xref: /linux/drivers/net/ethernet/wangxun/libwx/wx_lib.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13 
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_ptp.h"
17 #include "wx_hw.h"
18 
19 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
20 static struct wx_dec_ptype wx_ptype_lookup[256] = {
21 	/* L2: mac */
22 	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
23 	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
24 	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
26 	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
27 	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
28 	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
29 
30 	/* L2: ethertype filter */
31 	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
32 
33 	/* L3: ip non-tunnel */
34 	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
35 	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
36 	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
37 	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
38 	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
39 	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
40 	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
41 	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
42 	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
43 	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
44 
45 	/* L2: fcoe */
46 	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47 	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
48 
49 	/* IPv4 --> IPv4/IPv6 */
50 	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
51 	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
52 	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
53 	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
54 	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
55 	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
56 	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
57 	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
58 	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
59 	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
60 
61 	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
62 	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
63 	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
64 	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
65 	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
66 	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
67 	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
68 	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
69 	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
70 	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
71 	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
72 	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
73 
74 	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
75 	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
76 	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
77 	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
78 	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
79 	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
80 	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
81 	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
82 	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
83 	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
84 	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
85 	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
86 
87 	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
88 	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
89 	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
90 	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
91 	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
92 	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
93 	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
94 	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
95 	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
96 	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
97 	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
98 	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
99 
100 	/* IPv6 --> IPv4/IPv6 */
101 	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
102 	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
103 	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
104 	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
105 	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
106 	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
107 	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
108 	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
109 	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
110 	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
111 
112 	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
113 	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
114 	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
115 	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
116 	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
117 	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
118 	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
119 	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
120 	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
121 	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
122 	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
123 	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
124 
125 	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
126 	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
127 	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
128 	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
129 	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
130 	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
131 	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
132 	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
133 	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
134 	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
135 	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
136 	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
137 
138 	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
139 	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
140 	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
141 	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
142 	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
143 	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
144 	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
145 	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
146 	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
147 	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
148 	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
149 	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
150 };
151 
152 struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
153 {
154 	return wx_ptype_lookup[ptype];
155 }
156 EXPORT_SYMBOL(wx_decode_ptype);
157 
158 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
159 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
160 			      const u32 stat_err_bits)
161 {
162 	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
163 }
164 
165 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
166 			     struct wx_rx_buffer *rx_buffer)
167 {
168 	struct sk_buff *skb = rx_buffer->skb;
169 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
170 
171 	dma_sync_single_range_for_cpu(rx_ring->dev,
172 				      WX_CB(skb)->dma,
173 				      skb_frag_off(frag),
174 				      skb_frag_size(frag),
175 				      DMA_FROM_DEVICE);
176 
177 	/* If the page was released, just unmap it. */
178 	if (unlikely(WX_CB(skb)->page_released))
179 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
180 }
181 
182 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
183 					     union wx_rx_desc *rx_desc,
184 					     struct sk_buff **skb,
185 					     int *rx_buffer_pgcnt)
186 {
187 	struct wx_rx_buffer *rx_buffer;
188 	unsigned int size;
189 
190 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
191 	size = le16_to_cpu(rx_desc->wb.upper.length);
192 
193 #if (PAGE_SIZE < 8192)
194 	*rx_buffer_pgcnt = page_count(rx_buffer->page);
195 #else
196 	*rx_buffer_pgcnt = 0;
197 #endif
198 
199 	prefetchw(rx_buffer->page);
200 	*skb = rx_buffer->skb;
201 
202 	/* Delay unmapping of the first packet. It carries the header
203 	 * information, HW may still access the header after the writeback.
204 	 * Only unmap it when EOP is reached
205 	 */
206 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
207 		if (!*skb)
208 			goto skip_sync;
209 	} else {
210 		if (*skb)
211 			wx_dma_sync_frag(rx_ring, rx_buffer);
212 	}
213 
214 	/* we are reusing so sync this buffer for CPU use */
215 	dma_sync_single_range_for_cpu(rx_ring->dev,
216 				      rx_buffer->dma,
217 				      rx_buffer->page_offset,
218 				      size,
219 				      DMA_FROM_DEVICE);
220 skip_sync:
221 	return rx_buffer;
222 }
223 
224 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
225 			     struct wx_rx_buffer *rx_buffer,
226 			     struct sk_buff *skb,
227 			     int rx_buffer_pgcnt)
228 {
229 	if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
230 		/* the page has been released from the ring */
231 		WX_CB(skb)->page_released = true;
232 
233 	/* clear contents of rx_buffer */
234 	rx_buffer->page = NULL;
235 	rx_buffer->skb = NULL;
236 }
237 
238 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
239 				    struct wx_rx_buffer *rx_buffer,
240 				    union wx_rx_desc *rx_desc)
241 {
242 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
243 #if (PAGE_SIZE < 8192)
244 	unsigned int truesize = WX_RX_BUFSZ;
245 #else
246 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
247 #endif
248 	struct sk_buff *skb = rx_buffer->skb;
249 
250 	if (!skb) {
251 		void *page_addr = page_address(rx_buffer->page) +
252 				  rx_buffer->page_offset;
253 
254 		/* prefetch first cache line of first page */
255 		net_prefetch(page_addr);
256 
257 		/* allocate a skb to store the frags */
258 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
259 		if (unlikely(!skb))
260 			return NULL;
261 
262 		/* we will be copying header into skb->data in
263 		 * pskb_may_pull so it is in our interest to prefetch
264 		 * it now to avoid a possible cache miss
265 		 */
266 		prefetchw(skb->data);
267 
268 		if (size <= WX_RXBUFFER_256) {
269 			memcpy(__skb_put(skb, size), page_addr,
270 			       ALIGN(size, sizeof(long)));
271 			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
272 			return skb;
273 		}
274 
275 		skb_mark_for_recycle(skb);
276 
277 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
278 			WX_CB(skb)->dma = rx_buffer->dma;
279 
280 		skb_add_rx_frag(skb, 0, rx_buffer->page,
281 				rx_buffer->page_offset,
282 				size, truesize);
283 		goto out;
284 
285 	} else {
286 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
287 				rx_buffer->page_offset, size, truesize);
288 	}
289 
290 out:
291 #if (PAGE_SIZE < 8192)
292 	/* flip page offset to other buffer */
293 	rx_buffer->page_offset ^= truesize;
294 #else
295 	/* move offset up to the next cache line */
296 	rx_buffer->page_offset += truesize;
297 #endif
298 
299 	return skb;
300 }
301 
302 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
303 				 struct wx_rx_buffer *bi)
304 {
305 	struct page *page = bi->page;
306 	dma_addr_t dma;
307 
308 	/* since we are recycling buffers we should seldom need to alloc */
309 	if (likely(page))
310 		return true;
311 
312 	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
313 	WARN_ON(!page);
314 	dma = page_pool_get_dma_addr(page);
315 
316 	bi->page_dma = dma;
317 	bi->page = page;
318 	bi->page_offset = 0;
319 
320 	return true;
321 }
322 
323 /**
324  * wx_alloc_rx_buffers - Replace used receive buffers
325  * @rx_ring: ring to place buffers on
326  * @cleaned_count: number of buffers to replace
327  **/
328 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
329 {
330 	u16 i = rx_ring->next_to_use;
331 	union wx_rx_desc *rx_desc;
332 	struct wx_rx_buffer *bi;
333 
334 	/* nothing to do */
335 	if (!cleaned_count)
336 		return;
337 
338 	rx_desc = WX_RX_DESC(rx_ring, i);
339 	bi = &rx_ring->rx_buffer_info[i];
340 	i -= rx_ring->count;
341 
342 	do {
343 		if (!wx_alloc_mapped_page(rx_ring, bi))
344 			break;
345 
346 		/* sync the buffer for use by the device */
347 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
348 						 bi->page_offset,
349 						 WX_RX_BUFSZ,
350 						 DMA_FROM_DEVICE);
351 
352 		rx_desc->read.pkt_addr =
353 			cpu_to_le64(bi->page_dma + bi->page_offset);
354 
355 		rx_desc++;
356 		bi++;
357 		i++;
358 		if (unlikely(!i)) {
359 			rx_desc = WX_RX_DESC(rx_ring, 0);
360 			bi = rx_ring->rx_buffer_info;
361 			i -= rx_ring->count;
362 		}
363 
364 		/* clear the status bits for the next_to_use descriptor */
365 		rx_desc->wb.upper.status_error = 0;
366 
367 		cleaned_count--;
368 	} while (cleaned_count);
369 
370 	i += rx_ring->count;
371 
372 	if (rx_ring->next_to_use != i) {
373 		rx_ring->next_to_use = i;
374 		/* update next to alloc since we have filled the ring */
375 		rx_ring->next_to_alloc = i;
376 
377 		/* Force memory writes to complete before letting h/w
378 		 * know there are new descriptors to fetch.  (Only
379 		 * applicable for weak-ordered memory model archs,
380 		 * such as IA-64).
381 		 */
382 		wmb();
383 		writel(i, rx_ring->tail);
384 	}
385 }
386 
387 u16 wx_desc_unused(struct wx_ring *ring)
388 {
389 	u16 ntc = ring->next_to_clean;
390 	u16 ntu = ring->next_to_use;
391 
392 	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
393 }
394 
395 /**
396  * wx_is_non_eop - process handling of non-EOP buffers
397  * @rx_ring: Rx ring being processed
398  * @rx_desc: Rx descriptor for current buffer
399  * @skb: Current socket buffer containing buffer in progress
400  *
401  * This function updates next to clean. If the buffer is an EOP buffer
402  * this function exits returning false, otherwise it will place the
403  * sk_buff in the next buffer to be chained and return true indicating
404  * that this is in fact a non-EOP buffer.
405  **/
406 static bool wx_is_non_eop(struct wx_ring *rx_ring,
407 			  union wx_rx_desc *rx_desc,
408 			  struct sk_buff *skb)
409 {
410 	u32 ntc = rx_ring->next_to_clean + 1;
411 
412 	/* fetch, update, and store next to clean */
413 	ntc = (ntc < rx_ring->count) ? ntc : 0;
414 	rx_ring->next_to_clean = ntc;
415 
416 	prefetch(WX_RX_DESC(rx_ring, ntc));
417 
418 	/* if we are the last buffer then there is nothing else to do */
419 	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
420 		return false;
421 
422 	rx_ring->rx_buffer_info[ntc].skb = skb;
423 	rx_ring->rx_stats.non_eop_descs++;
424 
425 	return true;
426 }
427 
428 static void wx_pull_tail(struct sk_buff *skb)
429 {
430 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
431 	unsigned int pull_len;
432 	unsigned char *va;
433 
434 	/* it is valid to use page_address instead of kmap since we are
435 	 * working with pages allocated out of the lomem pool per
436 	 * alloc_page(GFP_ATOMIC)
437 	 */
438 	va = skb_frag_address(frag);
439 
440 	/* we need the header to contain the greater of either ETH_HLEN or
441 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
442 	 */
443 	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
444 
445 	/* align pull length to size of long to optimize memcpy performance */
446 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
447 
448 	/* update all of the pointers */
449 	skb_frag_size_sub(frag, pull_len);
450 	skb_frag_off_add(frag, pull_len);
451 	skb->data_len -= pull_len;
452 	skb->tail += pull_len;
453 }
454 
455 /**
456  * wx_cleanup_headers - Correct corrupted or empty headers
457  * @rx_ring: rx descriptor ring packet is being transacted on
458  * @rx_desc: pointer to the EOP Rx descriptor
459  * @skb: pointer to current skb being fixed
460  *
461  * Check for corrupted packet headers caused by senders on the local L2
462  * embedded NIC switch not setting up their Tx Descriptors right.  These
463  * should be very rare.
464  *
465  * Also address the case where we are pulling data in on pages only
466  * and as such no data is present in the skb header.
467  *
468  * In addition if skb is not at least 60 bytes we need to pad it so that
469  * it is large enough to qualify as a valid Ethernet frame.
470  *
471  * Returns true if an error was encountered and skb was freed.
472  **/
473 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
474 			       union wx_rx_desc *rx_desc,
475 			       struct sk_buff *skb)
476 {
477 	struct net_device *netdev = rx_ring->netdev;
478 
479 	/* verify that the packet does not have any known errors */
480 	if (!netdev ||
481 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
482 		     !(netdev->features & NETIF_F_RXALL))) {
483 		dev_kfree_skb_any(skb);
484 		return true;
485 	}
486 
487 	/* place header in linear portion of buffer */
488 	if (!skb_headlen(skb))
489 		wx_pull_tail(skb);
490 
491 	/* if eth_skb_pad returns an error the skb was freed */
492 	if (eth_skb_pad(skb))
493 		return true;
494 
495 	return false;
496 }
497 
498 static void wx_rx_hash(struct wx_ring *ring,
499 		       union wx_rx_desc *rx_desc,
500 		       struct sk_buff *skb)
501 {
502 	u16 rss_type;
503 
504 	if (!(ring->netdev->features & NETIF_F_RXHASH))
505 		return;
506 
507 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
508 			       WX_RXD_RSSTYPE_MASK;
509 
510 	if (!rss_type)
511 		return;
512 
513 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
514 		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
515 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
516 }
517 
518 /**
519  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
520  * @ring: structure containing ring specific data
521  * @rx_desc: current Rx descriptor being processed
522  * @skb: skb currently being received and modified
523  **/
524 static void wx_rx_checksum(struct wx_ring *ring,
525 			   union wx_rx_desc *rx_desc,
526 			   struct sk_buff *skb)
527 {
528 	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
529 
530 	skb_checksum_none_assert(skb);
531 	/* Rx csum disabled */
532 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
533 		return;
534 
535 	/* if IPv4 header checksum error */
536 	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
537 	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
538 	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
539 	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
540 		ring->rx_stats.csum_err++;
541 		return;
542 	}
543 
544 	/* L4 checksum offload flag must set for the below code to work */
545 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
546 		return;
547 
548 	/* Hardware can't guarantee csum if IPv6 Dest Header found */
549 	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
550 		return;
551 
552 	/* if L4 checksum error */
553 	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
554 		ring->rx_stats.csum_err++;
555 		return;
556 	}
557 
558 	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
559 	skb->ip_summed = CHECKSUM_UNNECESSARY;
560 
561 	/* If there is an outer header present that might contain a checksum
562 	 * we need to bump the checksum level by 1 to reflect the fact that
563 	 * we are indicating we validated the inner checksum.
564 	 */
565 	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
566 		__skb_incr_checksum_unnecessary(skb);
567 	ring->rx_stats.csum_good_cnt++;
568 }
569 
570 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
571 		       struct sk_buff *skb)
572 {
573 	u16 ethertype;
574 	u8 idx = 0;
575 
576 	if ((ring->netdev->features &
577 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
578 	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
579 		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
580 		       0x1c0) >> 6;
581 		ethertype = ring->q_vector->wx->tpid[idx];
582 		__vlan_hwaccel_put_tag(skb, htons(ethertype),
583 				       le16_to_cpu(rx_desc->wb.upper.vlan));
584 	}
585 }
586 
587 /**
588  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
589  * @rx_ring: rx descriptor ring packet is being transacted on
590  * @rx_desc: pointer to the EOP Rx descriptor
591  * @skb: pointer to current skb being populated
592  *
593  * This function checks the ring, descriptor, and packet information in
594  * order to populate the hash, checksum, protocol, and
595  * other fields within the skb.
596  **/
597 static void wx_process_skb_fields(struct wx_ring *rx_ring,
598 				  union wx_rx_desc *rx_desc,
599 				  struct sk_buff *skb)
600 {
601 	struct wx *wx = netdev_priv(rx_ring->netdev);
602 
603 	wx_rx_hash(rx_ring, rx_desc, skb);
604 	wx_rx_checksum(rx_ring, rx_desc, skb);
605 
606 	if (unlikely(test_bit(WX_FLAG_RX_HWTSTAMP_ENABLED, wx->flags)) &&
607 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_STAT_TS))) {
608 		wx_ptp_rx_hwtstamp(rx_ring->q_vector->wx, skb);
609 		rx_ring->last_rx_timestamp = jiffies;
610 	}
611 
612 	wx_rx_vlan(rx_ring, rx_desc, skb);
613 	skb_record_rx_queue(skb, rx_ring->queue_index);
614 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
615 }
616 
617 /**
618  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
619  * @q_vector: structure containing interrupt and ring information
620  * @rx_ring: rx descriptor ring to transact packets on
621  * @budget: Total limit on number of packets to process
622  *
623  * This function provides a "bounce buffer" approach to Rx interrupt
624  * processing.  The advantage to this is that on systems that have
625  * expensive overhead for IOMMU access this provides a means of avoiding
626  * it by maintaining the mapping of the page to the system.
627  *
628  * Returns amount of work completed.
629  **/
630 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
631 			   struct wx_ring *rx_ring,
632 			   int budget)
633 {
634 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
635 	u16 cleaned_count = wx_desc_unused(rx_ring);
636 
637 	do {
638 		struct wx_rx_buffer *rx_buffer;
639 		union wx_rx_desc *rx_desc;
640 		struct sk_buff *skb;
641 		int rx_buffer_pgcnt;
642 
643 		/* return some buffers to hardware, one at a time is too slow */
644 		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
645 			wx_alloc_rx_buffers(rx_ring, cleaned_count);
646 			cleaned_count = 0;
647 		}
648 
649 		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
650 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
651 			break;
652 
653 		/* This memory barrier is needed to keep us from reading
654 		 * any other fields out of the rx_desc until we know the
655 		 * descriptor has been written back
656 		 */
657 		dma_rmb();
658 
659 		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
660 
661 		/* retrieve a buffer from the ring */
662 		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
663 
664 		/* exit if we failed to retrieve a buffer */
665 		if (!skb) {
666 			rx_ring->rx_stats.alloc_rx_buff_failed++;
667 			break;
668 		}
669 
670 		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
671 		cleaned_count++;
672 
673 		/* place incomplete frames back on ring for completion */
674 		if (wx_is_non_eop(rx_ring, rx_desc, skb))
675 			continue;
676 
677 		/* verify the packet layout is correct */
678 		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
679 			continue;
680 
681 		/* probably a little skewed due to removing CRC */
682 		total_rx_bytes += skb->len;
683 
684 		/* populate checksum, timestamp, VLAN, and protocol */
685 		wx_process_skb_fields(rx_ring, rx_desc, skb);
686 		napi_gro_receive(&q_vector->napi, skb);
687 
688 		/* update budget accounting */
689 		total_rx_packets++;
690 	} while (likely(total_rx_packets < budget));
691 
692 	u64_stats_update_begin(&rx_ring->syncp);
693 	rx_ring->stats.packets += total_rx_packets;
694 	rx_ring->stats.bytes += total_rx_bytes;
695 	u64_stats_update_end(&rx_ring->syncp);
696 	q_vector->rx.total_packets += total_rx_packets;
697 	q_vector->rx.total_bytes += total_rx_bytes;
698 
699 	return total_rx_packets;
700 }
701 
702 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
703 {
704 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
705 }
706 
707 /**
708  * wx_clean_tx_irq - Reclaim resources after transmit completes
709  * @q_vector: structure containing interrupt and ring information
710  * @tx_ring: tx ring to clean
711  * @napi_budget: Used to determine if we are in netpoll
712  **/
713 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
714 			    struct wx_ring *tx_ring, int napi_budget)
715 {
716 	unsigned int budget = q_vector->wx->tx_work_limit;
717 	unsigned int total_bytes = 0, total_packets = 0;
718 	struct wx *wx = netdev_priv(tx_ring->netdev);
719 	unsigned int i = tx_ring->next_to_clean;
720 	struct wx_tx_buffer *tx_buffer;
721 	union wx_tx_desc *tx_desc;
722 
723 	if (!netif_carrier_ok(tx_ring->netdev))
724 		return true;
725 
726 	tx_buffer = &tx_ring->tx_buffer_info[i];
727 	tx_desc = WX_TX_DESC(tx_ring, i);
728 	i -= tx_ring->count;
729 
730 	do {
731 		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
732 
733 		/* if next_to_watch is not set then there is no work pending */
734 		if (!eop_desc)
735 			break;
736 
737 		/* prevent any other reads prior to eop_desc */
738 		smp_rmb();
739 
740 		/* if DD is not set pending work has not been completed */
741 		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
742 			break;
743 
744 		/* clear next_to_watch to prevent false hangs */
745 		tx_buffer->next_to_watch = NULL;
746 
747 		/* update the statistics for this packet */
748 		total_bytes += tx_buffer->bytecount;
749 		total_packets += tx_buffer->gso_segs;
750 
751 		/* schedule check for Tx timestamp */
752 		if (unlikely(test_bit(WX_STATE_PTP_TX_IN_PROGRESS, wx->state)) &&
753 		    skb_shinfo(tx_buffer->skb)->tx_flags & SKBTX_IN_PROGRESS)
754 			ptp_schedule_worker(wx->ptp_clock, 0);
755 
756 		/* free the skb */
757 		napi_consume_skb(tx_buffer->skb, napi_budget);
758 
759 		/* unmap skb header data */
760 		dma_unmap_single(tx_ring->dev,
761 				 dma_unmap_addr(tx_buffer, dma),
762 				 dma_unmap_len(tx_buffer, len),
763 				 DMA_TO_DEVICE);
764 
765 		/* clear tx_buffer data */
766 		dma_unmap_len_set(tx_buffer, len, 0);
767 
768 		/* unmap remaining buffers */
769 		while (tx_desc != eop_desc) {
770 			tx_buffer++;
771 			tx_desc++;
772 			i++;
773 			if (unlikely(!i)) {
774 				i -= tx_ring->count;
775 				tx_buffer = tx_ring->tx_buffer_info;
776 				tx_desc = WX_TX_DESC(tx_ring, 0);
777 			}
778 
779 			/* unmap any remaining paged data */
780 			if (dma_unmap_len(tx_buffer, len)) {
781 				dma_unmap_page(tx_ring->dev,
782 					       dma_unmap_addr(tx_buffer, dma),
783 					       dma_unmap_len(tx_buffer, len),
784 					       DMA_TO_DEVICE);
785 				dma_unmap_len_set(tx_buffer, len, 0);
786 			}
787 		}
788 
789 		/* move us one more past the eop_desc for start of next pkt */
790 		tx_buffer++;
791 		tx_desc++;
792 		i++;
793 		if (unlikely(!i)) {
794 			i -= tx_ring->count;
795 			tx_buffer = tx_ring->tx_buffer_info;
796 			tx_desc = WX_TX_DESC(tx_ring, 0);
797 		}
798 
799 		/* issue prefetch for next Tx descriptor */
800 		prefetch(tx_desc);
801 
802 		/* update budget accounting */
803 		budget--;
804 	} while (likely(budget));
805 
806 	i += tx_ring->count;
807 	tx_ring->next_to_clean = i;
808 	u64_stats_update_begin(&tx_ring->syncp);
809 	tx_ring->stats.bytes += total_bytes;
810 	tx_ring->stats.packets += total_packets;
811 	u64_stats_update_end(&tx_ring->syncp);
812 	q_vector->tx.total_bytes += total_bytes;
813 	q_vector->tx.total_packets += total_packets;
814 
815 	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
816 				  total_packets, total_bytes);
817 
818 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
819 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
820 		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
821 		/* Make sure that anybody stopping the queue after this
822 		 * sees the new next_to_clean.
823 		 */
824 		smp_mb();
825 
826 		if (__netif_subqueue_stopped(tx_ring->netdev,
827 					     tx_ring->queue_index) &&
828 		    netif_running(tx_ring->netdev)) {
829 			netif_wake_subqueue(tx_ring->netdev,
830 					    tx_ring->queue_index);
831 			++tx_ring->tx_stats.restart_queue;
832 		}
833 	}
834 
835 	return !!budget;
836 }
837 
838 /**
839  * wx_poll - NAPI polling RX/TX cleanup routine
840  * @napi: napi struct with our devices info in it
841  * @budget: amount of work driver is allowed to do this pass, in packets
842  *
843  * This function will clean all queues associated with a q_vector.
844  **/
845 static int wx_poll(struct napi_struct *napi, int budget)
846 {
847 	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
848 	int per_ring_budget, work_done = 0;
849 	struct wx *wx = q_vector->wx;
850 	bool clean_complete = true;
851 	struct wx_ring *ring;
852 
853 	wx_for_each_ring(ring, q_vector->tx) {
854 		if (!wx_clean_tx_irq(q_vector, ring, budget))
855 			clean_complete = false;
856 	}
857 
858 	/* Exit if we are called by netpoll */
859 	if (budget <= 0)
860 		return budget;
861 
862 	/* attempt to distribute budget to each queue fairly, but don't allow
863 	 * the budget to go below 1 because we'll exit polling
864 	 */
865 	if (q_vector->rx.count > 1)
866 		per_ring_budget = max(budget / q_vector->rx.count, 1);
867 	else
868 		per_ring_budget = budget;
869 
870 	wx_for_each_ring(ring, q_vector->rx) {
871 		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
872 
873 		work_done += cleaned;
874 		if (cleaned >= per_ring_budget)
875 			clean_complete = false;
876 	}
877 
878 	/* If all work not completed, return budget and keep polling */
879 	if (!clean_complete)
880 		return budget;
881 
882 	/* all work done, exit the polling mode */
883 	if (likely(napi_complete_done(napi, work_done))) {
884 		if (netif_running(wx->netdev))
885 			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
886 	}
887 
888 	return min(work_done, budget - 1);
889 }
890 
891 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
892 {
893 	if (likely(wx_desc_unused(tx_ring) >= size))
894 		return 0;
895 
896 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
897 
898 	/* For the next check */
899 	smp_mb();
900 
901 	/* We need to check again in a case another CPU has just
902 	 * made room available.
903 	 */
904 	if (likely(wx_desc_unused(tx_ring) < size))
905 		return -EBUSY;
906 
907 	/* A reprieve! - use start_queue because it doesn't call schedule */
908 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
909 	++tx_ring->tx_stats.restart_queue;
910 
911 	return 0;
912 }
913 
914 static u32 wx_tx_cmd_type(u32 tx_flags)
915 {
916 	/* set type for advanced descriptor with frame checksum insertion */
917 	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
918 
919 	/* set HW vlan bit if vlan is present */
920 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
921 	/* set segmentation enable bits for TSO/FSO */
922 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
923 	/* set timestamp bit if present */
924 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
925 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
926 
927 	return cmd_type;
928 }
929 
930 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
931 				u32 tx_flags, unsigned int paylen)
932 {
933 	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
934 
935 	/* enable L4 checksum for TSO and TX checksum offload */
936 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
937 	/* enable IPv4 checksum for TSO */
938 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
939 	/* enable outer IPv4 checksum for TSO */
940 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
941 				     WX_TXD_EIPCS);
942 	/* Check Context must be set if Tx switch is enabled, which it
943 	 * always is for case where virtual functions are running
944 	 */
945 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
946 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
947 				     WX_TXD_IPSEC);
948 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
949 }
950 
951 static int wx_tx_map(struct wx_ring *tx_ring,
952 		     struct wx_tx_buffer *first,
953 		     const u8 hdr_len)
954 {
955 	struct sk_buff *skb = first->skb;
956 	struct wx_tx_buffer *tx_buffer;
957 	u32 tx_flags = first->tx_flags;
958 	u16 i = tx_ring->next_to_use;
959 	unsigned int data_len, size;
960 	union wx_tx_desc *tx_desc;
961 	skb_frag_t *frag;
962 	dma_addr_t dma;
963 	u32 cmd_type;
964 
965 	cmd_type = wx_tx_cmd_type(tx_flags);
966 	tx_desc = WX_TX_DESC(tx_ring, i);
967 	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
968 
969 	size = skb_headlen(skb);
970 	data_len = skb->data_len;
971 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
972 
973 	tx_buffer = first;
974 
975 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
976 		if (dma_mapping_error(tx_ring->dev, dma))
977 			goto dma_error;
978 
979 		/* record length, and DMA address */
980 		dma_unmap_len_set(tx_buffer, len, size);
981 		dma_unmap_addr_set(tx_buffer, dma, dma);
982 
983 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
984 
985 		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
986 			tx_desc->read.cmd_type_len =
987 				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
988 
989 			i++;
990 			tx_desc++;
991 			if (i == tx_ring->count) {
992 				tx_desc = WX_TX_DESC(tx_ring, 0);
993 				i = 0;
994 			}
995 			tx_desc->read.olinfo_status = 0;
996 
997 			dma += WX_MAX_DATA_PER_TXD;
998 			size -= WX_MAX_DATA_PER_TXD;
999 
1000 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1001 		}
1002 
1003 		if (likely(!data_len))
1004 			break;
1005 
1006 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1007 
1008 		i++;
1009 		tx_desc++;
1010 		if (i == tx_ring->count) {
1011 			tx_desc = WX_TX_DESC(tx_ring, 0);
1012 			i = 0;
1013 		}
1014 		tx_desc->read.olinfo_status = 0;
1015 
1016 		size = skb_frag_size(frag);
1017 
1018 		data_len -= size;
1019 
1020 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1021 				       DMA_TO_DEVICE);
1022 
1023 		tx_buffer = &tx_ring->tx_buffer_info[i];
1024 	}
1025 
1026 	/* write last descriptor with RS and EOP bits */
1027 	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1028 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1029 
1030 	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1031 
1032 	/* set the timestamp */
1033 	first->time_stamp = jiffies;
1034 	skb_tx_timestamp(skb);
1035 
1036 	/* Force memory writes to complete before letting h/w know there
1037 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1038 	 * memory model archs, such as IA-64).
1039 	 *
1040 	 * We also need this memory barrier to make certain all of the
1041 	 * status bits have been updated before next_to_watch is written.
1042 	 */
1043 	wmb();
1044 
1045 	/* set next_to_watch value indicating a packet is present */
1046 	first->next_to_watch = tx_desc;
1047 
1048 	i++;
1049 	if (i == tx_ring->count)
1050 		i = 0;
1051 
1052 	tx_ring->next_to_use = i;
1053 
1054 	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1055 
1056 	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1057 		writel(i, tx_ring->tail);
1058 
1059 	return 0;
1060 dma_error:
1061 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1062 
1063 	/* clear dma mappings for failed tx_buffer_info map */
1064 	for (;;) {
1065 		tx_buffer = &tx_ring->tx_buffer_info[i];
1066 		if (dma_unmap_len(tx_buffer, len))
1067 			dma_unmap_page(tx_ring->dev,
1068 				       dma_unmap_addr(tx_buffer, dma),
1069 				       dma_unmap_len(tx_buffer, len),
1070 				       DMA_TO_DEVICE);
1071 		dma_unmap_len_set(tx_buffer, len, 0);
1072 		if (tx_buffer == first)
1073 			break;
1074 		if (i == 0)
1075 			i += tx_ring->count;
1076 		i--;
1077 	}
1078 
1079 	dev_kfree_skb_any(first->skb);
1080 	first->skb = NULL;
1081 
1082 	tx_ring->next_to_use = i;
1083 
1084 	return -ENOMEM;
1085 }
1086 
1087 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1088 			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1089 {
1090 	struct wx_tx_context_desc *context_desc;
1091 	u16 i = tx_ring->next_to_use;
1092 
1093 	context_desc = WX_TX_CTXTDESC(tx_ring, i);
1094 	i++;
1095 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1096 
1097 	/* set bits to identify this as an advanced context descriptor */
1098 	type_tucmd |= WX_TXD_DTYP_CTXT;
1099 	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1100 	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1101 	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1102 	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1103 }
1104 
1105 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1106 {
1107 	struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1108 
1109 	*nexthdr = hdr->nexthdr;
1110 	offset += sizeof(struct ipv6hdr);
1111 	while (ipv6_ext_hdr(*nexthdr)) {
1112 		struct ipv6_opt_hdr _hdr, *hp;
1113 
1114 		if (*nexthdr == NEXTHDR_NONE)
1115 			return;
1116 		hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1117 		if (!hp)
1118 			return;
1119 		if (*nexthdr == NEXTHDR_FRAGMENT)
1120 			break;
1121 		*nexthdr = hp->nexthdr;
1122 	}
1123 }
1124 
1125 union network_header {
1126 	struct iphdr *ipv4;
1127 	struct ipv6hdr *ipv6;
1128 	void *raw;
1129 };
1130 
1131 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1132 {
1133 	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1134 	struct sk_buff *skb = first->skb;
1135 
1136 	if (skb->encapsulation) {
1137 		union network_header hdr;
1138 
1139 		switch (first->protocol) {
1140 		case htons(ETH_P_IP):
1141 			tun_prot = ip_hdr(skb)->protocol;
1142 			ptype = WX_PTYPE_TUN_IPV4;
1143 			break;
1144 		case htons(ETH_P_IPV6):
1145 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1146 			ptype = WX_PTYPE_TUN_IPV6;
1147 			break;
1148 		default:
1149 			return ptype;
1150 		}
1151 
1152 		if (tun_prot == IPPROTO_IPIP) {
1153 			hdr.raw = (void *)inner_ip_hdr(skb);
1154 			ptype |= WX_PTYPE_PKT_IPIP;
1155 		} else if (tun_prot == IPPROTO_UDP) {
1156 			hdr.raw = (void *)inner_ip_hdr(skb);
1157 			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1158 			    skb->inner_protocol != htons(ETH_P_TEB)) {
1159 				ptype |= WX_PTYPE_PKT_IG;
1160 			} else {
1161 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1162 				     == htons(ETH_P_8021Q))
1163 					ptype |= WX_PTYPE_PKT_IGMV;
1164 				else
1165 					ptype |= WX_PTYPE_PKT_IGM;
1166 			}
1167 
1168 		} else if (tun_prot == IPPROTO_GRE) {
1169 			hdr.raw = (void *)inner_ip_hdr(skb);
1170 			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1171 			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1172 				ptype |= WX_PTYPE_PKT_IG;
1173 			} else {
1174 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1175 				    == htons(ETH_P_8021Q))
1176 					ptype |= WX_PTYPE_PKT_IGMV;
1177 				else
1178 					ptype |= WX_PTYPE_PKT_IGM;
1179 			}
1180 		} else {
1181 			return ptype;
1182 		}
1183 
1184 		switch (hdr.ipv4->version) {
1185 		case IPVERSION:
1186 			l4_prot = hdr.ipv4->protocol;
1187 			break;
1188 		case 6:
1189 			wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1190 			ptype |= WX_PTYPE_PKT_IPV6;
1191 			break;
1192 		default:
1193 			return ptype;
1194 		}
1195 	} else {
1196 		switch (first->protocol) {
1197 		case htons(ETH_P_IP):
1198 			l4_prot = ip_hdr(skb)->protocol;
1199 			ptype = WX_PTYPE_PKT_IP;
1200 			break;
1201 		case htons(ETH_P_IPV6):
1202 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1203 			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1204 			break;
1205 		default:
1206 			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1207 		}
1208 	}
1209 	switch (l4_prot) {
1210 	case IPPROTO_TCP:
1211 		ptype |= WX_PTYPE_TYP_TCP;
1212 		break;
1213 	case IPPROTO_UDP:
1214 		ptype |= WX_PTYPE_TYP_UDP;
1215 		break;
1216 	case IPPROTO_SCTP:
1217 		ptype |= WX_PTYPE_TYP_SCTP;
1218 		break;
1219 	default:
1220 		ptype |= WX_PTYPE_TYP_IP;
1221 		break;
1222 	}
1223 
1224 	return ptype;
1225 }
1226 
1227 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1228 		  u8 *hdr_len, u8 ptype)
1229 {
1230 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1231 	struct net_device *netdev = tx_ring->netdev;
1232 	u32 l4len, tunhdr_eiplen_tunlen = 0;
1233 	struct sk_buff *skb = first->skb;
1234 	bool enc = skb->encapsulation;
1235 	struct ipv6hdr *ipv6h;
1236 	struct tcphdr *tcph;
1237 	struct iphdr *iph;
1238 	u8 tun_prot = 0;
1239 	int err;
1240 
1241 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1242 		return 0;
1243 
1244 	if (!skb_is_gso(skb))
1245 		return 0;
1246 
1247 	err = skb_cow_head(skb, 0);
1248 	if (err < 0)
1249 		return err;
1250 
1251 	/* indicates the inner headers in the skbuff are valid. */
1252 	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1253 	if (iph->version == 4) {
1254 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1255 		iph->tot_len = 0;
1256 		iph->check = 0;
1257 		tcph->check = ~csum_tcpudp_magic(iph->saddr,
1258 						 iph->daddr, 0,
1259 						 IPPROTO_TCP, 0);
1260 		first->tx_flags |= WX_TX_FLAGS_TSO |
1261 				   WX_TX_FLAGS_CSUM |
1262 				   WX_TX_FLAGS_IPV4 |
1263 				   WX_TX_FLAGS_CC;
1264 	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1265 		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1266 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1267 		ipv6h->payload_len = 0;
1268 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1269 					       &ipv6h->daddr, 0,
1270 					       IPPROTO_TCP, 0);
1271 		first->tx_flags |= WX_TX_FLAGS_TSO |
1272 				   WX_TX_FLAGS_CSUM |
1273 				   WX_TX_FLAGS_CC;
1274 	}
1275 
1276 	/* compute header lengths */
1277 	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1278 	*hdr_len = enc ? skb_inner_transport_offset(skb) :
1279 			 skb_transport_offset(skb);
1280 	*hdr_len += l4len;
1281 
1282 	/* update gso size and bytecount with header size */
1283 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1284 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1285 
1286 	/* mss_l4len_id: use 0 as index for TSO */
1287 	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1288 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1289 
1290 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1291 	if (enc) {
1292 		switch (first->protocol) {
1293 		case htons(ETH_P_IP):
1294 			tun_prot = ip_hdr(skb)->protocol;
1295 			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1296 			break;
1297 		case htons(ETH_P_IPV6):
1298 			tun_prot = ipv6_hdr(skb)->nexthdr;
1299 			break;
1300 		default:
1301 			break;
1302 		}
1303 		switch (tun_prot) {
1304 		case IPPROTO_UDP:
1305 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1306 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1307 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1308 						(((skb_inner_mac_header(skb) -
1309 						skb_transport_header(skb)) >> 1) <<
1310 						WX_TXD_TUNNEL_LEN_SHIFT);
1311 			break;
1312 		case IPPROTO_GRE:
1313 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1314 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1315 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1316 						(((skb_inner_mac_header(skb) -
1317 						skb_transport_header(skb)) >> 1) <<
1318 						WX_TXD_TUNNEL_LEN_SHIFT);
1319 			break;
1320 		case IPPROTO_IPIP:
1321 			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1322 						(char *)ip_hdr(skb)) >> 2) <<
1323 						WX_TXD_OUTER_IPLEN_SHIFT;
1324 			break;
1325 		default:
1326 			break;
1327 		}
1328 		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1329 	} else {
1330 		vlan_macip_lens = skb_network_header_len(skb) >> 1;
1331 	}
1332 
1333 	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1334 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1335 
1336 	type_tucmd = ptype << 24;
1337 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1338 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1339 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1340 					  WX_TX_FLAGS_HW_VLAN,
1341 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1342 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1343 		       type_tucmd, mss_l4len_idx);
1344 
1345 	return 1;
1346 }
1347 
1348 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1349 		       u8 ptype)
1350 {
1351 	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1352 	struct net_device *netdev = tx_ring->netdev;
1353 	u32 mss_l4len_idx = 0, type_tucmd;
1354 	struct sk_buff *skb = first->skb;
1355 	u8 tun_prot = 0;
1356 
1357 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1358 		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1359 		    !(first->tx_flags & WX_TX_FLAGS_CC))
1360 			return;
1361 		vlan_macip_lens = skb_network_offset(skb) <<
1362 				  WX_TXD_MACLEN_SHIFT;
1363 	} else {
1364 		u8 l4_prot = 0;
1365 		union {
1366 			struct iphdr *ipv4;
1367 			struct ipv6hdr *ipv6;
1368 			u8 *raw;
1369 		} network_hdr;
1370 		union {
1371 			struct tcphdr *tcphdr;
1372 			u8 *raw;
1373 		} transport_hdr;
1374 
1375 		if (skb->encapsulation) {
1376 			network_hdr.raw = skb_inner_network_header(skb);
1377 			transport_hdr.raw = skb_inner_transport_header(skb);
1378 			vlan_macip_lens = skb_network_offset(skb) <<
1379 					  WX_TXD_MACLEN_SHIFT;
1380 			switch (first->protocol) {
1381 			case htons(ETH_P_IP):
1382 				tun_prot = ip_hdr(skb)->protocol;
1383 				break;
1384 			case htons(ETH_P_IPV6):
1385 				tun_prot = ipv6_hdr(skb)->nexthdr;
1386 				break;
1387 			default:
1388 				return;
1389 			}
1390 			switch (tun_prot) {
1391 			case IPPROTO_UDP:
1392 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1393 				tunhdr_eiplen_tunlen |=
1394 					((skb_network_header_len(skb) >> 2) <<
1395 					WX_TXD_OUTER_IPLEN_SHIFT) |
1396 					(((skb_inner_mac_header(skb) -
1397 					skb_transport_header(skb)) >> 1) <<
1398 					WX_TXD_TUNNEL_LEN_SHIFT);
1399 				break;
1400 			case IPPROTO_GRE:
1401 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1402 				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1403 							 WX_TXD_OUTER_IPLEN_SHIFT) |
1404 							 (((skb_inner_mac_header(skb) -
1405 							    skb_transport_header(skb)) >> 1) <<
1406 							  WX_TXD_TUNNEL_LEN_SHIFT);
1407 				break;
1408 			case IPPROTO_IPIP:
1409 				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1410 							(char *)ip_hdr(skb)) >> 2) <<
1411 							WX_TXD_OUTER_IPLEN_SHIFT;
1412 				break;
1413 			default:
1414 				break;
1415 			}
1416 
1417 		} else {
1418 			network_hdr.raw = skb_network_header(skb);
1419 			transport_hdr.raw = skb_transport_header(skb);
1420 			vlan_macip_lens = skb_network_offset(skb) <<
1421 					  WX_TXD_MACLEN_SHIFT;
1422 		}
1423 
1424 		switch (network_hdr.ipv4->version) {
1425 		case IPVERSION:
1426 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1427 			l4_prot = network_hdr.ipv4->protocol;
1428 			break;
1429 		case 6:
1430 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1431 			l4_prot = network_hdr.ipv6->nexthdr;
1432 			break;
1433 		default:
1434 			break;
1435 		}
1436 
1437 		switch (l4_prot) {
1438 		case IPPROTO_TCP:
1439 		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1440 				WX_TXD_L4LEN_SHIFT;
1441 			break;
1442 		case IPPROTO_SCTP:
1443 			mss_l4len_idx = sizeof(struct sctphdr) <<
1444 					WX_TXD_L4LEN_SHIFT;
1445 			break;
1446 		case IPPROTO_UDP:
1447 			mss_l4len_idx = sizeof(struct udphdr) <<
1448 					WX_TXD_L4LEN_SHIFT;
1449 			break;
1450 		default:
1451 			break;
1452 		}
1453 
1454 		/* update TX checksum flag */
1455 		first->tx_flags |= WX_TX_FLAGS_CSUM;
1456 	}
1457 	first->tx_flags |= WX_TX_FLAGS_CC;
1458 	/* vlan_macip_lens: MACLEN, VLAN tag */
1459 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1460 
1461 	type_tucmd = ptype << 24;
1462 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1463 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1464 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1465 					  WX_TX_FLAGS_HW_VLAN,
1466 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1467 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1468 		       type_tucmd, mss_l4len_idx);
1469 }
1470 
1471 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1472 				      struct wx_ring *tx_ring)
1473 {
1474 	struct wx *wx = netdev_priv(tx_ring->netdev);
1475 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1476 	struct wx_tx_buffer *first;
1477 	u8 hdr_len = 0, ptype;
1478 	unsigned short f;
1479 	u32 tx_flags = 0;
1480 	int tso;
1481 
1482 	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1483 	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1484 	 *       + 2 desc gap to keep tail from touching head,
1485 	 *       + 1 desc for context descriptor,
1486 	 * otherwise try next time
1487 	 */
1488 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1489 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1490 						     frags[f]));
1491 
1492 	if (wx_maybe_stop_tx(tx_ring, count + 3)) {
1493 		tx_ring->tx_stats.tx_busy++;
1494 		return NETDEV_TX_BUSY;
1495 	}
1496 
1497 	/* record the location of the first descriptor for this packet */
1498 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1499 	first->skb = skb;
1500 	first->bytecount = skb->len;
1501 	first->gso_segs = 1;
1502 
1503 	/* if we have a HW VLAN tag being added default to the HW one */
1504 	if (skb_vlan_tag_present(skb)) {
1505 		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1506 		tx_flags |= WX_TX_FLAGS_HW_VLAN;
1507 	}
1508 
1509 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1510 	    wx->ptp_clock) {
1511 		if (wx->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1512 		    !test_and_set_bit_lock(WX_STATE_PTP_TX_IN_PROGRESS,
1513 					   wx->state)) {
1514 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1515 			tx_flags |= WX_TX_FLAGS_TSTAMP;
1516 			wx->ptp_tx_skb = skb_get(skb);
1517 			wx->ptp_tx_start = jiffies;
1518 		} else {
1519 			wx->tx_hwtstamp_skipped++;
1520 		}
1521 	}
1522 
1523 	/* record initial flags and protocol */
1524 	first->tx_flags = tx_flags;
1525 	first->protocol = vlan_get_protocol(skb);
1526 
1527 	ptype = wx_encode_tx_desc_ptype(first);
1528 
1529 	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1530 	if (tso < 0)
1531 		goto out_drop;
1532 	else if (!tso)
1533 		wx_tx_csum(tx_ring, first, ptype);
1534 
1535 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && tx_ring->atr_sample_rate)
1536 		wx->atr(tx_ring, first, ptype);
1537 
1538 	if (wx_tx_map(tx_ring, first, hdr_len))
1539 		goto cleanup_tx_tstamp;
1540 
1541 	return NETDEV_TX_OK;
1542 out_drop:
1543 	dev_kfree_skb_any(first->skb);
1544 	first->skb = NULL;
1545 cleanup_tx_tstamp:
1546 	if (unlikely(tx_flags & WX_TX_FLAGS_TSTAMP)) {
1547 		dev_kfree_skb_any(wx->ptp_tx_skb);
1548 		wx->ptp_tx_skb = NULL;
1549 		wx->tx_hwtstamp_errors++;
1550 		clear_bit_unlock(WX_STATE_PTP_TX_IN_PROGRESS, wx->state);
1551 	}
1552 
1553 	return NETDEV_TX_OK;
1554 }
1555 
1556 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1557 			  struct net_device *netdev)
1558 {
1559 	unsigned int r_idx = skb->queue_mapping;
1560 	struct wx *wx = netdev_priv(netdev);
1561 	struct wx_ring *tx_ring;
1562 
1563 	if (!netif_carrier_ok(netdev)) {
1564 		dev_kfree_skb_any(skb);
1565 		return NETDEV_TX_OK;
1566 	}
1567 
1568 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
1569 	 * in order to meet this minimum size requirement.
1570 	 */
1571 	if (skb_put_padto(skb, 17))
1572 		return NETDEV_TX_OK;
1573 
1574 	if (r_idx >= wx->num_tx_queues)
1575 		r_idx = r_idx % wx->num_tx_queues;
1576 	tx_ring = wx->tx_ring[r_idx];
1577 
1578 	return wx_xmit_frame_ring(skb, tx_ring);
1579 }
1580 EXPORT_SYMBOL(wx_xmit_frame);
1581 
1582 void wx_napi_enable_all(struct wx *wx)
1583 {
1584 	struct wx_q_vector *q_vector;
1585 	int q_idx;
1586 
1587 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1588 		q_vector = wx->q_vector[q_idx];
1589 		napi_enable(&q_vector->napi);
1590 	}
1591 }
1592 EXPORT_SYMBOL(wx_napi_enable_all);
1593 
1594 void wx_napi_disable_all(struct wx *wx)
1595 {
1596 	struct wx_q_vector *q_vector;
1597 	int q_idx;
1598 
1599 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1600 		q_vector = wx->q_vector[q_idx];
1601 		napi_disable(&q_vector->napi);
1602 	}
1603 }
1604 EXPORT_SYMBOL(wx_napi_disable_all);
1605 
1606 /**
1607  * wx_set_rss_queues: Allocate queues for RSS
1608  * @wx: board private structure to initialize
1609  *
1610  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1611  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1612  *
1613  **/
1614 static void wx_set_rss_queues(struct wx *wx)
1615 {
1616 	struct wx_ring_feature *f;
1617 
1618 	/* set mask for 16 queue limit of RSS */
1619 	f = &wx->ring_feature[RING_F_RSS];
1620 	f->indices = f->limit;
1621 
1622 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
1623 		goto out;
1624 
1625 	clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
1626 
1627 	/* Use Flow Director in addition to RSS to ensure the best
1628 	 * distribution of flows across cores, even when an FDIR flow
1629 	 * isn't matched.
1630 	 */
1631 	if (f->indices > 1) {
1632 		f = &wx->ring_feature[RING_F_FDIR];
1633 
1634 		f->indices = f->limit;
1635 
1636 		if (!(test_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
1637 			set_bit(WX_FLAG_FDIR_HASH, wx->flags);
1638 	}
1639 
1640 out:
1641 	wx->num_rx_queues = f->indices;
1642 	wx->num_tx_queues = f->indices;
1643 }
1644 
1645 static void wx_set_num_queues(struct wx *wx)
1646 {
1647 	/* Start with base case */
1648 	wx->num_rx_queues = 1;
1649 	wx->num_tx_queues = 1;
1650 	wx->queues_per_pool = 1;
1651 
1652 	wx_set_rss_queues(wx);
1653 }
1654 
1655 /**
1656  * wx_acquire_msix_vectors - acquire MSI-X vectors
1657  * @wx: board private structure
1658  *
1659  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1660  * return a negative error code if unable to acquire MSI-X vectors for any
1661  * reason.
1662  */
1663 static int wx_acquire_msix_vectors(struct wx *wx)
1664 {
1665 	struct irq_affinity affd = { .pre_vectors = 1 };
1666 	int nvecs, i;
1667 
1668 	/* We start by asking for one vector per queue pair */
1669 	nvecs = max(wx->num_rx_queues, wx->num_tx_queues);
1670 	nvecs = min_t(int, nvecs, num_online_cpus());
1671 	nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors);
1672 
1673 	wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry),
1674 				     GFP_KERNEL);
1675 	if (!wx->msix_q_entries)
1676 		return -ENOMEM;
1677 
1678 	/* One for non-queue interrupts */
1679 	nvecs += 1;
1680 
1681 	wx->msix_entry = kcalloc(1, sizeof(struct msix_entry),
1682 				 GFP_KERNEL);
1683 	if (!wx->msix_entry) {
1684 		kfree(wx->msix_q_entries);
1685 		wx->msix_q_entries = NULL;
1686 		return -ENOMEM;
1687 	}
1688 
1689 	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1690 					       nvecs,
1691 					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1692 					       &affd);
1693 	if (nvecs < 0) {
1694 		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1695 		kfree(wx->msix_q_entries);
1696 		wx->msix_q_entries = NULL;
1697 		kfree(wx->msix_entry);
1698 		wx->msix_entry = NULL;
1699 		return nvecs;
1700 	}
1701 
1702 	wx->msix_entry->entry = 0;
1703 	wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0);
1704 	nvecs -= 1;
1705 	for (i = 0; i < nvecs; i++) {
1706 		wx->msix_q_entries[i].entry = i;
1707 		wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1);
1708 	}
1709 
1710 	wx->num_q_vectors = nvecs;
1711 
1712 	return 0;
1713 }
1714 
1715 /**
1716  * wx_set_interrupt_capability - set MSI-X or MSI if supported
1717  * @wx: board private structure to initialize
1718  *
1719  * Attempt to configure the interrupts using the best available
1720  * capabilities of the hardware and the kernel.
1721  **/
1722 static int wx_set_interrupt_capability(struct wx *wx)
1723 {
1724 	struct pci_dev *pdev = wx->pdev;
1725 	int nvecs, ret;
1726 
1727 	/* We will try to get MSI-X interrupts first */
1728 	ret = wx_acquire_msix_vectors(wx);
1729 	if (ret == 0 || (ret == -ENOMEM))
1730 		return ret;
1731 
1732 	/* Disable RSS */
1733 	dev_warn(&wx->pdev->dev, "Disabling RSS support\n");
1734 	wx->ring_feature[RING_F_RSS].limit = 1;
1735 
1736 	wx_set_num_queues(wx);
1737 
1738 	/* minmum one for queue, one for misc*/
1739 	nvecs = 1;
1740 	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1741 				      nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX);
1742 	if (nvecs == 1) {
1743 		if (pdev->msi_enabled)
1744 			wx_err(wx, "Fallback to MSI.\n");
1745 		else
1746 			wx_err(wx, "Fallback to INTx.\n");
1747 	} else {
1748 		wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs);
1749 		return nvecs;
1750 	}
1751 
1752 	pdev->irq = pci_irq_vector(pdev, 0);
1753 	wx->num_q_vectors = 1;
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1760  * @wx: board private structure to initialize
1761  *
1762  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1763  *
1764  **/
1765 static void wx_cache_ring_rss(struct wx *wx)
1766 {
1767 	u16 i;
1768 
1769 	for (i = 0; i < wx->num_rx_queues; i++)
1770 		wx->rx_ring[i]->reg_idx = i;
1771 
1772 	for (i = 0; i < wx->num_tx_queues; i++)
1773 		wx->tx_ring[i]->reg_idx = i;
1774 }
1775 
1776 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1777 {
1778 	ring->next = head->ring;
1779 	head->ring = ring;
1780 	head->count++;
1781 }
1782 
1783 /**
1784  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1785  * @wx: board private structure to initialize
1786  * @v_count: q_vectors allocated on wx, used for ring interleaving
1787  * @v_idx: index of vector in wx struct
1788  * @txr_count: total number of Tx rings to allocate
1789  * @txr_idx: index of first Tx ring to allocate
1790  * @rxr_count: total number of Rx rings to allocate
1791  * @rxr_idx: index of first Rx ring to allocate
1792  *
1793  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1794  **/
1795 static int wx_alloc_q_vector(struct wx *wx,
1796 			     unsigned int v_count, unsigned int v_idx,
1797 			     unsigned int txr_count, unsigned int txr_idx,
1798 			     unsigned int rxr_count, unsigned int rxr_idx)
1799 {
1800 	struct wx_q_vector *q_vector;
1801 	int ring_count, default_itr;
1802 	struct wx_ring *ring;
1803 
1804 	/* note this will allocate space for the ring structure as well! */
1805 	ring_count = txr_count + rxr_count;
1806 
1807 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1808 			   GFP_KERNEL);
1809 	if (!q_vector)
1810 		return -ENOMEM;
1811 
1812 	/* initialize NAPI */
1813 	netif_napi_add(wx->netdev, &q_vector->napi,
1814 		       wx_poll);
1815 
1816 	/* tie q_vector and wx together */
1817 	wx->q_vector[v_idx] = q_vector;
1818 	q_vector->wx = wx;
1819 	q_vector->v_idx = v_idx;
1820 	if (cpu_online(v_idx))
1821 		q_vector->numa_node = cpu_to_node(v_idx);
1822 
1823 	/* initialize pointer to rings */
1824 	ring = q_vector->ring;
1825 
1826 	switch (wx->mac.type) {
1827 	case wx_mac_sp:
1828 	case wx_mac_aml:
1829 		default_itr = WX_12K_ITR;
1830 		break;
1831 	default:
1832 		default_itr = WX_7K_ITR;
1833 		break;
1834 	}
1835 
1836 	/* initialize ITR */
1837 	if (txr_count && !rxr_count)
1838 		/* tx only vector */
1839 		q_vector->itr = wx->tx_itr_setting ?
1840 				default_itr : wx->tx_itr_setting;
1841 	else
1842 		/* rx or rx/tx vector */
1843 		q_vector->itr = wx->rx_itr_setting ?
1844 				default_itr : wx->rx_itr_setting;
1845 
1846 	while (txr_count) {
1847 		/* assign generic ring traits */
1848 		ring->dev = &wx->pdev->dev;
1849 		ring->netdev = wx->netdev;
1850 
1851 		/* configure backlink on ring */
1852 		ring->q_vector = q_vector;
1853 
1854 		/* update q_vector Tx values */
1855 		wx_add_ring(ring, &q_vector->tx);
1856 
1857 		/* apply Tx specific ring traits */
1858 		ring->count = wx->tx_ring_count;
1859 
1860 		ring->queue_index = txr_idx;
1861 
1862 		/* assign ring to wx */
1863 		wx->tx_ring[txr_idx] = ring;
1864 
1865 		/* update count and index */
1866 		txr_count--;
1867 		txr_idx += v_count;
1868 
1869 		/* push pointer to next ring */
1870 		ring++;
1871 	}
1872 
1873 	while (rxr_count) {
1874 		/* assign generic ring traits */
1875 		ring->dev = &wx->pdev->dev;
1876 		ring->netdev = wx->netdev;
1877 
1878 		/* configure backlink on ring */
1879 		ring->q_vector = q_vector;
1880 
1881 		/* update q_vector Rx values */
1882 		wx_add_ring(ring, &q_vector->rx);
1883 
1884 		/* apply Rx specific ring traits */
1885 		ring->count = wx->rx_ring_count;
1886 		ring->queue_index = rxr_idx;
1887 
1888 		/* assign ring to wx */
1889 		wx->rx_ring[rxr_idx] = ring;
1890 
1891 		/* update count and index */
1892 		rxr_count--;
1893 		rxr_idx += v_count;
1894 
1895 		/* push pointer to next ring */
1896 		ring++;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 /**
1903  * wx_free_q_vector - Free memory allocated for specific interrupt vector
1904  * @wx: board private structure to initialize
1905  * @v_idx: Index of vector to be freed
1906  *
1907  * This function frees the memory allocated to the q_vector.  In addition if
1908  * NAPI is enabled it will delete any references to the NAPI struct prior
1909  * to freeing the q_vector.
1910  **/
1911 static void wx_free_q_vector(struct wx *wx, int v_idx)
1912 {
1913 	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1914 	struct wx_ring *ring;
1915 
1916 	wx_for_each_ring(ring, q_vector->tx)
1917 		wx->tx_ring[ring->queue_index] = NULL;
1918 
1919 	wx_for_each_ring(ring, q_vector->rx)
1920 		wx->rx_ring[ring->queue_index] = NULL;
1921 
1922 	wx->q_vector[v_idx] = NULL;
1923 	netif_napi_del(&q_vector->napi);
1924 	kfree_rcu(q_vector, rcu);
1925 }
1926 
1927 /**
1928  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1929  * @wx: board private structure to initialize
1930  *
1931  * We allocate one q_vector per queue interrupt.  If allocation fails we
1932  * return -ENOMEM.
1933  **/
1934 static int wx_alloc_q_vectors(struct wx *wx)
1935 {
1936 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1937 	unsigned int rxr_remaining = wx->num_rx_queues;
1938 	unsigned int txr_remaining = wx->num_tx_queues;
1939 	unsigned int q_vectors = wx->num_q_vectors;
1940 	int rqpv, tqpv;
1941 	int err;
1942 
1943 	for (; v_idx < q_vectors; v_idx++) {
1944 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1945 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1946 		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1947 					tqpv, txr_idx,
1948 					rqpv, rxr_idx);
1949 
1950 		if (err)
1951 			goto err_out;
1952 
1953 		/* update counts and index */
1954 		rxr_remaining -= rqpv;
1955 		txr_remaining -= tqpv;
1956 		rxr_idx++;
1957 		txr_idx++;
1958 	}
1959 
1960 	return 0;
1961 
1962 err_out:
1963 	wx->num_tx_queues = 0;
1964 	wx->num_rx_queues = 0;
1965 	wx->num_q_vectors = 0;
1966 
1967 	while (v_idx--)
1968 		wx_free_q_vector(wx, v_idx);
1969 
1970 	return -ENOMEM;
1971 }
1972 
1973 /**
1974  * wx_free_q_vectors - Free memory allocated for interrupt vectors
1975  * @wx: board private structure to initialize
1976  *
1977  * This function frees the memory allocated to the q_vectors.  In addition if
1978  * NAPI is enabled it will delete any references to the NAPI struct prior
1979  * to freeing the q_vector.
1980  **/
1981 static void wx_free_q_vectors(struct wx *wx)
1982 {
1983 	int v_idx = wx->num_q_vectors;
1984 
1985 	wx->num_tx_queues = 0;
1986 	wx->num_rx_queues = 0;
1987 	wx->num_q_vectors = 0;
1988 
1989 	while (v_idx--)
1990 		wx_free_q_vector(wx, v_idx);
1991 }
1992 
1993 void wx_reset_interrupt_capability(struct wx *wx)
1994 {
1995 	struct pci_dev *pdev = wx->pdev;
1996 
1997 	if (!pdev->msi_enabled && !pdev->msix_enabled)
1998 		return;
1999 
2000 	if (pdev->msix_enabled) {
2001 		kfree(wx->msix_q_entries);
2002 		wx->msix_q_entries = NULL;
2003 		kfree(wx->msix_entry);
2004 		wx->msix_entry = NULL;
2005 	}
2006 	pci_free_irq_vectors(wx->pdev);
2007 }
2008 EXPORT_SYMBOL(wx_reset_interrupt_capability);
2009 
2010 /**
2011  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
2012  * @wx: board private structure to clear interrupt scheme on
2013  *
2014  * We go through and clear interrupt specific resources and reset the structure
2015  * to pre-load conditions
2016  **/
2017 void wx_clear_interrupt_scheme(struct wx *wx)
2018 {
2019 	wx_free_q_vectors(wx);
2020 	wx_reset_interrupt_capability(wx);
2021 }
2022 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
2023 
2024 int wx_init_interrupt_scheme(struct wx *wx)
2025 {
2026 	int ret;
2027 
2028 	/* Number of supported queues */
2029 	wx_set_num_queues(wx);
2030 
2031 	/* Set interrupt mode */
2032 	ret = wx_set_interrupt_capability(wx);
2033 	if (ret) {
2034 		wx_err(wx, "Allocate irq vectors for failed.\n");
2035 		return ret;
2036 	}
2037 
2038 	/* Allocate memory for queues */
2039 	ret = wx_alloc_q_vectors(wx);
2040 	if (ret) {
2041 		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
2042 		wx_reset_interrupt_capability(wx);
2043 		return ret;
2044 	}
2045 
2046 	wx_cache_ring_rss(wx);
2047 
2048 	return 0;
2049 }
2050 EXPORT_SYMBOL(wx_init_interrupt_scheme);
2051 
2052 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
2053 {
2054 	struct wx_q_vector *q_vector = data;
2055 
2056 	/* EIAM disabled interrupts (on this vector) for us */
2057 	if (q_vector->rx.ring || q_vector->tx.ring)
2058 		napi_schedule_irqoff(&q_vector->napi);
2059 
2060 	return IRQ_HANDLED;
2061 }
2062 EXPORT_SYMBOL(wx_msix_clean_rings);
2063 
2064 void wx_free_irq(struct wx *wx)
2065 {
2066 	struct pci_dev *pdev = wx->pdev;
2067 	int vector;
2068 
2069 	if (!(pdev->msix_enabled)) {
2070 		if (!wx->misc_irq_domain)
2071 			free_irq(pdev->irq, wx);
2072 		return;
2073 	}
2074 
2075 	for (vector = 0; vector < wx->num_q_vectors; vector++) {
2076 		struct wx_q_vector *q_vector = wx->q_vector[vector];
2077 		struct msix_entry *entry = &wx->msix_q_entries[vector];
2078 
2079 		/* free only the irqs that were actually requested */
2080 		if (!q_vector->rx.ring && !q_vector->tx.ring)
2081 			continue;
2082 
2083 		free_irq(entry->vector, q_vector);
2084 	}
2085 
2086 	if (!wx->misc_irq_domain)
2087 		free_irq(wx->msix_entry->vector, wx);
2088 }
2089 EXPORT_SYMBOL(wx_free_irq);
2090 
2091 /**
2092  * wx_setup_isb_resources - allocate interrupt status resources
2093  * @wx: board private structure
2094  *
2095  * Return 0 on success, negative on failure
2096  **/
2097 int wx_setup_isb_resources(struct wx *wx)
2098 {
2099 	struct pci_dev *pdev = wx->pdev;
2100 
2101 	if (wx->isb_mem)
2102 		return 0;
2103 
2104 	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2105 					 sizeof(u32) * 4,
2106 					 &wx->isb_dma,
2107 					 GFP_KERNEL);
2108 	if (!wx->isb_mem) {
2109 		wx_err(wx, "Alloc isb_mem failed\n");
2110 		return -ENOMEM;
2111 	}
2112 
2113 	return 0;
2114 }
2115 EXPORT_SYMBOL(wx_setup_isb_resources);
2116 
2117 /**
2118  * wx_free_isb_resources - allocate all queues Rx resources
2119  * @wx: board private structure
2120  *
2121  * Return 0 on success, negative on failure
2122  **/
2123 void wx_free_isb_resources(struct wx *wx)
2124 {
2125 	struct pci_dev *pdev = wx->pdev;
2126 
2127 	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2128 			  wx->isb_mem, wx->isb_dma);
2129 	wx->isb_mem = NULL;
2130 }
2131 EXPORT_SYMBOL(wx_free_isb_resources);
2132 
2133 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2134 {
2135 	u32 cur_tag = 0;
2136 
2137 	cur_tag = wx->isb_mem[WX_ISB_HEADER];
2138 	wx->isb_tag[idx] = cur_tag;
2139 
2140 	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2141 }
2142 EXPORT_SYMBOL(wx_misc_isb);
2143 
2144 /**
2145  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2146  * @wx: pointer to wx struct
2147  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2148  * @queue: queue to map the corresponding interrupt to
2149  * @msix_vector: the vector to map to the corresponding queue
2150  *
2151  **/
2152 static void wx_set_ivar(struct wx *wx, s8 direction,
2153 			u16 queue, u16 msix_vector)
2154 {
2155 	u32 ivar, index;
2156 
2157 	if (direction == -1) {
2158 		/* other causes */
2159 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2160 		index = 0;
2161 		ivar = rd32(wx, WX_PX_MISC_IVAR);
2162 		ivar &= ~(0xFF << index);
2163 		ivar |= (msix_vector << index);
2164 		wr32(wx, WX_PX_MISC_IVAR, ivar);
2165 	} else {
2166 		/* tx or rx causes */
2167 		msix_vector += 1; /* offset for queue vectors */
2168 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2169 		index = ((16 * (queue & 1)) + (8 * direction));
2170 		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2171 		ivar &= ~(0xFF << index);
2172 		ivar |= (msix_vector << index);
2173 		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2174 	}
2175 }
2176 
2177 /**
2178  * wx_write_eitr - write EITR register in hardware specific way
2179  * @q_vector: structure containing interrupt and ring information
2180  *
2181  * This function is made to be called by ethtool and by the driver
2182  * when it needs to update EITR registers at runtime.  Hardware
2183  * specific quirks/differences are taken care of here.
2184  */
2185 void wx_write_eitr(struct wx_q_vector *q_vector)
2186 {
2187 	struct wx *wx = q_vector->wx;
2188 	int v_idx = q_vector->v_idx;
2189 	u32 itr_reg;
2190 
2191 	switch (wx->mac.type) {
2192 	case wx_mac_sp:
2193 		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2194 		break;
2195 	case wx_mac_aml:
2196 		itr_reg = (q_vector->itr >> 3) & WX_AML_MAX_EITR;
2197 		break;
2198 	default:
2199 		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2200 		break;
2201 	}
2202 
2203 	itr_reg |= WX_PX_ITR_CNT_WDIS;
2204 
2205 	wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg);
2206 }
2207 
2208 /**
2209  * wx_configure_vectors - Configure vectors for hardware
2210  * @wx: board private structure
2211  *
2212  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx
2213  * interrupts.
2214  **/
2215 void wx_configure_vectors(struct wx *wx)
2216 {
2217 	struct pci_dev *pdev = wx->pdev;
2218 	u32 eitrsel = 0;
2219 	u16 v_idx;
2220 
2221 	if (pdev->msix_enabled) {
2222 		/* Populate MSIX to EITR Select */
2223 		wr32(wx, WX_PX_ITRSEL, eitrsel);
2224 		/* use EIAM to auto-mask when MSI-X interrupt is asserted
2225 		 * this saves a register write for every interrupt
2226 		 */
2227 		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2228 	} else {
2229 		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
2230 		 * specifically only auto mask tx and rx interrupts.
2231 		 */
2232 		wr32(wx, WX_PX_GPIE, 0);
2233 	}
2234 
2235 	/* Populate the IVAR table and set the ITR values to the
2236 	 * corresponding register.
2237 	 */
2238 	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2239 		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2240 		struct wx_ring *ring;
2241 
2242 		wx_for_each_ring(ring, q_vector->rx)
2243 			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2244 
2245 		wx_for_each_ring(ring, q_vector->tx)
2246 			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2247 
2248 		wx_write_eitr(q_vector);
2249 	}
2250 
2251 	wx_set_ivar(wx, -1, 0, 0);
2252 	if (pdev->msix_enabled)
2253 		wr32(wx, WX_PX_ITR(0), 1950);
2254 }
2255 EXPORT_SYMBOL(wx_configure_vectors);
2256 
2257 /**
2258  * wx_clean_rx_ring - Free Rx Buffers per Queue
2259  * @rx_ring: ring to free buffers from
2260  **/
2261 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2262 {
2263 	struct wx_rx_buffer *rx_buffer;
2264 	u16 i = rx_ring->next_to_clean;
2265 
2266 	rx_buffer = &rx_ring->rx_buffer_info[i];
2267 
2268 	/* Free all the Rx ring sk_buffs */
2269 	while (i != rx_ring->next_to_alloc) {
2270 		if (rx_buffer->skb) {
2271 			struct sk_buff *skb = rx_buffer->skb;
2272 
2273 			if (WX_CB(skb)->page_released)
2274 				page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2275 
2276 			dev_kfree_skb(skb);
2277 		}
2278 
2279 		/* Invalidate cache lines that may have been written to by
2280 		 * device so that we avoid corrupting memory.
2281 		 */
2282 		dma_sync_single_range_for_cpu(rx_ring->dev,
2283 					      rx_buffer->dma,
2284 					      rx_buffer->page_offset,
2285 					      WX_RX_BUFSZ,
2286 					      DMA_FROM_DEVICE);
2287 
2288 		/* free resources associated with mapping */
2289 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2290 
2291 		i++;
2292 		rx_buffer++;
2293 		if (i == rx_ring->count) {
2294 			i = 0;
2295 			rx_buffer = rx_ring->rx_buffer_info;
2296 		}
2297 	}
2298 
2299 	rx_ring->next_to_alloc = 0;
2300 	rx_ring->next_to_clean = 0;
2301 	rx_ring->next_to_use = 0;
2302 }
2303 
2304 /**
2305  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2306  * @wx: board private structure
2307  **/
2308 void wx_clean_all_rx_rings(struct wx *wx)
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < wx->num_rx_queues; i++)
2313 		wx_clean_rx_ring(wx->rx_ring[i]);
2314 }
2315 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2316 
2317 /**
2318  * wx_free_rx_resources - Free Rx Resources
2319  * @rx_ring: ring to clean the resources from
2320  *
2321  * Free all receive software resources
2322  **/
2323 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2324 {
2325 	wx_clean_rx_ring(rx_ring);
2326 	kvfree(rx_ring->rx_buffer_info);
2327 	rx_ring->rx_buffer_info = NULL;
2328 
2329 	/* if not set, then don't free */
2330 	if (!rx_ring->desc)
2331 		return;
2332 
2333 	dma_free_coherent(rx_ring->dev, rx_ring->size,
2334 			  rx_ring->desc, rx_ring->dma);
2335 
2336 	rx_ring->desc = NULL;
2337 
2338 	if (rx_ring->page_pool) {
2339 		page_pool_destroy(rx_ring->page_pool);
2340 		rx_ring->page_pool = NULL;
2341 	}
2342 }
2343 
2344 /**
2345  * wx_free_all_rx_resources - Free Rx Resources for All Queues
2346  * @wx: pointer to hardware structure
2347  *
2348  * Free all receive software resources
2349  **/
2350 static void wx_free_all_rx_resources(struct wx *wx)
2351 {
2352 	int i;
2353 
2354 	for (i = 0; i < wx->num_rx_queues; i++)
2355 		wx_free_rx_resources(wx->rx_ring[i]);
2356 }
2357 
2358 /**
2359  * wx_clean_tx_ring - Free Tx Buffers
2360  * @tx_ring: ring to be cleaned
2361  **/
2362 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2363 {
2364 	struct wx_tx_buffer *tx_buffer;
2365 	u16 i = tx_ring->next_to_clean;
2366 
2367 	tx_buffer = &tx_ring->tx_buffer_info[i];
2368 
2369 	while (i != tx_ring->next_to_use) {
2370 		union wx_tx_desc *eop_desc, *tx_desc;
2371 
2372 		/* Free all the Tx ring sk_buffs */
2373 		dev_kfree_skb_any(tx_buffer->skb);
2374 
2375 		/* unmap skb header data */
2376 		dma_unmap_single(tx_ring->dev,
2377 				 dma_unmap_addr(tx_buffer, dma),
2378 				 dma_unmap_len(tx_buffer, len),
2379 				 DMA_TO_DEVICE);
2380 
2381 		/* check for eop_desc to determine the end of the packet */
2382 		eop_desc = tx_buffer->next_to_watch;
2383 		tx_desc = WX_TX_DESC(tx_ring, i);
2384 
2385 		/* unmap remaining buffers */
2386 		while (tx_desc != eop_desc) {
2387 			tx_buffer++;
2388 			tx_desc++;
2389 			i++;
2390 			if (unlikely(i == tx_ring->count)) {
2391 				i = 0;
2392 				tx_buffer = tx_ring->tx_buffer_info;
2393 				tx_desc = WX_TX_DESC(tx_ring, 0);
2394 			}
2395 
2396 			/* unmap any remaining paged data */
2397 			if (dma_unmap_len(tx_buffer, len))
2398 				dma_unmap_page(tx_ring->dev,
2399 					       dma_unmap_addr(tx_buffer, dma),
2400 					       dma_unmap_len(tx_buffer, len),
2401 					       DMA_TO_DEVICE);
2402 		}
2403 
2404 		/* move us one more past the eop_desc for start of next pkt */
2405 		tx_buffer++;
2406 		i++;
2407 		if (unlikely(i == tx_ring->count)) {
2408 			i = 0;
2409 			tx_buffer = tx_ring->tx_buffer_info;
2410 		}
2411 	}
2412 
2413 	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2414 
2415 	/* reset next_to_use and next_to_clean */
2416 	tx_ring->next_to_use = 0;
2417 	tx_ring->next_to_clean = 0;
2418 }
2419 
2420 /**
2421  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2422  * @wx: board private structure
2423  **/
2424 void wx_clean_all_tx_rings(struct wx *wx)
2425 {
2426 	int i;
2427 
2428 	for (i = 0; i < wx->num_tx_queues; i++)
2429 		wx_clean_tx_ring(wx->tx_ring[i]);
2430 }
2431 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2432 
2433 /**
2434  * wx_free_tx_resources - Free Tx Resources per Queue
2435  * @tx_ring: Tx descriptor ring for a specific queue
2436  *
2437  * Free all transmit software resources
2438  **/
2439 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2440 {
2441 	wx_clean_tx_ring(tx_ring);
2442 	kvfree(tx_ring->tx_buffer_info);
2443 	tx_ring->tx_buffer_info = NULL;
2444 
2445 	/* if not set, then don't free */
2446 	if (!tx_ring->desc)
2447 		return;
2448 
2449 	dma_free_coherent(tx_ring->dev, tx_ring->size,
2450 			  tx_ring->desc, tx_ring->dma);
2451 	tx_ring->desc = NULL;
2452 }
2453 
2454 /**
2455  * wx_free_all_tx_resources - Free Tx Resources for All Queues
2456  * @wx: pointer to hardware structure
2457  *
2458  * Free all transmit software resources
2459  **/
2460 static void wx_free_all_tx_resources(struct wx *wx)
2461 {
2462 	int i;
2463 
2464 	for (i = 0; i < wx->num_tx_queues; i++)
2465 		wx_free_tx_resources(wx->tx_ring[i]);
2466 }
2467 
2468 void wx_free_resources(struct wx *wx)
2469 {
2470 	wx_free_all_rx_resources(wx);
2471 	wx_free_all_tx_resources(wx);
2472 }
2473 EXPORT_SYMBOL(wx_free_resources);
2474 
2475 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2476 {
2477 	int ret = 0;
2478 
2479 	struct page_pool_params pp_params = {
2480 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2481 		.order = 0,
2482 		.pool_size = rx_ring->size,
2483 		.nid = dev_to_node(rx_ring->dev),
2484 		.dev = rx_ring->dev,
2485 		.dma_dir = DMA_FROM_DEVICE,
2486 		.offset = 0,
2487 		.max_len = PAGE_SIZE,
2488 	};
2489 
2490 	rx_ring->page_pool = page_pool_create(&pp_params);
2491 	if (IS_ERR(rx_ring->page_pool)) {
2492 		ret = PTR_ERR(rx_ring->page_pool);
2493 		rx_ring->page_pool = NULL;
2494 	}
2495 
2496 	return ret;
2497 }
2498 
2499 /**
2500  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2501  * @rx_ring: rx descriptor ring (for a specific queue) to setup
2502  *
2503  * Returns 0 on success, negative on failure
2504  **/
2505 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2506 {
2507 	struct device *dev = rx_ring->dev;
2508 	int orig_node = dev_to_node(dev);
2509 	int numa_node = NUMA_NO_NODE;
2510 	int size, ret;
2511 
2512 	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2513 
2514 	if (rx_ring->q_vector)
2515 		numa_node = rx_ring->q_vector->numa_node;
2516 
2517 	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2518 	if (!rx_ring->rx_buffer_info)
2519 		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2520 	if (!rx_ring->rx_buffer_info)
2521 		goto err;
2522 
2523 	/* Round up to nearest 4K */
2524 	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2525 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2526 
2527 	set_dev_node(dev, numa_node);
2528 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2529 					   &rx_ring->dma, GFP_KERNEL);
2530 	if (!rx_ring->desc) {
2531 		set_dev_node(dev, orig_node);
2532 		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2533 						   &rx_ring->dma, GFP_KERNEL);
2534 	}
2535 
2536 	if (!rx_ring->desc)
2537 		goto err;
2538 
2539 	rx_ring->next_to_clean = 0;
2540 	rx_ring->next_to_use = 0;
2541 
2542 	ret = wx_alloc_page_pool(rx_ring);
2543 	if (ret < 0) {
2544 		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2545 		goto err_desc;
2546 	}
2547 
2548 	return 0;
2549 
2550 err_desc:
2551 	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2552 err:
2553 	kvfree(rx_ring->rx_buffer_info);
2554 	rx_ring->rx_buffer_info = NULL;
2555 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2556 	return -ENOMEM;
2557 }
2558 
2559 /**
2560  * wx_setup_all_rx_resources - allocate all queues Rx resources
2561  * @wx: pointer to hardware structure
2562  *
2563  * If this function returns with an error, then it's possible one or
2564  * more of the rings is populated (while the rest are not).  It is the
2565  * callers duty to clean those orphaned rings.
2566  *
2567  * Return 0 on success, negative on failure
2568  **/
2569 static int wx_setup_all_rx_resources(struct wx *wx)
2570 {
2571 	int i, err = 0;
2572 
2573 	for (i = 0; i < wx->num_rx_queues; i++) {
2574 		err = wx_setup_rx_resources(wx->rx_ring[i]);
2575 		if (!err)
2576 			continue;
2577 
2578 		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2579 		goto err_setup_rx;
2580 	}
2581 
2582 	return 0;
2583 err_setup_rx:
2584 	/* rewind the index freeing the rings as we go */
2585 	while (i--)
2586 		wx_free_rx_resources(wx->rx_ring[i]);
2587 	return err;
2588 }
2589 
2590 /**
2591  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2592  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2593  *
2594  * Return 0 on success, negative on failure
2595  **/
2596 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2597 {
2598 	struct device *dev = tx_ring->dev;
2599 	int orig_node = dev_to_node(dev);
2600 	int numa_node = NUMA_NO_NODE;
2601 	int size;
2602 
2603 	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2604 
2605 	if (tx_ring->q_vector)
2606 		numa_node = tx_ring->q_vector->numa_node;
2607 
2608 	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2609 	if (!tx_ring->tx_buffer_info)
2610 		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2611 	if (!tx_ring->tx_buffer_info)
2612 		goto err;
2613 
2614 	/* round up to nearest 4K */
2615 	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2616 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2617 
2618 	set_dev_node(dev, numa_node);
2619 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2620 					   &tx_ring->dma, GFP_KERNEL);
2621 	if (!tx_ring->desc) {
2622 		set_dev_node(dev, orig_node);
2623 		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2624 						   &tx_ring->dma, GFP_KERNEL);
2625 	}
2626 
2627 	if (!tx_ring->desc)
2628 		goto err;
2629 
2630 	tx_ring->next_to_use = 0;
2631 	tx_ring->next_to_clean = 0;
2632 
2633 	return 0;
2634 
2635 err:
2636 	kvfree(tx_ring->tx_buffer_info);
2637 	tx_ring->tx_buffer_info = NULL;
2638 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2639 	return -ENOMEM;
2640 }
2641 
2642 /**
2643  * wx_setup_all_tx_resources - allocate all queues Tx resources
2644  * @wx: pointer to private structure
2645  *
2646  * If this function returns with an error, then it's possible one or
2647  * more of the rings is populated (while the rest are not).  It is the
2648  * callers duty to clean those orphaned rings.
2649  *
2650  * Return 0 on success, negative on failure
2651  **/
2652 static int wx_setup_all_tx_resources(struct wx *wx)
2653 {
2654 	int i, err = 0;
2655 
2656 	for (i = 0; i < wx->num_tx_queues; i++) {
2657 		err = wx_setup_tx_resources(wx->tx_ring[i]);
2658 		if (!err)
2659 			continue;
2660 
2661 		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2662 		goto err_setup_tx;
2663 	}
2664 
2665 	return 0;
2666 err_setup_tx:
2667 	/* rewind the index freeing the rings as we go */
2668 	while (i--)
2669 		wx_free_tx_resources(wx->tx_ring[i]);
2670 	return err;
2671 }
2672 
2673 int wx_setup_resources(struct wx *wx)
2674 {
2675 	int err;
2676 
2677 	/* allocate transmit descriptors */
2678 	err = wx_setup_all_tx_resources(wx);
2679 	if (err)
2680 		return err;
2681 
2682 	/* allocate receive descriptors */
2683 	err = wx_setup_all_rx_resources(wx);
2684 	if (err)
2685 		goto err_free_tx;
2686 
2687 	err = wx_setup_isb_resources(wx);
2688 	if (err)
2689 		goto err_free_rx;
2690 
2691 	return 0;
2692 
2693 err_free_rx:
2694 	wx_free_all_rx_resources(wx);
2695 err_free_tx:
2696 	wx_free_all_tx_resources(wx);
2697 
2698 	return err;
2699 }
2700 EXPORT_SYMBOL(wx_setup_resources);
2701 
2702 /**
2703  * wx_get_stats64 - Get System Network Statistics
2704  * @netdev: network interface device structure
2705  * @stats: storage space for 64bit statistics
2706  */
2707 void wx_get_stats64(struct net_device *netdev,
2708 		    struct rtnl_link_stats64 *stats)
2709 {
2710 	struct wx *wx = netdev_priv(netdev);
2711 	struct wx_hw_stats *hwstats;
2712 	int i;
2713 
2714 	wx_update_stats(wx);
2715 
2716 	rcu_read_lock();
2717 	for (i = 0; i < wx->num_rx_queues; i++) {
2718 		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2719 		u64 bytes, packets;
2720 		unsigned int start;
2721 
2722 		if (ring) {
2723 			do {
2724 				start = u64_stats_fetch_begin(&ring->syncp);
2725 				packets = ring->stats.packets;
2726 				bytes   = ring->stats.bytes;
2727 			} while (u64_stats_fetch_retry(&ring->syncp, start));
2728 			stats->rx_packets += packets;
2729 			stats->rx_bytes   += bytes;
2730 		}
2731 	}
2732 
2733 	for (i = 0; i < wx->num_tx_queues; i++) {
2734 		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2735 		u64 bytes, packets;
2736 		unsigned int start;
2737 
2738 		if (ring) {
2739 			do {
2740 				start = u64_stats_fetch_begin(&ring->syncp);
2741 				packets = ring->stats.packets;
2742 				bytes   = ring->stats.bytes;
2743 			} while (u64_stats_fetch_retry(&ring->syncp,
2744 							   start));
2745 			stats->tx_packets += packets;
2746 			stats->tx_bytes   += bytes;
2747 		}
2748 	}
2749 
2750 	rcu_read_unlock();
2751 
2752 	hwstats = &wx->stats;
2753 	stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
2754 	stats->multicast = hwstats->qmprc;
2755 	stats->rx_length_errors = hwstats->rlec;
2756 	stats->rx_crc_errors = hwstats->crcerrs;
2757 }
2758 EXPORT_SYMBOL(wx_get_stats64);
2759 
2760 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2761 {
2762 	netdev_features_t changed = netdev->features ^ features;
2763 	struct wx *wx = netdev_priv(netdev);
2764 	bool need_reset = false;
2765 
2766 	if (features & NETIF_F_RXHASH) {
2767 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2768 		      WX_RDB_RA_CTL_RSS_EN);
2769 		wx->rss_enabled = true;
2770 	} else {
2771 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2772 		wx->rss_enabled = false;
2773 	}
2774 
2775 	netdev->features = features;
2776 
2777 	if (changed & NETIF_F_HW_VLAN_CTAG_RX && wx->do_reset)
2778 		wx->do_reset(netdev);
2779 	else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER))
2780 		wx_set_rx_mode(netdev);
2781 
2782 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
2783 		return 0;
2784 
2785 	/* Check if Flow Director n-tuple support was enabled or disabled.  If
2786 	 * the state changed, we need to reset.
2787 	 */
2788 	switch (features & NETIF_F_NTUPLE) {
2789 	case NETIF_F_NTUPLE:
2790 		/* turn off ATR, enable perfect filters and reset */
2791 		if (!(test_and_set_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
2792 			need_reset = true;
2793 
2794 		clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
2795 		break;
2796 	default:
2797 		/* turn off perfect filters, enable ATR and reset */
2798 		if (test_and_clear_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
2799 			need_reset = true;
2800 
2801 		/* We cannot enable ATR if RSS is disabled */
2802 		if (wx->ring_feature[RING_F_RSS].limit <= 1)
2803 			break;
2804 
2805 		set_bit(WX_FLAG_FDIR_HASH, wx->flags);
2806 		break;
2807 	}
2808 
2809 	if (need_reset && wx->do_reset)
2810 		wx->do_reset(netdev);
2811 
2812 	return 0;
2813 }
2814 EXPORT_SYMBOL(wx_set_features);
2815 
2816 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
2817 					 NETIF_F_HW_VLAN_STAG_RX)
2818 
2819 #define NETIF_VLAN_INSERTION_FEATURES	(NETIF_F_HW_VLAN_CTAG_TX | \
2820 					 NETIF_F_HW_VLAN_STAG_TX)
2821 
2822 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
2823 					 NETIF_F_HW_VLAN_STAG_FILTER)
2824 
2825 netdev_features_t wx_fix_features(struct net_device *netdev,
2826 				  netdev_features_t features)
2827 {
2828 	netdev_features_t changed = netdev->features ^ features;
2829 	struct wx *wx = netdev_priv(netdev);
2830 
2831 	if (changed & NETIF_VLAN_STRIPPING_FEATURES) {
2832 		if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES &&
2833 		    (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) {
2834 			features &= ~NETIF_VLAN_STRIPPING_FEATURES;
2835 			features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES;
2836 			wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off.");
2837 		}
2838 	}
2839 
2840 	if (changed & NETIF_VLAN_INSERTION_FEATURES) {
2841 		if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES &&
2842 		    (features & NETIF_VLAN_INSERTION_FEATURES) != 0) {
2843 			features &= ~NETIF_VLAN_INSERTION_FEATURES;
2844 			features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES;
2845 			wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off.");
2846 		}
2847 	}
2848 
2849 	if (changed & NETIF_VLAN_FILTERING_FEATURES) {
2850 		if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES &&
2851 		    (features & NETIF_VLAN_FILTERING_FEATURES) != 0) {
2852 			features &= ~NETIF_VLAN_FILTERING_FEATURES;
2853 			features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES;
2854 			wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off.");
2855 		}
2856 	}
2857 
2858 	return features;
2859 }
2860 EXPORT_SYMBOL(wx_fix_features);
2861 
2862 void wx_set_ring(struct wx *wx, u32 new_tx_count,
2863 		 u32 new_rx_count, struct wx_ring *temp_ring)
2864 {
2865 	int i, err = 0;
2866 
2867 	/* Setup new Tx resources and free the old Tx resources in that order.
2868 	 * We can then assign the new resources to the rings via a memcpy.
2869 	 * The advantage to this approach is that we are guaranteed to still
2870 	 * have resources even in the case of an allocation failure.
2871 	 */
2872 	if (new_tx_count != wx->tx_ring_count) {
2873 		for (i = 0; i < wx->num_tx_queues; i++) {
2874 			memcpy(&temp_ring[i], wx->tx_ring[i],
2875 			       sizeof(struct wx_ring));
2876 
2877 			temp_ring[i].count = new_tx_count;
2878 			err = wx_setup_tx_resources(&temp_ring[i]);
2879 			if (err) {
2880 				wx_err(wx, "setup new tx resources failed, keep using the old config\n");
2881 				while (i) {
2882 					i--;
2883 					wx_free_tx_resources(&temp_ring[i]);
2884 				}
2885 				return;
2886 			}
2887 		}
2888 
2889 		for (i = 0; i < wx->num_tx_queues; i++) {
2890 			wx_free_tx_resources(wx->tx_ring[i]);
2891 
2892 			memcpy(wx->tx_ring[i], &temp_ring[i],
2893 			       sizeof(struct wx_ring));
2894 		}
2895 
2896 		wx->tx_ring_count = new_tx_count;
2897 	}
2898 
2899 	/* Repeat the process for the Rx rings if needed */
2900 	if (new_rx_count != wx->rx_ring_count) {
2901 		for (i = 0; i < wx->num_rx_queues; i++) {
2902 			memcpy(&temp_ring[i], wx->rx_ring[i],
2903 			       sizeof(struct wx_ring));
2904 
2905 			temp_ring[i].count = new_rx_count;
2906 			err = wx_setup_rx_resources(&temp_ring[i]);
2907 			if (err) {
2908 				wx_err(wx, "setup new rx resources failed, keep using the old config\n");
2909 				while (i) {
2910 					i--;
2911 					wx_free_rx_resources(&temp_ring[i]);
2912 				}
2913 				return;
2914 			}
2915 		}
2916 
2917 		for (i = 0; i < wx->num_rx_queues; i++) {
2918 			wx_free_rx_resources(wx->rx_ring[i]);
2919 			memcpy(wx->rx_ring[i], &temp_ring[i],
2920 			       sizeof(struct wx_ring));
2921 		}
2922 
2923 		wx->rx_ring_count = new_rx_count;
2924 	}
2925 }
2926 EXPORT_SYMBOL(wx_set_ring);
2927 
2928 MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers.");
2929 MODULE_LICENSE("GPL");
2930