1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Xilinx TEMAC Ethernet device 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * 9 * This is a driver for the Xilinx ll_temac ipcore which is often used 10 * in the Virtex and Spartan series of chips. 11 * 12 * Notes: 13 * - The ll_temac hardware uses indirect access for many of the TEMAC 14 * registers, include the MDIO bus. However, indirect access to MDIO 15 * registers take considerably more clock cycles than to TEMAC registers. 16 * MDIO accesses are long, so threads doing them should probably sleep 17 * rather than busywait. However, since only one indirect access can be 18 * in progress at any given time, that means that *all* indirect accesses 19 * could end up sleeping (to wait for an MDIO access to complete). 20 * Fortunately none of the indirect accesses are on the 'hot' path for tx 21 * or rx, so this should be okay. 22 * 23 * TODO: 24 * - Factor out locallink DMA code into separate driver 25 * - Fix support for hardware checksumming. 26 * - Testing. Lots and lots of testing. 27 * 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/etherdevice.h> 32 #include <linux/mii.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/netdevice.h> 36 #include <linux/if_ether.h> 37 #include <linux/of.h> 38 #include <linux/of_irq.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_net.h> 41 #include <linux/platform_device.h> 42 #include <linux/skbuff.h> 43 #include <linux/spinlock.h> 44 #include <linux/tcp.h> /* needed for sizeof(tcphdr) */ 45 #include <linux/udp.h> /* needed for sizeof(udphdr) */ 46 #include <linux/phy.h> 47 #include <linux/in.h> 48 #include <linux/io.h> 49 #include <linux/ip.h> 50 #include <linux/slab.h> 51 #include <linux/interrupt.h> 52 #include <linux/workqueue.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/processor.h> 55 #include <linux/platform_data/xilinx-ll-temac.h> 56 57 #include "ll_temac.h" 58 59 /* Descriptors defines for Tx and Rx DMA */ 60 #define TX_BD_NUM_DEFAULT 64 61 #define RX_BD_NUM_DEFAULT 1024 62 #define TX_BD_NUM_MAX 4096 63 #define RX_BD_NUM_MAX 4096 64 65 /* --------------------------------------------------------------------- 66 * Low level register access functions 67 */ 68 69 static u32 _temac_ior_be(struct temac_local *lp, int offset) 70 { 71 return ioread32be(lp->regs + offset); 72 } 73 74 static void _temac_iow_be(struct temac_local *lp, int offset, u32 value) 75 { 76 return iowrite32be(value, lp->regs + offset); 77 } 78 79 static u32 _temac_ior_le(struct temac_local *lp, int offset) 80 { 81 return ioread32(lp->regs + offset); 82 } 83 84 static void _temac_iow_le(struct temac_local *lp, int offset, u32 value) 85 { 86 return iowrite32(value, lp->regs + offset); 87 } 88 89 static bool hard_acs_rdy(struct temac_local *lp) 90 { 91 return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK; 92 } 93 94 static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout) 95 { 96 ktime_t cur = ktime_get(); 97 98 return hard_acs_rdy(lp) || ktime_after(cur, timeout); 99 } 100 101 /* Poll for maximum 20 ms. This is similar to the 2 jiffies @ 100 Hz 102 * that was used before, and should cover MDIO bus speed down to 3200 103 * Hz. 104 */ 105 #define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC) 106 107 /* 108 * temac_indirect_busywait - Wait for current indirect register access 109 * to complete. 110 */ 111 int temac_indirect_busywait(struct temac_local *lp) 112 { 113 ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS); 114 115 spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout)); 116 if (WARN_ON(!hard_acs_rdy(lp))) 117 return -ETIMEDOUT; 118 119 return 0; 120 } 121 122 /* 123 * temac_indirect_in32 - Indirect register read access. This function 124 * must be called without lp->indirect_lock being held. 125 */ 126 u32 temac_indirect_in32(struct temac_local *lp, int reg) 127 { 128 unsigned long flags; 129 int val; 130 131 spin_lock_irqsave(lp->indirect_lock, flags); 132 val = temac_indirect_in32_locked(lp, reg); 133 spin_unlock_irqrestore(lp->indirect_lock, flags); 134 return val; 135 } 136 137 /* 138 * temac_indirect_in32_locked - Indirect register read access. This 139 * function must be called with lp->indirect_lock being held. Use 140 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid 141 * repeated lock/unlock and to ensure uninterrupted access to indirect 142 * registers. 143 */ 144 u32 temac_indirect_in32_locked(struct temac_local *lp, int reg) 145 { 146 /* This initial wait should normally not spin, as we always 147 * try to wait for indirect access to complete before 148 * releasing the indirect_lock. 149 */ 150 if (WARN_ON(temac_indirect_busywait(lp))) 151 return -ETIMEDOUT; 152 /* Initiate read from indirect register */ 153 temac_iow(lp, XTE_CTL0_OFFSET, reg); 154 /* Wait for indirect register access to complete. We really 155 * should not see timeouts, and could even end up causing 156 * problem for following indirect access, so let's make a bit 157 * of WARN noise. 158 */ 159 if (WARN_ON(temac_indirect_busywait(lp))) 160 return -ETIMEDOUT; 161 /* Value is ready now */ 162 return temac_ior(lp, XTE_LSW0_OFFSET); 163 } 164 165 /* 166 * temac_indirect_out32 - Indirect register write access. This function 167 * must be called without lp->indirect_lock being held. 168 */ 169 void temac_indirect_out32(struct temac_local *lp, int reg, u32 value) 170 { 171 unsigned long flags; 172 173 spin_lock_irqsave(lp->indirect_lock, flags); 174 temac_indirect_out32_locked(lp, reg, value); 175 spin_unlock_irqrestore(lp->indirect_lock, flags); 176 } 177 178 /* 179 * temac_indirect_out32_locked - Indirect register write access. This 180 * function must be called with lp->indirect_lock being held. Use 181 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid 182 * repeated lock/unlock and to ensure uninterrupted access to indirect 183 * registers. 184 */ 185 void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value) 186 { 187 /* As in temac_indirect_in32_locked(), we should normally not 188 * spin here. And if it happens, we actually end up silently 189 * ignoring the write request. Ouch. 190 */ 191 if (WARN_ON(temac_indirect_busywait(lp))) 192 return; 193 /* Initiate write to indirect register */ 194 temac_iow(lp, XTE_LSW0_OFFSET, value); 195 temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg); 196 /* As in temac_indirect_in32_locked(), we should not see timeouts 197 * here. And if it happens, we continue before the write has 198 * completed. Not good. 199 */ 200 WARN_ON(temac_indirect_busywait(lp)); 201 } 202 203 /* 204 * temac_dma_in32_* - Memory mapped DMA read, these function expects a 205 * register input that is based on DCR word addresses which are then 206 * converted to memory mapped byte addresses. To be assigned to 207 * lp->dma_in32. 208 */ 209 static u32 temac_dma_in32_be(struct temac_local *lp, int reg) 210 { 211 return ioread32be(lp->sdma_regs + (reg << 2)); 212 } 213 214 static u32 temac_dma_in32_le(struct temac_local *lp, int reg) 215 { 216 return ioread32(lp->sdma_regs + (reg << 2)); 217 } 218 219 /* 220 * temac_dma_out32_* - Memory mapped DMA read, these function expects 221 * a register input that is based on DCR word addresses which are then 222 * converted to memory mapped byte addresses. To be assigned to 223 * lp->dma_out32. 224 */ 225 static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value) 226 { 227 iowrite32be(value, lp->sdma_regs + (reg << 2)); 228 } 229 230 static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value) 231 { 232 iowrite32(value, lp->sdma_regs + (reg << 2)); 233 } 234 235 /* DMA register access functions can be DCR based or memory mapped. 236 * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both 237 * memory mapped. 238 */ 239 #ifdef CONFIG_PPC_DCR 240 241 /* 242 * temac_dma_dcr_in32 - DCR based DMA read 243 */ 244 static u32 temac_dma_dcr_in(struct temac_local *lp, int reg) 245 { 246 return dcr_read(lp->sdma_dcrs, reg); 247 } 248 249 /* 250 * temac_dma_dcr_out32 - DCR based DMA write 251 */ 252 static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value) 253 { 254 dcr_write(lp->sdma_dcrs, reg, value); 255 } 256 257 /* 258 * temac_dcr_setup - If the DMA is DCR based, then setup the address and 259 * I/O functions 260 */ 261 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, 262 struct device_node *np) 263 { 264 unsigned int dcrs; 265 266 /* setup the dcr address mapping if it's in the device tree */ 267 268 dcrs = dcr_resource_start(np, 0); 269 if (dcrs != 0) { 270 lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0)); 271 lp->dma_in = temac_dma_dcr_in; 272 lp->dma_out = temac_dma_dcr_out; 273 dev_dbg(&op->dev, "DCR base: %x\n", dcrs); 274 return 0; 275 } 276 /* no DCR in the device tree, indicate a failure */ 277 return -1; 278 } 279 280 #else 281 282 /* 283 * temac_dcr_setup - This is a stub for when DCR is not supported, 284 * such as with MicroBlaze and x86 285 */ 286 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, 287 struct device_node *np) 288 { 289 return -1; 290 } 291 292 #endif 293 294 /* 295 * temac_dma_bd_release - Release buffer descriptor rings 296 */ 297 static void temac_dma_bd_release(struct net_device *ndev) 298 { 299 struct temac_local *lp = netdev_priv(ndev); 300 int i; 301 302 /* Reset Local Link (DMA) */ 303 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); 304 305 for (i = 0; i < lp->rx_bd_num; i++) { 306 if (!lp->rx_skb[i]) 307 break; 308 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys, 309 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); 310 dev_kfree_skb(lp->rx_skb[i]); 311 } 312 if (lp->rx_bd_v) 313 dma_free_coherent(ndev->dev.parent, 314 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 315 lp->rx_bd_v, lp->rx_bd_p); 316 if (lp->tx_bd_v) 317 dma_free_coherent(ndev->dev.parent, 318 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 319 lp->tx_bd_v, lp->tx_bd_p); 320 } 321 322 /* 323 * temac_dma_bd_init - Setup buffer descriptor rings 324 */ 325 static int temac_dma_bd_init(struct net_device *ndev) 326 { 327 struct temac_local *lp = netdev_priv(ndev); 328 struct sk_buff *skb; 329 dma_addr_t skb_dma_addr; 330 int i; 331 332 lp->rx_skb = devm_kcalloc(&ndev->dev, lp->rx_bd_num, 333 sizeof(*lp->rx_skb), GFP_KERNEL); 334 if (!lp->rx_skb) 335 goto out; 336 337 /* allocate the tx and rx ring buffer descriptors. */ 338 /* returns a virtual address and a physical address. */ 339 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, 340 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 341 &lp->tx_bd_p, GFP_KERNEL); 342 if (!lp->tx_bd_v) 343 goto out; 344 345 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, 346 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 347 &lp->rx_bd_p, GFP_KERNEL); 348 if (!lp->rx_bd_v) 349 goto out; 350 351 for (i = 0; i < lp->tx_bd_num; i++) { 352 lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p 353 + sizeof(*lp->tx_bd_v) * ((i + 1) % lp->tx_bd_num)); 354 } 355 356 for (i = 0; i < lp->rx_bd_num; i++) { 357 lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p 358 + sizeof(*lp->rx_bd_v) * ((i + 1) % lp->rx_bd_num)); 359 360 skb = __netdev_alloc_skb_ip_align(ndev, 361 XTE_MAX_JUMBO_FRAME_SIZE, 362 GFP_KERNEL); 363 if (!skb) 364 goto out; 365 366 lp->rx_skb[i] = skb; 367 /* returns physical address of skb->data */ 368 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 369 XTE_MAX_JUMBO_FRAME_SIZE, 370 DMA_FROM_DEVICE); 371 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) 372 goto out; 373 lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr); 374 lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); 375 lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); 376 } 377 378 /* Configure DMA channel (irq setup) */ 379 lp->dma_out(lp, TX_CHNL_CTRL, 380 lp->coalesce_delay_tx << 24 | lp->coalesce_count_tx << 16 | 381 0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used! 382 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | 383 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); 384 lp->dma_out(lp, RX_CHNL_CTRL, 385 lp->coalesce_delay_rx << 24 | lp->coalesce_count_rx << 16 | 386 CHNL_CTRL_IRQ_IOE | 387 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | 388 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); 389 390 /* Init descriptor indexes */ 391 lp->tx_bd_ci = 0; 392 lp->tx_bd_tail = 0; 393 lp->rx_bd_ci = 0; 394 lp->rx_bd_tail = lp->rx_bd_num - 1; 395 396 /* Enable RX DMA transfers */ 397 wmb(); 398 lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p); 399 lp->dma_out(lp, RX_TAILDESC_PTR, 400 lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * lp->rx_bd_tail)); 401 402 /* Prepare for TX DMA transfer */ 403 lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p); 404 405 return 0; 406 407 out: 408 temac_dma_bd_release(ndev); 409 return -ENOMEM; 410 } 411 412 /* --------------------------------------------------------------------- 413 * net_device_ops 414 */ 415 416 static void temac_do_set_mac_address(struct net_device *ndev) 417 { 418 struct temac_local *lp = netdev_priv(ndev); 419 unsigned long flags; 420 421 /* set up unicast MAC address filter set its mac address */ 422 spin_lock_irqsave(lp->indirect_lock, flags); 423 temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET, 424 (ndev->dev_addr[0]) | 425 (ndev->dev_addr[1] << 8) | 426 (ndev->dev_addr[2] << 16) | 427 (ndev->dev_addr[3] << 24)); 428 /* There are reserved bits in EUAW1 429 * so don't affect them Set MAC bits [47:32] in EUAW1 430 */ 431 temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET, 432 (ndev->dev_addr[4] & 0x000000ff) | 433 (ndev->dev_addr[5] << 8)); 434 spin_unlock_irqrestore(lp->indirect_lock, flags); 435 } 436 437 static int temac_init_mac_address(struct net_device *ndev, const void *address) 438 { 439 eth_hw_addr_set(ndev, address); 440 if (!is_valid_ether_addr(ndev->dev_addr)) 441 eth_hw_addr_random(ndev); 442 temac_do_set_mac_address(ndev); 443 return 0; 444 } 445 446 static int temac_set_mac_address(struct net_device *ndev, void *p) 447 { 448 struct sockaddr *addr = p; 449 450 if (!is_valid_ether_addr(addr->sa_data)) 451 return -EADDRNOTAVAIL; 452 eth_hw_addr_set(ndev, addr->sa_data); 453 temac_do_set_mac_address(ndev); 454 return 0; 455 } 456 457 static void temac_set_multicast_list(struct net_device *ndev) 458 { 459 struct temac_local *lp = netdev_priv(ndev); 460 u32 multi_addr_msw, multi_addr_lsw; 461 int i = 0; 462 unsigned long flags; 463 bool promisc_mode_disabled = false; 464 465 if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) || 466 (netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) { 467 temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK); 468 dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); 469 return; 470 } 471 472 spin_lock_irqsave(lp->indirect_lock, flags); 473 474 if (!netdev_mc_empty(ndev)) { 475 struct netdev_hw_addr *ha; 476 477 netdev_for_each_mc_addr(ha, ndev) { 478 if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM)) 479 break; 480 multi_addr_msw = ((ha->addr[3] << 24) | 481 (ha->addr[2] << 16) | 482 (ha->addr[1] << 8) | 483 (ha->addr[0])); 484 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 485 multi_addr_msw); 486 multi_addr_lsw = ((ha->addr[5] << 8) | 487 (ha->addr[4]) | (i << 16)); 488 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, 489 multi_addr_lsw); 490 i++; 491 } 492 } 493 494 /* Clear all or remaining/unused address table entries */ 495 while (i < MULTICAST_CAM_TABLE_NUM) { 496 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0); 497 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16); 498 i++; 499 } 500 501 /* Enable address filter block if currently disabled */ 502 if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET) 503 & XTE_AFM_EPPRM_MASK) { 504 temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0); 505 promisc_mode_disabled = true; 506 } 507 508 spin_unlock_irqrestore(lp->indirect_lock, flags); 509 510 if (promisc_mode_disabled) 511 dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); 512 } 513 514 static struct temac_option { 515 int flg; 516 u32 opt; 517 u32 reg; 518 u32 m_or; 519 u32 m_and; 520 } temac_options[] = { 521 /* Turn on jumbo packet support for both Rx and Tx */ 522 { 523 .opt = XTE_OPTION_JUMBO, 524 .reg = XTE_TXC_OFFSET, 525 .m_or = XTE_TXC_TXJMBO_MASK, 526 }, 527 { 528 .opt = XTE_OPTION_JUMBO, 529 .reg = XTE_RXC1_OFFSET, 530 .m_or = XTE_RXC1_RXJMBO_MASK, 531 }, 532 /* Turn on VLAN packet support for both Rx and Tx */ 533 { 534 .opt = XTE_OPTION_VLAN, 535 .reg = XTE_TXC_OFFSET, 536 .m_or = XTE_TXC_TXVLAN_MASK, 537 }, 538 { 539 .opt = XTE_OPTION_VLAN, 540 .reg = XTE_RXC1_OFFSET, 541 .m_or = XTE_RXC1_RXVLAN_MASK, 542 }, 543 /* Turn on FCS stripping on receive packets */ 544 { 545 .opt = XTE_OPTION_FCS_STRIP, 546 .reg = XTE_RXC1_OFFSET, 547 .m_or = XTE_RXC1_RXFCS_MASK, 548 }, 549 /* Turn on FCS insertion on transmit packets */ 550 { 551 .opt = XTE_OPTION_FCS_INSERT, 552 .reg = XTE_TXC_OFFSET, 553 .m_or = XTE_TXC_TXFCS_MASK, 554 }, 555 /* Turn on length/type field checking on receive packets */ 556 { 557 .opt = XTE_OPTION_LENTYPE_ERR, 558 .reg = XTE_RXC1_OFFSET, 559 .m_or = XTE_RXC1_RXLT_MASK, 560 }, 561 /* Turn on flow control */ 562 { 563 .opt = XTE_OPTION_FLOW_CONTROL, 564 .reg = XTE_FCC_OFFSET, 565 .m_or = XTE_FCC_RXFLO_MASK, 566 }, 567 /* Turn on flow control */ 568 { 569 .opt = XTE_OPTION_FLOW_CONTROL, 570 .reg = XTE_FCC_OFFSET, 571 .m_or = XTE_FCC_TXFLO_MASK, 572 }, 573 /* Turn on promiscuous frame filtering (all frames are received ) */ 574 { 575 .opt = XTE_OPTION_PROMISC, 576 .reg = XTE_AFM_OFFSET, 577 .m_or = XTE_AFM_EPPRM_MASK, 578 }, 579 /* Enable transmitter if not already enabled */ 580 { 581 .opt = XTE_OPTION_TXEN, 582 .reg = XTE_TXC_OFFSET, 583 .m_or = XTE_TXC_TXEN_MASK, 584 }, 585 /* Enable receiver? */ 586 { 587 .opt = XTE_OPTION_RXEN, 588 .reg = XTE_RXC1_OFFSET, 589 .m_or = XTE_RXC1_RXEN_MASK, 590 }, 591 {} 592 }; 593 594 /* 595 * temac_setoptions 596 */ 597 static u32 temac_setoptions(struct net_device *ndev, u32 options) 598 { 599 struct temac_local *lp = netdev_priv(ndev); 600 struct temac_option *tp = &temac_options[0]; 601 int reg; 602 unsigned long flags; 603 604 spin_lock_irqsave(lp->indirect_lock, flags); 605 while (tp->opt) { 606 reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or; 607 if (options & tp->opt) { 608 reg |= tp->m_or; 609 temac_indirect_out32_locked(lp, tp->reg, reg); 610 } 611 tp++; 612 } 613 spin_unlock_irqrestore(lp->indirect_lock, flags); 614 lp->options |= options; 615 616 return 0; 617 } 618 619 /* Initialize temac */ 620 static void temac_device_reset(struct net_device *ndev) 621 { 622 struct temac_local *lp = netdev_priv(ndev); 623 u32 timeout; 624 u32 val; 625 unsigned long flags; 626 627 /* Perform a software reset */ 628 629 /* 0x300 host enable bit ? */ 630 /* reset PHY through control register ?:1 */ 631 632 dev_dbg(&ndev->dev, "%s()\n", __func__); 633 634 /* Reset the receiver and wait for it to finish reset */ 635 temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK); 636 timeout = 1000; 637 while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) { 638 udelay(1); 639 if (--timeout == 0) { 640 dev_err(&ndev->dev, 641 "%s RX reset timeout!!\n", __func__); 642 break; 643 } 644 } 645 646 /* Reset the transmitter and wait for it to finish reset */ 647 temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK); 648 timeout = 1000; 649 while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) { 650 udelay(1); 651 if (--timeout == 0) { 652 dev_err(&ndev->dev, 653 "%s TX reset timeout!!\n", __func__); 654 break; 655 } 656 } 657 658 /* Disable the receiver */ 659 spin_lock_irqsave(lp->indirect_lock, flags); 660 val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET); 661 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 662 val & ~XTE_RXC1_RXEN_MASK); 663 spin_unlock_irqrestore(lp->indirect_lock, flags); 664 665 /* Reset Local Link (DMA) */ 666 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); 667 timeout = 1000; 668 while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) { 669 udelay(1); 670 if (--timeout == 0) { 671 dev_err(&ndev->dev, 672 "%s DMA reset timeout!!\n", __func__); 673 break; 674 } 675 } 676 lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE); 677 678 if (temac_dma_bd_init(ndev)) { 679 dev_err(&ndev->dev, 680 "%s descriptor allocation failed\n", __func__); 681 } 682 683 spin_lock_irqsave(lp->indirect_lock, flags); 684 temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0); 685 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0); 686 temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0); 687 temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK); 688 spin_unlock_irqrestore(lp->indirect_lock, flags); 689 690 /* Sync default options with HW 691 * but leave receiver and transmitter disabled. 692 */ 693 temac_setoptions(ndev, 694 lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN)); 695 696 temac_do_set_mac_address(ndev); 697 698 /* Set address filter table */ 699 temac_set_multicast_list(ndev); 700 if (temac_setoptions(ndev, lp->options)) 701 dev_err(&ndev->dev, "Error setting TEMAC options\n"); 702 703 /* Init Driver variable */ 704 netif_trans_update(ndev); /* prevent tx timeout */ 705 } 706 707 static void temac_adjust_link(struct net_device *ndev) 708 { 709 struct temac_local *lp = netdev_priv(ndev); 710 struct phy_device *phy = ndev->phydev; 711 u32 mii_speed; 712 int link_state; 713 unsigned long flags; 714 715 /* hash together the state values to decide if something has changed */ 716 link_state = phy->speed | (phy->duplex << 1) | phy->link; 717 718 if (lp->last_link != link_state) { 719 spin_lock_irqsave(lp->indirect_lock, flags); 720 mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET); 721 mii_speed &= ~XTE_EMCFG_LINKSPD_MASK; 722 723 switch (phy->speed) { 724 case SPEED_1000: 725 mii_speed |= XTE_EMCFG_LINKSPD_1000; 726 break; 727 case SPEED_100: 728 mii_speed |= XTE_EMCFG_LINKSPD_100; 729 break; 730 case SPEED_10: 731 mii_speed |= XTE_EMCFG_LINKSPD_10; 732 break; 733 } 734 735 /* Write new speed setting out to TEMAC */ 736 temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed); 737 spin_unlock_irqrestore(lp->indirect_lock, flags); 738 739 lp->last_link = link_state; 740 phy_print_status(phy); 741 } 742 } 743 744 #ifdef CONFIG_64BIT 745 746 static void ptr_to_txbd(void *p, struct cdmac_bd *bd) 747 { 748 bd->app3 = (u32)(((u64)p) >> 32); 749 bd->app4 = (u32)((u64)p & 0xFFFFFFFF); 750 } 751 752 static void *ptr_from_txbd(struct cdmac_bd *bd) 753 { 754 return (void *)(((u64)(bd->app3) << 32) | bd->app4); 755 } 756 757 #else 758 759 static void ptr_to_txbd(void *p, struct cdmac_bd *bd) 760 { 761 bd->app4 = (u32)p; 762 } 763 764 static void *ptr_from_txbd(struct cdmac_bd *bd) 765 { 766 return (void *)(bd->app4); 767 } 768 769 #endif 770 771 static void temac_start_xmit_done(struct net_device *ndev) 772 { 773 struct temac_local *lp = netdev_priv(ndev); 774 struct cdmac_bd *cur_p; 775 unsigned int stat = 0; 776 struct sk_buff *skb; 777 778 cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; 779 stat = be32_to_cpu(cur_p->app0); 780 781 while (stat & STS_CTRL_APP0_CMPLT) { 782 /* Make sure that the other fields are read after bd is 783 * released by dma 784 */ 785 rmb(); 786 dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys), 787 be32_to_cpu(cur_p->len), DMA_TO_DEVICE); 788 skb = (struct sk_buff *)ptr_from_txbd(cur_p); 789 if (skb) 790 dev_consume_skb_irq(skb); 791 cur_p->app1 = 0; 792 cur_p->app2 = 0; 793 cur_p->app3 = 0; 794 cur_p->app4 = 0; 795 796 ndev->stats.tx_packets++; 797 ndev->stats.tx_bytes += be32_to_cpu(cur_p->len); 798 799 /* app0 must be visible last, as it is used to flag 800 * availability of the bd 801 */ 802 smp_mb(); 803 cur_p->app0 = 0; 804 805 lp->tx_bd_ci++; 806 if (lp->tx_bd_ci >= lp->tx_bd_num) 807 lp->tx_bd_ci = 0; 808 809 cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; 810 stat = be32_to_cpu(cur_p->app0); 811 } 812 813 /* Matches barrier in temac_start_xmit */ 814 smp_mb(); 815 816 netif_wake_queue(ndev); 817 } 818 819 static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag) 820 { 821 struct cdmac_bd *cur_p; 822 int tail; 823 824 tail = lp->tx_bd_tail; 825 cur_p = &lp->tx_bd_v[tail]; 826 827 do { 828 if (cur_p->app0) 829 return NETDEV_TX_BUSY; 830 831 /* Make sure to read next bd app0 after this one */ 832 rmb(); 833 834 tail++; 835 if (tail >= lp->tx_bd_num) 836 tail = 0; 837 838 cur_p = &lp->tx_bd_v[tail]; 839 num_frag--; 840 } while (num_frag >= 0); 841 842 return 0; 843 } 844 845 static netdev_tx_t 846 temac_start_xmit(struct sk_buff *skb, struct net_device *ndev) 847 { 848 struct temac_local *lp = netdev_priv(ndev); 849 struct cdmac_bd *cur_p; 850 dma_addr_t tail_p, skb_dma_addr; 851 int ii; 852 unsigned long num_frag; 853 skb_frag_t *frag; 854 855 num_frag = skb_shinfo(skb)->nr_frags; 856 frag = &skb_shinfo(skb)->frags[0]; 857 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 858 859 if (temac_check_tx_bd_space(lp, num_frag + 1)) { 860 if (netif_queue_stopped(ndev)) 861 return NETDEV_TX_BUSY; 862 863 netif_stop_queue(ndev); 864 865 /* Matches barrier in temac_start_xmit_done */ 866 smp_mb(); 867 868 /* Space might have just been freed - check again */ 869 if (temac_check_tx_bd_space(lp, num_frag + 1)) 870 return NETDEV_TX_BUSY; 871 872 netif_wake_queue(ndev); 873 } 874 875 cur_p->app0 = 0; 876 if (skb->ip_summed == CHECKSUM_PARTIAL) { 877 unsigned int csum_start_off = skb_checksum_start_offset(skb); 878 unsigned int csum_index_off = csum_start_off + skb->csum_offset; 879 880 cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */ 881 cur_p->app1 = cpu_to_be32((csum_start_off << 16) 882 | csum_index_off); 883 cur_p->app2 = 0; /* initial checksum seed */ 884 } 885 886 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP); 887 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 888 skb_headlen(skb), DMA_TO_DEVICE); 889 cur_p->len = cpu_to_be32(skb_headlen(skb)); 890 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) { 891 dev_kfree_skb_any(skb); 892 ndev->stats.tx_dropped++; 893 return NETDEV_TX_OK; 894 } 895 cur_p->phys = cpu_to_be32(skb_dma_addr); 896 897 for (ii = 0; ii < num_frag; ii++) { 898 if (++lp->tx_bd_tail >= lp->tx_bd_num) 899 lp->tx_bd_tail = 0; 900 901 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 902 skb_dma_addr = dma_map_single(ndev->dev.parent, 903 skb_frag_address(frag), 904 skb_frag_size(frag), 905 DMA_TO_DEVICE); 906 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) { 907 if (--lp->tx_bd_tail < 0) 908 lp->tx_bd_tail = lp->tx_bd_num - 1; 909 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 910 while (--ii >= 0) { 911 --frag; 912 dma_unmap_single(ndev->dev.parent, 913 be32_to_cpu(cur_p->phys), 914 skb_frag_size(frag), 915 DMA_TO_DEVICE); 916 if (--lp->tx_bd_tail < 0) 917 lp->tx_bd_tail = lp->tx_bd_num - 1; 918 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 919 } 920 dma_unmap_single(ndev->dev.parent, 921 be32_to_cpu(cur_p->phys), 922 skb_headlen(skb), DMA_TO_DEVICE); 923 dev_kfree_skb_any(skb); 924 ndev->stats.tx_dropped++; 925 return NETDEV_TX_OK; 926 } 927 cur_p->phys = cpu_to_be32(skb_dma_addr); 928 cur_p->len = cpu_to_be32(skb_frag_size(frag)); 929 cur_p->app0 = 0; 930 frag++; 931 } 932 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP); 933 934 /* Mark last fragment with skb address, so it can be consumed 935 * in temac_start_xmit_done() 936 */ 937 ptr_to_txbd((void *)skb, cur_p); 938 939 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; 940 lp->tx_bd_tail++; 941 if (lp->tx_bd_tail >= lp->tx_bd_num) 942 lp->tx_bd_tail = 0; 943 944 skb_tx_timestamp(skb); 945 946 /* Kick off the transfer */ 947 wmb(); 948 lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */ 949 950 if (temac_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 951 netif_stop_queue(ndev); 952 953 return NETDEV_TX_OK; 954 } 955 956 static int ll_temac_recv_buffers_available(struct temac_local *lp) 957 { 958 int available; 959 960 if (!lp->rx_skb[lp->rx_bd_ci]) 961 return 0; 962 available = 1 + lp->rx_bd_tail - lp->rx_bd_ci; 963 if (available <= 0) 964 available += lp->rx_bd_num; 965 return available; 966 } 967 968 static void ll_temac_recv(struct net_device *ndev) 969 { 970 struct temac_local *lp = netdev_priv(ndev); 971 unsigned long flags; 972 int rx_bd; 973 bool update_tail = false; 974 975 spin_lock_irqsave(&lp->rx_lock, flags); 976 977 /* Process all received buffers, passing them on network 978 * stack. After this, the buffer descriptors will be in an 979 * un-allocated stage, where no skb is allocated for it, and 980 * they are therefore not available for TEMAC/DMA. 981 */ 982 do { 983 struct cdmac_bd *bd = &lp->rx_bd_v[lp->rx_bd_ci]; 984 struct sk_buff *skb = lp->rx_skb[lp->rx_bd_ci]; 985 unsigned int bdstat = be32_to_cpu(bd->app0); 986 int length; 987 988 /* While this should not normally happen, we can end 989 * here when GFP_ATOMIC allocations fail, and we 990 * therefore have un-allocated buffers. 991 */ 992 if (!skb) 993 break; 994 995 /* Loop over all completed buffer descriptors */ 996 if (!(bdstat & STS_CTRL_APP0_CMPLT)) 997 break; 998 999 dma_unmap_single(ndev->dev.parent, be32_to_cpu(bd->phys), 1000 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); 1001 /* The buffer is not valid for DMA anymore */ 1002 bd->phys = 0; 1003 bd->len = 0; 1004 1005 length = be32_to_cpu(bd->app4) & 0x3FFF; 1006 skb_put(skb, length); 1007 skb->protocol = eth_type_trans(skb, ndev); 1008 skb_checksum_none_assert(skb); 1009 1010 /* if we're doing rx csum offload, set it up */ 1011 if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) && 1012 (skb->protocol == htons(ETH_P_IP)) && 1013 (skb->len > 64)) { 1014 /* Convert from device endianness (be32) to cpu 1015 * endianness, and if necessary swap the bytes 1016 * (back) for proper IP checksum byte order 1017 * (be16). 1018 */ 1019 skb->csum = htons(be32_to_cpu(bd->app3) & 0xFFFF); 1020 skb->ip_summed = CHECKSUM_COMPLETE; 1021 } 1022 1023 if (!skb_defer_rx_timestamp(skb)) 1024 netif_rx(skb); 1025 /* The skb buffer is now owned by network stack above */ 1026 lp->rx_skb[lp->rx_bd_ci] = NULL; 1027 1028 ndev->stats.rx_packets++; 1029 ndev->stats.rx_bytes += length; 1030 1031 rx_bd = lp->rx_bd_ci; 1032 if (++lp->rx_bd_ci >= lp->rx_bd_num) 1033 lp->rx_bd_ci = 0; 1034 } while (rx_bd != lp->rx_bd_tail); 1035 1036 /* DMA operations will halt when the last buffer descriptor is 1037 * processed (ie. the one pointed to by RX_TAILDESC_PTR). 1038 * When that happens, no more interrupt events will be 1039 * generated. No IRQ_COAL or IRQ_DLY, and not even an 1040 * IRQ_ERR. To avoid stalling, we schedule a delayed work 1041 * when there is a potential risk of that happening. The work 1042 * will call this function, and thus re-schedule itself until 1043 * enough buffers are available again. 1044 */ 1045 if (ll_temac_recv_buffers_available(lp) < lp->coalesce_count_rx) 1046 schedule_delayed_work(&lp->restart_work, HZ / 1000); 1047 1048 /* Allocate new buffers for those buffer descriptors that were 1049 * passed to network stack. Note that GFP_ATOMIC allocations 1050 * can fail (e.g. when a larger burst of GFP_ATOMIC 1051 * allocations occurs), so while we try to allocate all 1052 * buffers in the same interrupt where they were processed, we 1053 * continue with what we could get in case of allocation 1054 * failure. Allocation of remaining buffers will be retried 1055 * in following calls. 1056 */ 1057 while (1) { 1058 struct sk_buff *skb; 1059 struct cdmac_bd *bd; 1060 dma_addr_t skb_dma_addr; 1061 1062 rx_bd = lp->rx_bd_tail + 1; 1063 if (rx_bd >= lp->rx_bd_num) 1064 rx_bd = 0; 1065 bd = &lp->rx_bd_v[rx_bd]; 1066 1067 if (bd->phys) 1068 break; /* All skb's allocated */ 1069 1070 skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE); 1071 if (!skb) { 1072 dev_warn(&ndev->dev, "skb alloc failed\n"); 1073 break; 1074 } 1075 1076 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 1077 XTE_MAX_JUMBO_FRAME_SIZE, 1078 DMA_FROM_DEVICE); 1079 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, 1080 skb_dma_addr))) { 1081 dev_kfree_skb_any(skb); 1082 break; 1083 } 1084 1085 bd->phys = cpu_to_be32(skb_dma_addr); 1086 bd->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); 1087 bd->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); 1088 lp->rx_skb[rx_bd] = skb; 1089 1090 lp->rx_bd_tail = rx_bd; 1091 update_tail = true; 1092 } 1093 1094 /* Move tail pointer when buffers have been allocated */ 1095 if (update_tail) { 1096 lp->dma_out(lp, RX_TAILDESC_PTR, 1097 lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_tail); 1098 } 1099 1100 spin_unlock_irqrestore(&lp->rx_lock, flags); 1101 } 1102 1103 /* Function scheduled to ensure a restart in case of DMA halt 1104 * condition caused by running out of buffer descriptors. 1105 */ 1106 static void ll_temac_restart_work_func(struct work_struct *work) 1107 { 1108 struct temac_local *lp = container_of(work, struct temac_local, 1109 restart_work.work); 1110 struct net_device *ndev = lp->ndev; 1111 1112 ll_temac_recv(ndev); 1113 } 1114 1115 static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev) 1116 { 1117 struct net_device *ndev = _ndev; 1118 struct temac_local *lp = netdev_priv(ndev); 1119 unsigned int status; 1120 1121 status = lp->dma_in(lp, TX_IRQ_REG); 1122 lp->dma_out(lp, TX_IRQ_REG, status); 1123 1124 if (status & (IRQ_COAL | IRQ_DLY)) 1125 temac_start_xmit_done(lp->ndev); 1126 if (status & (IRQ_ERR | IRQ_DMAERR)) 1127 dev_err_ratelimited(&ndev->dev, 1128 "TX error 0x%x TX_CHNL_STS=0x%08x\n", 1129 status, lp->dma_in(lp, TX_CHNL_STS)); 1130 1131 return IRQ_HANDLED; 1132 } 1133 1134 static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev) 1135 { 1136 struct net_device *ndev = _ndev; 1137 struct temac_local *lp = netdev_priv(ndev); 1138 unsigned int status; 1139 1140 /* Read and clear the status registers */ 1141 status = lp->dma_in(lp, RX_IRQ_REG); 1142 lp->dma_out(lp, RX_IRQ_REG, status); 1143 1144 if (status & (IRQ_COAL | IRQ_DLY)) 1145 ll_temac_recv(lp->ndev); 1146 if (status & (IRQ_ERR | IRQ_DMAERR)) 1147 dev_err_ratelimited(&ndev->dev, 1148 "RX error 0x%x RX_CHNL_STS=0x%08x\n", 1149 status, lp->dma_in(lp, RX_CHNL_STS)); 1150 1151 return IRQ_HANDLED; 1152 } 1153 1154 static int temac_open(struct net_device *ndev) 1155 { 1156 struct temac_local *lp = netdev_priv(ndev); 1157 struct phy_device *phydev = NULL; 1158 int rc; 1159 1160 dev_dbg(&ndev->dev, "temac_open()\n"); 1161 1162 if (lp->phy_node) { 1163 phydev = of_phy_connect(lp->ndev, lp->phy_node, 1164 temac_adjust_link, 0, 0); 1165 if (!phydev) { 1166 dev_err(lp->dev, "of_phy_connect() failed\n"); 1167 return -ENODEV; 1168 } 1169 phy_start(phydev); 1170 } else if (strlen(lp->phy_name) > 0) { 1171 phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link, 1172 lp->phy_interface); 1173 if (IS_ERR(phydev)) { 1174 dev_err(lp->dev, "phy_connect() failed\n"); 1175 return PTR_ERR(phydev); 1176 } 1177 phy_start(phydev); 1178 } 1179 1180 temac_device_reset(ndev); 1181 1182 rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev); 1183 if (rc) 1184 goto err_tx_irq; 1185 rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev); 1186 if (rc) 1187 goto err_rx_irq; 1188 1189 return 0; 1190 1191 err_rx_irq: 1192 free_irq(lp->tx_irq, ndev); 1193 err_tx_irq: 1194 if (phydev) 1195 phy_disconnect(phydev); 1196 dev_err(lp->dev, "request_irq() failed\n"); 1197 return rc; 1198 } 1199 1200 static int temac_stop(struct net_device *ndev) 1201 { 1202 struct temac_local *lp = netdev_priv(ndev); 1203 struct phy_device *phydev = ndev->phydev; 1204 1205 dev_dbg(&ndev->dev, "temac_close()\n"); 1206 1207 cancel_delayed_work_sync(&lp->restart_work); 1208 1209 free_irq(lp->tx_irq, ndev); 1210 free_irq(lp->rx_irq, ndev); 1211 1212 if (phydev) 1213 phy_disconnect(phydev); 1214 1215 temac_dma_bd_release(ndev); 1216 1217 return 0; 1218 } 1219 1220 #ifdef CONFIG_NET_POLL_CONTROLLER 1221 static void 1222 temac_poll_controller(struct net_device *ndev) 1223 { 1224 struct temac_local *lp = netdev_priv(ndev); 1225 1226 disable_irq(lp->tx_irq); 1227 disable_irq(lp->rx_irq); 1228 1229 ll_temac_rx_irq(lp->tx_irq, ndev); 1230 ll_temac_tx_irq(lp->rx_irq, ndev); 1231 1232 enable_irq(lp->tx_irq); 1233 enable_irq(lp->rx_irq); 1234 } 1235 #endif 1236 1237 static const struct net_device_ops temac_netdev_ops = { 1238 .ndo_open = temac_open, 1239 .ndo_stop = temac_stop, 1240 .ndo_start_xmit = temac_start_xmit, 1241 .ndo_set_rx_mode = temac_set_multicast_list, 1242 .ndo_set_mac_address = temac_set_mac_address, 1243 .ndo_validate_addr = eth_validate_addr, 1244 .ndo_eth_ioctl = phy_do_ioctl_running, 1245 #ifdef CONFIG_NET_POLL_CONTROLLER 1246 .ndo_poll_controller = temac_poll_controller, 1247 #endif 1248 }; 1249 1250 /* --------------------------------------------------------------------- 1251 * SYSFS device attributes 1252 */ 1253 static ssize_t temac_show_llink_regs(struct device *dev, 1254 struct device_attribute *attr, char *buf) 1255 { 1256 struct net_device *ndev = dev_get_drvdata(dev); 1257 struct temac_local *lp = netdev_priv(ndev); 1258 int i, len = 0; 1259 1260 for (i = 0; i < 0x11; i++) 1261 len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i), 1262 (i % 8) == 7 ? "\n" : " "); 1263 len += sprintf(buf + len, "\n"); 1264 1265 return len; 1266 } 1267 1268 static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL); 1269 1270 static struct attribute *temac_device_attrs[] = { 1271 &dev_attr_llink_regs.attr, 1272 NULL, 1273 }; 1274 1275 static const struct attribute_group temac_attr_group = { 1276 .attrs = temac_device_attrs, 1277 }; 1278 1279 /* --------------------------------------------------------------------- 1280 * ethtool support 1281 */ 1282 1283 static void 1284 ll_temac_ethtools_get_ringparam(struct net_device *ndev, 1285 struct ethtool_ringparam *ering, 1286 struct kernel_ethtool_ringparam *kernel_ering, 1287 struct netlink_ext_ack *extack) 1288 { 1289 struct temac_local *lp = netdev_priv(ndev); 1290 1291 ering->rx_max_pending = RX_BD_NUM_MAX; 1292 ering->rx_mini_max_pending = 0; 1293 ering->rx_jumbo_max_pending = 0; 1294 ering->tx_max_pending = TX_BD_NUM_MAX; 1295 ering->rx_pending = lp->rx_bd_num; 1296 ering->rx_mini_pending = 0; 1297 ering->rx_jumbo_pending = 0; 1298 ering->tx_pending = lp->tx_bd_num; 1299 } 1300 1301 static int 1302 ll_temac_ethtools_set_ringparam(struct net_device *ndev, 1303 struct ethtool_ringparam *ering, 1304 struct kernel_ethtool_ringparam *kernel_ering, 1305 struct netlink_ext_ack *extack) 1306 { 1307 struct temac_local *lp = netdev_priv(ndev); 1308 1309 if (ering->rx_pending > RX_BD_NUM_MAX || 1310 ering->rx_mini_pending || 1311 ering->rx_jumbo_pending || 1312 ering->rx_pending > TX_BD_NUM_MAX) 1313 return -EINVAL; 1314 1315 if (netif_running(ndev)) 1316 return -EBUSY; 1317 1318 lp->rx_bd_num = ering->rx_pending; 1319 lp->tx_bd_num = ering->tx_pending; 1320 return 0; 1321 } 1322 1323 static int 1324 ll_temac_ethtools_get_coalesce(struct net_device *ndev, 1325 struct ethtool_coalesce *ec, 1326 struct kernel_ethtool_coalesce *kernel_coal, 1327 struct netlink_ext_ack *extack) 1328 { 1329 struct temac_local *lp = netdev_priv(ndev); 1330 1331 ec->rx_max_coalesced_frames = lp->coalesce_count_rx; 1332 ec->tx_max_coalesced_frames = lp->coalesce_count_tx; 1333 ec->rx_coalesce_usecs = (lp->coalesce_delay_rx * 512) / 100; 1334 ec->tx_coalesce_usecs = (lp->coalesce_delay_tx * 512) / 100; 1335 return 0; 1336 } 1337 1338 static int 1339 ll_temac_ethtools_set_coalesce(struct net_device *ndev, 1340 struct ethtool_coalesce *ec, 1341 struct kernel_ethtool_coalesce *kernel_coal, 1342 struct netlink_ext_ack *extack) 1343 { 1344 struct temac_local *lp = netdev_priv(ndev); 1345 1346 if (netif_running(ndev)) { 1347 netdev_err(ndev, 1348 "Please stop netif before applying configuration\n"); 1349 return -EFAULT; 1350 } 1351 1352 if (ec->rx_max_coalesced_frames) 1353 lp->coalesce_count_rx = ec->rx_max_coalesced_frames; 1354 if (ec->tx_max_coalesced_frames) 1355 lp->coalesce_count_tx = ec->tx_max_coalesced_frames; 1356 /* With typical LocalLink clock speed of 200 MHz and 1357 * C_PRESCALAR=1023, each delay count corresponds to 5.12 us. 1358 */ 1359 if (ec->rx_coalesce_usecs) 1360 lp->coalesce_delay_rx = 1361 min(255U, (ec->rx_coalesce_usecs * 100) / 512); 1362 if (ec->tx_coalesce_usecs) 1363 lp->coalesce_delay_tx = 1364 min(255U, (ec->tx_coalesce_usecs * 100) / 512); 1365 1366 return 0; 1367 } 1368 1369 static const struct ethtool_ops temac_ethtool_ops = { 1370 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1371 ETHTOOL_COALESCE_MAX_FRAMES, 1372 .nway_reset = phy_ethtool_nway_reset, 1373 .get_link = ethtool_op_get_link, 1374 .get_ts_info = ethtool_op_get_ts_info, 1375 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1376 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1377 .get_ringparam = ll_temac_ethtools_get_ringparam, 1378 .set_ringparam = ll_temac_ethtools_set_ringparam, 1379 .get_coalesce = ll_temac_ethtools_get_coalesce, 1380 .set_coalesce = ll_temac_ethtools_set_coalesce, 1381 }; 1382 1383 static int temac_probe(struct platform_device *pdev) 1384 { 1385 struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev); 1386 struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np; 1387 struct temac_local *lp; 1388 struct net_device *ndev; 1389 u8 addr[ETH_ALEN]; 1390 __be32 *p; 1391 bool little_endian; 1392 int rc = 0; 1393 1394 /* Init network device structure */ 1395 ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp)); 1396 if (!ndev) 1397 return -ENOMEM; 1398 1399 platform_set_drvdata(pdev, ndev); 1400 SET_NETDEV_DEV(ndev, &pdev->dev); 1401 ndev->features = NETIF_F_SG; 1402 ndev->netdev_ops = &temac_netdev_ops; 1403 ndev->ethtool_ops = &temac_ethtool_ops; 1404 #if 0 1405 ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */ 1406 ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */ 1407 ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */ 1408 ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */ 1409 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */ 1410 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */ 1411 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */ 1412 ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */ 1413 ndev->features |= NETIF_F_GSO; /* Enable software GSO. */ 1414 ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */ 1415 ndev->features |= NETIF_F_LRO; /* large receive offload */ 1416 #endif 1417 1418 /* setup temac private info structure */ 1419 lp = netdev_priv(ndev); 1420 lp->ndev = ndev; 1421 lp->dev = &pdev->dev; 1422 lp->options = XTE_OPTION_DEFAULTS; 1423 lp->rx_bd_num = RX_BD_NUM_DEFAULT; 1424 lp->tx_bd_num = TX_BD_NUM_DEFAULT; 1425 spin_lock_init(&lp->rx_lock); 1426 INIT_DELAYED_WORK(&lp->restart_work, ll_temac_restart_work_func); 1427 1428 /* Setup mutex for synchronization of indirect register access */ 1429 if (pdata) { 1430 if (!pdata->indirect_lock) { 1431 dev_err(&pdev->dev, 1432 "indirect_lock missing in platform_data\n"); 1433 return -EINVAL; 1434 } 1435 lp->indirect_lock = pdata->indirect_lock; 1436 } else { 1437 lp->indirect_lock = devm_kmalloc(&pdev->dev, 1438 sizeof(*lp->indirect_lock), 1439 GFP_KERNEL); 1440 if (!lp->indirect_lock) 1441 return -ENOMEM; 1442 spin_lock_init(lp->indirect_lock); 1443 } 1444 1445 /* map device registers */ 1446 lp->regs = devm_platform_ioremap_resource_byname(pdev, 0); 1447 if (IS_ERR(lp->regs)) { 1448 dev_err(&pdev->dev, "could not map TEMAC registers\n"); 1449 return -ENOMEM; 1450 } 1451 1452 /* Select register access functions with the specified 1453 * endianness mode. Default for OF devices is big-endian. 1454 */ 1455 little_endian = false; 1456 if (temac_np) 1457 little_endian = of_property_read_bool(temac_np, "little-endian"); 1458 else if (pdata) 1459 little_endian = pdata->reg_little_endian; 1460 1461 if (little_endian) { 1462 lp->temac_ior = _temac_ior_le; 1463 lp->temac_iow = _temac_iow_le; 1464 } else { 1465 lp->temac_ior = _temac_ior_be; 1466 lp->temac_iow = _temac_iow_be; 1467 } 1468 1469 /* Setup checksum offload, but default to off if not specified */ 1470 lp->temac_features = 0; 1471 if (temac_np) { 1472 p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL); 1473 if (p && be32_to_cpu(*p)) 1474 lp->temac_features |= TEMAC_FEATURE_TX_CSUM; 1475 p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL); 1476 if (p && be32_to_cpu(*p)) 1477 lp->temac_features |= TEMAC_FEATURE_RX_CSUM; 1478 } else if (pdata) { 1479 if (pdata->txcsum) 1480 lp->temac_features |= TEMAC_FEATURE_TX_CSUM; 1481 if (pdata->rxcsum) 1482 lp->temac_features |= TEMAC_FEATURE_RX_CSUM; 1483 } 1484 if (lp->temac_features & TEMAC_FEATURE_TX_CSUM) 1485 /* Can checksum TCP/UDP over IPv4. */ 1486 ndev->features |= NETIF_F_IP_CSUM; 1487 1488 /* Defaults for IRQ delay/coalescing setup. These are 1489 * configuration values, so does not belong in device-tree. 1490 */ 1491 lp->coalesce_delay_tx = 0x10; 1492 lp->coalesce_count_tx = 0x22; 1493 lp->coalesce_delay_rx = 0xff; 1494 lp->coalesce_count_rx = 0x07; 1495 1496 /* Setup LocalLink DMA */ 1497 if (temac_np) { 1498 /* Find the DMA node, map the DMA registers, and 1499 * decode the DMA IRQs. 1500 */ 1501 dma_np = of_parse_phandle(temac_np, "llink-connected", 0); 1502 if (!dma_np) { 1503 dev_err(&pdev->dev, "could not find DMA node\n"); 1504 return -ENODEV; 1505 } 1506 1507 /* Setup the DMA register accesses, could be DCR or 1508 * memory mapped. 1509 */ 1510 if (temac_dcr_setup(lp, pdev, dma_np)) { 1511 /* no DCR in the device tree, try non-DCR */ 1512 lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0, 1513 NULL); 1514 if (IS_ERR(lp->sdma_regs)) { 1515 dev_err(&pdev->dev, 1516 "unable to map DMA registers\n"); 1517 of_node_put(dma_np); 1518 return PTR_ERR(lp->sdma_regs); 1519 } 1520 if (of_property_read_bool(dma_np, "little-endian")) { 1521 lp->dma_in = temac_dma_in32_le; 1522 lp->dma_out = temac_dma_out32_le; 1523 } else { 1524 lp->dma_in = temac_dma_in32_be; 1525 lp->dma_out = temac_dma_out32_be; 1526 } 1527 dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs); 1528 } 1529 1530 /* Get DMA RX and TX interrupts */ 1531 lp->rx_irq = irq_of_parse_and_map(dma_np, 0); 1532 lp->tx_irq = irq_of_parse_and_map(dma_np, 1); 1533 1534 /* Finished with the DMA node; drop the reference */ 1535 of_node_put(dma_np); 1536 } else if (pdata) { 1537 /* 2nd memory resource specifies DMA registers */ 1538 lp->sdma_regs = devm_platform_ioremap_resource(pdev, 1); 1539 if (IS_ERR(lp->sdma_regs)) { 1540 dev_err(&pdev->dev, 1541 "could not map DMA registers\n"); 1542 return PTR_ERR(lp->sdma_regs); 1543 } 1544 if (pdata->dma_little_endian) { 1545 lp->dma_in = temac_dma_in32_le; 1546 lp->dma_out = temac_dma_out32_le; 1547 } else { 1548 lp->dma_in = temac_dma_in32_be; 1549 lp->dma_out = temac_dma_out32_be; 1550 } 1551 1552 /* Get DMA RX and TX interrupts */ 1553 lp->rx_irq = platform_get_irq(pdev, 0); 1554 lp->tx_irq = platform_get_irq(pdev, 1); 1555 1556 /* IRQ delay/coalescing setup */ 1557 if (pdata->tx_irq_timeout || pdata->tx_irq_count) { 1558 lp->coalesce_delay_tx = pdata->tx_irq_timeout; 1559 lp->coalesce_count_tx = pdata->tx_irq_count; 1560 } 1561 if (pdata->rx_irq_timeout || pdata->rx_irq_count) { 1562 lp->coalesce_delay_rx = pdata->rx_irq_timeout; 1563 lp->coalesce_count_rx = pdata->rx_irq_count; 1564 } 1565 } 1566 1567 /* Error handle returned DMA RX and TX interrupts */ 1568 if (lp->rx_irq <= 0) { 1569 rc = lp->rx_irq ?: -EINVAL; 1570 return dev_err_probe(&pdev->dev, rc, 1571 "could not get DMA RX irq\n"); 1572 } 1573 if (lp->tx_irq <= 0) { 1574 rc = lp->tx_irq ?: -EINVAL; 1575 return dev_err_probe(&pdev->dev, rc, 1576 "could not get DMA TX irq\n"); 1577 } 1578 1579 if (temac_np) { 1580 /* Retrieve the MAC address */ 1581 rc = of_get_mac_address(temac_np, addr); 1582 if (rc) { 1583 dev_err(&pdev->dev, "could not find MAC address\n"); 1584 return -ENODEV; 1585 } 1586 temac_init_mac_address(ndev, addr); 1587 } else if (pdata) { 1588 temac_init_mac_address(ndev, pdata->mac_addr); 1589 } 1590 1591 rc = temac_mdio_setup(lp, pdev); 1592 if (rc) 1593 dev_warn(&pdev->dev, "error registering MDIO bus\n"); 1594 1595 if (temac_np) { 1596 lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0); 1597 if (lp->phy_node) 1598 dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np); 1599 } else if (pdata) { 1600 snprintf(lp->phy_name, sizeof(lp->phy_name), 1601 PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr); 1602 lp->phy_interface = pdata->phy_interface; 1603 } 1604 1605 /* Add the device attributes */ 1606 rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group); 1607 if (rc) { 1608 dev_err(lp->dev, "Error creating sysfs files\n"); 1609 goto err_sysfs_create; 1610 } 1611 1612 rc = register_netdev(lp->ndev); 1613 if (rc) { 1614 dev_err(lp->dev, "register_netdev() error (%i)\n", rc); 1615 goto err_register_ndev; 1616 } 1617 1618 return 0; 1619 1620 err_register_ndev: 1621 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); 1622 err_sysfs_create: 1623 if (lp->phy_node) 1624 of_node_put(lp->phy_node); 1625 temac_mdio_teardown(lp); 1626 return rc; 1627 } 1628 1629 static void temac_remove(struct platform_device *pdev) 1630 { 1631 struct net_device *ndev = platform_get_drvdata(pdev); 1632 struct temac_local *lp = netdev_priv(ndev); 1633 1634 unregister_netdev(ndev); 1635 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); 1636 if (lp->phy_node) 1637 of_node_put(lp->phy_node); 1638 temac_mdio_teardown(lp); 1639 } 1640 1641 static const struct of_device_id temac_of_match[] = { 1642 { .compatible = "xlnx,xps-ll-temac-1.01.b", }, 1643 { .compatible = "xlnx,xps-ll-temac-2.00.a", }, 1644 { .compatible = "xlnx,xps-ll-temac-2.02.a", }, 1645 { .compatible = "xlnx,xps-ll-temac-2.03.a", }, 1646 {}, 1647 }; 1648 MODULE_DEVICE_TABLE(of, temac_of_match); 1649 1650 static struct platform_driver temac_driver = { 1651 .probe = temac_probe, 1652 .remove_new = temac_remove, 1653 .driver = { 1654 .name = "xilinx_temac", 1655 .of_match_table = temac_of_match, 1656 }, 1657 }; 1658 1659 module_platform_driver(temac_driver); 1660 1661 MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver"); 1662 MODULE_AUTHOR("Yoshio Kashiwagi"); 1663 MODULE_LICENSE("GPL"); 1664