet_tx_irq(lp->rx_irq, ndev);
1732 	enable_irq(lp->tx_irq);
1733 	enable_irq(lp->rx_irq);
1734 }
1735 #endif
1736 
1737 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1738 {
1739 	struct axienet_local *lp = netdev_priv(dev);
1740 
1741 	if (!netif_running(dev))
1742 		return -EINVAL;
1743 
1744 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1745 }
1746 
1747 static void
1748 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1749 {
1750 	struct axienet_local *lp = netdev_priv(dev);
1751 	unsigned int start;
1752 
1753 	netdev_stats_to_stats64(stats, &dev->stats);
1754 
1755 	do {
1756 		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1757 		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1758 		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1759 	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1760 
1761 	do {
1762 		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1763 		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1764 		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1765 	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1766 
1767 	if (!(lp->features & XAE_FEATURE_STATS))
1768 		return;
1769 
1770 	do {
1771 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
1772 		stats->rx_length_errors =
1773 			axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
1774 		stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS);
1775 		stats->rx_frame_errors =
1776 			axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
1777 		stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) +
1778 				   axienet_stat(lp, STAT_FRAGMENT_FRAMES) +
1779 				   stats->rx_length_errors +
1780 				   stats->rx_crc_errors +
1781 				   stats->rx_frame_errors;
1782 		stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
1783 
1784 		stats->tx_aborted_errors =
1785 			axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
1786 		stats->tx_fifo_errors =
1787 			axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS);
1788 		stats->tx_window_errors =
1789 			axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
1790 		stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) +
1791 				   stats->tx_aborted_errors +
1792 				   stats->tx_fifo_errors +
1793 				   stats->tx_window_errors;
1794 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
1795 }
1796 
1797 static const struct net_device_ops axienet_netdev_ops = {
1798 	.ndo_open = axienet_open,
1799 	.ndo_stop = axienet_stop,
1800 	.ndo_start_xmit = axienet_start_xmit,
1801 	.ndo_get_stats64 = axienet_get_stats64,
1802 	.ndo_change_mtu	= axienet_change_mtu,
1803 	.ndo_set_mac_address = netdev_set_mac_address,
1804 	.ndo_validate_addr = eth_validate_addr,
1805 	.ndo_eth_ioctl = axienet_ioctl,
1806 	.ndo_set_rx_mode = axienet_set_multicast_list,
1807 #ifdef CONFIG_NET_POLL_CONTROLLER
1808 	.ndo_poll_controller = axienet_poll_controller,
1809 #endif
1810 };
1811 
1812 static const struct net_device_ops axienet_netdev_dmaengine_ops = {
1813 	.ndo_open = axienet_open,
1814 	.ndo_stop = axienet_stop,
1815 	.ndo_start_xmit = axienet_start_xmit_dmaengine,
1816 	.ndo_get_stats64 = axienet_get_stats64,
1817 	.ndo_change_mtu	= axienet_change_mtu,
1818 	.ndo_set_mac_address = netdev_set_mac_address,
1819 	.ndo_validate_addr = eth_validate_addr,
1820 	.ndo_eth_ioctl = axienet_ioctl,
1821 	.ndo_set_rx_mode = axienet_set_multicast_list,
1822 };
1823 
1824 /**
1825  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1826  * @ndev:	Pointer to net_device structure
1827  * @ed:		Pointer to ethtool_drvinfo structure
1828  *
1829  * This implements ethtool command for getting the driver information.
1830  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1831  */
1832 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1833 					 struct ethtool_drvinfo *ed)
1834 {
1835 	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1836 	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1837 }
1838 
1839 /**
1840  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1841  *				   AxiEthernet core.
1842  * @ndev:	Pointer to net_device structure
1843  *
1844  * This implements ethtool command for getting the total register length
1845  * information.
1846  *
1847  * Return: the total regs length
1848  */
1849 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1850 {
1851 	return sizeof(u32) * AXIENET_REGS_N;
1852 }
1853 
1854 /**
1855  * axienet_ethtools_get_regs - Dump the contents of all registers present
1856  *			       in AxiEthernet core.
1857  * @ndev:	Pointer to net_device structure
1858  * @regs:	Pointer to ethtool_regs structure
1859  * @ret:	Void pointer used to return the contents of the registers.
1860  *
1861  * This implements ethtool command for getting the Axi Ethernet register dump.
1862  * Issue "ethtool -d ethX" to execute this function.
1863  */
1864 static void axienet_ethtools_get_regs(struct net_device *ndev,
1865 				      struct ethtool_regs *regs, void *ret)
1866 {
1867 	u32 *data = (u32 *)ret;
1868 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1869 	struct axienet_local *lp = netdev_priv(ndev);
1870 
1871 	regs->version = 0;
1872 	regs->len = len;
1873 
1874 	memset(data, 0, len);
1875 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1876 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1877 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1878 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1879 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1880 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1881 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1882 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1883 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1884 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1885 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1886 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1887 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1888 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1889 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1890 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1891 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1892 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1893 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1894 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1895 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1896 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1897 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1898 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1899 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1900 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1901 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1902 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1903 	if (!lp->use_dmaengine) {
1904 		data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1905 		data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1906 		data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1907 		data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1908 		data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1909 		data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1910 		data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1911 		data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1912 	}
1913 }
1914 
1915 static void
1916 axienet_ethtools_get_ringparam(struct net_device *ndev,
1917 			       struct ethtool_ringparam *ering,
1918 			       struct kernel_ethtool_ringparam *kernel_ering,
1919 			       struct netlink_ext_ack *extack)
1920 {
1921 	struct axienet_local *lp = netdev_priv(ndev);
1922 
1923 	ering->rx_max_pending = RX_BD_NUM_MAX;
1924 	ering->rx_mini_max_pending = 0;
1925 	ering->rx_jumbo_max_pending = 0;
1926 	ering->tx_max_pending = TX_BD_NUM_MAX;
1927 	ering->rx_pending = lp->rx_bd_num;
1928 	ering->rx_mini_pending = 0;
1929 	ering->rx_jumbo_pending = 0;
1930 	ering->tx_pending = lp->tx_bd_num;
1931 }
1932 
1933 static int
1934 axienet_ethtools_set_ringparam(struct net_device *ndev,
1935 			       struct ethtool_ringparam *ering,
1936 			       struct kernel_ethtool_ringparam *kernel_ering,
1937 			       struct netlink_ext_ack *extack)
1938 {
1939 	struct axienet_local *lp = netdev_priv(ndev);
1940 
1941 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1942 	    ering->rx_mini_pending ||
1943 	    ering->rx_jumbo_pending ||
1944 	    ering->tx_pending < TX_BD_NUM_MIN ||
1945 	    ering->tx_pending > TX_BD_NUM_MAX)
1946 		return -EINVAL;
1947 
1948 	if (netif_running(ndev))
1949 		return -EBUSY;
1950 
1951 	lp->rx_bd_num = ering->rx_pending;
1952 	lp->tx_bd_num = ering->tx_pending;
1953 	return 0;
1954 }
1955 
1956 /**
1957  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1958  *				     Tx and Rx paths.
1959  * @ndev:	Pointer to net_device structure
1960  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1961  *
1962  * This implements ethtool command for getting axi ethernet pause frame
1963  * setting. Issue "ethtool -a ethX" to execute this function.
1964  */
1965 static void
1966 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1967 				struct ethtool_pauseparam *epauseparm)
1968 {
1969 	struct axienet_local *lp = netdev_priv(ndev);
1970 
1971 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1972 }
1973 
1974 /**
1975  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1976  *				     settings.
1977  * @ndev:	Pointer to net_device structure
1978  * @epauseparm:Pointer to ethtool_pauseparam structure
1979  *
1980  * This implements ethtool command for enabling flow control on Rx and Tx
1981  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1982  * function.
1983  *
1984  * Return: 0 on success, -EFAULT if device is running
1985  */
1986 static int
1987 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1988 				struct ethtool_pauseparam *epauseparm)
1989 {
1990 	struct axienet_local *lp = netdev_priv(ndev);
1991 
1992 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1993 }
1994 
1995 /**
1996  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1997  * @ndev:	Pointer to net_device structure
1998  * @ecoalesce:	Pointer to ethtool_coalesce structure
1999  * @kernel_coal: ethtool CQE mode setting structure
2000  * @extack:	extack for reporting error messages
2001  *
2002  * This implements ethtool command for getting the DMA interrupt coalescing
2003  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
2004  * execute this function.
2005  *
2006  * Return: 0 always
2007  */
2008 static int
2009 axienet_ethtools_get_coalesce(struct net_device *ndev,
2010 			      struct ethtool_coalesce *ecoalesce,
2011 			      struct kernel_ethtool_coalesce *kernel_coal,
2012 			      struct netlink_ext_ack *extack)
2013 {
2014 	struct axienet_local *lp = netdev_priv(ndev);
2015 
2016 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
2017 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
2018 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
2019 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
2020 	return 0;
2021 }
2022 
2023 /**
2024  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
2025  * @ndev:	Pointer to net_device structure
2026  * @ecoalesce:	Pointer to ethtool_coalesce structure
2027  * @kernel_coal: ethtool CQE mode setting structure
2028  * @extack:	extack for reporting error messages
2029  *
2030  * This implements ethtool command for setting the DMA interrupt coalescing
2031  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
2032  * prompt to execute this function.
2033  *
2034  * Return: 0, on success, Non-zero error value on failure.
2035  */
2036 static int
2037 axienet_ethtools_set_coalesce(struct net_device *ndev,
2038 			      struct ethtool_coalesce *ecoalesce,
2039 			      struct kernel_ethtool_coalesce *kernel_coal,
2040 			      struct netlink_ext_ack *extack)
2041 {
2042 	struct axienet_local *lp = netdev_priv(ndev);
2043 
2044 	if (netif_running(ndev)) {
2045 		NL_SET_ERR_MSG(extack,
2046 			       "Please stop netif before applying configuration");
2047 		return -EBUSY;
2048 	}
2049 
2050 	if (ecoalesce->rx_max_coalesced_frames)
2051 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
2052 	if (ecoalesce->rx_coalesce_usecs)
2053 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
2054 	if (ecoalesce->tx_max_coalesced_frames)
2055 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
2056 	if (ecoalesce->tx_coalesce_usecs)
2057 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
2058 
2059 	return 0;
2060 }
2061 
2062 static int
2063 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
2064 				    struct ethtool_link_ksettings *cmd)
2065 {
2066 	struct axienet_local *lp = netdev_priv(ndev);
2067 
2068 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
2069 }
2070 
2071 static int
2072 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
2073 				    const struct ethtool_link_ksettings *cmd)
2074 {
2075 	struct axienet_local *lp = netdev_priv(ndev);
2076 
2077 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
2078 }
2079 
2080 static int axienet_ethtools_nway_reset(struct net_device *dev)
2081 {
2082 	struct axienet_local *lp = netdev_priv(dev);
2083 
2084 	return phylink_ethtool_nway_reset(lp->phylink);
2085 }
2086 
2087 static void axienet_ethtools_get_ethtool_stats(struct net_device *dev,
2088 					       struct ethtool_stats *stats,
2089 					       u64 *data)
2090 {
2091 	struct axienet_local *lp = netdev_priv(dev);
2092 	unsigned int start;
2093 
2094 	do {
2095 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2096 		data[0] = axienet_stat(lp, STAT_RX_BYTES);
2097 		data[1] = axienet_stat(lp, STAT_TX_BYTES);
2098 		data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES);
2099 		data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES);
2100 		data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES);
2101 		data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES);
2102 		data[8] = axienet_stat(lp, STAT_USER_DEFINED0);
2103 		data[9] = axienet_stat(lp, STAT_USER_DEFINED1);
2104 		data[10] = axienet_stat(lp, STAT_USER_DEFINED2);
2105 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2106 }
2107 
2108 static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = {
2109 	"Received bytes",
2110 	"Transmitted bytes",
2111 	"RX Good VLAN Tagged Frames",
2112 	"TX Good VLAN Tagged Frames",
2113 	"TX Good PFC Frames",
2114 	"RX Good PFC Frames",
2115 	"User Defined Counter 0",
2116 	"User Defined Counter 1",
2117 	"User Defined Counter 2",
2118 };
2119 
2120 static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2121 {
2122 	switch (stringset) {
2123 	case ETH_SS_STATS:
2124 		memcpy(data, axienet_ethtool_stats_strings,
2125 		       sizeof(axienet_ethtool_stats_strings));
2126 		break;
2127 	}
2128 }
2129 
2130 static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset)
2131 {
2132 	struct axienet_local *lp = netdev_priv(dev);
2133 
2134 	switch (sset) {
2135 	case ETH_SS_STATS:
2136 		if (lp->features & XAE_FEATURE_STATS)
2137 			return ARRAY_SIZE(axienet_ethtool_stats_strings);
2138 		fallthrough;
2139 	default:
2140 		return -EOPNOTSUPP;
2141 	}
2142 }
2143 
2144 static void
2145 axienet_ethtools_get_pause_stats(struct net_device *dev,
2146 				 struct ethtool_pause_stats *pause_stats)
2147 {
2148 	struct axienet_local *lp = netdev_priv(dev);
2149 	unsigned int start;
2150 
2151 	if (!(lp->features & XAE_FEATURE_STATS))
2152 		return;
2153 
2154 	do {
2155 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2156 		pause_stats->tx_pause_frames =
2157 			axienet_stat(lp, STAT_TX_PAUSE_FRAMES);
2158 		pause_stats->rx_pause_frames =
2159 			axienet_stat(lp, STAT_RX_PAUSE_FRAMES);
2160 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2161 }
2162 
2163 static void
2164 axienet_ethtool_get_eth_mac_stats(struct net_device *dev,
2165 				  struct ethtool_eth_mac_stats *mac_stats)
2166 {
2167 	struct axienet_local *lp = netdev_priv(dev);
2168 	unsigned int start;
2169 
2170 	if (!(lp->features & XAE_FEATURE_STATS))
2171 		return;
2172 
2173 	do {
2174 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2175 		mac_stats->FramesTransmittedOK =
2176 			axienet_stat(lp, STAT_TX_GOOD_FRAMES);
2177 		mac_stats->SingleCollisionFrames =
2178 			axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES);
2179 		mac_stats->MultipleCollisionFrames =
2180 			axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES);
2181 		mac_stats->FramesReceivedOK =
2182 			axienet_stat(lp, STAT_RX_GOOD_FRAMES);
2183 		mac_stats->FrameCheckSequenceErrors =
2184 			axienet_stat(lp, STAT_RX_FCS_ERRORS);
2185 		mac_stats->AlignmentErrors =
2186 			axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
2187 		mac_stats->FramesWithDeferredXmissions =
2188 			axienet_stat(lp, STAT_TX_DEFERRED_FRAMES);
2189 		mac_stats->LateCollisions =
2190 			axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
2191 		mac_stats->FramesAbortedDueToXSColls =
2192 			axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
2193 		mac_stats->MulticastFramesXmittedOK =
2194 			axienet_stat(lp, STAT_TX_MULTICAST_FRAMES);
2195 		mac_stats->BroadcastFramesXmittedOK =
2196 			axienet_stat(lp, STAT_TX_BROADCAST_FRAMES);
2197 		mac_stats->FramesWithExcessiveDeferral =
2198 			axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL);
2199 		mac_stats->MulticastFramesReceivedOK =
2200 			axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
2201 		mac_stats->BroadcastFramesReceivedOK =
2202 			axienet_stat(lp, STAT_RX_BROADCAST_FRAMES);
2203 		mac_stats->InRangeLengthErrors =
2204 			axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
2205 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2206 }
2207 
2208 static void
2209 axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev,
2210 				   struct ethtool_eth_ctrl_stats *ctrl_stats)
2211 {
2212 	struct axienet_local *lp = netdev_priv(dev);
2213 	unsigned int start;
2214 
2215 	if (!(lp->features & XAE_FEATURE_STATS))
2216 		return;
2217 
2218 	do {
2219 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2220 		ctrl_stats->MACControlFramesTransmitted =
2221 			axienet_stat(lp, STAT_TX_CONTROL_FRAMES);
2222 		ctrl_stats->MACControlFramesReceived =
2223 			axienet_stat(lp, STAT_RX_CONTROL_FRAMES);
2224 		ctrl_stats->UnsupportedOpcodesReceived =
2225 			axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS);
2226 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2227 }
2228 
2229 static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = {
2230 	{   64,    64 },
2231 	{   65,   127 },
2232 	{  128,   255 },
2233 	{  256,   511 },
2234 	{  512,  1023 },
2235 	{ 1024,  1518 },
2236 	{ 1519, 16384 },
2237 	{ },
2238 };
2239 
2240 static void
2241 axienet_ethtool_get_rmon_stats(struct net_device *dev,
2242 			       struct ethtool_rmon_stats *rmon_stats,
2243 			       const struct ethtool_rmon_hist_range **ranges)
2244 {
2245 	struct axienet_local *lp = netdev_priv(dev);
2246 	unsigned int start;
2247 
2248 	if (!(lp->features & XAE_FEATURE_STATS))
2249 		return;
2250 
2251 	do {
2252 		start = read_seqcount_begin(&lp->hw_stats_seqcount);
2253 		rmon_stats->undersize_pkts =
2254 			axienet_stat(lp, STAT_UNDERSIZE_FRAMES);
2255 		rmon_stats->oversize_pkts =
2256 			axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES);
2257 		rmon_stats->fragments =
2258 			axienet_stat(lp, STAT_FRAGMENT_FRAMES);
2259 
2260 		rmon_stats->hist[0] =
2261 			axienet_stat(lp, STAT_RX_64_BYTE_FRAMES);
2262 		rmon_stats->hist[1] =
2263 			axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES);
2264 		rmon_stats->hist[2] =
2265 			axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES);
2266 		rmon_stats->hist[3] =
2267 			axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES);
2268 		rmon_stats->hist[4] =
2269 			axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES);
2270 		rmon_stats->hist[5] =
2271 			axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES);
2272 		rmon_stats->hist[6] =
2273 			rmon_stats->oversize_pkts;
2274 
2275 		rmon_stats->hist_tx[0] =
2276 			axienet_stat(lp, STAT_TX_64_BYTE_FRAMES);
2277 		rmon_stats->hist_tx[1] =
2278 			axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES);
2279 		rmon_stats->hist_tx[2] =
2280 			axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES);
2281 		rmon_stats->hist_tx[3] =
2282 			axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES);
2283 		rmon_stats->hist_tx[4] =
2284 			axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES);
2285 		rmon_stats->hist_tx[5] =
2286 			axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES);
2287 		rmon_stats->hist_tx[6] =
2288 			axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES);
2289 	} while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2290 
2291 	*ranges = axienet_rmon_ranges;
2292 }
2293 
2294 static const struct ethtool_ops axienet_ethtool_ops = {
2295 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
2296 				     ETHTOOL_COALESCE_USECS,
2297 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
2298 	.get_regs_len   = axienet_ethtools_get_regs_len,
2299 	.get_regs       = axienet_ethtools_get_regs,
2300 	.get_link       = ethtool_op_get_link,
2301 	.get_ringparam	= axienet_ethtools_get_ringparam,
2302 	.set_ringparam	= axienet_ethtools_set_ringparam,
2303 	.get_pauseparam = axienet_ethtools_get_pauseparam,
2304 	.set_pauseparam = axienet_ethtools_set_pauseparam,
2305 	.get_coalesce   = axienet_ethtools_get_coalesce,
2306 	.set_coalesce   = axienet_ethtools_set_coalesce,
2307 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
2308 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
2309 	.nway_reset	= axienet_ethtools_nway_reset,
2310 	.get_ethtool_stats = axienet_ethtools_get_ethtool_stats,
2311 	.get_strings    = axienet_ethtools_get_strings,
2312 	.get_sset_count = axienet_ethtools_get_sset_count,
2313 	.get_pause_stats = axienet_ethtools_get_pause_stats,
2314 	.get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats,
2315 	.get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats,
2316 	.get_rmon_stats = axienet_ethtool_get_rmon_stats,
2317 };
2318 
2319 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
2320 {
2321 	return container_of(pcs, struct axienet_local, pcs);
2322 }
2323 
2324 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
2325 				  struct phylink_link_state *state)
2326 {
2327 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2328 
2329 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
2330 }
2331 
2332 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
2333 {
2334 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2335 
2336 	phylink_mii_c22_pcs_an_restart(pcs_phy);
2337 }
2338 
2339 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2340 			      phy_interface_t interface,
2341 			      const unsigned long *advertising,
2342 			      bool permit_pause_to_mac)
2343 {
2344 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2345 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
2346 	struct axienet_local *lp = netdev_priv(ndev);
2347 	int ret;
2348 
2349 	if (lp->switch_x_sgmii) {
2350 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
2351 				    interface == PHY_INTERFACE_MODE_SGMII ?
2352 					XLNX_MII_STD_SELECT_SGMII : 0);
2353 		if (ret < 0) {
2354 			netdev_warn(ndev,
2355 				    "Failed to switch PHY interface: %d\n",
2356 				    ret);
2357 			return ret;
2358 		}
2359 	}
2360 
2361 	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
2362 					 neg_mode);
2363 	if (ret < 0)
2364 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
2365 
2366 	return ret;
2367 }
2368 
2369 static const struct phylink_pcs_ops axienet_pcs_ops = {
2370 	.pcs_get_state = axienet_pcs_get_state,
2371 	.pcs_config = axienet_pcs_config,
2372 	.pcs_an_restart = axienet_pcs_an_restart,
2373 };
2374 
2375 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
2376 						  phy_interface_t interface)
2377 {
2378 	struct net_device *ndev = to_net_dev(config->dev);
2379 	struct axienet_local *lp = netdev_priv(ndev);
2380 
2381 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
2382 	    interface ==  PHY_INTERFACE_MODE_SGMII)
2383 		return &lp->pcs;
2384 
2385 	return NULL;
2386 }
2387 
2388 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
2389 			       const struct phylink_link_state *state)
2390 {
2391 	/* nothing meaningful to do */
2392 }
2393 
2394 static void axienet_mac_link_down(struct phylink_config *config,
2395 				  unsigned int mode,
2396 				  phy_interface_t interface)
2397 {
2398 	/* nothing meaningful to do */
2399 }
2400 
2401 static void axienet_mac_link_up(struct phylink_config *config,
2402 				struct phy_device *phy,
2403 				unsigned int mode, phy_interface_t interface,
2404 				int speed, int duplex,
2405 				bool tx_pause, bool rx_pause)
2406 {
2407 	struct net_device *ndev = to_net_dev(config->dev);
2408 	struct axienet_local *lp = netdev_priv(ndev);
2409 	u32 emmc_reg, fcc_reg;
2410 
2411 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
2412 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
2413 
2414 	switch (speed) {
2415 	case SPEED_1000:
2416 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
2417 		break;
2418 	case SPEED_100:
2419 		emmc_reg |= XAE_EMMC_LINKSPD_100;
2420 		break;
2421 	case SPEED_10:
2422 		emmc_reg |= XAE_EMMC_LINKSPD_10;
2423 		break;
2424 	default:
2425 		dev_err(&ndev->dev,
2426 			"Speed other than 10, 100 or 1Gbps is not supported\n");
2427 		break;
2428 	}
2429 
2430 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
2431 
2432 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
2433 	if (tx_pause)
2434 		fcc_reg |= XAE_FCC_FCTX_MASK;
2435 	else
2436 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
2437 	if (rx_pause)
2438 		fcc_reg |= XAE_FCC_FCRX_MASK;
2439 	else
2440 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
2441 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
2442 }
2443 
2444 static const struct phylink_mac_ops axienet_phylink_ops = {
2445 	.mac_select_pcs = axienet_mac_select_pcs,
2446 	.mac_config = axienet_mac_config,
2447 	.mac_link_down = axienet_mac_link_down,
2448 	.mac_link_up = axienet_mac_link_up,
2449 };
2450 
2451 /**
2452  * axienet_dma_err_handler - Work queue task for Axi DMA Error
2453  * @work:	pointer to work_struct
2454  *
2455  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
2456  * Tx/Rx BDs.
2457  */
2458 static void axienet_dma_err_handler(struct work_struct *work)
2459 {
2460 	u32 i;
2461 	u32 axienet_status;
2462 	struct axidma_bd *cur_p;
2463 	struct axienet_local *lp = container_of(work, struct axienet_local,
2464 						dma_err_task);
2465 	struct net_device *ndev = lp->ndev;
2466 
2467 	/* Don't bother if we are going to stop anyway */
2468 	if (READ_ONCE(lp->stopping))
2469 		return;
2470 
2471 	napi_disable(&lp->napi_tx);
2472 	napi_disable(&lp->napi_rx);
2473 
2474 	axienet_setoptions(ndev, lp->options &
2475 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2476 
2477 	axienet_dma_stop(lp);
2478 
2479 	for (i = 0; i < lp->tx_bd_num; i++) {
2480 		cur_p = &lp->tx_bd_v[i];
2481 		if (cur_p->cntrl) {
2482 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
2483 
2484 			dma_unmap_single(lp->dev, addr,
2485 					 (cur_p->cntrl &
2486 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
2487 					 DMA_TO_DEVICE);
2488 		}
2489 		if (cur_p->skb)
2490 			dev_kfree_skb_irq(cur_p->skb);
2491 		cur_p->phys = 0;
2492 		cur_p->phys_msb = 0;
2493 		cur_p->cntrl = 0;
2494 		cur_p->status = 0;
2495 		cur_p->app0 = 0;
2496 		cur_p->app1 = 0;
2497 		cur_p->app2 = 0;
2498 		cur_p->app3 = 0;
2499 		cur_p->app4 = 0;
2500 		cur_p->skb = NULL;
2501 	}
2502 
2503 	for (i = 0; i < lp->rx_bd_num; i++) {
2504 		cur_p = &lp->rx_bd_v[i];
2505 		cur_p->status = 0;
2506 		cur_p->app0 = 0;
2507 		cur_p->app1 = 0;
2508 		cur_p->app2 = 0;
2509 		cur_p->app3 = 0;
2510 		cur_p->app4 = 0;
2511 	}
2512 
2513 	lp->tx_bd_ci = 0;
2514 	lp->tx_bd_tail = 0;
2515 	lp->rx_bd_ci = 0;
2516 
2517 	axienet_dma_start(lp);
2518 
2519 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
2520 	axienet_status &= ~XAE_RCW1_RX_MASK;
2521 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
2522 
2523 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
2524 	if (axienet_status & XAE_INT_RXRJECT_MASK)
2525 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
2526 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
2527 		    XAE_INT_RECV_ERROR_MASK : 0);
2528 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
2529 
2530 	/* Sync default options with HW but leave receiver and
2531 	 * transmitter disabled.
2532 	 */
2533 	axienet_setoptions(ndev, lp->options &
2534 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2535 	axienet_set_mac_address(ndev, NULL);
2536 	axienet_set_multicast_list(ndev);
2537 	napi_enable(&lp->napi_rx);
2538 	napi_enable(&lp->napi_tx);
2539 	axienet_setoptions(ndev, lp->options);
2540 }
2541 
2542 /**
2543  * axienet_probe - Axi Ethernet probe function.
2544  * @pdev:	Pointer to platform device structure.
2545  *
2546  * Return: 0, on success
2547  *	    Non-zero error value on failure.
2548  *
2549  * This is the probe routine for Axi Ethernet driver. This is called before
2550  * any other driver routines are invoked. It allocates and sets up the Ethernet
2551  * device. Parses through device tree and populates fields of
2552  * axienet_local. It registers the Ethernet device.
2553  */
2554 static int axienet_probe(struct platform_device *pdev)
2555 {
2556 	int ret;
2557 	struct device_node *np;
2558 	struct axienet_local *lp;
2559 	struct net_device *ndev;
2560 	struct resource *ethres;
2561 	u8 mac_addr[ETH_ALEN];
2562 	int addr_width = 32;
2563 	u32 value;
2564 
2565 	ndev = alloc_etherdev(sizeof(*lp));
2566 	if (!ndev)
2567 		return -ENOMEM;
2568 
2569 	platform_set_drvdata(pdev, ndev);
2570 
2571 	SET_NETDEV_DEV(ndev, &pdev->dev);
2572 	ndev->features = NETIF_F_SG;
2573 	ndev->ethtool_ops = &axienet_ethtool_ops;
2574 
2575 	/* MTU range: 64 - 9000 */
2576 	ndev->min_mtu = 64;
2577 	ndev->max_mtu = XAE_JUMBO_MTU;
2578 
2579 	lp = netdev_priv(ndev);
2580 	lp->ndev = ndev;
2581 	lp->dev = &pdev->dev;
2582 	lp->options = XAE_OPTION_DEFAULTS;
2583 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
2584 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
2585 
2586 	u64_stats_init(&lp->rx_stat_sync);
2587 	u64_stats_init(&lp->tx_stat_sync);
2588 
2589 	mutex_init(&lp->stats_lock);
2590 	seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock);
2591 	INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats);
2592 
2593 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
2594 	if (!lp->axi_clk) {
2595 		/* For backward compatibility, if named AXI clock is not present,
2596 		 * treat the first clock specified as the AXI clock.
2597 		 */
2598 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
2599 	}
2600 	if (IS_ERR(lp->axi_clk)) {
2601 		ret = PTR_ERR(lp->axi_clk);
2602 		goto free_netdev;
2603 	}
2604 	ret = clk_prepare_enable(lp->axi_clk);
2605 	if (ret) {
2606 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
2607 		goto free_netdev;
2608 	}
2609 
2610 	lp->misc_clks[0].id = "axis_clk";
2611 	lp->misc_clks[1].id = "ref_clk";
2612 	lp->misc_clks[2].id = "mgt_clk";
2613 
2614 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2615 	if (ret)
2616 		goto cleanup_clk;
2617 
2618 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2619 	if (ret)
2620 		goto cleanup_clk;
2621 
2622 	/* Map device registers */
2623 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
2624 	if (IS_ERR(lp->regs)) {
2625 		ret = PTR_ERR(lp->regs);
2626 		goto cleanup_clk;
2627 	}
2628 	lp->regs_start = ethres->start;
2629 
2630 	/* Setup checksum offload, but default to off if not specified */
2631 	lp->features = 0;
2632 
2633 	if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS)
2634 		lp->features |= XAE_FEATURE_STATS;
2635 
2636 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
2637 	if (!ret) {
2638 		switch (value) {
2639 		case 1:
2640 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
2641 			/* Can checksum any contiguous range */
2642 			ndev->features |= NETIF_F_HW_CSUM;
2643 			break;
2644 		case 2:
2645 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
2646 			/* Can checksum TCP/UDP over IPv4. */
2647 			ndev->features |= NETIF_F_IP_CSUM;
2648 			break;
2649 		}
2650 	}
2651 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
2652 	if (!ret) {
2653 		switch (value) {
2654 		case 1:
2655 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
2656 			ndev->features |= NETIF_F_RXCSUM;
2657 			break;
2658 		case 2:
2659 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
2660 			ndev->features |= NETIF_F_RXCSUM;
2661 			break;
2662 		}
2663 	}
2664 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
2665 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
2666 	 * we can enable jumbo option and start supporting jumbo frames.
2667 	 * Here we check for memory allocated for Rx/Tx in the hardware from
2668 	 * the device-tree and accordingly set flags.
2669 	 */
2670 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
2671 
2672 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
2673 						   "xlnx,switch-x-sgmii");
2674 
2675 	/* Start with the proprietary, and broken phy_type */
2676 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
2677 	if (!ret) {
2678 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
2679 		switch (value) {
2680 		case XAE_PHY_TYPE_MII:
2681 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
2682 			break;
2683 		case XAE_PHY_TYPE_GMII:
2684 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
2685 			break;
2686 		case XAE_PHY_TYPE_RGMII_2_0:
2687 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
2688 			break;
2689 		case XAE_PHY_TYPE_SGMII:
2690 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2691 			break;
2692 		case XAE_PHY_TYPE_1000BASE_X:
2693 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2694 			break;
2695 		default:
2696 			ret = -EINVAL;
2697 			goto cleanup_clk;
2698 		}
2699 	} else {
2700 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2701 		if (ret)
2702 			goto cleanup_clk;
2703 	}
2704 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2705 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2706 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2707 		ret = -EINVAL;
2708 		goto cleanup_clk;
2709 	}
2710 
2711 	if (!of_property_present(pdev->dev.of_node, "dmas")) {
2712 		/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2713 		np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2714 
2715 		if (np) {
2716 			struct resource dmares;
2717 
2718 			ret = of_address_to_resource(np, 0, &dmares);
2719 			if (ret) {
2720 				dev_err(&pdev->dev,
2721 					"unable to get DMA resource\n");
2722 				of_node_put(np);
2723 				goto cleanup_clk;
2724 			}
2725 			lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2726 							     &dmares);
2727 			lp->rx_irq = irq_of_parse_and_map(np, 1);
2728 			lp->tx_irq = irq_of_parse_and_map(np, 0);
2729 			of_node_put(np);
2730 			lp->eth_irq = platform_get_irq_optional(pdev, 0);
2731 		} else {
2732 			/* Check for these resources directly on the Ethernet node. */
2733 			lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2734 			lp->rx_irq = platform_get_irq(pdev, 1);
2735 			lp->tx_irq = platform_get_irq(pdev, 0);
2736 			lp->eth_irq = platform_get_irq_optional(pdev, 2);
2737 		}
2738 		if (IS_ERR(lp->dma_regs)) {
2739 			dev_err(&pdev->dev, "could not map DMA regs\n");
2740 			ret = PTR_ERR(lp->dma_regs);
2741 			goto cleanup_clk;
2742 		}
2743 		if (lp->rx_irq <= 0 || lp->tx_irq <= 0) {
2744 			dev_err(&pdev->dev, "could not determine irqs\n");
2745 			ret = -ENOMEM;
2746 			goto cleanup_clk;
2747 		}
2748 
2749 		/* Reset core now that clocks are enabled, prior to accessing MDIO */
2750 		ret = __axienet_device_reset(lp);
2751 		if (ret)
2752 			goto cleanup_clk;
2753 
2754 		/* Autodetect the need for 64-bit DMA pointers.
2755 		 * When the IP is configured for a bus width bigger than 32 bits,
2756 		 * writing the MSB registers is mandatory, even if they are all 0.
2757 		 * We can detect this case by writing all 1's to one such register
2758 		 * and see if that sticks: when the IP is configured for 32 bits
2759 		 * only, those registers are RES0.
2760 		 * Those MSB registers were introduced in IP v7.1, which we check first.
2761 		 */
2762 		if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2763 			void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2764 
2765 			iowrite32(0x0, desc);
2766 			if (ioread32(desc) == 0) {	/* sanity check */
2767 				iowrite32(0xffffffff, desc);
2768 				if (ioread32(desc) > 0) {
2769 					lp->features |= XAE_FEATURE_DMA_64BIT;
2770 					addr_width = 64;
2771 					dev_info(&pdev->dev,
2772 						 "autodetected 64-bit DMA range\n");
2773 				}
2774 				iowrite32(0x0, desc);
2775 			}
2776 		}
2777 		if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2778 			dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2779 			ret = -EINVAL;
2780 			goto cleanup_clk;
2781 		}
2782 
2783 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2784 		if (ret) {
2785 			dev_err(&pdev->dev, "No suitable DMA available\n");
2786 			goto cleanup_clk;
2787 		}
2788 		netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
2789 		netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
2790 	} else {
2791 		struct xilinx_vdma_config cfg;
2792 		struct dma_chan *tx_chan;
2793 
2794 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2795 		if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) {
2796 			ret = lp->eth_irq;
2797 			goto cleanup_clk;
2798 		}
2799 		tx_chan = dma_request_chan(lp->dev, "tx_chan0");
2800 		if (IS_ERR(tx_chan)) {
2801 			ret = PTR_ERR(tx_chan);
2802 			dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n");
2803 			goto cleanup_clk;
2804 		}
2805 
2806 		cfg.reset = 1;
2807 		/* As name says VDMA but it has support for DMA channel reset */
2808 		ret = xilinx_vdma_channel_set_config(tx_chan, &cfg);
2809 		if (ret < 0) {
2810 			dev_err(&pdev->dev, "Reset channel failed\n");
2811 			dma_release_channel(tx_chan);
2812 			goto cleanup_clk;
2813 		}
2814 
2815 		dma_release_channel(tx_chan);
2816 		lp->use_dmaengine = 1;
2817 	}
2818 
2819 	if (lp->use_dmaengine)
2820 		ndev->netdev_ops = &axienet_netdev_dmaengine_ops;
2821 	else
2822 		ndev->netdev_ops = &axienet_netdev_ops;
2823 	/* Check for Ethernet core IRQ (optional) */
2824 	if (lp->eth_irq <= 0)
2825 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2826 
2827 	/* Retrieve the MAC address */
2828 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2829 	if (!ret) {
2830 		axienet_set_mac_address(ndev, mac_addr);
2831 	} else {
2832 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2833 			 ret);
2834 		axienet_set_mac_address(ndev, NULL);
2835 	}
2836 
2837 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2838 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2839 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2840 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2841 
2842 	ret = axienet_mdio_setup(lp);
2843 	if (ret)
2844 		dev_warn(&pdev->dev,
2845 			 "error registering MDIO bus: %d\n", ret);
2846 
2847 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2848 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2849 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2850 		if (!np) {
2851 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2852 			 * Falling back to "phy-handle" here is only for
2853 			 * backward compatibility with old device trees.
2854 			 */
2855 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2856 		}
2857 		if (!np) {
2858 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2859 			ret = -EINVAL;
2860 			goto cleanup_mdio;
2861 		}
2862 		lp->pcs_phy = of_mdio_find_device(np);
2863 		if (!lp->pcs_phy) {
2864 			ret = -EPROBE_DEFER;
2865 			of_node_put(np);
2866 			goto cleanup_mdio;
2867 		}
2868 		of_node_put(np);
2869 		lp->pcs.ops = &axienet_pcs_ops;
2870 		lp->pcs.neg_mode = true;
2871 		lp->pcs.poll = true;
2872 	}
2873 
2874 	lp->phylink_config.dev = &ndev->dev;
2875 	lp->phylink_config.type = PHYLINK_NETDEV;
2876 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2877 		MAC_10FD | MAC_100FD | MAC_1000FD;
2878 
2879 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2880 	if (lp->switch_x_sgmii) {
2881 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2882 			  lp->phylink_config.supported_interfaces);
2883 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2884 			  lp->phylink_config.supported_interfaces);
2885 	}
2886 
2887 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2888 				     lp->phy_mode,
2889 				     &axienet_phylink_ops);
2890 	if (IS_ERR(lp->phylink)) {
2891 		ret = PTR_ERR(lp->phylink);
2892 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2893 		goto cleanup_mdio;
2894 	}
2895 
2896 	ret = register_netdev(lp->ndev);
2897 	if (ret) {
2898 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2899 		goto cleanup_phylink;
2900 	}
2901 
2902 	return 0;
2903 
2904 cleanup_phylink:
2905 	phylink_destroy(lp->phylink);
2906 
2907 cleanup_mdio:
2908 	if (lp->pcs_phy)
2909 		put_device(&lp->pcs_phy->dev);
2910 	if (lp->mii_bus)
2911 		axienet_mdio_teardown(lp);
2912 cleanup_clk:
2913 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2914 	clk_disable_unprepare(lp->axi_clk);
2915 
2916 free_netdev:
2917 	free_netdev(ndev);
2918 
2919 	return ret;
2920 }
2921 
2922 static void axienet_remove(struct platform_device *pdev)
2923 {
2924 	struct net_device *ndev = platform_get_drvdata(pdev);
2925 	struct axienet_local *lp = netdev_priv(ndev);
2926 
2927 	unregister_netdev(ndev);
2928 
2929 	if (lp->phylink)
2930 		phylink_destroy(lp->phylink);
2931 
2932 	if (lp->pcs_phy)
2933 		put_device(&lp->pcs_phy->dev);
2934 
2935 	axienet_mdio_teardown(lp);
2936 
2937 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2938 	clk_disable_unprepare(lp->axi_clk);
2939 
2940 	free_netdev(ndev);
2941 }
2942 
2943 static void axienet_shutdown(struct platform_device *pdev)
2944 {
2945 	struct net_device *ndev = platform_get_drvdata(pdev);
2946 
2947 	rtnl_lock();
2948 	netif_device_detach(ndev);
2949 
2950 	if (netif_running(ndev))
2951 		dev_close(ndev);
2952 
2953 	rtnl_unlock();
2954 }
2955 
2956 static int axienet_suspend(struct device *dev)
2957 {
2958 	struct net_device *ndev = dev_get_drvdata(dev);
2959 
2960 	if (!netif_running(ndev))
2961 		return 0;
2962 
2963 	netif_device_detach(ndev);
2964 
2965 	rtnl_lock();
2966 	axienet_stop(ndev);
2967 	rtnl_unlock();
2968 
2969 	return 0;
2970 }
2971 
2972 static int axienet_resume(struct device *dev)
2973 {
2974 	struct net_device *ndev = dev_get_drvdata(dev);
2975 
2976 	if (!netif_running(ndev))
2977 		return 0;
2978 
2979 	rtnl_lock();
2980 	axienet_open(ndev);
2981 	rtnl_unlock();
2982 
2983 	netif_device_attach(ndev);
2984 
2985 	return 0;
2986 }
2987 
2988 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2989 				axienet_suspend, axienet_resume);
2990 
2991 static struct platform_driver axienet_driver = {
2992 	.probe = axienet_probe,
2993 	.remove_new = axienet_remove,
2994 	.shutdown = axienet_shutdown,
2995 	.driver = {
2996 		 .name = "xilinx_axienet",
2997 		 .pm = &axienet_pm_ops,
2998 		 .of_match_table = axienet_of_match,
2999 	},
3000 };
3001 
3002 module_platform_driver(axienet_driver);
3003 
3004 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
3005 MODULE_AUTHOR("Xilinx");
3006 MODULE_LICENSE("GPL");
3007