1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xilinx Axi Ethernet device driver 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> 9 * Copyright (c) 2010 - 2011 PetaLogix 10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies 11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. 12 * 13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 14 * and Spartan6. 15 * 16 * TODO: 17 * - Add Axi Fifo support. 18 * - Factor out Axi DMA code into separate driver. 19 * - Test and fix basic multicast filtering. 20 * - Add support for extended multicast filtering. 21 * - Test basic VLAN support. 22 * - Add support for extended VLAN support. 23 */ 24 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/module.h> 29 #include <linux/netdevice.h> 30 #include <linux/of.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_address.h> 35 #include <linux/platform_device.h> 36 #include <linux/skbuff.h> 37 #include <linux/math64.h> 38 #include <linux/phy.h> 39 #include <linux/mii.h> 40 #include <linux/ethtool.h> 41 #include <linux/dmaengine.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/dma/xilinx_dma.h> 44 #include <linux/circ_buf.h> 45 #include <net/netdev_queues.h> 46 47 #include "xilinx_axienet.h" 48 49 /* Descriptors defines for Tx and Rx DMA */ 50 #define TX_BD_NUM_DEFAULT 128 51 #define RX_BD_NUM_DEFAULT 1024 52 #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) 53 #define TX_BD_NUM_MAX 4096 54 #define RX_BD_NUM_MAX 4096 55 #define DMA_NUM_APP_WORDS 5 56 #define LEN_APP 4 57 #define RX_BUF_NUM_DEFAULT 128 58 59 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ 60 #define DRIVER_NAME "xaxienet" 61 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" 62 #define DRIVER_VERSION "1.00a" 63 64 #define AXIENET_REGS_N 40 65 66 static void axienet_rx_submit_desc(struct net_device *ndev); 67 68 /* Match table for of_platform binding */ 69 static const struct of_device_id axienet_of_match[] = { 70 { .compatible = "xlnx,axi-ethernet-1.00.a", }, 71 { .compatible = "xlnx,axi-ethernet-1.01.a", }, 72 { .compatible = "xlnx,axi-ethernet-2.01.a", }, 73 {}, 74 }; 75 76 MODULE_DEVICE_TABLE(of, axienet_of_match); 77 78 /* Option table for setting up Axi Ethernet hardware options */ 79 static struct axienet_option axienet_options[] = { 80 /* Turn on jumbo packet support for both Rx and Tx */ 81 { 82 .opt = XAE_OPTION_JUMBO, 83 .reg = XAE_TC_OFFSET, 84 .m_or = XAE_TC_JUM_MASK, 85 }, { 86 .opt = XAE_OPTION_JUMBO, 87 .reg = XAE_RCW1_OFFSET, 88 .m_or = XAE_RCW1_JUM_MASK, 89 }, { /* Turn on VLAN packet support for both Rx and Tx */ 90 .opt = XAE_OPTION_VLAN, 91 .reg = XAE_TC_OFFSET, 92 .m_or = XAE_TC_VLAN_MASK, 93 }, { 94 .opt = XAE_OPTION_VLAN, 95 .reg = XAE_RCW1_OFFSET, 96 .m_or = XAE_RCW1_VLAN_MASK, 97 }, { /* Turn on FCS stripping on receive packets */ 98 .opt = XAE_OPTION_FCS_STRIP, 99 .reg = XAE_RCW1_OFFSET, 100 .m_or = XAE_RCW1_FCS_MASK, 101 }, { /* Turn on FCS insertion on transmit packets */ 102 .opt = XAE_OPTION_FCS_INSERT, 103 .reg = XAE_TC_OFFSET, 104 .m_or = XAE_TC_FCS_MASK, 105 }, { /* Turn off length/type field checking on receive packets */ 106 .opt = XAE_OPTION_LENTYPE_ERR, 107 .reg = XAE_RCW1_OFFSET, 108 .m_or = XAE_RCW1_LT_DIS_MASK, 109 }, { /* Turn on Rx flow control */ 110 .opt = XAE_OPTION_FLOW_CONTROL, 111 .reg = XAE_FCC_OFFSET, 112 .m_or = XAE_FCC_FCRX_MASK, 113 }, { /* Turn on Tx flow control */ 114 .opt = XAE_OPTION_FLOW_CONTROL, 115 .reg = XAE_FCC_OFFSET, 116 .m_or = XAE_FCC_FCTX_MASK, 117 }, { /* Turn on promiscuous frame filtering */ 118 .opt = XAE_OPTION_PROMISC, 119 .reg = XAE_FMI_OFFSET, 120 .m_or = XAE_FMI_PM_MASK, 121 }, { /* Enable transmitter */ 122 .opt = XAE_OPTION_TXEN, 123 .reg = XAE_TC_OFFSET, 124 .m_or = XAE_TC_TX_MASK, 125 }, { /* Enable receiver */ 126 .opt = XAE_OPTION_RXEN, 127 .reg = XAE_RCW1_OFFSET, 128 .m_or = XAE_RCW1_RX_MASK, 129 }, 130 {} 131 }; 132 133 static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i) 134 { 135 return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)]; 136 } 137 138 static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i) 139 { 140 return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)]; 141 } 142 143 /** 144 * axienet_dma_in32 - Memory mapped Axi DMA register read 145 * @lp: Pointer to axienet local structure 146 * @reg: Address offset from the base address of the Axi DMA core 147 * 148 * Return: The contents of the Axi DMA register 149 * 150 * This function returns the contents of the corresponding Axi DMA register. 151 */ 152 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) 153 { 154 return ioread32(lp->dma_regs + reg); 155 } 156 157 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, 158 struct axidma_bd *desc) 159 { 160 desc->phys = lower_32_bits(addr); 161 if (lp->features & XAE_FEATURE_DMA_64BIT) 162 desc->phys_msb = upper_32_bits(addr); 163 } 164 165 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, 166 struct axidma_bd *desc) 167 { 168 dma_addr_t ret = desc->phys; 169 170 if (lp->features & XAE_FEATURE_DMA_64BIT) 171 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; 172 173 return ret; 174 } 175 176 /** 177 * axienet_dma_bd_release - Release buffer descriptor rings 178 * @ndev: Pointer to the net_device structure 179 * 180 * This function is used to release the descriptors allocated in 181 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet 182 * driver stop api is called. 183 */ 184 static void axienet_dma_bd_release(struct net_device *ndev) 185 { 186 int i; 187 struct axienet_local *lp = netdev_priv(ndev); 188 189 /* If we end up here, tx_bd_v must have been DMA allocated. */ 190 dma_free_coherent(lp->dev, 191 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 192 lp->tx_bd_v, 193 lp->tx_bd_p); 194 195 if (!lp->rx_bd_v) 196 return; 197 198 for (i = 0; i < lp->rx_bd_num; i++) { 199 dma_addr_t phys; 200 201 /* A NULL skb means this descriptor has not been initialised 202 * at all. 203 */ 204 if (!lp->rx_bd_v[i].skb) 205 break; 206 207 dev_kfree_skb(lp->rx_bd_v[i].skb); 208 209 /* For each descriptor, we programmed cntrl with the (non-zero) 210 * descriptor size, after it had been successfully allocated. 211 * So a non-zero value in there means we need to unmap it. 212 */ 213 if (lp->rx_bd_v[i].cntrl) { 214 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); 215 dma_unmap_single(lp->dev, phys, 216 lp->max_frm_size, DMA_FROM_DEVICE); 217 } 218 } 219 220 dma_free_coherent(lp->dev, 221 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 222 lp->rx_bd_v, 223 lp->rx_bd_p); 224 } 225 226 static u64 axienet_dma_rate(struct axienet_local *lp) 227 { 228 if (lp->axi_clk) 229 return clk_get_rate(lp->axi_clk); 230 return 125000000; /* arbitrary guess if no clock rate set */ 231 } 232 233 /** 234 * axienet_calc_cr() - Calculate control register value 235 * @lp: Device private data 236 * @count: Number of completions before an interrupt 237 * @usec: Microseconds after the last completion before an interrupt 238 * 239 * Calculate a control register value based on the coalescing settings. The 240 * run/stop bit is not set. 241 * 242 * Return: Control register value with coalescing settings configured. 243 */ 244 static u32 axienet_calc_cr(struct axienet_local *lp, u32 count, u32 usec) 245 { 246 u32 cr; 247 248 cr = FIELD_PREP(XAXIDMA_COALESCE_MASK, count) | XAXIDMA_IRQ_IOC_MASK | 249 XAXIDMA_IRQ_ERROR_MASK; 250 /* Only set interrupt delay timer if not generating an interrupt on 251 * the first packet. Otherwise leave at 0 to disable delay interrupt. 252 */ 253 if (count > 1) { 254 u64 clk_rate = axienet_dma_rate(lp); 255 u32 timer; 256 257 /* 1 Timeout Interval = 125 * (clock period of SG clock) */ 258 timer = DIV64_U64_ROUND_CLOSEST((u64)usec * clk_rate, 259 XAXIDMA_DELAY_SCALE); 260 261 timer = min(timer, FIELD_MAX(XAXIDMA_DELAY_MASK)); 262 cr |= FIELD_PREP(XAXIDMA_DELAY_MASK, timer) | 263 XAXIDMA_IRQ_DELAY_MASK; 264 } 265 266 return cr; 267 } 268 269 /** 270 * axienet_coalesce_params() - Extract coalesce parameters from the CR 271 * @lp: Device private data 272 * @cr: The control register to parse 273 * @count: Number of packets before an interrupt 274 * @usec: Idle time (in usec) before an interrupt 275 */ 276 static void axienet_coalesce_params(struct axienet_local *lp, u32 cr, 277 u32 *count, u32 *usec) 278 { 279 u64 clk_rate = axienet_dma_rate(lp); 280 u64 timer = FIELD_GET(XAXIDMA_DELAY_MASK, cr); 281 282 *count = FIELD_GET(XAXIDMA_COALESCE_MASK, cr); 283 *usec = DIV64_U64_ROUND_CLOSEST(timer * XAXIDMA_DELAY_SCALE, clk_rate); 284 } 285 286 /** 287 * axienet_dma_start - Set up DMA registers and start DMA operation 288 * @lp: Pointer to the axienet_local structure 289 */ 290 static void axienet_dma_start(struct axienet_local *lp) 291 { 292 spin_lock_irq(&lp->rx_cr_lock); 293 294 /* Start updating the Rx channel control register */ 295 lp->rx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK; 296 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 297 298 /* Populate the tail pointer and bring the Rx Axi DMA engine out of 299 * halted state. This will make the Rx side ready for reception. 300 */ 301 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); 302 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 303 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 304 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + 305 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); 306 lp->rx_dma_started = true; 307 308 spin_unlock_irq(&lp->rx_cr_lock); 309 spin_lock_irq(&lp->tx_cr_lock); 310 311 /* Start updating the Tx channel control register */ 312 lp->tx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK; 313 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 314 315 /* Write to the RS (Run-stop) bit in the Tx channel control register. 316 * Tx channel is now ready to run. But only after we write to the 317 * tail pointer register that the Tx channel will start transmitting. 318 */ 319 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); 320 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 321 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 322 lp->tx_dma_started = true; 323 324 spin_unlock_irq(&lp->tx_cr_lock); 325 } 326 327 /** 328 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA 329 * @ndev: Pointer to the net_device structure 330 * 331 * Return: 0, on success -ENOMEM, on failure 332 * 333 * This function is called to initialize the Rx and Tx DMA descriptor 334 * rings. This initializes the descriptors with required default values 335 * and is called when Axi Ethernet driver reset is called. 336 */ 337 static int axienet_dma_bd_init(struct net_device *ndev) 338 { 339 int i; 340 struct sk_buff *skb; 341 struct axienet_local *lp = netdev_priv(ndev); 342 343 /* Reset the indexes which are used for accessing the BDs */ 344 lp->tx_bd_ci = 0; 345 lp->tx_bd_tail = 0; 346 lp->rx_bd_ci = 0; 347 348 /* Allocate the Tx and Rx buffer descriptors. */ 349 lp->tx_bd_v = dma_alloc_coherent(lp->dev, 350 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 351 &lp->tx_bd_p, GFP_KERNEL); 352 if (!lp->tx_bd_v) 353 return -ENOMEM; 354 355 lp->rx_bd_v = dma_alloc_coherent(lp->dev, 356 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 357 &lp->rx_bd_p, GFP_KERNEL); 358 if (!lp->rx_bd_v) 359 goto out; 360 361 for (i = 0; i < lp->tx_bd_num; i++) { 362 dma_addr_t addr = lp->tx_bd_p + 363 sizeof(*lp->tx_bd_v) * 364 ((i + 1) % lp->tx_bd_num); 365 366 lp->tx_bd_v[i].next = lower_32_bits(addr); 367 if (lp->features & XAE_FEATURE_DMA_64BIT) 368 lp->tx_bd_v[i].next_msb = upper_32_bits(addr); 369 } 370 371 for (i = 0; i < lp->rx_bd_num; i++) { 372 dma_addr_t addr; 373 374 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * 375 ((i + 1) % lp->rx_bd_num); 376 lp->rx_bd_v[i].next = lower_32_bits(addr); 377 if (lp->features & XAE_FEATURE_DMA_64BIT) 378 lp->rx_bd_v[i].next_msb = upper_32_bits(addr); 379 380 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); 381 if (!skb) 382 goto out; 383 384 lp->rx_bd_v[i].skb = skb; 385 addr = dma_map_single(lp->dev, skb->data, 386 lp->max_frm_size, DMA_FROM_DEVICE); 387 if (dma_mapping_error(lp->dev, addr)) { 388 netdev_err(ndev, "DMA mapping error\n"); 389 goto out; 390 } 391 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); 392 393 lp->rx_bd_v[i].cntrl = lp->max_frm_size; 394 } 395 396 axienet_dma_start(lp); 397 398 return 0; 399 out: 400 axienet_dma_bd_release(ndev); 401 return -ENOMEM; 402 } 403 404 /** 405 * axienet_set_mac_address - Write the MAC address 406 * @ndev: Pointer to the net_device structure 407 * @address: 6 byte Address to be written as MAC address 408 * 409 * This function is called to initialize the MAC address of the Axi Ethernet 410 * core. It writes to the UAW0 and UAW1 registers of the core. 411 */ 412 static void axienet_set_mac_address(struct net_device *ndev, 413 const void *address) 414 { 415 struct axienet_local *lp = netdev_priv(ndev); 416 417 if (address) 418 eth_hw_addr_set(ndev, address); 419 if (!is_valid_ether_addr(ndev->dev_addr)) 420 eth_hw_addr_random(ndev); 421 422 /* Set up unicast MAC address filter set its mac address */ 423 axienet_iow(lp, XAE_UAW0_OFFSET, 424 (ndev->dev_addr[0]) | 425 (ndev->dev_addr[1] << 8) | 426 (ndev->dev_addr[2] << 16) | 427 (ndev->dev_addr[3] << 24)); 428 axienet_iow(lp, XAE_UAW1_OFFSET, 429 (((axienet_ior(lp, XAE_UAW1_OFFSET)) & 430 ~XAE_UAW1_UNICASTADDR_MASK) | 431 (ndev->dev_addr[4] | 432 (ndev->dev_addr[5] << 8)))); 433 } 434 435 /** 436 * netdev_set_mac_address - Write the MAC address (from outside the driver) 437 * @ndev: Pointer to the net_device structure 438 * @p: 6 byte Address to be written as MAC address 439 * 440 * Return: 0 for all conditions. Presently, there is no failure case. 441 * 442 * This function is called to initialize the MAC address of the Axi Ethernet 443 * core. It calls the core specific axienet_set_mac_address. This is the 444 * function that goes into net_device_ops structure entry ndo_set_mac_address. 445 */ 446 static int netdev_set_mac_address(struct net_device *ndev, void *p) 447 { 448 struct sockaddr *addr = p; 449 450 axienet_set_mac_address(ndev, addr->sa_data); 451 return 0; 452 } 453 454 /** 455 * axienet_set_multicast_list - Prepare the multicast table 456 * @ndev: Pointer to the net_device structure 457 * 458 * This function is called to initialize the multicast table during 459 * initialization. The Axi Ethernet basic multicast support has a four-entry 460 * multicast table which is initialized here. Additionally this function 461 * goes into the net_device_ops structure entry ndo_set_multicast_list. This 462 * means whenever the multicast table entries need to be updated this 463 * function gets called. 464 */ 465 static void axienet_set_multicast_list(struct net_device *ndev) 466 { 467 int i = 0; 468 u32 reg, af0reg, af1reg; 469 struct axienet_local *lp = netdev_priv(ndev); 470 471 reg = axienet_ior(lp, XAE_FMI_OFFSET); 472 reg &= ~XAE_FMI_PM_MASK; 473 if (ndev->flags & IFF_PROMISC) 474 reg |= XAE_FMI_PM_MASK; 475 else 476 reg &= ~XAE_FMI_PM_MASK; 477 axienet_iow(lp, XAE_FMI_OFFSET, reg); 478 479 if (ndev->flags & IFF_ALLMULTI || 480 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { 481 reg &= 0xFFFFFF00; 482 axienet_iow(lp, XAE_FMI_OFFSET, reg); 483 axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */ 484 axienet_iow(lp, XAE_AF1_OFFSET, 0); 485 axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */ 486 axienet_iow(lp, XAE_AM1_OFFSET, 0); 487 axienet_iow(lp, XAE_FFE_OFFSET, 1); 488 i = 1; 489 } else if (!netdev_mc_empty(ndev)) { 490 struct netdev_hw_addr *ha; 491 492 netdev_for_each_mc_addr(ha, ndev) { 493 if (i >= XAE_MULTICAST_CAM_TABLE_NUM) 494 break; 495 496 af0reg = (ha->addr[0]); 497 af0reg |= (ha->addr[1] << 8); 498 af0reg |= (ha->addr[2] << 16); 499 af0reg |= (ha->addr[3] << 24); 500 501 af1reg = (ha->addr[4]); 502 af1reg |= (ha->addr[5] << 8); 503 504 reg &= 0xFFFFFF00; 505 reg |= i; 506 507 axienet_iow(lp, XAE_FMI_OFFSET, reg); 508 axienet_iow(lp, XAE_AF0_OFFSET, af0reg); 509 axienet_iow(lp, XAE_AF1_OFFSET, af1reg); 510 axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff); 511 axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff); 512 axienet_iow(lp, XAE_FFE_OFFSET, 1); 513 i++; 514 } 515 } 516 517 for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { 518 reg &= 0xFFFFFF00; 519 reg |= i; 520 axienet_iow(lp, XAE_FMI_OFFSET, reg); 521 axienet_iow(lp, XAE_FFE_OFFSET, 0); 522 } 523 } 524 525 /** 526 * axienet_setoptions - Set an Axi Ethernet option 527 * @ndev: Pointer to the net_device structure 528 * @options: Option to be enabled/disabled 529 * 530 * The Axi Ethernet core has multiple features which can be selectively turned 531 * on or off. The typical options could be jumbo frame option, basic VLAN 532 * option, promiscuous mode option etc. This function is used to set or clear 533 * these options in the Axi Ethernet hardware. This is done through 534 * axienet_option structure . 535 */ 536 static void axienet_setoptions(struct net_device *ndev, u32 options) 537 { 538 int reg; 539 struct axienet_local *lp = netdev_priv(ndev); 540 struct axienet_option *tp = &axienet_options[0]; 541 542 while (tp->opt) { 543 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); 544 if (options & tp->opt) 545 reg |= tp->m_or; 546 axienet_iow(lp, tp->reg, reg); 547 tp++; 548 } 549 550 lp->options |= options; 551 } 552 553 static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat) 554 { 555 u32 counter; 556 557 if (lp->reset_in_progress) 558 return lp->hw_stat_base[stat]; 559 560 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 561 return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]); 562 } 563 564 static void axienet_stats_update(struct axienet_local *lp, bool reset) 565 { 566 enum temac_stat stat; 567 568 write_seqcount_begin(&lp->hw_stats_seqcount); 569 lp->reset_in_progress = reset; 570 for (stat = 0; stat < STAT_COUNT; stat++) { 571 u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 572 573 lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat]; 574 lp->hw_last_counter[stat] = counter; 575 } 576 write_seqcount_end(&lp->hw_stats_seqcount); 577 } 578 579 static void axienet_refresh_stats(struct work_struct *work) 580 { 581 struct axienet_local *lp = container_of(work, struct axienet_local, 582 stats_work.work); 583 584 mutex_lock(&lp->stats_lock); 585 axienet_stats_update(lp, false); 586 mutex_unlock(&lp->stats_lock); 587 588 /* Just less than 2^32 bytes at 2.5 GBit/s */ 589 schedule_delayed_work(&lp->stats_work, 13 * HZ); 590 } 591 592 static int __axienet_device_reset(struct axienet_local *lp) 593 { 594 u32 value; 595 int ret; 596 597 /* Save statistics counters in case they will be reset */ 598 mutex_lock(&lp->stats_lock); 599 if (lp->features & XAE_FEATURE_STATS) 600 axienet_stats_update(lp, true); 601 602 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset 603 * process of Axi DMA takes a while to complete as all pending 604 * commands/transfers will be flushed or completed during this 605 * reset process. 606 * Note that even though both TX and RX have their own reset register, 607 * they both reset the entire DMA core, so only one needs to be used. 608 */ 609 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); 610 ret = read_poll_timeout(axienet_dma_in32, value, 611 !(value & XAXIDMA_CR_RESET_MASK), 612 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 613 XAXIDMA_TX_CR_OFFSET); 614 if (ret) { 615 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); 616 goto out; 617 } 618 619 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ 620 ret = read_poll_timeout(axienet_ior, value, 621 value & XAE_INT_PHYRSTCMPLT_MASK, 622 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 623 XAE_IS_OFFSET); 624 if (ret) { 625 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); 626 goto out; 627 } 628 629 /* Update statistics counters with new values */ 630 if (lp->features & XAE_FEATURE_STATS) { 631 enum temac_stat stat; 632 633 write_seqcount_begin(&lp->hw_stats_seqcount); 634 lp->reset_in_progress = false; 635 for (stat = 0; stat < STAT_COUNT; stat++) { 636 u32 counter = 637 axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); 638 639 lp->hw_stat_base[stat] += 640 lp->hw_last_counter[stat] - counter; 641 lp->hw_last_counter[stat] = counter; 642 } 643 write_seqcount_end(&lp->hw_stats_seqcount); 644 } 645 646 out: 647 mutex_unlock(&lp->stats_lock); 648 return ret; 649 } 650 651 /** 652 * axienet_dma_stop - Stop DMA operation 653 * @lp: Pointer to the axienet_local structure 654 */ 655 static void axienet_dma_stop(struct axienet_local *lp) 656 { 657 int count; 658 u32 cr, sr; 659 660 spin_lock_irq(&lp->rx_cr_lock); 661 662 cr = lp->rx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 663 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 664 lp->rx_dma_started = false; 665 666 spin_unlock_irq(&lp->rx_cr_lock); 667 synchronize_irq(lp->rx_irq); 668 669 spin_lock_irq(&lp->tx_cr_lock); 670 671 cr = lp->tx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 672 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 673 lp->tx_dma_started = false; 674 675 spin_unlock_irq(&lp->tx_cr_lock); 676 synchronize_irq(lp->tx_irq); 677 678 /* Give DMAs a chance to halt gracefully */ 679 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 680 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 681 msleep(20); 682 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 683 } 684 685 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 686 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 687 msleep(20); 688 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 689 } 690 691 /* Do a reset to ensure DMA is really stopped */ 692 axienet_lock_mii(lp); 693 __axienet_device_reset(lp); 694 axienet_unlock_mii(lp); 695 } 696 697 /** 698 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. 699 * @ndev: Pointer to the net_device structure 700 * 701 * This function is called to reset and initialize the Axi Ethernet core. This 702 * is typically called during initialization. It does a reset of the Axi DMA 703 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines 704 * are connected to Axi Ethernet reset lines, this in turn resets the Axi 705 * Ethernet core. No separate hardware reset is done for the Axi Ethernet 706 * core. 707 * 708 * Return: 0 on success or a negative error number otherwise. 709 */ 710 static int axienet_device_reset(struct net_device *ndev) 711 { 712 u32 axienet_status; 713 struct axienet_local *lp = netdev_priv(ndev); 714 int ret; 715 716 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; 717 lp->options |= XAE_OPTION_VLAN; 718 lp->options &= (~XAE_OPTION_JUMBO); 719 720 if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) { 721 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + 722 XAE_TRL_SIZE; 723 724 if (lp->max_frm_size <= lp->rxmem) 725 lp->options |= XAE_OPTION_JUMBO; 726 } 727 728 if (!lp->use_dmaengine) { 729 ret = __axienet_device_reset(lp); 730 if (ret) 731 return ret; 732 733 ret = axienet_dma_bd_init(ndev); 734 if (ret) { 735 netdev_err(ndev, "%s: descriptor allocation failed\n", 736 __func__); 737 return ret; 738 } 739 } 740 741 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 742 axienet_status &= ~XAE_RCW1_RX_MASK; 743 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 744 745 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 746 if (axienet_status & XAE_INT_RXRJECT_MASK) 747 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 748 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 749 XAE_INT_RECV_ERROR_MASK : 0); 750 751 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 752 753 /* Sync default options with HW but leave receiver and 754 * transmitter disabled. 755 */ 756 axienet_setoptions(ndev, lp->options & 757 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 758 axienet_set_mac_address(ndev, NULL); 759 axienet_set_multicast_list(ndev); 760 axienet_setoptions(ndev, lp->options); 761 762 netif_trans_update(ndev); 763 764 return 0; 765 } 766 767 /** 768 * axienet_free_tx_chain - Clean up a series of linked TX descriptors. 769 * @lp: Pointer to the axienet_local structure 770 * @first_bd: Index of first descriptor to clean up 771 * @nr_bds: Max number of descriptors to clean up 772 * @force: Whether to clean descriptors even if not complete 773 * @sizep: Pointer to a u32 filled with the total sum of all bytes 774 * in all cleaned-up descriptors. Ignored if NULL. 775 * @budget: NAPI budget (use 0 when not called from NAPI poll) 776 * 777 * Would either be called after a successful transmit operation, or after 778 * there was an error when setting up the chain. 779 * 780 * Return: The number of packets handled. 781 */ 782 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, 783 int nr_bds, bool force, u32 *sizep, int budget) 784 { 785 struct axidma_bd *cur_p; 786 unsigned int status; 787 int i, packets = 0; 788 dma_addr_t phys; 789 790 for (i = 0; i < nr_bds; i++) { 791 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; 792 status = cur_p->status; 793 794 /* If force is not specified, clean up only descriptors 795 * that have been completed by the MAC. 796 */ 797 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) 798 break; 799 800 /* Ensure we see complete descriptor update */ 801 dma_rmb(); 802 phys = desc_get_phys_addr(lp, cur_p); 803 dma_unmap_single(lp->dev, phys, 804 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), 805 DMA_TO_DEVICE); 806 807 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) { 808 napi_consume_skb(cur_p->skb, budget); 809 packets++; 810 } 811 812 cur_p->app0 = 0; 813 cur_p->app1 = 0; 814 cur_p->app2 = 0; 815 cur_p->app4 = 0; 816 cur_p->skb = NULL; 817 /* ensure our transmit path and device don't prematurely see status cleared */ 818 wmb(); 819 cur_p->cntrl = 0; 820 cur_p->status = 0; 821 822 if (sizep) 823 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; 824 } 825 826 if (!force) { 827 lp->tx_bd_ci += i; 828 if (lp->tx_bd_ci >= lp->tx_bd_num) 829 lp->tx_bd_ci %= lp->tx_bd_num; 830 } 831 832 return packets; 833 } 834 835 /** 836 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy 837 * @lp: Pointer to the axienet_local structure 838 * @num_frag: The number of BDs to check for 839 * 840 * Return: 0, on success 841 * NETDEV_TX_BUSY, if any of the descriptors are not free 842 * 843 * This function is invoked before BDs are allocated and transmission starts. 844 * This function returns 0 if a BD or group of BDs can be allocated for 845 * transmission. If the BD or any of the BDs are not free the function 846 * returns a busy status. 847 */ 848 static inline int axienet_check_tx_bd_space(struct axienet_local *lp, 849 int num_frag) 850 { 851 struct axidma_bd *cur_p; 852 853 /* Ensure we see all descriptor updates from device or TX polling */ 854 rmb(); 855 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % 856 lp->tx_bd_num]; 857 if (cur_p->cntrl) 858 return NETDEV_TX_BUSY; 859 return 0; 860 } 861 862 /** 863 * axienet_dma_tx_cb - DMA engine callback for TX channel. 864 * @data: Pointer to the axienet_local structure. 865 * @result: error reporting through dmaengine_result. 866 * This function is called by dmaengine driver for TX channel to notify 867 * that the transmit is done. 868 */ 869 static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result) 870 { 871 struct skbuf_dma_descriptor *skbuf_dma; 872 struct axienet_local *lp = data; 873 struct netdev_queue *txq; 874 int len; 875 876 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++); 877 len = skbuf_dma->skb->len; 878 txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb); 879 u64_stats_update_begin(&lp->tx_stat_sync); 880 u64_stats_add(&lp->tx_bytes, len); 881 u64_stats_add(&lp->tx_packets, 1); 882 u64_stats_update_end(&lp->tx_stat_sync); 883 dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE); 884 dev_consume_skb_any(skbuf_dma->skb); 885 netif_txq_completed_wake(txq, 1, len, 886 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), 887 2); 888 } 889 890 /** 891 * axienet_start_xmit_dmaengine - Starts the transmission. 892 * @skb: sk_buff pointer that contains data to be Txed. 893 * @ndev: Pointer to net_device structure. 894 * 895 * Return: NETDEV_TX_OK on success or any non space errors. 896 * NETDEV_TX_BUSY when free element in TX skb ring buffer 897 * is not available. 898 * 899 * This function is invoked to initiate transmission. The 900 * function sets the skbs, register dma callback API and submit 901 * the dma transaction. 902 * Additionally if checksum offloading is supported, 903 * it populates AXI Stream Control fields with appropriate values. 904 */ 905 static netdev_tx_t 906 axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev) 907 { 908 struct dma_async_tx_descriptor *dma_tx_desc = NULL; 909 struct axienet_local *lp = netdev_priv(ndev); 910 u32 app_metadata[DMA_NUM_APP_WORDS] = {0}; 911 struct skbuf_dma_descriptor *skbuf_dma; 912 struct dma_device *dma_dev; 913 struct netdev_queue *txq; 914 u32 csum_start_off; 915 u32 csum_index_off; 916 int sg_len; 917 int ret; 918 919 dma_dev = lp->tx_chan->device; 920 sg_len = skb_shinfo(skb)->nr_frags + 1; 921 if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= 1) { 922 netif_stop_queue(ndev); 923 if (net_ratelimit()) 924 netdev_warn(ndev, "TX ring unexpectedly full\n"); 925 return NETDEV_TX_BUSY; 926 } 927 928 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head); 929 if (!skbuf_dma) 930 goto xmit_error_drop_skb; 931 932 lp->tx_ring_head++; 933 sg_init_table(skbuf_dma->sgl, sg_len); 934 ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len); 935 if (ret < 0) 936 goto xmit_error_drop_skb; 937 938 ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); 939 if (!ret) 940 goto xmit_error_drop_skb; 941 942 /* Fill up app fields for checksum */ 943 if (skb->ip_summed == CHECKSUM_PARTIAL) { 944 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 945 /* Tx Full Checksum Offload Enabled */ 946 app_metadata[0] |= 2; 947 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 948 csum_start_off = skb_transport_offset(skb); 949 csum_index_off = csum_start_off + skb->csum_offset; 950 /* Tx Partial Checksum Offload Enabled */ 951 app_metadata[0] |= 1; 952 app_metadata[1] = (csum_start_off << 16) | csum_index_off; 953 } 954 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 955 app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */ 956 } 957 958 dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl, 959 sg_len, DMA_MEM_TO_DEV, 960 DMA_PREP_INTERRUPT, (void *)app_metadata); 961 if (!dma_tx_desc) 962 goto xmit_error_unmap_sg; 963 964 skbuf_dma->skb = skb; 965 skbuf_dma->sg_len = sg_len; 966 dma_tx_desc->callback_param = lp; 967 dma_tx_desc->callback_result = axienet_dma_tx_cb; 968 txq = skb_get_tx_queue(lp->ndev, skb); 969 netdev_tx_sent_queue(txq, skb->len); 970 netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), 971 1, 2); 972 973 dmaengine_submit(dma_tx_desc); 974 dma_async_issue_pending(lp->tx_chan); 975 return NETDEV_TX_OK; 976 977 xmit_error_unmap_sg: 978 dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); 979 xmit_error_drop_skb: 980 dev_kfree_skb_any(skb); 981 return NETDEV_TX_OK; 982 } 983 984 /** 985 * axienet_tx_poll - Invoked once a transmit is completed by the 986 * Axi DMA Tx channel. 987 * @napi: Pointer to NAPI structure. 988 * @budget: Max number of TX packets to process. 989 * 990 * Return: Number of TX packets processed. 991 * 992 * This function is invoked from the NAPI processing to notify the completion 993 * of transmit operation. It clears fields in the corresponding Tx BDs and 994 * unmaps the corresponding buffer so that CPU can regain ownership of the 995 * buffer. It finally invokes "netif_wake_queue" to restart transmission if 996 * required. 997 */ 998 static int axienet_tx_poll(struct napi_struct *napi, int budget) 999 { 1000 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); 1001 struct net_device *ndev = lp->ndev; 1002 u32 size = 0; 1003 int packets; 1004 1005 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, lp->tx_bd_num, false, 1006 &size, budget); 1007 1008 if (packets) { 1009 netdev_completed_queue(ndev, packets, size); 1010 u64_stats_update_begin(&lp->tx_stat_sync); 1011 u64_stats_add(&lp->tx_packets, packets); 1012 u64_stats_add(&lp->tx_bytes, size); 1013 u64_stats_update_end(&lp->tx_stat_sync); 1014 1015 /* Matches barrier in axienet_start_xmit */ 1016 smp_mb(); 1017 1018 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 1019 netif_wake_queue(ndev); 1020 } 1021 1022 if (packets < budget && napi_complete_done(napi, packets)) { 1023 /* Re-enable TX completion interrupts. This should 1024 * cause an immediate interrupt if any TX packets are 1025 * already pending. 1026 */ 1027 spin_lock_irq(&lp->tx_cr_lock); 1028 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 1029 spin_unlock_irq(&lp->tx_cr_lock); 1030 } 1031 return packets; 1032 } 1033 1034 /** 1035 * axienet_start_xmit - Starts the transmission. 1036 * @skb: sk_buff pointer that contains data to be Txed. 1037 * @ndev: Pointer to net_device structure. 1038 * 1039 * Return: NETDEV_TX_OK, on success 1040 * NETDEV_TX_BUSY, if any of the descriptors are not free 1041 * 1042 * This function is invoked from upper layers to initiate transmission. The 1043 * function uses the next available free BDs and populates their fields to 1044 * start the transmission. Additionally if checksum offloading is supported, 1045 * it populates AXI Stream Control fields with appropriate values. 1046 */ 1047 static netdev_tx_t 1048 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1049 { 1050 u32 ii; 1051 u32 num_frag; 1052 u32 csum_start_off; 1053 u32 csum_index_off; 1054 skb_frag_t *frag; 1055 dma_addr_t tail_p, phys; 1056 u32 orig_tail_ptr, new_tail_ptr; 1057 struct axienet_local *lp = netdev_priv(ndev); 1058 struct axidma_bd *cur_p; 1059 1060 orig_tail_ptr = lp->tx_bd_tail; 1061 new_tail_ptr = orig_tail_ptr; 1062 1063 num_frag = skb_shinfo(skb)->nr_frags; 1064 cur_p = &lp->tx_bd_v[orig_tail_ptr]; 1065 1066 if (axienet_check_tx_bd_space(lp, num_frag + 1)) { 1067 /* Should not happen as last start_xmit call should have 1068 * checked for sufficient space and queue should only be 1069 * woken when sufficient space is available. 1070 */ 1071 netif_stop_queue(ndev); 1072 if (net_ratelimit()) 1073 netdev_warn(ndev, "TX ring unexpectedly full\n"); 1074 return NETDEV_TX_BUSY; 1075 } 1076 1077 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1078 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 1079 /* Tx Full Checksum Offload Enabled */ 1080 cur_p->app0 |= 2; 1081 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 1082 csum_start_off = skb_transport_offset(skb); 1083 csum_index_off = csum_start_off + skb->csum_offset; 1084 /* Tx Partial Checksum Offload Enabled */ 1085 cur_p->app0 |= 1; 1086 cur_p->app1 = (csum_start_off << 16) | csum_index_off; 1087 } 1088 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 1089 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ 1090 } 1091 1092 phys = dma_map_single(lp->dev, skb->data, 1093 skb_headlen(skb), DMA_TO_DEVICE); 1094 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1095 if (net_ratelimit()) 1096 netdev_err(ndev, "TX DMA mapping error\n"); 1097 ndev->stats.tx_dropped++; 1098 dev_kfree_skb_any(skb); 1099 return NETDEV_TX_OK; 1100 } 1101 desc_set_phys_addr(lp, phys, cur_p); 1102 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; 1103 1104 for (ii = 0; ii < num_frag; ii++) { 1105 if (++new_tail_ptr >= lp->tx_bd_num) 1106 new_tail_ptr = 0; 1107 cur_p = &lp->tx_bd_v[new_tail_ptr]; 1108 frag = &skb_shinfo(skb)->frags[ii]; 1109 phys = dma_map_single(lp->dev, 1110 skb_frag_address(frag), 1111 skb_frag_size(frag), 1112 DMA_TO_DEVICE); 1113 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1114 if (net_ratelimit()) 1115 netdev_err(ndev, "TX DMA mapping error\n"); 1116 ndev->stats.tx_dropped++; 1117 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, 1118 true, NULL, 0); 1119 dev_kfree_skb_any(skb); 1120 return NETDEV_TX_OK; 1121 } 1122 desc_set_phys_addr(lp, phys, cur_p); 1123 cur_p->cntrl = skb_frag_size(frag); 1124 } 1125 1126 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; 1127 cur_p->skb = skb; 1128 1129 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; 1130 if (++new_tail_ptr >= lp->tx_bd_num) 1131 new_tail_ptr = 0; 1132 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); 1133 netdev_sent_queue(ndev, skb->len); 1134 1135 /* Start the transfer */ 1136 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); 1137 1138 /* Stop queue if next transmit may not have space */ 1139 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { 1140 netif_stop_queue(ndev); 1141 1142 /* Matches barrier in axienet_tx_poll */ 1143 smp_mb(); 1144 1145 /* Space might have just been freed - check again */ 1146 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 1147 netif_wake_queue(ndev); 1148 } 1149 1150 return NETDEV_TX_OK; 1151 } 1152 1153 /** 1154 * axienet_dma_rx_cb - DMA engine callback for RX channel. 1155 * @data: Pointer to the skbuf_dma_descriptor structure. 1156 * @result: error reporting through dmaengine_result. 1157 * This function is called by dmaengine driver for RX channel to notify 1158 * that the packet is received. 1159 */ 1160 static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result) 1161 { 1162 struct skbuf_dma_descriptor *skbuf_dma; 1163 size_t meta_len, meta_max_len, rx_len; 1164 struct axienet_local *lp = data; 1165 struct sk_buff *skb; 1166 u32 *app_metadata; 1167 int i; 1168 1169 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++); 1170 skb = skbuf_dma->skb; 1171 app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len, 1172 &meta_max_len); 1173 dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size, 1174 DMA_FROM_DEVICE); 1175 1176 if (IS_ERR(app_metadata)) { 1177 if (net_ratelimit()) 1178 netdev_err(lp->ndev, "Failed to get RX metadata pointer\n"); 1179 dev_kfree_skb_any(skb); 1180 lp->ndev->stats.rx_dropped++; 1181 goto rx_submit; 1182 } 1183 1184 /* TODO: Derive app word index programmatically */ 1185 rx_len = (app_metadata[LEN_APP] & 0xFFFF); 1186 skb_put(skb, rx_len); 1187 skb->protocol = eth_type_trans(skb, lp->ndev); 1188 skb->ip_summed = CHECKSUM_NONE; 1189 1190 __netif_rx(skb); 1191 u64_stats_update_begin(&lp->rx_stat_sync); 1192 u64_stats_add(&lp->rx_packets, 1); 1193 u64_stats_add(&lp->rx_bytes, rx_len); 1194 u64_stats_update_end(&lp->rx_stat_sync); 1195 1196 rx_submit: 1197 for (i = 0; i < CIRC_SPACE(lp->rx_ring_head, lp->rx_ring_tail, 1198 RX_BUF_NUM_DEFAULT); i++) 1199 axienet_rx_submit_desc(lp->ndev); 1200 dma_async_issue_pending(lp->rx_chan); 1201 } 1202 1203 /** 1204 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. 1205 * @napi: Pointer to NAPI structure. 1206 * @budget: Max number of RX packets to process. 1207 * 1208 * Return: Number of RX packets processed. 1209 */ 1210 static int axienet_rx_poll(struct napi_struct *napi, int budget) 1211 { 1212 u32 length; 1213 u32 csumstatus; 1214 u32 size = 0; 1215 int packets = 0; 1216 dma_addr_t tail_p = 0; 1217 struct axidma_bd *cur_p; 1218 struct sk_buff *skb, *new_skb; 1219 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); 1220 1221 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 1222 1223 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { 1224 dma_addr_t phys; 1225 1226 /* Ensure we see complete descriptor update */ 1227 dma_rmb(); 1228 1229 skb = cur_p->skb; 1230 cur_p->skb = NULL; 1231 1232 /* skb could be NULL if a previous pass already received the 1233 * packet for this slot in the ring, but failed to refill it 1234 * with a newly allocated buffer. In this case, don't try to 1235 * receive it again. 1236 */ 1237 if (likely(skb)) { 1238 length = cur_p->app4 & 0x0000FFFF; 1239 1240 phys = desc_get_phys_addr(lp, cur_p); 1241 dma_unmap_single(lp->dev, phys, lp->max_frm_size, 1242 DMA_FROM_DEVICE); 1243 1244 skb_put(skb, length); 1245 skb->protocol = eth_type_trans(skb, lp->ndev); 1246 /*skb_checksum_none_assert(skb);*/ 1247 skb->ip_summed = CHECKSUM_NONE; 1248 1249 /* if we're doing Rx csum offload, set it up */ 1250 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { 1251 csumstatus = (cur_p->app2 & 1252 XAE_FULL_CSUM_STATUS_MASK) >> 3; 1253 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || 1254 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { 1255 skb->ip_summed = CHECKSUM_UNNECESSARY; 1256 } 1257 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) { 1258 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); 1259 skb->ip_summed = CHECKSUM_COMPLETE; 1260 } 1261 1262 napi_gro_receive(napi, skb); 1263 1264 size += length; 1265 packets++; 1266 } 1267 1268 new_skb = napi_alloc_skb(napi, lp->max_frm_size); 1269 if (!new_skb) 1270 break; 1271 1272 phys = dma_map_single(lp->dev, new_skb->data, 1273 lp->max_frm_size, 1274 DMA_FROM_DEVICE); 1275 if (unlikely(dma_mapping_error(lp->dev, phys))) { 1276 if (net_ratelimit()) 1277 netdev_err(lp->ndev, "RX DMA mapping error\n"); 1278 dev_kfree_skb(new_skb); 1279 break; 1280 } 1281 desc_set_phys_addr(lp, phys, cur_p); 1282 1283 cur_p->cntrl = lp->max_frm_size; 1284 cur_p->status = 0; 1285 cur_p->skb = new_skb; 1286 1287 /* Only update tail_p to mark this slot as usable after it has 1288 * been successfully refilled. 1289 */ 1290 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; 1291 1292 if (++lp->rx_bd_ci >= lp->rx_bd_num) 1293 lp->rx_bd_ci = 0; 1294 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 1295 } 1296 1297 u64_stats_update_begin(&lp->rx_stat_sync); 1298 u64_stats_add(&lp->rx_packets, packets); 1299 u64_stats_add(&lp->rx_bytes, size); 1300 u64_stats_update_end(&lp->rx_stat_sync); 1301 1302 if (tail_p) 1303 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); 1304 1305 if (packets < budget && napi_complete_done(napi, packets)) { 1306 if (READ_ONCE(lp->rx_dim_enabled)) { 1307 struct dim_sample sample = { 1308 .time = ktime_get(), 1309 /* Safe because we are the only writer */ 1310 .pkt_ctr = u64_stats_read(&lp->rx_packets), 1311 .byte_ctr = u64_stats_read(&lp->rx_bytes), 1312 .event_ctr = READ_ONCE(lp->rx_irqs), 1313 }; 1314 1315 net_dim(&lp->rx_dim, &sample); 1316 } 1317 1318 /* Re-enable RX completion interrupts. This should 1319 * cause an immediate interrupt if any RX packets are 1320 * already pending. 1321 */ 1322 spin_lock_irq(&lp->rx_cr_lock); 1323 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 1324 spin_unlock_irq(&lp->rx_cr_lock); 1325 } 1326 return packets; 1327 } 1328 1329 /** 1330 * axienet_tx_irq - Tx Done Isr. 1331 * @irq: irq number 1332 * @_ndev: net_device pointer 1333 * 1334 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. 1335 * 1336 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the 1337 * TX BD processing. 1338 */ 1339 static irqreturn_t axienet_tx_irq(int irq, void *_ndev) 1340 { 1341 unsigned int status; 1342 struct net_device *ndev = _ndev; 1343 struct axienet_local *lp = netdev_priv(ndev); 1344 1345 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1346 1347 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1348 return IRQ_NONE; 1349 1350 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); 1351 1352 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1353 netdev_err(ndev, "DMA Tx error 0x%x\n", status); 1354 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1355 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, 1356 (lp->tx_bd_v[lp->tx_bd_ci]).phys); 1357 schedule_work(&lp->dma_err_task); 1358 } else { 1359 /* Disable further TX completion interrupts and schedule 1360 * NAPI to handle the completions. 1361 */ 1362 if (napi_schedule_prep(&lp->napi_tx)) { 1363 u32 cr; 1364 1365 spin_lock(&lp->tx_cr_lock); 1366 cr = lp->tx_dma_cr; 1367 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1368 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 1369 spin_unlock(&lp->tx_cr_lock); 1370 __napi_schedule(&lp->napi_tx); 1371 } 1372 } 1373 1374 return IRQ_HANDLED; 1375 } 1376 1377 /** 1378 * axienet_rx_irq - Rx Isr. 1379 * @irq: irq number 1380 * @_ndev: net_device pointer 1381 * 1382 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. 1383 * 1384 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD 1385 * processing. 1386 */ 1387 static irqreturn_t axienet_rx_irq(int irq, void *_ndev) 1388 { 1389 unsigned int status; 1390 struct net_device *ndev = _ndev; 1391 struct axienet_local *lp = netdev_priv(ndev); 1392 1393 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1394 1395 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1396 return IRQ_NONE; 1397 1398 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); 1399 1400 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1401 netdev_err(ndev, "DMA Rx error 0x%x\n", status); 1402 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1403 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, 1404 (lp->rx_bd_v[lp->rx_bd_ci]).phys); 1405 schedule_work(&lp->dma_err_task); 1406 } else { 1407 /* Disable further RX completion interrupts and schedule 1408 * NAPI receive. 1409 */ 1410 WRITE_ONCE(lp->rx_irqs, READ_ONCE(lp->rx_irqs) + 1); 1411 if (napi_schedule_prep(&lp->napi_rx)) { 1412 u32 cr; 1413 1414 spin_lock(&lp->rx_cr_lock); 1415 cr = lp->rx_dma_cr; 1416 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1417 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 1418 spin_unlock(&lp->rx_cr_lock); 1419 1420 __napi_schedule(&lp->napi_rx); 1421 } 1422 } 1423 1424 return IRQ_HANDLED; 1425 } 1426 1427 /** 1428 * axienet_eth_irq - Ethernet core Isr. 1429 * @irq: irq number 1430 * @_ndev: net_device pointer 1431 * 1432 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. 1433 * 1434 * Handle miscellaneous conditions indicated by Ethernet core IRQ. 1435 */ 1436 static irqreturn_t axienet_eth_irq(int irq, void *_ndev) 1437 { 1438 struct net_device *ndev = _ndev; 1439 struct axienet_local *lp = netdev_priv(ndev); 1440 unsigned int pending; 1441 1442 pending = axienet_ior(lp, XAE_IP_OFFSET); 1443 if (!pending) 1444 return IRQ_NONE; 1445 1446 if (pending & XAE_INT_RXFIFOOVR_MASK) 1447 ndev->stats.rx_missed_errors++; 1448 1449 if (pending & XAE_INT_RXRJECT_MASK) 1450 ndev->stats.rx_dropped++; 1451 1452 axienet_iow(lp, XAE_IS_OFFSET, pending); 1453 return IRQ_HANDLED; 1454 } 1455 1456 static void axienet_dma_err_handler(struct work_struct *work); 1457 1458 /** 1459 * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine. 1460 * allocate skbuff, map the scatterlist and obtain a descriptor 1461 * and then add the callback information and submit descriptor. 1462 * 1463 * @ndev: net_device pointer 1464 * 1465 */ 1466 static void axienet_rx_submit_desc(struct net_device *ndev) 1467 { 1468 struct dma_async_tx_descriptor *dma_rx_desc = NULL; 1469 struct axienet_local *lp = netdev_priv(ndev); 1470 struct skbuf_dma_descriptor *skbuf_dma; 1471 struct sk_buff *skb; 1472 dma_addr_t addr; 1473 1474 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head); 1475 if (!skbuf_dma) 1476 return; 1477 1478 skb = netdev_alloc_skb(ndev, lp->max_frm_size); 1479 if (!skb) 1480 return; 1481 1482 sg_init_table(skbuf_dma->sgl, 1); 1483 addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE); 1484 if (unlikely(dma_mapping_error(lp->dev, addr))) { 1485 if (net_ratelimit()) 1486 netdev_err(ndev, "DMA mapping error\n"); 1487 goto rx_submit_err_free_skb; 1488 } 1489 sg_dma_address(skbuf_dma->sgl) = addr; 1490 sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size; 1491 dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl, 1492 1, DMA_DEV_TO_MEM, 1493 DMA_PREP_INTERRUPT); 1494 if (!dma_rx_desc) 1495 goto rx_submit_err_unmap_skb; 1496 1497 skbuf_dma->skb = skb; 1498 skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl); 1499 skbuf_dma->desc = dma_rx_desc; 1500 dma_rx_desc->callback_param = lp; 1501 dma_rx_desc->callback_result = axienet_dma_rx_cb; 1502 lp->rx_ring_head++; 1503 dmaengine_submit(dma_rx_desc); 1504 1505 return; 1506 1507 rx_submit_err_unmap_skb: 1508 dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE); 1509 rx_submit_err_free_skb: 1510 dev_kfree_skb(skb); 1511 } 1512 1513 /** 1514 * axienet_init_dmaengine - init the dmaengine code. 1515 * @ndev: Pointer to net_device structure 1516 * 1517 * Return: 0, on success. 1518 * non-zero error value on failure 1519 * 1520 * This is the dmaengine initialization code. 1521 */ 1522 static int axienet_init_dmaengine(struct net_device *ndev) 1523 { 1524 struct axienet_local *lp = netdev_priv(ndev); 1525 struct skbuf_dma_descriptor *skbuf_dma; 1526 int i, ret; 1527 1528 lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0"); 1529 if (IS_ERR(lp->tx_chan)) { 1530 dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n"); 1531 return PTR_ERR(lp->tx_chan); 1532 } 1533 1534 lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0"); 1535 if (IS_ERR(lp->rx_chan)) { 1536 ret = PTR_ERR(lp->rx_chan); 1537 dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n"); 1538 goto err_dma_release_tx; 1539 } 1540 1541 lp->tx_ring_tail = 0; 1542 lp->tx_ring_head = 0; 1543 lp->rx_ring_tail = 0; 1544 lp->rx_ring_head = 0; 1545 lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring), 1546 GFP_KERNEL); 1547 if (!lp->tx_skb_ring) { 1548 ret = -ENOMEM; 1549 goto err_dma_release_rx; 1550 } 1551 for (i = 0; i < TX_BD_NUM_MAX; i++) { 1552 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); 1553 if (!skbuf_dma) { 1554 ret = -ENOMEM; 1555 goto err_free_tx_skb_ring; 1556 } 1557 lp->tx_skb_ring[i] = skbuf_dma; 1558 } 1559 1560 lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring), 1561 GFP_KERNEL); 1562 if (!lp->rx_skb_ring) { 1563 ret = -ENOMEM; 1564 goto err_free_tx_skb_ring; 1565 } 1566 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) { 1567 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); 1568 if (!skbuf_dma) { 1569 ret = -ENOMEM; 1570 goto err_free_rx_skb_ring; 1571 } 1572 lp->rx_skb_ring[i] = skbuf_dma; 1573 } 1574 /* TODO: Instead of BD_NUM_DEFAULT use runtime support */ 1575 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1576 axienet_rx_submit_desc(ndev); 1577 dma_async_issue_pending(lp->rx_chan); 1578 1579 return 0; 1580 1581 err_free_rx_skb_ring: 1582 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1583 kfree(lp->rx_skb_ring[i]); 1584 kfree(lp->rx_skb_ring); 1585 err_free_tx_skb_ring: 1586 for (i = 0; i < TX_BD_NUM_MAX; i++) 1587 kfree(lp->tx_skb_ring[i]); 1588 kfree(lp->tx_skb_ring); 1589 err_dma_release_rx: 1590 dma_release_channel(lp->rx_chan); 1591 err_dma_release_tx: 1592 dma_release_channel(lp->tx_chan); 1593 return ret; 1594 } 1595 1596 /** 1597 * axienet_init_legacy_dma - init the dma legacy code. 1598 * @ndev: Pointer to net_device structure 1599 * 1600 * Return: 0, on success. 1601 * non-zero error value on failure 1602 * 1603 * This is the dma initialization code. It also allocates interrupt 1604 * service routines, enables the interrupt lines and ISR handling. 1605 * 1606 */ 1607 static int axienet_init_legacy_dma(struct net_device *ndev) 1608 { 1609 int ret; 1610 struct axienet_local *lp = netdev_priv(ndev); 1611 1612 /* Enable worker thread for Axi DMA error handling */ 1613 lp->stopping = false; 1614 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); 1615 1616 napi_enable(&lp->napi_rx); 1617 napi_enable(&lp->napi_tx); 1618 1619 /* Enable interrupts for Axi DMA Tx */ 1620 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, 1621 ndev->name, ndev); 1622 if (ret) 1623 goto err_tx_irq; 1624 /* Enable interrupts for Axi DMA Rx */ 1625 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, 1626 ndev->name, ndev); 1627 if (ret) 1628 goto err_rx_irq; 1629 /* Enable interrupts for Axi Ethernet core (if defined) */ 1630 if (lp->eth_irq > 0) { 1631 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1632 ndev->name, ndev); 1633 if (ret) 1634 goto err_eth_irq; 1635 } 1636 1637 return 0; 1638 1639 err_eth_irq: 1640 free_irq(lp->rx_irq, ndev); 1641 err_rx_irq: 1642 free_irq(lp->tx_irq, ndev); 1643 err_tx_irq: 1644 napi_disable(&lp->napi_tx); 1645 napi_disable(&lp->napi_rx); 1646 cancel_work_sync(&lp->dma_err_task); 1647 dev_err(lp->dev, "request_irq() failed\n"); 1648 return ret; 1649 } 1650 1651 /** 1652 * axienet_open - Driver open routine. 1653 * @ndev: Pointer to net_device structure 1654 * 1655 * Return: 0, on success. 1656 * non-zero error value on failure 1657 * 1658 * This is the driver open routine. It calls phylink_start to start the 1659 * PHY device. 1660 * It also allocates interrupt service routines, enables the interrupt lines 1661 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer 1662 * descriptors are initialized. 1663 */ 1664 static int axienet_open(struct net_device *ndev) 1665 { 1666 int ret; 1667 struct axienet_local *lp = netdev_priv(ndev); 1668 1669 /* When we do an Axi Ethernet reset, it resets the complete core 1670 * including the MDIO. MDIO must be disabled before resetting. 1671 * Hold MDIO bus lock to avoid MDIO accesses during the reset. 1672 */ 1673 axienet_lock_mii(lp); 1674 ret = axienet_device_reset(ndev); 1675 axienet_unlock_mii(lp); 1676 1677 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); 1678 if (ret) { 1679 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); 1680 return ret; 1681 } 1682 1683 phylink_start(lp->phylink); 1684 1685 /* Start the statistics refresh work */ 1686 schedule_delayed_work(&lp->stats_work, 0); 1687 1688 if (lp->use_dmaengine) { 1689 /* Enable interrupts for Axi Ethernet core (if defined) */ 1690 if (lp->eth_irq > 0) { 1691 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1692 ndev->name, ndev); 1693 if (ret) 1694 goto err_phy; 1695 } 1696 1697 ret = axienet_init_dmaengine(ndev); 1698 if (ret < 0) 1699 goto err_free_eth_irq; 1700 } else { 1701 ret = axienet_init_legacy_dma(ndev); 1702 if (ret) 1703 goto err_phy; 1704 } 1705 1706 return 0; 1707 1708 err_free_eth_irq: 1709 if (lp->eth_irq > 0) 1710 free_irq(lp->eth_irq, ndev); 1711 err_phy: 1712 cancel_work_sync(&lp->rx_dim.work); 1713 cancel_delayed_work_sync(&lp->stats_work); 1714 phylink_stop(lp->phylink); 1715 phylink_disconnect_phy(lp->phylink); 1716 return ret; 1717 } 1718 1719 /** 1720 * axienet_stop - Driver stop routine. 1721 * @ndev: Pointer to net_device structure 1722 * 1723 * Return: 0, on success. 1724 * 1725 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY 1726 * device. It also removes the interrupt handlers and disables the interrupts. 1727 * The Axi DMA Tx/Rx BDs are released. 1728 */ 1729 static int axienet_stop(struct net_device *ndev) 1730 { 1731 struct axienet_local *lp = netdev_priv(ndev); 1732 int i; 1733 1734 if (!lp->use_dmaengine) { 1735 WRITE_ONCE(lp->stopping, true); 1736 flush_work(&lp->dma_err_task); 1737 1738 napi_disable(&lp->napi_tx); 1739 napi_disable(&lp->napi_rx); 1740 } 1741 1742 cancel_work_sync(&lp->rx_dim.work); 1743 cancel_delayed_work_sync(&lp->stats_work); 1744 1745 phylink_stop(lp->phylink); 1746 phylink_disconnect_phy(lp->phylink); 1747 1748 axienet_setoptions(ndev, lp->options & 1749 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1750 1751 if (!lp->use_dmaengine) { 1752 axienet_dma_stop(lp); 1753 cancel_work_sync(&lp->dma_err_task); 1754 free_irq(lp->tx_irq, ndev); 1755 free_irq(lp->rx_irq, ndev); 1756 axienet_dma_bd_release(ndev); 1757 } else { 1758 dmaengine_terminate_sync(lp->tx_chan); 1759 dmaengine_synchronize(lp->tx_chan); 1760 dmaengine_terminate_sync(lp->rx_chan); 1761 dmaengine_synchronize(lp->rx_chan); 1762 1763 for (i = 0; i < TX_BD_NUM_MAX; i++) 1764 kfree(lp->tx_skb_ring[i]); 1765 kfree(lp->tx_skb_ring); 1766 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) 1767 kfree(lp->rx_skb_ring[i]); 1768 kfree(lp->rx_skb_ring); 1769 1770 dma_release_channel(lp->rx_chan); 1771 dma_release_channel(lp->tx_chan); 1772 } 1773 1774 netdev_reset_queue(ndev); 1775 axienet_iow(lp, XAE_IE_OFFSET, 0); 1776 1777 if (lp->eth_irq > 0) 1778 free_irq(lp->eth_irq, ndev); 1779 return 0; 1780 } 1781 1782 /** 1783 * axienet_change_mtu - Driver change mtu routine. 1784 * @ndev: Pointer to net_device structure 1785 * @new_mtu: New mtu value to be applied 1786 * 1787 * Return: Always returns 0 (success). 1788 * 1789 * This is the change mtu driver routine. It checks if the Axi Ethernet 1790 * hardware supports jumbo frames before changing the mtu. This can be 1791 * called only when the device is not up. 1792 */ 1793 static int axienet_change_mtu(struct net_device *ndev, int new_mtu) 1794 { 1795 struct axienet_local *lp = netdev_priv(ndev); 1796 1797 if (netif_running(ndev)) 1798 return -EBUSY; 1799 1800 if ((new_mtu + VLAN_ETH_HLEN + 1801 XAE_TRL_SIZE) > lp->rxmem) 1802 return -EINVAL; 1803 1804 WRITE_ONCE(ndev->mtu, new_mtu); 1805 1806 return 0; 1807 } 1808 1809 #ifdef CONFIG_NET_POLL_CONTROLLER 1810 /** 1811 * axienet_poll_controller - Axi Ethernet poll mechanism. 1812 * @ndev: Pointer to net_device structure 1813 * 1814 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior 1815 * to polling the ISRs and are enabled back after the polling is done. 1816 */ 1817 static void axienet_poll_controller(struct net_device *ndev) 1818 { 1819 struct axienet_local *lp = netdev_priv(ndev); 1820 1821 disable_irq(lp->tx_irq); 1822 disable_irq(lp->rx_irq); 1823 axienet_rx_irq(lp->tx_irq, ndev); 1824 axienet_tx_irq(lp->rx_irq, ndev); 1825 enable_irq(lp->tx_irq); 1826 enable_irq(lp->rx_irq); 1827 } 1828 #endif 1829 1830 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1831 { 1832 struct axienet_local *lp = netdev_priv(dev); 1833 1834 if (!netif_running(dev)) 1835 return -EINVAL; 1836 1837 return phylink_mii_ioctl(lp->phylink, rq, cmd); 1838 } 1839 1840 static void 1841 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 1842 { 1843 struct axienet_local *lp = netdev_priv(dev); 1844 unsigned int start; 1845 1846 netdev_stats_to_stats64(stats, &dev->stats); 1847 1848 do { 1849 start = u64_stats_fetch_begin(&lp->rx_stat_sync); 1850 stats->rx_packets = u64_stats_read(&lp->rx_packets); 1851 stats->rx_bytes = u64_stats_read(&lp->rx_bytes); 1852 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); 1853 1854 do { 1855 start = u64_stats_fetch_begin(&lp->tx_stat_sync); 1856 stats->tx_packets = u64_stats_read(&lp->tx_packets); 1857 stats->tx_bytes = u64_stats_read(&lp->tx_bytes); 1858 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); 1859 1860 if (!(lp->features & XAE_FEATURE_STATS)) 1861 return; 1862 1863 do { 1864 start = read_seqcount_begin(&lp->hw_stats_seqcount); 1865 stats->rx_length_errors = 1866 axienet_stat(lp, STAT_RX_LENGTH_ERRORS); 1867 stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS); 1868 stats->rx_frame_errors = 1869 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); 1870 stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) + 1871 axienet_stat(lp, STAT_FRAGMENT_FRAMES) + 1872 stats->rx_length_errors + 1873 stats->rx_crc_errors + 1874 stats->rx_frame_errors; 1875 stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); 1876 1877 stats->tx_aborted_errors = 1878 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); 1879 stats->tx_fifo_errors = 1880 axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS); 1881 stats->tx_window_errors = 1882 axienet_stat(lp, STAT_TX_LATE_COLLISIONS); 1883 stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) + 1884 stats->tx_aborted_errors + 1885 stats->tx_fifo_errors + 1886 stats->tx_window_errors; 1887 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 1888 } 1889 1890 static const struct net_device_ops axienet_netdev_ops = { 1891 .ndo_open = axienet_open, 1892 .ndo_stop = axienet_stop, 1893 .ndo_start_xmit = axienet_start_xmit, 1894 .ndo_get_stats64 = axienet_get_stats64, 1895 .ndo_change_mtu = axienet_change_mtu, 1896 .ndo_set_mac_address = netdev_set_mac_address, 1897 .ndo_validate_addr = eth_validate_addr, 1898 .ndo_eth_ioctl = axienet_ioctl, 1899 .ndo_set_rx_mode = axienet_set_multicast_list, 1900 #ifdef CONFIG_NET_POLL_CONTROLLER 1901 .ndo_poll_controller = axienet_poll_controller, 1902 #endif 1903 }; 1904 1905 static const struct net_device_ops axienet_netdev_dmaengine_ops = { 1906 .ndo_open = axienet_open, 1907 .ndo_stop = axienet_stop, 1908 .ndo_start_xmit = axienet_start_xmit_dmaengine, 1909 .ndo_get_stats64 = axienet_get_stats64, 1910 .ndo_change_mtu = axienet_change_mtu, 1911 .ndo_set_mac_address = netdev_set_mac_address, 1912 .ndo_validate_addr = eth_validate_addr, 1913 .ndo_eth_ioctl = axienet_ioctl, 1914 .ndo_set_rx_mode = axienet_set_multicast_list, 1915 }; 1916 1917 /** 1918 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. 1919 * @ndev: Pointer to net_device structure 1920 * @ed: Pointer to ethtool_drvinfo structure 1921 * 1922 * This implements ethtool command for getting the driver information. 1923 * Issue "ethtool -i ethX" under linux prompt to execute this function. 1924 */ 1925 static void axienet_ethtools_get_drvinfo(struct net_device *ndev, 1926 struct ethtool_drvinfo *ed) 1927 { 1928 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); 1929 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); 1930 } 1931 1932 /** 1933 * axienet_ethtools_get_regs_len - Get the total regs length present in the 1934 * AxiEthernet core. 1935 * @ndev: Pointer to net_device structure 1936 * 1937 * This implements ethtool command for getting the total register length 1938 * information. 1939 * 1940 * Return: the total regs length 1941 */ 1942 static int axienet_ethtools_get_regs_len(struct net_device *ndev) 1943 { 1944 return sizeof(u32) * AXIENET_REGS_N; 1945 } 1946 1947 /** 1948 * axienet_ethtools_get_regs - Dump the contents of all registers present 1949 * in AxiEthernet core. 1950 * @ndev: Pointer to net_device structure 1951 * @regs: Pointer to ethtool_regs structure 1952 * @ret: Void pointer used to return the contents of the registers. 1953 * 1954 * This implements ethtool command for getting the Axi Ethernet register dump. 1955 * Issue "ethtool -d ethX" to execute this function. 1956 */ 1957 static void axienet_ethtools_get_regs(struct net_device *ndev, 1958 struct ethtool_regs *regs, void *ret) 1959 { 1960 u32 *data = (u32 *)ret; 1961 size_t len = sizeof(u32) * AXIENET_REGS_N; 1962 struct axienet_local *lp = netdev_priv(ndev); 1963 1964 regs->version = 0; 1965 regs->len = len; 1966 1967 memset(data, 0, len); 1968 data[0] = axienet_ior(lp, XAE_RAF_OFFSET); 1969 data[1] = axienet_ior(lp, XAE_TPF_OFFSET); 1970 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); 1971 data[3] = axienet_ior(lp, XAE_IS_OFFSET); 1972 data[4] = axienet_ior(lp, XAE_IP_OFFSET); 1973 data[5] = axienet_ior(lp, XAE_IE_OFFSET); 1974 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); 1975 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); 1976 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); 1977 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); 1978 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); 1979 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); 1980 data[12] = axienet_ior(lp, XAE_PPST_OFFSET); 1981 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); 1982 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); 1983 data[15] = axienet_ior(lp, XAE_TC_OFFSET); 1984 data[16] = axienet_ior(lp, XAE_FCC_OFFSET); 1985 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); 1986 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); 1987 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); 1988 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); 1989 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); 1990 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); 1991 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); 1992 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); 1993 data[29] = axienet_ior(lp, XAE_FMI_OFFSET); 1994 data[30] = axienet_ior(lp, XAE_AF0_OFFSET); 1995 data[31] = axienet_ior(lp, XAE_AF1_OFFSET); 1996 if (!lp->use_dmaengine) { 1997 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 1998 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1999 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); 2000 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); 2001 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 2002 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 2003 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); 2004 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); 2005 } 2006 } 2007 2008 static void 2009 axienet_ethtools_get_ringparam(struct net_device *ndev, 2010 struct ethtool_ringparam *ering, 2011 struct kernel_ethtool_ringparam *kernel_ering, 2012 struct netlink_ext_ack *extack) 2013 { 2014 struct axienet_local *lp = netdev_priv(ndev); 2015 2016 ering->rx_max_pending = RX_BD_NUM_MAX; 2017 ering->rx_mini_max_pending = 0; 2018 ering->rx_jumbo_max_pending = 0; 2019 ering->tx_max_pending = TX_BD_NUM_MAX; 2020 ering->rx_pending = lp->rx_bd_num; 2021 ering->rx_mini_pending = 0; 2022 ering->rx_jumbo_pending = 0; 2023 ering->tx_pending = lp->tx_bd_num; 2024 } 2025 2026 static int 2027 axienet_ethtools_set_ringparam(struct net_device *ndev, 2028 struct ethtool_ringparam *ering, 2029 struct kernel_ethtool_ringparam *kernel_ering, 2030 struct netlink_ext_ack *extack) 2031 { 2032 struct axienet_local *lp = netdev_priv(ndev); 2033 2034 if (ering->rx_pending > RX_BD_NUM_MAX || 2035 ering->rx_mini_pending || 2036 ering->rx_jumbo_pending || 2037 ering->tx_pending < TX_BD_NUM_MIN || 2038 ering->tx_pending > TX_BD_NUM_MAX) 2039 return -EINVAL; 2040 2041 if (netif_running(ndev)) 2042 return -EBUSY; 2043 2044 lp->rx_bd_num = ering->rx_pending; 2045 lp->tx_bd_num = ering->tx_pending; 2046 return 0; 2047 } 2048 2049 /** 2050 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for 2051 * Tx and Rx paths. 2052 * @ndev: Pointer to net_device structure 2053 * @epauseparm: Pointer to ethtool_pauseparam structure. 2054 * 2055 * This implements ethtool command for getting axi ethernet pause frame 2056 * setting. Issue "ethtool -a ethX" to execute this function. 2057 */ 2058 static void 2059 axienet_ethtools_get_pauseparam(struct net_device *ndev, 2060 struct ethtool_pauseparam *epauseparm) 2061 { 2062 struct axienet_local *lp = netdev_priv(ndev); 2063 2064 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); 2065 } 2066 2067 /** 2068 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) 2069 * settings. 2070 * @ndev: Pointer to net_device structure 2071 * @epauseparm:Pointer to ethtool_pauseparam structure 2072 * 2073 * This implements ethtool command for enabling flow control on Rx and Tx 2074 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this 2075 * function. 2076 * 2077 * Return: 0 on success, -EFAULT if device is running 2078 */ 2079 static int 2080 axienet_ethtools_set_pauseparam(struct net_device *ndev, 2081 struct ethtool_pauseparam *epauseparm) 2082 { 2083 struct axienet_local *lp = netdev_priv(ndev); 2084 2085 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); 2086 } 2087 2088 /** 2089 * axienet_update_coalesce_rx() - Set RX CR 2090 * @lp: Device private data 2091 * @cr: Value to write to the RX CR 2092 * @mask: Bits to set from @cr 2093 */ 2094 static void axienet_update_coalesce_rx(struct axienet_local *lp, u32 cr, 2095 u32 mask) 2096 { 2097 spin_lock_irq(&lp->rx_cr_lock); 2098 lp->rx_dma_cr &= ~mask; 2099 lp->rx_dma_cr |= cr; 2100 /* If DMA isn't started, then the settings will be applied the next 2101 * time dma_start() is called. 2102 */ 2103 if (lp->rx_dma_started) { 2104 u32 reg = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 2105 2106 /* Don't enable IRQs if they are disabled by NAPI */ 2107 if (reg & XAXIDMA_IRQ_ALL_MASK) 2108 cr = lp->rx_dma_cr; 2109 else 2110 cr = lp->rx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK; 2111 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 2112 } 2113 spin_unlock_irq(&lp->rx_cr_lock); 2114 } 2115 2116 /** 2117 * axienet_dim_coalesce_count_rx() - RX coalesce count for DIM 2118 * @lp: Device private data 2119 * 2120 * Return: RX coalescing frame count value for DIM. 2121 */ 2122 static u32 axienet_dim_coalesce_count_rx(struct axienet_local *lp) 2123 { 2124 return min(1 << (lp->rx_dim.profile_ix << 1), 255); 2125 } 2126 2127 /** 2128 * axienet_rx_dim_work() - Adjust RX DIM settings 2129 * @work: The work struct 2130 */ 2131 static void axienet_rx_dim_work(struct work_struct *work) 2132 { 2133 struct axienet_local *lp = 2134 container_of(work, struct axienet_local, rx_dim.work); 2135 u32 cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp), 0); 2136 u32 mask = XAXIDMA_COALESCE_MASK | XAXIDMA_IRQ_IOC_MASK | 2137 XAXIDMA_IRQ_ERROR_MASK; 2138 2139 axienet_update_coalesce_rx(lp, cr, mask); 2140 lp->rx_dim.state = DIM_START_MEASURE; 2141 } 2142 2143 /** 2144 * axienet_update_coalesce_tx() - Set TX CR 2145 * @lp: Device private data 2146 * @cr: Value to write to the TX CR 2147 * @mask: Bits to set from @cr 2148 */ 2149 static void axienet_update_coalesce_tx(struct axienet_local *lp, u32 cr, 2150 u32 mask) 2151 { 2152 spin_lock_irq(&lp->tx_cr_lock); 2153 lp->tx_dma_cr &= ~mask; 2154 lp->tx_dma_cr |= cr; 2155 /* If DMA isn't started, then the settings will be applied the next 2156 * time dma_start() is called. 2157 */ 2158 if (lp->tx_dma_started) { 2159 u32 reg = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 2160 2161 /* Don't enable IRQs if they are disabled by NAPI */ 2162 if (reg & XAXIDMA_IRQ_ALL_MASK) 2163 cr = lp->tx_dma_cr; 2164 else 2165 cr = lp->tx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK; 2166 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 2167 } 2168 spin_unlock_irq(&lp->tx_cr_lock); 2169 } 2170 2171 /** 2172 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. 2173 * @ndev: Pointer to net_device structure 2174 * @ecoalesce: Pointer to ethtool_coalesce structure 2175 * @kernel_coal: ethtool CQE mode setting structure 2176 * @extack: extack for reporting error messages 2177 * 2178 * This implements ethtool command for getting the DMA interrupt coalescing 2179 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to 2180 * execute this function. 2181 * 2182 * Return: 0 always 2183 */ 2184 static int 2185 axienet_ethtools_get_coalesce(struct net_device *ndev, 2186 struct ethtool_coalesce *ecoalesce, 2187 struct kernel_ethtool_coalesce *kernel_coal, 2188 struct netlink_ext_ack *extack) 2189 { 2190 struct axienet_local *lp = netdev_priv(ndev); 2191 u32 cr; 2192 2193 ecoalesce->use_adaptive_rx_coalesce = lp->rx_dim_enabled; 2194 2195 spin_lock_irq(&lp->rx_cr_lock); 2196 cr = lp->rx_dma_cr; 2197 spin_unlock_irq(&lp->rx_cr_lock); 2198 axienet_coalesce_params(lp, cr, 2199 &ecoalesce->rx_max_coalesced_frames, 2200 &ecoalesce->rx_coalesce_usecs); 2201 2202 spin_lock_irq(&lp->tx_cr_lock); 2203 cr = lp->tx_dma_cr; 2204 spin_unlock_irq(&lp->tx_cr_lock); 2205 axienet_coalesce_params(lp, cr, 2206 &ecoalesce->tx_max_coalesced_frames, 2207 &ecoalesce->tx_coalesce_usecs); 2208 return 0; 2209 } 2210 2211 /** 2212 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. 2213 * @ndev: Pointer to net_device structure 2214 * @ecoalesce: Pointer to ethtool_coalesce structure 2215 * @kernel_coal: ethtool CQE mode setting structure 2216 * @extack: extack for reporting error messages 2217 * 2218 * This implements ethtool command for setting the DMA interrupt coalescing 2219 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux 2220 * prompt to execute this function. 2221 * 2222 * Return: 0, on success, Non-zero error value on failure. 2223 */ 2224 static int 2225 axienet_ethtools_set_coalesce(struct net_device *ndev, 2226 struct ethtool_coalesce *ecoalesce, 2227 struct kernel_ethtool_coalesce *kernel_coal, 2228 struct netlink_ext_ack *extack) 2229 { 2230 struct axienet_local *lp = netdev_priv(ndev); 2231 bool new_dim = ecoalesce->use_adaptive_rx_coalesce; 2232 bool old_dim = lp->rx_dim_enabled; 2233 u32 cr, mask = ~XAXIDMA_CR_RUNSTOP_MASK; 2234 2235 if (ecoalesce->rx_max_coalesced_frames > 255 || 2236 ecoalesce->tx_max_coalesced_frames > 255) { 2237 NL_SET_ERR_MSG(extack, "frames must be less than 256"); 2238 return -EINVAL; 2239 } 2240 2241 if (!ecoalesce->rx_max_coalesced_frames || 2242 !ecoalesce->tx_max_coalesced_frames) { 2243 NL_SET_ERR_MSG(extack, "frames must be non-zero"); 2244 return -EINVAL; 2245 } 2246 2247 if (((ecoalesce->rx_max_coalesced_frames > 1 || new_dim) && 2248 !ecoalesce->rx_coalesce_usecs) || 2249 (ecoalesce->tx_max_coalesced_frames > 1 && 2250 !ecoalesce->tx_coalesce_usecs)) { 2251 NL_SET_ERR_MSG(extack, 2252 "usecs must be non-zero when frames is greater than one"); 2253 return -EINVAL; 2254 } 2255 2256 if (new_dim && !old_dim) { 2257 cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp), 2258 ecoalesce->rx_coalesce_usecs); 2259 } else if (!new_dim) { 2260 if (old_dim) { 2261 WRITE_ONCE(lp->rx_dim_enabled, false); 2262 napi_synchronize(&lp->napi_rx); 2263 flush_work(&lp->rx_dim.work); 2264 } 2265 2266 cr = axienet_calc_cr(lp, ecoalesce->rx_max_coalesced_frames, 2267 ecoalesce->rx_coalesce_usecs); 2268 } else { 2269 /* Dummy value for count just to calculate timer */ 2270 cr = axienet_calc_cr(lp, 2, ecoalesce->rx_coalesce_usecs); 2271 mask = XAXIDMA_DELAY_MASK | XAXIDMA_IRQ_DELAY_MASK; 2272 } 2273 2274 axienet_update_coalesce_rx(lp, cr, mask); 2275 if (new_dim && !old_dim) 2276 WRITE_ONCE(lp->rx_dim_enabled, true); 2277 2278 cr = axienet_calc_cr(lp, ecoalesce->tx_max_coalesced_frames, 2279 ecoalesce->tx_coalesce_usecs); 2280 axienet_update_coalesce_tx(lp, cr, ~XAXIDMA_CR_RUNSTOP_MASK); 2281 return 0; 2282 } 2283 2284 static int 2285 axienet_ethtools_get_link_ksettings(struct net_device *ndev, 2286 struct ethtool_link_ksettings *cmd) 2287 { 2288 struct axienet_local *lp = netdev_priv(ndev); 2289 2290 return phylink_ethtool_ksettings_get(lp->phylink, cmd); 2291 } 2292 2293 static int 2294 axienet_ethtools_set_link_ksettings(struct net_device *ndev, 2295 const struct ethtool_link_ksettings *cmd) 2296 { 2297 struct axienet_local *lp = netdev_priv(ndev); 2298 2299 return phylink_ethtool_ksettings_set(lp->phylink, cmd); 2300 } 2301 2302 static int axienet_ethtools_nway_reset(struct net_device *dev) 2303 { 2304 struct axienet_local *lp = netdev_priv(dev); 2305 2306 return phylink_ethtool_nway_reset(lp->phylink); 2307 } 2308 2309 static void axienet_ethtools_get_ethtool_stats(struct net_device *dev, 2310 struct ethtool_stats *stats, 2311 u64 *data) 2312 { 2313 struct axienet_local *lp = netdev_priv(dev); 2314 unsigned int start; 2315 2316 do { 2317 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2318 data[0] = axienet_stat(lp, STAT_RX_BYTES); 2319 data[1] = axienet_stat(lp, STAT_TX_BYTES); 2320 data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES); 2321 data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES); 2322 data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES); 2323 data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES); 2324 data[8] = axienet_stat(lp, STAT_USER_DEFINED0); 2325 data[9] = axienet_stat(lp, STAT_USER_DEFINED1); 2326 data[10] = axienet_stat(lp, STAT_USER_DEFINED2); 2327 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2328 } 2329 2330 static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = { 2331 "Received bytes", 2332 "Transmitted bytes", 2333 "RX Good VLAN Tagged Frames", 2334 "TX Good VLAN Tagged Frames", 2335 "TX Good PFC Frames", 2336 "RX Good PFC Frames", 2337 "User Defined Counter 0", 2338 "User Defined Counter 1", 2339 "User Defined Counter 2", 2340 }; 2341 2342 static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2343 { 2344 switch (stringset) { 2345 case ETH_SS_STATS: 2346 memcpy(data, axienet_ethtool_stats_strings, 2347 sizeof(axienet_ethtool_stats_strings)); 2348 break; 2349 } 2350 } 2351 2352 static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset) 2353 { 2354 struct axienet_local *lp = netdev_priv(dev); 2355 2356 switch (sset) { 2357 case ETH_SS_STATS: 2358 if (lp->features & XAE_FEATURE_STATS) 2359 return ARRAY_SIZE(axienet_ethtool_stats_strings); 2360 fallthrough; 2361 default: 2362 return -EOPNOTSUPP; 2363 } 2364 } 2365 2366 static void 2367 axienet_ethtools_get_pause_stats(struct net_device *dev, 2368 struct ethtool_pause_stats *pause_stats) 2369 { 2370 struct axienet_local *lp = netdev_priv(dev); 2371 unsigned int start; 2372 2373 if (!(lp->features & XAE_FEATURE_STATS)) 2374 return; 2375 2376 do { 2377 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2378 pause_stats->tx_pause_frames = 2379 axienet_stat(lp, STAT_TX_PAUSE_FRAMES); 2380 pause_stats->rx_pause_frames = 2381 axienet_stat(lp, STAT_RX_PAUSE_FRAMES); 2382 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2383 } 2384 2385 static void 2386 axienet_ethtool_get_eth_mac_stats(struct net_device *dev, 2387 struct ethtool_eth_mac_stats *mac_stats) 2388 { 2389 struct axienet_local *lp = netdev_priv(dev); 2390 unsigned int start; 2391 2392 if (!(lp->features & XAE_FEATURE_STATS)) 2393 return; 2394 2395 do { 2396 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2397 mac_stats->FramesTransmittedOK = 2398 axienet_stat(lp, STAT_TX_GOOD_FRAMES); 2399 mac_stats->SingleCollisionFrames = 2400 axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES); 2401 mac_stats->MultipleCollisionFrames = 2402 axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES); 2403 mac_stats->FramesReceivedOK = 2404 axienet_stat(lp, STAT_RX_GOOD_FRAMES); 2405 mac_stats->FrameCheckSequenceErrors = 2406 axienet_stat(lp, STAT_RX_FCS_ERRORS); 2407 mac_stats->AlignmentErrors = 2408 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); 2409 mac_stats->FramesWithDeferredXmissions = 2410 axienet_stat(lp, STAT_TX_DEFERRED_FRAMES); 2411 mac_stats->LateCollisions = 2412 axienet_stat(lp, STAT_TX_LATE_COLLISIONS); 2413 mac_stats->FramesAbortedDueToXSColls = 2414 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); 2415 mac_stats->MulticastFramesXmittedOK = 2416 axienet_stat(lp, STAT_TX_MULTICAST_FRAMES); 2417 mac_stats->BroadcastFramesXmittedOK = 2418 axienet_stat(lp, STAT_TX_BROADCAST_FRAMES); 2419 mac_stats->FramesWithExcessiveDeferral = 2420 axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL); 2421 mac_stats->MulticastFramesReceivedOK = 2422 axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); 2423 mac_stats->BroadcastFramesReceivedOK = 2424 axienet_stat(lp, STAT_RX_BROADCAST_FRAMES); 2425 mac_stats->InRangeLengthErrors = 2426 axienet_stat(lp, STAT_RX_LENGTH_ERRORS); 2427 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2428 } 2429 2430 static void 2431 axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev, 2432 struct ethtool_eth_ctrl_stats *ctrl_stats) 2433 { 2434 struct axienet_local *lp = netdev_priv(dev); 2435 unsigned int start; 2436 2437 if (!(lp->features & XAE_FEATURE_STATS)) 2438 return; 2439 2440 do { 2441 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2442 ctrl_stats->MACControlFramesTransmitted = 2443 axienet_stat(lp, STAT_TX_CONTROL_FRAMES); 2444 ctrl_stats->MACControlFramesReceived = 2445 axienet_stat(lp, STAT_RX_CONTROL_FRAMES); 2446 ctrl_stats->UnsupportedOpcodesReceived = 2447 axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS); 2448 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2449 } 2450 2451 static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = { 2452 { 64, 64 }, 2453 { 65, 127 }, 2454 { 128, 255 }, 2455 { 256, 511 }, 2456 { 512, 1023 }, 2457 { 1024, 1518 }, 2458 { 1519, 16384 }, 2459 { }, 2460 }; 2461 2462 static void 2463 axienet_ethtool_get_rmon_stats(struct net_device *dev, 2464 struct ethtool_rmon_stats *rmon_stats, 2465 const struct ethtool_rmon_hist_range **ranges) 2466 { 2467 struct axienet_local *lp = netdev_priv(dev); 2468 unsigned int start; 2469 2470 if (!(lp->features & XAE_FEATURE_STATS)) 2471 return; 2472 2473 do { 2474 start = read_seqcount_begin(&lp->hw_stats_seqcount); 2475 rmon_stats->undersize_pkts = 2476 axienet_stat(lp, STAT_UNDERSIZE_FRAMES); 2477 rmon_stats->oversize_pkts = 2478 axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES); 2479 rmon_stats->fragments = 2480 axienet_stat(lp, STAT_FRAGMENT_FRAMES); 2481 2482 rmon_stats->hist[0] = 2483 axienet_stat(lp, STAT_RX_64_BYTE_FRAMES); 2484 rmon_stats->hist[1] = 2485 axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES); 2486 rmon_stats->hist[2] = 2487 axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES); 2488 rmon_stats->hist[3] = 2489 axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES); 2490 rmon_stats->hist[4] = 2491 axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES); 2492 rmon_stats->hist[5] = 2493 axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES); 2494 rmon_stats->hist[6] = 2495 rmon_stats->oversize_pkts; 2496 2497 rmon_stats->hist_tx[0] = 2498 axienet_stat(lp, STAT_TX_64_BYTE_FRAMES); 2499 rmon_stats->hist_tx[1] = 2500 axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES); 2501 rmon_stats->hist_tx[2] = 2502 axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES); 2503 rmon_stats->hist_tx[3] = 2504 axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES); 2505 rmon_stats->hist_tx[4] = 2506 axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES); 2507 rmon_stats->hist_tx[5] = 2508 axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES); 2509 rmon_stats->hist_tx[6] = 2510 axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES); 2511 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); 2512 2513 *ranges = axienet_rmon_ranges; 2514 } 2515 2516 static const struct ethtool_ops axienet_ethtool_ops = { 2517 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | 2518 ETHTOOL_COALESCE_USECS | 2519 ETHTOOL_COALESCE_USE_ADAPTIVE_RX, 2520 .get_drvinfo = axienet_ethtools_get_drvinfo, 2521 .get_regs_len = axienet_ethtools_get_regs_len, 2522 .get_regs = axienet_ethtools_get_regs, 2523 .get_link = ethtool_op_get_link, 2524 .get_ringparam = axienet_ethtools_get_ringparam, 2525 .set_ringparam = axienet_ethtools_set_ringparam, 2526 .get_pauseparam = axienet_ethtools_get_pauseparam, 2527 .set_pauseparam = axienet_ethtools_set_pauseparam, 2528 .get_coalesce = axienet_ethtools_get_coalesce, 2529 .set_coalesce = axienet_ethtools_set_coalesce, 2530 .get_link_ksettings = axienet_ethtools_get_link_ksettings, 2531 .set_link_ksettings = axienet_ethtools_set_link_ksettings, 2532 .nway_reset = axienet_ethtools_nway_reset, 2533 .get_ethtool_stats = axienet_ethtools_get_ethtool_stats, 2534 .get_strings = axienet_ethtools_get_strings, 2535 .get_sset_count = axienet_ethtools_get_sset_count, 2536 .get_pause_stats = axienet_ethtools_get_pause_stats, 2537 .get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats, 2538 .get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats, 2539 .get_rmon_stats = axienet_ethtool_get_rmon_stats, 2540 }; 2541 2542 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) 2543 { 2544 return container_of(pcs, struct axienet_local, pcs); 2545 } 2546 2547 static void axienet_pcs_get_state(struct phylink_pcs *pcs, 2548 unsigned int neg_mode, 2549 struct phylink_link_state *state) 2550 { 2551 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2552 2553 phylink_mii_c22_pcs_get_state(pcs_phy, neg_mode, state); 2554 } 2555 2556 static void axienet_pcs_an_restart(struct phylink_pcs *pcs) 2557 { 2558 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2559 2560 phylink_mii_c22_pcs_an_restart(pcs_phy); 2561 } 2562 2563 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, 2564 phy_interface_t interface, 2565 const unsigned long *advertising, 2566 bool permit_pause_to_mac) 2567 { 2568 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 2569 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; 2570 struct axienet_local *lp = netdev_priv(ndev); 2571 int ret; 2572 2573 if (lp->switch_x_sgmii) { 2574 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, 2575 interface == PHY_INTERFACE_MODE_SGMII ? 2576 XLNX_MII_STD_SELECT_SGMII : 0); 2577 if (ret < 0) { 2578 netdev_warn(ndev, 2579 "Failed to switch PHY interface: %d\n", 2580 ret); 2581 return ret; 2582 } 2583 } 2584 2585 ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, 2586 neg_mode); 2587 if (ret < 0) 2588 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); 2589 2590 return ret; 2591 } 2592 2593 static const struct phylink_pcs_ops axienet_pcs_ops = { 2594 .pcs_get_state = axienet_pcs_get_state, 2595 .pcs_config = axienet_pcs_config, 2596 .pcs_an_restart = axienet_pcs_an_restart, 2597 }; 2598 2599 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, 2600 phy_interface_t interface) 2601 { 2602 struct net_device *ndev = to_net_dev(config->dev); 2603 struct axienet_local *lp = netdev_priv(ndev); 2604 2605 if (interface == PHY_INTERFACE_MODE_1000BASEX || 2606 interface == PHY_INTERFACE_MODE_SGMII) 2607 return &lp->pcs; 2608 2609 return NULL; 2610 } 2611 2612 static void axienet_mac_config(struct phylink_config *config, unsigned int mode, 2613 const struct phylink_link_state *state) 2614 { 2615 /* nothing meaningful to do */ 2616 } 2617 2618 static void axienet_mac_link_down(struct phylink_config *config, 2619 unsigned int mode, 2620 phy_interface_t interface) 2621 { 2622 /* nothing meaningful to do */ 2623 } 2624 2625 static void axienet_mac_link_up(struct phylink_config *config, 2626 struct phy_device *phy, 2627 unsigned int mode, phy_interface_t interface, 2628 int speed, int duplex, 2629 bool tx_pause, bool rx_pause) 2630 { 2631 struct net_device *ndev = to_net_dev(config->dev); 2632 struct axienet_local *lp = netdev_priv(ndev); 2633 u32 emmc_reg, fcc_reg; 2634 2635 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); 2636 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; 2637 2638 switch (speed) { 2639 case SPEED_1000: 2640 emmc_reg |= XAE_EMMC_LINKSPD_1000; 2641 break; 2642 case SPEED_100: 2643 emmc_reg |= XAE_EMMC_LINKSPD_100; 2644 break; 2645 case SPEED_10: 2646 emmc_reg |= XAE_EMMC_LINKSPD_10; 2647 break; 2648 default: 2649 dev_err(&ndev->dev, 2650 "Speed other than 10, 100 or 1Gbps is not supported\n"); 2651 break; 2652 } 2653 2654 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); 2655 2656 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); 2657 if (tx_pause) 2658 fcc_reg |= XAE_FCC_FCTX_MASK; 2659 else 2660 fcc_reg &= ~XAE_FCC_FCTX_MASK; 2661 if (rx_pause) 2662 fcc_reg |= XAE_FCC_FCRX_MASK; 2663 else 2664 fcc_reg &= ~XAE_FCC_FCRX_MASK; 2665 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); 2666 } 2667 2668 static const struct phylink_mac_ops axienet_phylink_ops = { 2669 .mac_select_pcs = axienet_mac_select_pcs, 2670 .mac_config = axienet_mac_config, 2671 .mac_link_down = axienet_mac_link_down, 2672 .mac_link_up = axienet_mac_link_up, 2673 }; 2674 2675 /** 2676 * axienet_dma_err_handler - Work queue task for Axi DMA Error 2677 * @work: pointer to work_struct 2678 * 2679 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the 2680 * Tx/Rx BDs. 2681 */ 2682 static void axienet_dma_err_handler(struct work_struct *work) 2683 { 2684 u32 i; 2685 u32 axienet_status; 2686 struct axidma_bd *cur_p; 2687 struct axienet_local *lp = container_of(work, struct axienet_local, 2688 dma_err_task); 2689 struct net_device *ndev = lp->ndev; 2690 2691 /* Don't bother if we are going to stop anyway */ 2692 if (READ_ONCE(lp->stopping)) 2693 return; 2694 2695 napi_disable(&lp->napi_tx); 2696 napi_disable(&lp->napi_rx); 2697 2698 axienet_setoptions(ndev, lp->options & 2699 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 2700 2701 axienet_dma_stop(lp); 2702 netdev_reset_queue(ndev); 2703 2704 for (i = 0; i < lp->tx_bd_num; i++) { 2705 cur_p = &lp->tx_bd_v[i]; 2706 if (cur_p->cntrl) { 2707 dma_addr_t addr = desc_get_phys_addr(lp, cur_p); 2708 2709 dma_unmap_single(lp->dev, addr, 2710 (cur_p->cntrl & 2711 XAXIDMA_BD_CTRL_LENGTH_MASK), 2712 DMA_TO_DEVICE); 2713 } 2714 if (cur_p->skb) 2715 dev_kfree_skb_irq(cur_p->skb); 2716 cur_p->phys = 0; 2717 cur_p->phys_msb = 0; 2718 cur_p->cntrl = 0; 2719 cur_p->status = 0; 2720 cur_p->app0 = 0; 2721 cur_p->app1 = 0; 2722 cur_p->app2 = 0; 2723 cur_p->app3 = 0; 2724 cur_p->app4 = 0; 2725 cur_p->skb = NULL; 2726 } 2727 2728 for (i = 0; i < lp->rx_bd_num; i++) { 2729 cur_p = &lp->rx_bd_v[i]; 2730 cur_p->status = 0; 2731 cur_p->app0 = 0; 2732 cur_p->app1 = 0; 2733 cur_p->app2 = 0; 2734 cur_p->app3 = 0; 2735 cur_p->app4 = 0; 2736 } 2737 2738 lp->tx_bd_ci = 0; 2739 lp->tx_bd_tail = 0; 2740 lp->rx_bd_ci = 0; 2741 2742 axienet_dma_start(lp); 2743 2744 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 2745 axienet_status &= ~XAE_RCW1_RX_MASK; 2746 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 2747 2748 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 2749 if (axienet_status & XAE_INT_RXRJECT_MASK) 2750 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 2751 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 2752 XAE_INT_RECV_ERROR_MASK : 0); 2753 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 2754 2755 /* Sync default options with HW but leave receiver and 2756 * transmitter disabled. 2757 */ 2758 axienet_setoptions(ndev, lp->options & 2759 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 2760 axienet_set_mac_address(ndev, NULL); 2761 axienet_set_multicast_list(ndev); 2762 napi_enable(&lp->napi_rx); 2763 napi_enable(&lp->napi_tx); 2764 axienet_setoptions(ndev, lp->options); 2765 } 2766 2767 /** 2768 * axienet_probe - Axi Ethernet probe function. 2769 * @pdev: Pointer to platform device structure. 2770 * 2771 * Return: 0, on success 2772 * Non-zero error value on failure. 2773 * 2774 * This is the probe routine for Axi Ethernet driver. This is called before 2775 * any other driver routines are invoked. It allocates and sets up the Ethernet 2776 * device. Parses through device tree and populates fields of 2777 * axienet_local. It registers the Ethernet device. 2778 */ 2779 static int axienet_probe(struct platform_device *pdev) 2780 { 2781 int ret; 2782 struct device_node *np; 2783 struct axienet_local *lp; 2784 struct net_device *ndev; 2785 struct resource *ethres; 2786 u8 mac_addr[ETH_ALEN]; 2787 int addr_width = 32; 2788 u32 value; 2789 2790 ndev = alloc_etherdev(sizeof(*lp)); 2791 if (!ndev) 2792 return -ENOMEM; 2793 2794 platform_set_drvdata(pdev, ndev); 2795 2796 SET_NETDEV_DEV(ndev, &pdev->dev); 2797 ndev->features = NETIF_F_SG; 2798 ndev->ethtool_ops = &axienet_ethtool_ops; 2799 2800 /* MTU range: 64 - 9000 */ 2801 ndev->min_mtu = 64; 2802 ndev->max_mtu = XAE_JUMBO_MTU; 2803 2804 lp = netdev_priv(ndev); 2805 lp->ndev = ndev; 2806 lp->dev = &pdev->dev; 2807 lp->options = XAE_OPTION_DEFAULTS; 2808 lp->rx_bd_num = RX_BD_NUM_DEFAULT; 2809 lp->tx_bd_num = TX_BD_NUM_DEFAULT; 2810 2811 u64_stats_init(&lp->rx_stat_sync); 2812 u64_stats_init(&lp->tx_stat_sync); 2813 2814 mutex_init(&lp->stats_lock); 2815 seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock); 2816 INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats); 2817 2818 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); 2819 if (!lp->axi_clk) { 2820 /* For backward compatibility, if named AXI clock is not present, 2821 * treat the first clock specified as the AXI clock. 2822 */ 2823 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); 2824 } 2825 if (IS_ERR(lp->axi_clk)) { 2826 ret = PTR_ERR(lp->axi_clk); 2827 goto free_netdev; 2828 } 2829 ret = clk_prepare_enable(lp->axi_clk); 2830 if (ret) { 2831 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); 2832 goto free_netdev; 2833 } 2834 2835 lp->misc_clks[0].id = "axis_clk"; 2836 lp->misc_clks[1].id = "ref_clk"; 2837 lp->misc_clks[2].id = "mgt_clk"; 2838 2839 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2840 if (ret) 2841 goto cleanup_clk; 2842 2843 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2844 if (ret) 2845 goto cleanup_clk; 2846 2847 /* Map device registers */ 2848 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); 2849 if (IS_ERR(lp->regs)) { 2850 ret = PTR_ERR(lp->regs); 2851 goto cleanup_clk; 2852 } 2853 lp->regs_start = ethres->start; 2854 2855 /* Setup checksum offload, but default to off if not specified */ 2856 lp->features = 0; 2857 2858 if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS) 2859 lp->features |= XAE_FEATURE_STATS; 2860 2861 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); 2862 if (!ret) { 2863 switch (value) { 2864 case 1: 2865 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; 2866 /* Can checksum any contiguous range */ 2867 ndev->features |= NETIF_F_HW_CSUM; 2868 break; 2869 case 2: 2870 lp->features |= XAE_FEATURE_FULL_TX_CSUM; 2871 /* Can checksum TCP/UDP over IPv4. */ 2872 ndev->features |= NETIF_F_IP_CSUM; 2873 break; 2874 } 2875 } 2876 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); 2877 if (!ret) { 2878 switch (value) { 2879 case 1: 2880 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; 2881 ndev->features |= NETIF_F_RXCSUM; 2882 break; 2883 case 2: 2884 lp->features |= XAE_FEATURE_FULL_RX_CSUM; 2885 ndev->features |= NETIF_F_RXCSUM; 2886 break; 2887 } 2888 } 2889 /* For supporting jumbo frames, the Axi Ethernet hardware must have 2890 * a larger Rx/Tx Memory. Typically, the size must be large so that 2891 * we can enable jumbo option and start supporting jumbo frames. 2892 * Here we check for memory allocated for Rx/Tx in the hardware from 2893 * the device-tree and accordingly set flags. 2894 */ 2895 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); 2896 2897 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, 2898 "xlnx,switch-x-sgmii"); 2899 2900 /* Start with the proprietary, and broken phy_type */ 2901 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); 2902 if (!ret) { 2903 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); 2904 switch (value) { 2905 case XAE_PHY_TYPE_MII: 2906 lp->phy_mode = PHY_INTERFACE_MODE_MII; 2907 break; 2908 case XAE_PHY_TYPE_GMII: 2909 lp->phy_mode = PHY_INTERFACE_MODE_GMII; 2910 break; 2911 case XAE_PHY_TYPE_RGMII_2_0: 2912 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; 2913 break; 2914 case XAE_PHY_TYPE_SGMII: 2915 lp->phy_mode = PHY_INTERFACE_MODE_SGMII; 2916 break; 2917 case XAE_PHY_TYPE_1000BASE_X: 2918 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; 2919 break; 2920 default: 2921 ret = -EINVAL; 2922 goto cleanup_clk; 2923 } 2924 } else { 2925 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); 2926 if (ret) 2927 goto cleanup_clk; 2928 } 2929 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && 2930 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { 2931 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); 2932 ret = -EINVAL; 2933 goto cleanup_clk; 2934 } 2935 2936 if (!of_property_present(pdev->dev.of_node, "dmas")) { 2937 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ 2938 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); 2939 2940 if (np) { 2941 struct resource dmares; 2942 2943 ret = of_address_to_resource(np, 0, &dmares); 2944 if (ret) { 2945 dev_err(&pdev->dev, 2946 "unable to get DMA resource\n"); 2947 of_node_put(np); 2948 goto cleanup_clk; 2949 } 2950 lp->dma_regs = devm_ioremap_resource(&pdev->dev, 2951 &dmares); 2952 lp->rx_irq = irq_of_parse_and_map(np, 1); 2953 lp->tx_irq = irq_of_parse_and_map(np, 0); 2954 of_node_put(np); 2955 lp->eth_irq = platform_get_irq_optional(pdev, 0); 2956 } else { 2957 /* Check for these resources directly on the Ethernet node. */ 2958 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); 2959 lp->rx_irq = platform_get_irq(pdev, 1); 2960 lp->tx_irq = platform_get_irq(pdev, 0); 2961 lp->eth_irq = platform_get_irq_optional(pdev, 2); 2962 } 2963 if (IS_ERR(lp->dma_regs)) { 2964 dev_err(&pdev->dev, "could not map DMA regs\n"); 2965 ret = PTR_ERR(lp->dma_regs); 2966 goto cleanup_clk; 2967 } 2968 if (lp->rx_irq <= 0 || lp->tx_irq <= 0) { 2969 dev_err(&pdev->dev, "could not determine irqs\n"); 2970 ret = -ENOMEM; 2971 goto cleanup_clk; 2972 } 2973 2974 /* Reset core now that clocks are enabled, prior to accessing MDIO */ 2975 ret = __axienet_device_reset(lp); 2976 if (ret) 2977 goto cleanup_clk; 2978 2979 /* Autodetect the need for 64-bit DMA pointers. 2980 * When the IP is configured for a bus width bigger than 32 bits, 2981 * writing the MSB registers is mandatory, even if they are all 0. 2982 * We can detect this case by writing all 1's to one such register 2983 * and see if that sticks: when the IP is configured for 32 bits 2984 * only, those registers are RES0. 2985 * Those MSB registers were introduced in IP v7.1, which we check first. 2986 */ 2987 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { 2988 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; 2989 2990 iowrite32(0x0, desc); 2991 if (ioread32(desc) == 0) { /* sanity check */ 2992 iowrite32(0xffffffff, desc); 2993 if (ioread32(desc) > 0) { 2994 lp->features |= XAE_FEATURE_DMA_64BIT; 2995 addr_width = 64; 2996 dev_info(&pdev->dev, 2997 "autodetected 64-bit DMA range\n"); 2998 } 2999 iowrite32(0x0, desc); 3000 } 3001 } 3002 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { 3003 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit architecture\n"); 3004 ret = -EINVAL; 3005 goto cleanup_clk; 3006 } 3007 3008 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); 3009 if (ret) { 3010 dev_err(&pdev->dev, "No suitable DMA available\n"); 3011 goto cleanup_clk; 3012 } 3013 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); 3014 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); 3015 } else { 3016 struct xilinx_vdma_config cfg; 3017 struct dma_chan *tx_chan; 3018 3019 lp->eth_irq = platform_get_irq_optional(pdev, 0); 3020 if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) { 3021 ret = lp->eth_irq; 3022 goto cleanup_clk; 3023 } 3024 tx_chan = dma_request_chan(lp->dev, "tx_chan0"); 3025 if (IS_ERR(tx_chan)) { 3026 ret = PTR_ERR(tx_chan); 3027 dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n"); 3028 goto cleanup_clk; 3029 } 3030 3031 cfg.reset = 1; 3032 /* As name says VDMA but it has support for DMA channel reset */ 3033 ret = xilinx_vdma_channel_set_config(tx_chan, &cfg); 3034 if (ret < 0) { 3035 dev_err(&pdev->dev, "Reset channel failed\n"); 3036 dma_release_channel(tx_chan); 3037 goto cleanup_clk; 3038 } 3039 3040 dma_release_channel(tx_chan); 3041 lp->use_dmaengine = 1; 3042 } 3043 3044 if (lp->use_dmaengine) 3045 ndev->netdev_ops = &axienet_netdev_dmaengine_ops; 3046 else 3047 ndev->netdev_ops = &axienet_netdev_ops; 3048 /* Check for Ethernet core IRQ (optional) */ 3049 if (lp->eth_irq <= 0) 3050 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); 3051 3052 /* Retrieve the MAC address */ 3053 ret = of_get_mac_address(pdev->dev.of_node, mac_addr); 3054 if (!ret) { 3055 axienet_set_mac_address(ndev, mac_addr); 3056 } else { 3057 dev_warn(&pdev->dev, "could not find MAC address property: %d\n", 3058 ret); 3059 axienet_set_mac_address(ndev, NULL); 3060 } 3061 3062 spin_lock_init(&lp->rx_cr_lock); 3063 spin_lock_init(&lp->tx_cr_lock); 3064 INIT_WORK(&lp->rx_dim.work, axienet_rx_dim_work); 3065 lp->rx_dim_enabled = true; 3066 lp->rx_dim.profile_ix = 1; 3067 lp->rx_dma_cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp), 3068 XAXIDMA_DFT_RX_USEC); 3069 lp->tx_dma_cr = axienet_calc_cr(lp, XAXIDMA_DFT_TX_THRESHOLD, 3070 XAXIDMA_DFT_TX_USEC); 3071 3072 ret = axienet_mdio_setup(lp); 3073 if (ret) 3074 dev_warn(&pdev->dev, 3075 "error registering MDIO bus: %d\n", ret); 3076 3077 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || 3078 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { 3079 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); 3080 if (!np) { 3081 /* Deprecated: Always use "pcs-handle" for pcs_phy. 3082 * Falling back to "phy-handle" here is only for 3083 * backward compatibility with old device trees. 3084 */ 3085 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 3086 } 3087 if (!np) { 3088 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); 3089 ret = -EINVAL; 3090 goto cleanup_mdio; 3091 } 3092 lp->pcs_phy = of_mdio_find_device(np); 3093 if (!lp->pcs_phy) { 3094 ret = -EPROBE_DEFER; 3095 of_node_put(np); 3096 goto cleanup_mdio; 3097 } 3098 of_node_put(np); 3099 lp->pcs.ops = &axienet_pcs_ops; 3100 lp->pcs.poll = true; 3101 } 3102 3103 lp->phylink_config.dev = &ndev->dev; 3104 lp->phylink_config.type = PHYLINK_NETDEV; 3105 lp->phylink_config.mac_managed_pm = true; 3106 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | 3107 MAC_10FD | MAC_100FD | MAC_1000FD; 3108 3109 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); 3110 if (lp->switch_x_sgmii) { 3111 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 3112 lp->phylink_config.supported_interfaces); 3113 __set_bit(PHY_INTERFACE_MODE_SGMII, 3114 lp->phylink_config.supported_interfaces); 3115 } 3116 3117 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, 3118 lp->phy_mode, 3119 &axienet_phylink_ops); 3120 if (IS_ERR(lp->phylink)) { 3121 ret = PTR_ERR(lp->phylink); 3122 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); 3123 goto cleanup_mdio; 3124 } 3125 3126 ret = register_netdev(lp->ndev); 3127 if (ret) { 3128 dev_err(lp->dev, "register_netdev() error (%i)\n", ret); 3129 goto cleanup_phylink; 3130 } 3131 3132 return 0; 3133 3134 cleanup_phylink: 3135 phylink_destroy(lp->phylink); 3136 3137 cleanup_mdio: 3138 if (lp->pcs_phy) 3139 put_device(&lp->pcs_phy->dev); 3140 if (lp->mii_bus) 3141 axienet_mdio_teardown(lp); 3142 cleanup_clk: 3143 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 3144 clk_disable_unprepare(lp->axi_clk); 3145 3146 free_netdev: 3147 free_netdev(ndev); 3148 3149 return ret; 3150 } 3151 3152 static void axienet_remove(struct platform_device *pdev) 3153 { 3154 struct net_device *ndev = platform_get_drvdata(pdev); 3155 struct axienet_local *lp = netdev_priv(ndev); 3156 3157 unregister_netdev(ndev); 3158 3159 if (lp->phylink) 3160 phylink_destroy(lp->phylink); 3161 3162 if (lp->pcs_phy) 3163 put_device(&lp->pcs_phy->dev); 3164 3165 axienet_mdio_teardown(lp); 3166 3167 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 3168 clk_disable_unprepare(lp->axi_clk); 3169 3170 free_netdev(ndev); 3171 } 3172 3173 static void axienet_shutdown(struct platform_device *pdev) 3174 { 3175 struct net_device *ndev = platform_get_drvdata(pdev); 3176 3177 rtnl_lock(); 3178 netif_device_detach(ndev); 3179 3180 if (netif_running(ndev)) 3181 dev_close(ndev); 3182 3183 rtnl_unlock(); 3184 } 3185 3186 static int axienet_suspend(struct device *dev) 3187 { 3188 struct net_device *ndev = dev_get_drvdata(dev); 3189 3190 if (!netif_running(ndev)) 3191 return 0; 3192 3193 netif_device_detach(ndev); 3194 3195 rtnl_lock(); 3196 axienet_stop(ndev); 3197 rtnl_unlock(); 3198 3199 return 0; 3200 } 3201 3202 static int axienet_resume(struct device *dev) 3203 { 3204 struct net_device *ndev = dev_get_drvdata(dev); 3205 3206 if (!netif_running(ndev)) 3207 return 0; 3208 3209 rtnl_lock(); 3210 axienet_open(ndev); 3211 rtnl_unlock(); 3212 3213 netif_device_attach(ndev); 3214 3215 return 0; 3216 } 3217 3218 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, 3219 axienet_suspend, axienet_resume); 3220 3221 static struct platform_driver axienet_driver = { 3222 .probe = axienet_probe, 3223 .remove = axienet_remove, 3224 .shutdown = axienet_shutdown, 3225 .driver = { 3226 .name = "xilinx_axienet", 3227 .pm = &axienet_pm_ops, 3228 .of_match_table = axienet_of_match, 3229 }, 3230 }; 3231 3232 module_platform_driver(axienet_driver); 3233 3234 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); 3235 MODULE_AUTHOR("Xilinx"); 3236 MODULE_LICENSE("GPL"); 3237