1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <net/ip6_checksum.h> 6 #include <net/page_pool/helpers.h> 7 #include <net/inet_ecn.h> 8 #include <linux/iopoll.h> 9 #include <linux/sctp.h> 10 #include <linux/pci.h> 11 #include <net/tcp.h> 12 #include <net/ip.h> 13 14 #include "wx_type.h" 15 #include "wx_lib.h" 16 #include "wx_hw.h" 17 18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */ 19 static struct wx_dec_ptype wx_ptype_lookup[256] = { 20 /* L2: mac */ 21 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 22 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), 23 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 24 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 25 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 26 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 27 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 28 29 /* L2: ethertype filter */ 30 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 31 32 /* L3: ip non-tunnel */ 33 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), 34 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), 35 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), 36 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), 37 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), 38 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), 39 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), 40 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), 41 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), 42 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), 43 44 /* L2: fcoe */ 45 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 46 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 47 48 /* IPv4 --> IPv4/IPv6 */ 49 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), 50 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), 51 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), 52 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), 53 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), 54 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), 55 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), 56 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), 57 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), 58 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), 59 60 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ 61 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), 62 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), 63 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), 64 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), 65 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), 66 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), 67 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), 68 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), 69 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), 70 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), 71 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), 72 73 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ 74 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), 75 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), 76 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), 77 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), 78 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), 79 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), 80 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), 81 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), 82 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), 83 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), 84 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), 85 86 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ 87 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), 88 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), 89 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), 90 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), 91 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), 92 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), 93 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), 94 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), 95 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), 96 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), 97 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), 98 99 /* IPv6 --> IPv4/IPv6 */ 100 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), 101 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), 102 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), 103 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), 104 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), 105 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), 106 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), 107 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), 108 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), 109 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), 110 111 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ 112 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), 113 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), 114 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), 115 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), 116 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), 117 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), 118 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), 119 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), 120 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), 121 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), 122 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), 123 124 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ 125 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), 126 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), 127 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), 128 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), 129 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), 130 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), 131 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), 132 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), 133 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), 134 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), 135 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), 136 137 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ 138 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), 139 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), 140 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), 141 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), 142 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), 143 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), 144 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), 145 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), 146 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), 147 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), 148 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), 149 }; 150 151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype) 152 { 153 return wx_ptype_lookup[ptype]; 154 } 155 156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ 157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, 158 const u32 stat_err_bits) 159 { 160 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); 161 } 162 163 static void wx_dma_sync_frag(struct wx_ring *rx_ring, 164 struct wx_rx_buffer *rx_buffer) 165 { 166 struct sk_buff *skb = rx_buffer->skb; 167 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 168 169 dma_sync_single_range_for_cpu(rx_ring->dev, 170 WX_CB(skb)->dma, 171 skb_frag_off(frag), 172 skb_frag_size(frag), 173 DMA_FROM_DEVICE); 174 175 /* If the page was released, just unmap it. */ 176 if (unlikely(WX_CB(skb)->page_released)) 177 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 178 } 179 180 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, 181 union wx_rx_desc *rx_desc, 182 struct sk_buff **skb, 183 int *rx_buffer_pgcnt) 184 { 185 struct wx_rx_buffer *rx_buffer; 186 unsigned int size; 187 188 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 189 size = le16_to_cpu(rx_desc->wb.upper.length); 190 191 #if (PAGE_SIZE < 8192) 192 *rx_buffer_pgcnt = page_count(rx_buffer->page); 193 #else 194 *rx_buffer_pgcnt = 0; 195 #endif 196 197 prefetchw(rx_buffer->page); 198 *skb = rx_buffer->skb; 199 200 /* Delay unmapping of the first packet. It carries the header 201 * information, HW may still access the header after the writeback. 202 * Only unmap it when EOP is reached 203 */ 204 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { 205 if (!*skb) 206 goto skip_sync; 207 } else { 208 if (*skb) 209 wx_dma_sync_frag(rx_ring, rx_buffer); 210 } 211 212 /* we are reusing so sync this buffer for CPU use */ 213 dma_sync_single_range_for_cpu(rx_ring->dev, 214 rx_buffer->dma, 215 rx_buffer->page_offset, 216 size, 217 DMA_FROM_DEVICE); 218 skip_sync: 219 return rx_buffer; 220 } 221 222 static void wx_put_rx_buffer(struct wx_ring *rx_ring, 223 struct wx_rx_buffer *rx_buffer, 224 struct sk_buff *skb, 225 int rx_buffer_pgcnt) 226 { 227 if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) 228 /* the page has been released from the ring */ 229 WX_CB(skb)->page_released = true; 230 231 /* clear contents of rx_buffer */ 232 rx_buffer->page = NULL; 233 rx_buffer->skb = NULL; 234 } 235 236 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, 237 struct wx_rx_buffer *rx_buffer, 238 union wx_rx_desc *rx_desc) 239 { 240 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 241 #if (PAGE_SIZE < 8192) 242 unsigned int truesize = WX_RX_BUFSZ; 243 #else 244 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 245 #endif 246 struct sk_buff *skb = rx_buffer->skb; 247 248 if (!skb) { 249 void *page_addr = page_address(rx_buffer->page) + 250 rx_buffer->page_offset; 251 252 /* prefetch first cache line of first page */ 253 prefetch(page_addr); 254 #if L1_CACHE_BYTES < 128 255 prefetch(page_addr + L1_CACHE_BYTES); 256 #endif 257 258 /* allocate a skb to store the frags */ 259 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); 260 if (unlikely(!skb)) 261 return NULL; 262 263 /* we will be copying header into skb->data in 264 * pskb_may_pull so it is in our interest to prefetch 265 * it now to avoid a possible cache miss 266 */ 267 prefetchw(skb->data); 268 269 if (size <= WX_RXBUFFER_256) { 270 memcpy(__skb_put(skb, size), page_addr, 271 ALIGN(size, sizeof(long))); 272 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true); 273 return skb; 274 } 275 276 skb_mark_for_recycle(skb); 277 278 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) 279 WX_CB(skb)->dma = rx_buffer->dma; 280 281 skb_add_rx_frag(skb, 0, rx_buffer->page, 282 rx_buffer->page_offset, 283 size, truesize); 284 goto out; 285 286 } else { 287 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 288 rx_buffer->page_offset, size, truesize); 289 } 290 291 out: 292 #if (PAGE_SIZE < 8192) 293 /* flip page offset to other buffer */ 294 rx_buffer->page_offset ^= truesize; 295 #else 296 /* move offset up to the next cache line */ 297 rx_buffer->page_offset += truesize; 298 #endif 299 300 return skb; 301 } 302 303 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, 304 struct wx_rx_buffer *bi) 305 { 306 struct page *page = bi->page; 307 dma_addr_t dma; 308 309 /* since we are recycling buffers we should seldom need to alloc */ 310 if (likely(page)) 311 return true; 312 313 page = page_pool_dev_alloc_pages(rx_ring->page_pool); 314 WARN_ON(!page); 315 dma = page_pool_get_dma_addr(page); 316 317 bi->page_dma = dma; 318 bi->page = page; 319 bi->page_offset = 0; 320 321 return true; 322 } 323 324 /** 325 * wx_alloc_rx_buffers - Replace used receive buffers 326 * @rx_ring: ring to place buffers on 327 * @cleaned_count: number of buffers to replace 328 **/ 329 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) 330 { 331 u16 i = rx_ring->next_to_use; 332 union wx_rx_desc *rx_desc; 333 struct wx_rx_buffer *bi; 334 335 /* nothing to do */ 336 if (!cleaned_count) 337 return; 338 339 rx_desc = WX_RX_DESC(rx_ring, i); 340 bi = &rx_ring->rx_buffer_info[i]; 341 i -= rx_ring->count; 342 343 do { 344 if (!wx_alloc_mapped_page(rx_ring, bi)) 345 break; 346 347 /* sync the buffer for use by the device */ 348 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 349 bi->page_offset, 350 WX_RX_BUFSZ, 351 DMA_FROM_DEVICE); 352 353 rx_desc->read.pkt_addr = 354 cpu_to_le64(bi->page_dma + bi->page_offset); 355 356 rx_desc++; 357 bi++; 358 i++; 359 if (unlikely(!i)) { 360 rx_desc = WX_RX_DESC(rx_ring, 0); 361 bi = rx_ring->rx_buffer_info; 362 i -= rx_ring->count; 363 } 364 365 /* clear the status bits for the next_to_use descriptor */ 366 rx_desc->wb.upper.status_error = 0; 367 368 cleaned_count--; 369 } while (cleaned_count); 370 371 i += rx_ring->count; 372 373 if (rx_ring->next_to_use != i) { 374 rx_ring->next_to_use = i; 375 /* update next to alloc since we have filled the ring */ 376 rx_ring->next_to_alloc = i; 377 378 /* Force memory writes to complete before letting h/w 379 * know there are new descriptors to fetch. (Only 380 * applicable for weak-ordered memory model archs, 381 * such as IA-64). 382 */ 383 wmb(); 384 writel(i, rx_ring->tail); 385 } 386 } 387 388 u16 wx_desc_unused(struct wx_ring *ring) 389 { 390 u16 ntc = ring->next_to_clean; 391 u16 ntu = ring->next_to_use; 392 393 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; 394 } 395 396 /** 397 * wx_is_non_eop - process handling of non-EOP buffers 398 * @rx_ring: Rx ring being processed 399 * @rx_desc: Rx descriptor for current buffer 400 * @skb: Current socket buffer containing buffer in progress 401 * 402 * This function updates next to clean. If the buffer is an EOP buffer 403 * this function exits returning false, otherwise it will place the 404 * sk_buff in the next buffer to be chained and return true indicating 405 * that this is in fact a non-EOP buffer. 406 **/ 407 static bool wx_is_non_eop(struct wx_ring *rx_ring, 408 union wx_rx_desc *rx_desc, 409 struct sk_buff *skb) 410 { 411 u32 ntc = rx_ring->next_to_clean + 1; 412 413 /* fetch, update, and store next to clean */ 414 ntc = (ntc < rx_ring->count) ? ntc : 0; 415 rx_ring->next_to_clean = ntc; 416 417 prefetch(WX_RX_DESC(rx_ring, ntc)); 418 419 /* if we are the last buffer then there is nothing else to do */ 420 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) 421 return false; 422 423 rx_ring->rx_buffer_info[ntc].skb = skb; 424 rx_ring->rx_stats.non_eop_descs++; 425 426 return true; 427 } 428 429 static void wx_pull_tail(struct sk_buff *skb) 430 { 431 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 432 unsigned int pull_len; 433 unsigned char *va; 434 435 /* it is valid to use page_address instead of kmap since we are 436 * working with pages allocated out of the lomem pool per 437 * alloc_page(GFP_ATOMIC) 438 */ 439 va = skb_frag_address(frag); 440 441 /* we need the header to contain the greater of either ETH_HLEN or 442 * 60 bytes if the skb->len is less than 60 for skb_pad. 443 */ 444 pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); 445 446 /* align pull length to size of long to optimize memcpy performance */ 447 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 448 449 /* update all of the pointers */ 450 skb_frag_size_sub(frag, pull_len); 451 skb_frag_off_add(frag, pull_len); 452 skb->data_len -= pull_len; 453 skb->tail += pull_len; 454 } 455 456 /** 457 * wx_cleanup_headers - Correct corrupted or empty headers 458 * @rx_ring: rx descriptor ring packet is being transacted on 459 * @rx_desc: pointer to the EOP Rx descriptor 460 * @skb: pointer to current skb being fixed 461 * 462 * Check for corrupted packet headers caused by senders on the local L2 463 * embedded NIC switch not setting up their Tx Descriptors right. These 464 * should be very rare. 465 * 466 * Also address the case where we are pulling data in on pages only 467 * and as such no data is present in the skb header. 468 * 469 * In addition if skb is not at least 60 bytes we need to pad it so that 470 * it is large enough to qualify as a valid Ethernet frame. 471 * 472 * Returns true if an error was encountered and skb was freed. 473 **/ 474 static bool wx_cleanup_headers(struct wx_ring *rx_ring, 475 union wx_rx_desc *rx_desc, 476 struct sk_buff *skb) 477 { 478 struct net_device *netdev = rx_ring->netdev; 479 480 /* verify that the packet does not have any known errors */ 481 if (!netdev || 482 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && 483 !(netdev->features & NETIF_F_RXALL))) { 484 dev_kfree_skb_any(skb); 485 return true; 486 } 487 488 /* place header in linear portion of buffer */ 489 if (!skb_headlen(skb)) 490 wx_pull_tail(skb); 491 492 /* if eth_skb_pad returns an error the skb was freed */ 493 if (eth_skb_pad(skb)) 494 return true; 495 496 return false; 497 } 498 499 static void wx_rx_hash(struct wx_ring *ring, 500 union wx_rx_desc *rx_desc, 501 struct sk_buff *skb) 502 { 503 u16 rss_type; 504 505 if (!(ring->netdev->features & NETIF_F_RXHASH)) 506 return; 507 508 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 509 WX_RXD_RSSTYPE_MASK; 510 511 if (!rss_type) 512 return; 513 514 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 515 (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 516 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 517 } 518 519 /** 520 * wx_rx_checksum - indicate in skb if hw indicated a good cksum 521 * @ring: structure containing ring specific data 522 * @rx_desc: current Rx descriptor being processed 523 * @skb: skb currently being received and modified 524 **/ 525 static void wx_rx_checksum(struct wx_ring *ring, 526 union wx_rx_desc *rx_desc, 527 struct sk_buff *skb) 528 { 529 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); 530 531 skb_checksum_none_assert(skb); 532 /* Rx csum disabled */ 533 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 534 return; 535 536 /* if IPv4 header checksum error */ 537 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && 538 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || 539 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && 540 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { 541 ring->rx_stats.csum_err++; 542 return; 543 } 544 545 /* L4 checksum offload flag must set for the below code to work */ 546 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) 547 return; 548 549 /* Hardware can't guarantee csum if IPv6 Dest Header found */ 550 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc)) 551 return; 552 553 /* if L4 checksum error */ 554 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { 555 ring->rx_stats.csum_err++; 556 return; 557 } 558 559 /* It must be a TCP or UDP or SCTP packet with a valid checksum */ 560 skb->ip_summed = CHECKSUM_UNNECESSARY; 561 562 /* If there is an outer header present that might contain a checksum 563 * we need to bump the checksum level by 1 to reflect the fact that 564 * we are indicating we validated the inner checksum. 565 */ 566 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) 567 __skb_incr_checksum_unnecessary(skb); 568 ring->rx_stats.csum_good_cnt++; 569 } 570 571 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, 572 struct sk_buff *skb) 573 { 574 u16 ethertype; 575 u8 idx = 0; 576 577 if ((ring->netdev->features & 578 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && 579 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { 580 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 581 0x1c0) >> 6; 582 ethertype = ring->q_vector->wx->tpid[idx]; 583 __vlan_hwaccel_put_tag(skb, htons(ethertype), 584 le16_to_cpu(rx_desc->wb.upper.vlan)); 585 } 586 } 587 588 /** 589 * wx_process_skb_fields - Populate skb header fields from Rx descriptor 590 * @rx_ring: rx descriptor ring packet is being transacted on 591 * @rx_desc: pointer to the EOP Rx descriptor 592 * @skb: pointer to current skb being populated 593 * 594 * This function checks the ring, descriptor, and packet information in 595 * order to populate the hash, checksum, protocol, and 596 * other fields within the skb. 597 **/ 598 static void wx_process_skb_fields(struct wx_ring *rx_ring, 599 union wx_rx_desc *rx_desc, 600 struct sk_buff *skb) 601 { 602 wx_rx_hash(rx_ring, rx_desc, skb); 603 wx_rx_checksum(rx_ring, rx_desc, skb); 604 wx_rx_vlan(rx_ring, rx_desc, skb); 605 skb_record_rx_queue(skb, rx_ring->queue_index); 606 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 607 } 608 609 /** 610 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 611 * @q_vector: structure containing interrupt and ring information 612 * @rx_ring: rx descriptor ring to transact packets on 613 * @budget: Total limit on number of packets to process 614 * 615 * This function provides a "bounce buffer" approach to Rx interrupt 616 * processing. The advantage to this is that on systems that have 617 * expensive overhead for IOMMU access this provides a means of avoiding 618 * it by maintaining the mapping of the page to the system. 619 * 620 * Returns amount of work completed. 621 **/ 622 static int wx_clean_rx_irq(struct wx_q_vector *q_vector, 623 struct wx_ring *rx_ring, 624 int budget) 625 { 626 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 627 u16 cleaned_count = wx_desc_unused(rx_ring); 628 629 do { 630 struct wx_rx_buffer *rx_buffer; 631 union wx_rx_desc *rx_desc; 632 struct sk_buff *skb; 633 int rx_buffer_pgcnt; 634 635 /* return some buffers to hardware, one at a time is too slow */ 636 if (cleaned_count >= WX_RX_BUFFER_WRITE) { 637 wx_alloc_rx_buffers(rx_ring, cleaned_count); 638 cleaned_count = 0; 639 } 640 641 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); 642 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) 643 break; 644 645 /* This memory barrier is needed to keep us from reading 646 * any other fields out of the rx_desc until we know the 647 * descriptor has been written back 648 */ 649 dma_rmb(); 650 651 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); 652 653 /* retrieve a buffer from the ring */ 654 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); 655 656 /* exit if we failed to retrieve a buffer */ 657 if (!skb) { 658 rx_ring->rx_stats.alloc_rx_buff_failed++; 659 break; 660 } 661 662 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); 663 cleaned_count++; 664 665 /* place incomplete frames back on ring for completion */ 666 if (wx_is_non_eop(rx_ring, rx_desc, skb)) 667 continue; 668 669 /* verify the packet layout is correct */ 670 if (wx_cleanup_headers(rx_ring, rx_desc, skb)) 671 continue; 672 673 /* probably a little skewed due to removing CRC */ 674 total_rx_bytes += skb->len; 675 676 /* populate checksum, timestamp, VLAN, and protocol */ 677 wx_process_skb_fields(rx_ring, rx_desc, skb); 678 napi_gro_receive(&q_vector->napi, skb); 679 680 /* update budget accounting */ 681 total_rx_packets++; 682 } while (likely(total_rx_packets < budget)); 683 684 u64_stats_update_begin(&rx_ring->syncp); 685 rx_ring->stats.packets += total_rx_packets; 686 rx_ring->stats.bytes += total_rx_bytes; 687 u64_stats_update_end(&rx_ring->syncp); 688 q_vector->rx.total_packets += total_rx_packets; 689 q_vector->rx.total_bytes += total_rx_bytes; 690 691 return total_rx_packets; 692 } 693 694 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) 695 { 696 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 697 } 698 699 /** 700 * wx_clean_tx_irq - Reclaim resources after transmit completes 701 * @q_vector: structure containing interrupt and ring information 702 * @tx_ring: tx ring to clean 703 * @napi_budget: Used to determine if we are in netpoll 704 **/ 705 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, 706 struct wx_ring *tx_ring, int napi_budget) 707 { 708 unsigned int budget = q_vector->wx->tx_work_limit; 709 unsigned int total_bytes = 0, total_packets = 0; 710 unsigned int i = tx_ring->next_to_clean; 711 struct wx_tx_buffer *tx_buffer; 712 union wx_tx_desc *tx_desc; 713 714 if (!netif_carrier_ok(tx_ring->netdev)) 715 return true; 716 717 tx_buffer = &tx_ring->tx_buffer_info[i]; 718 tx_desc = WX_TX_DESC(tx_ring, i); 719 i -= tx_ring->count; 720 721 do { 722 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; 723 724 /* if next_to_watch is not set then there is no work pending */ 725 if (!eop_desc) 726 break; 727 728 /* prevent any other reads prior to eop_desc */ 729 smp_rmb(); 730 731 /* if DD is not set pending work has not been completed */ 732 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) 733 break; 734 735 /* clear next_to_watch to prevent false hangs */ 736 tx_buffer->next_to_watch = NULL; 737 738 /* update the statistics for this packet */ 739 total_bytes += tx_buffer->bytecount; 740 total_packets += tx_buffer->gso_segs; 741 742 /* free the skb */ 743 napi_consume_skb(tx_buffer->skb, napi_budget); 744 745 /* unmap skb header data */ 746 dma_unmap_single(tx_ring->dev, 747 dma_unmap_addr(tx_buffer, dma), 748 dma_unmap_len(tx_buffer, len), 749 DMA_TO_DEVICE); 750 751 /* clear tx_buffer data */ 752 dma_unmap_len_set(tx_buffer, len, 0); 753 754 /* unmap remaining buffers */ 755 while (tx_desc != eop_desc) { 756 tx_buffer++; 757 tx_desc++; 758 i++; 759 if (unlikely(!i)) { 760 i -= tx_ring->count; 761 tx_buffer = tx_ring->tx_buffer_info; 762 tx_desc = WX_TX_DESC(tx_ring, 0); 763 } 764 765 /* unmap any remaining paged data */ 766 if (dma_unmap_len(tx_buffer, len)) { 767 dma_unmap_page(tx_ring->dev, 768 dma_unmap_addr(tx_buffer, dma), 769 dma_unmap_len(tx_buffer, len), 770 DMA_TO_DEVICE); 771 dma_unmap_len_set(tx_buffer, len, 0); 772 } 773 } 774 775 /* move us one more past the eop_desc for start of next pkt */ 776 tx_buffer++; 777 tx_desc++; 778 i++; 779 if (unlikely(!i)) { 780 i -= tx_ring->count; 781 tx_buffer = tx_ring->tx_buffer_info; 782 tx_desc = WX_TX_DESC(tx_ring, 0); 783 } 784 785 /* issue prefetch for next Tx descriptor */ 786 prefetch(tx_desc); 787 788 /* update budget accounting */ 789 budget--; 790 } while (likely(budget)); 791 792 i += tx_ring->count; 793 tx_ring->next_to_clean = i; 794 u64_stats_update_begin(&tx_ring->syncp); 795 tx_ring->stats.bytes += total_bytes; 796 tx_ring->stats.packets += total_packets; 797 u64_stats_update_end(&tx_ring->syncp); 798 q_vector->tx.total_bytes += total_bytes; 799 q_vector->tx.total_packets += total_packets; 800 801 netdev_tx_completed_queue(wx_txring_txq(tx_ring), 802 total_packets, total_bytes); 803 804 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 805 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 806 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 807 /* Make sure that anybody stopping the queue after this 808 * sees the new next_to_clean. 809 */ 810 smp_mb(); 811 812 if (__netif_subqueue_stopped(tx_ring->netdev, 813 tx_ring->queue_index) && 814 netif_running(tx_ring->netdev)) { 815 netif_wake_subqueue(tx_ring->netdev, 816 tx_ring->queue_index); 817 ++tx_ring->tx_stats.restart_queue; 818 } 819 } 820 821 return !!budget; 822 } 823 824 /** 825 * wx_poll - NAPI polling RX/TX cleanup routine 826 * @napi: napi struct with our devices info in it 827 * @budget: amount of work driver is allowed to do this pass, in packets 828 * 829 * This function will clean all queues associated with a q_vector. 830 **/ 831 static int wx_poll(struct napi_struct *napi, int budget) 832 { 833 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); 834 int per_ring_budget, work_done = 0; 835 struct wx *wx = q_vector->wx; 836 bool clean_complete = true; 837 struct wx_ring *ring; 838 839 wx_for_each_ring(ring, q_vector->tx) { 840 if (!wx_clean_tx_irq(q_vector, ring, budget)) 841 clean_complete = false; 842 } 843 844 /* Exit if we are called by netpoll */ 845 if (budget <= 0) 846 return budget; 847 848 /* attempt to distribute budget to each queue fairly, but don't allow 849 * the budget to go below 1 because we'll exit polling 850 */ 851 if (q_vector->rx.count > 1) 852 per_ring_budget = max(budget / q_vector->rx.count, 1); 853 else 854 per_ring_budget = budget; 855 856 wx_for_each_ring(ring, q_vector->rx) { 857 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); 858 859 work_done += cleaned; 860 if (cleaned >= per_ring_budget) 861 clean_complete = false; 862 } 863 864 /* If all work not completed, return budget and keep polling */ 865 if (!clean_complete) 866 return budget; 867 868 /* all work done, exit the polling mode */ 869 if (likely(napi_complete_done(napi, work_done))) { 870 if (netif_running(wx->netdev)) 871 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); 872 } 873 874 return min(work_done, budget - 1); 875 } 876 877 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) 878 { 879 if (likely(wx_desc_unused(tx_ring) >= size)) 880 return 0; 881 882 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 883 884 /* For the next check */ 885 smp_mb(); 886 887 /* We need to check again in a case another CPU has just 888 * made room available. 889 */ 890 if (likely(wx_desc_unused(tx_ring) < size)) 891 return -EBUSY; 892 893 /* A reprieve! - use start_queue because it doesn't call schedule */ 894 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 895 ++tx_ring->tx_stats.restart_queue; 896 897 return 0; 898 } 899 900 static u32 wx_tx_cmd_type(u32 tx_flags) 901 { 902 /* set type for advanced descriptor with frame checksum insertion */ 903 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; 904 905 /* set HW vlan bit if vlan is present */ 906 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); 907 /* set segmentation enable bits for TSO/FSO */ 908 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); 909 /* set timestamp bit if present */ 910 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); 911 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); 912 913 return cmd_type; 914 } 915 916 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, 917 u32 tx_flags, unsigned int paylen) 918 { 919 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; 920 921 /* enable L4 checksum for TSO and TX checksum offload */ 922 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); 923 /* enable IPv4 checksum for TSO */ 924 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); 925 /* enable outer IPv4 checksum for TSO */ 926 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, 927 WX_TXD_EIPCS); 928 /* Check Context must be set if Tx switch is enabled, which it 929 * always is for case where virtual functions are running 930 */ 931 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); 932 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, 933 WX_TXD_IPSEC); 934 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 935 } 936 937 static void wx_tx_map(struct wx_ring *tx_ring, 938 struct wx_tx_buffer *first, 939 const u8 hdr_len) 940 { 941 struct sk_buff *skb = first->skb; 942 struct wx_tx_buffer *tx_buffer; 943 u32 tx_flags = first->tx_flags; 944 u16 i = tx_ring->next_to_use; 945 unsigned int data_len, size; 946 union wx_tx_desc *tx_desc; 947 skb_frag_t *frag; 948 dma_addr_t dma; 949 u32 cmd_type; 950 951 cmd_type = wx_tx_cmd_type(tx_flags); 952 tx_desc = WX_TX_DESC(tx_ring, i); 953 wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 954 955 size = skb_headlen(skb); 956 data_len = skb->data_len; 957 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 958 959 tx_buffer = first; 960 961 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 962 if (dma_mapping_error(tx_ring->dev, dma)) 963 goto dma_error; 964 965 /* record length, and DMA address */ 966 dma_unmap_len_set(tx_buffer, len, size); 967 dma_unmap_addr_set(tx_buffer, dma, dma); 968 969 tx_desc->read.buffer_addr = cpu_to_le64(dma); 970 971 while (unlikely(size > WX_MAX_DATA_PER_TXD)) { 972 tx_desc->read.cmd_type_len = 973 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); 974 975 i++; 976 tx_desc++; 977 if (i == tx_ring->count) { 978 tx_desc = WX_TX_DESC(tx_ring, 0); 979 i = 0; 980 } 981 tx_desc->read.olinfo_status = 0; 982 983 dma += WX_MAX_DATA_PER_TXD; 984 size -= WX_MAX_DATA_PER_TXD; 985 986 tx_desc->read.buffer_addr = cpu_to_le64(dma); 987 } 988 989 if (likely(!data_len)) 990 break; 991 992 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 993 994 i++; 995 tx_desc++; 996 if (i == tx_ring->count) { 997 tx_desc = WX_TX_DESC(tx_ring, 0); 998 i = 0; 999 } 1000 tx_desc->read.olinfo_status = 0; 1001 1002 size = skb_frag_size(frag); 1003 1004 data_len -= size; 1005 1006 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1007 DMA_TO_DEVICE); 1008 1009 tx_buffer = &tx_ring->tx_buffer_info[i]; 1010 } 1011 1012 /* write last descriptor with RS and EOP bits */ 1013 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; 1014 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1015 1016 netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); 1017 1018 skb_tx_timestamp(skb); 1019 1020 /* Force memory writes to complete before letting h/w know there 1021 * are new descriptors to fetch. (Only applicable for weak-ordered 1022 * memory model archs, such as IA-64). 1023 * 1024 * We also need this memory barrier to make certain all of the 1025 * status bits have been updated before next_to_watch is written. 1026 */ 1027 wmb(); 1028 1029 /* set next_to_watch value indicating a packet is present */ 1030 first->next_to_watch = tx_desc; 1031 1032 i++; 1033 if (i == tx_ring->count) 1034 i = 0; 1035 1036 tx_ring->next_to_use = i; 1037 1038 wx_maybe_stop_tx(tx_ring, DESC_NEEDED); 1039 1040 if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) 1041 writel(i, tx_ring->tail); 1042 1043 return; 1044 dma_error: 1045 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1046 1047 /* clear dma mappings for failed tx_buffer_info map */ 1048 for (;;) { 1049 tx_buffer = &tx_ring->tx_buffer_info[i]; 1050 if (dma_unmap_len(tx_buffer, len)) 1051 dma_unmap_page(tx_ring->dev, 1052 dma_unmap_addr(tx_buffer, dma), 1053 dma_unmap_len(tx_buffer, len), 1054 DMA_TO_DEVICE); 1055 dma_unmap_len_set(tx_buffer, len, 0); 1056 if (tx_buffer == first) 1057 break; 1058 if (i == 0) 1059 i += tx_ring->count; 1060 i--; 1061 } 1062 1063 dev_kfree_skb_any(first->skb); 1064 first->skb = NULL; 1065 1066 tx_ring->next_to_use = i; 1067 } 1068 1069 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, 1070 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) 1071 { 1072 struct wx_tx_context_desc *context_desc; 1073 u16 i = tx_ring->next_to_use; 1074 1075 context_desc = WX_TX_CTXTDESC(tx_ring, i); 1076 i++; 1077 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1078 1079 /* set bits to identify this as an advanced context descriptor */ 1080 type_tucmd |= WX_TXD_DTYP_CTXT; 1081 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1082 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); 1083 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1084 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1085 } 1086 1087 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr) 1088 { 1089 struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset); 1090 1091 *nexthdr = hdr->nexthdr; 1092 offset += sizeof(struct ipv6hdr); 1093 while (ipv6_ext_hdr(*nexthdr)) { 1094 struct ipv6_opt_hdr _hdr, *hp; 1095 1096 if (*nexthdr == NEXTHDR_NONE) 1097 return; 1098 hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr); 1099 if (!hp) 1100 return; 1101 if (*nexthdr == NEXTHDR_FRAGMENT) 1102 break; 1103 *nexthdr = hp->nexthdr; 1104 } 1105 } 1106 1107 union network_header { 1108 struct iphdr *ipv4; 1109 struct ipv6hdr *ipv6; 1110 void *raw; 1111 }; 1112 1113 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) 1114 { 1115 u8 tun_prot = 0, l4_prot = 0, ptype = 0; 1116 struct sk_buff *skb = first->skb; 1117 1118 if (skb->encapsulation) { 1119 union network_header hdr; 1120 1121 switch (first->protocol) { 1122 case htons(ETH_P_IP): 1123 tun_prot = ip_hdr(skb)->protocol; 1124 ptype = WX_PTYPE_TUN_IPV4; 1125 break; 1126 case htons(ETH_P_IPV6): 1127 wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot); 1128 ptype = WX_PTYPE_TUN_IPV6; 1129 break; 1130 default: 1131 return ptype; 1132 } 1133 1134 if (tun_prot == IPPROTO_IPIP) { 1135 hdr.raw = (void *)inner_ip_hdr(skb); 1136 ptype |= WX_PTYPE_PKT_IPIP; 1137 } else if (tun_prot == IPPROTO_UDP) { 1138 hdr.raw = (void *)inner_ip_hdr(skb); 1139 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1140 skb->inner_protocol != htons(ETH_P_TEB)) { 1141 ptype |= WX_PTYPE_PKT_IG; 1142 } else { 1143 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1144 == htons(ETH_P_8021Q)) 1145 ptype |= WX_PTYPE_PKT_IGMV; 1146 else 1147 ptype |= WX_PTYPE_PKT_IGM; 1148 } 1149 1150 } else if (tun_prot == IPPROTO_GRE) { 1151 hdr.raw = (void *)inner_ip_hdr(skb); 1152 if (skb->inner_protocol == htons(ETH_P_IP) || 1153 skb->inner_protocol == htons(ETH_P_IPV6)) { 1154 ptype |= WX_PTYPE_PKT_IG; 1155 } else { 1156 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1157 == htons(ETH_P_8021Q)) 1158 ptype |= WX_PTYPE_PKT_IGMV; 1159 else 1160 ptype |= WX_PTYPE_PKT_IGM; 1161 } 1162 } else { 1163 return ptype; 1164 } 1165 1166 switch (hdr.ipv4->version) { 1167 case IPVERSION: 1168 l4_prot = hdr.ipv4->protocol; 1169 break; 1170 case 6: 1171 wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot); 1172 ptype |= WX_PTYPE_PKT_IPV6; 1173 break; 1174 default: 1175 return ptype; 1176 } 1177 } else { 1178 switch (first->protocol) { 1179 case htons(ETH_P_IP): 1180 l4_prot = ip_hdr(skb)->protocol; 1181 ptype = WX_PTYPE_PKT_IP; 1182 break; 1183 case htons(ETH_P_IPV6): 1184 wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot); 1185 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; 1186 break; 1187 default: 1188 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; 1189 } 1190 } 1191 switch (l4_prot) { 1192 case IPPROTO_TCP: 1193 ptype |= WX_PTYPE_TYP_TCP; 1194 break; 1195 case IPPROTO_UDP: 1196 ptype |= WX_PTYPE_TYP_UDP; 1197 break; 1198 case IPPROTO_SCTP: 1199 ptype |= WX_PTYPE_TYP_SCTP; 1200 break; 1201 default: 1202 ptype |= WX_PTYPE_TYP_IP; 1203 break; 1204 } 1205 1206 return ptype; 1207 } 1208 1209 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1210 u8 *hdr_len, u8 ptype) 1211 { 1212 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1213 struct net_device *netdev = tx_ring->netdev; 1214 u32 l4len, tunhdr_eiplen_tunlen = 0; 1215 struct sk_buff *skb = first->skb; 1216 bool enc = skb->encapsulation; 1217 struct ipv6hdr *ipv6h; 1218 struct tcphdr *tcph; 1219 struct iphdr *iph; 1220 u8 tun_prot = 0; 1221 int err; 1222 1223 if (skb->ip_summed != CHECKSUM_PARTIAL) 1224 return 0; 1225 1226 if (!skb_is_gso(skb)) 1227 return 0; 1228 1229 err = skb_cow_head(skb, 0); 1230 if (err < 0) 1231 return err; 1232 1233 /* indicates the inner headers in the skbuff are valid. */ 1234 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); 1235 if (iph->version == 4) { 1236 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1237 iph->tot_len = 0; 1238 iph->check = 0; 1239 tcph->check = ~csum_tcpudp_magic(iph->saddr, 1240 iph->daddr, 0, 1241 IPPROTO_TCP, 0); 1242 first->tx_flags |= WX_TX_FLAGS_TSO | 1243 WX_TX_FLAGS_CSUM | 1244 WX_TX_FLAGS_IPV4 | 1245 WX_TX_FLAGS_CC; 1246 } else if (iph->version == 6 && skb_is_gso_v6(skb)) { 1247 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 1248 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1249 ipv6h->payload_len = 0; 1250 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, 1251 &ipv6h->daddr, 0, 1252 IPPROTO_TCP, 0); 1253 first->tx_flags |= WX_TX_FLAGS_TSO | 1254 WX_TX_FLAGS_CSUM | 1255 WX_TX_FLAGS_CC; 1256 } 1257 1258 /* compute header lengths */ 1259 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); 1260 *hdr_len = enc ? skb_inner_transport_offset(skb) : 1261 skb_transport_offset(skb); 1262 *hdr_len += l4len; 1263 1264 /* update gso size and bytecount with header size */ 1265 first->gso_segs = skb_shinfo(skb)->gso_segs; 1266 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1267 1268 /* mss_l4len_id: use 0 as index for TSO */ 1269 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; 1270 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; 1271 1272 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 1273 if (enc) { 1274 switch (first->protocol) { 1275 case htons(ETH_P_IP): 1276 tun_prot = ip_hdr(skb)->protocol; 1277 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; 1278 break; 1279 case htons(ETH_P_IPV6): 1280 tun_prot = ipv6_hdr(skb)->nexthdr; 1281 break; 1282 default: 1283 break; 1284 } 1285 switch (tun_prot) { 1286 case IPPROTO_UDP: 1287 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1288 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1289 WX_TXD_OUTER_IPLEN_SHIFT) | 1290 (((skb_inner_mac_header(skb) - 1291 skb_transport_header(skb)) >> 1) << 1292 WX_TXD_TUNNEL_LEN_SHIFT); 1293 break; 1294 case IPPROTO_GRE: 1295 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1296 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1297 WX_TXD_OUTER_IPLEN_SHIFT) | 1298 (((skb_inner_mac_header(skb) - 1299 skb_transport_header(skb)) >> 1) << 1300 WX_TXD_TUNNEL_LEN_SHIFT); 1301 break; 1302 case IPPROTO_IPIP: 1303 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1304 (char *)ip_hdr(skb)) >> 2) << 1305 WX_TXD_OUTER_IPLEN_SHIFT; 1306 break; 1307 default: 1308 break; 1309 } 1310 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; 1311 } else { 1312 vlan_macip_lens = skb_network_header_len(skb) >> 1; 1313 } 1314 1315 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; 1316 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1317 1318 type_tucmd = ptype << 24; 1319 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1320 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1321 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1322 WX_TX_FLAGS_HW_VLAN, 1323 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1324 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1325 type_tucmd, mss_l4len_idx); 1326 1327 return 1; 1328 } 1329 1330 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1331 u8 ptype) 1332 { 1333 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; 1334 struct net_device *netdev = tx_ring->netdev; 1335 u32 mss_l4len_idx = 0, type_tucmd; 1336 struct sk_buff *skb = first->skb; 1337 u8 tun_prot = 0; 1338 1339 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1340 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && 1341 !(first->tx_flags & WX_TX_FLAGS_CC)) 1342 return; 1343 vlan_macip_lens = skb_network_offset(skb) << 1344 WX_TXD_MACLEN_SHIFT; 1345 } else { 1346 u8 l4_prot = 0; 1347 union { 1348 struct iphdr *ipv4; 1349 struct ipv6hdr *ipv6; 1350 u8 *raw; 1351 } network_hdr; 1352 union { 1353 struct tcphdr *tcphdr; 1354 u8 *raw; 1355 } transport_hdr; 1356 1357 if (skb->encapsulation) { 1358 network_hdr.raw = skb_inner_network_header(skb); 1359 transport_hdr.raw = skb_inner_transport_header(skb); 1360 vlan_macip_lens = skb_network_offset(skb) << 1361 WX_TXD_MACLEN_SHIFT; 1362 switch (first->protocol) { 1363 case htons(ETH_P_IP): 1364 tun_prot = ip_hdr(skb)->protocol; 1365 break; 1366 case htons(ETH_P_IPV6): 1367 tun_prot = ipv6_hdr(skb)->nexthdr; 1368 break; 1369 default: 1370 return; 1371 } 1372 switch (tun_prot) { 1373 case IPPROTO_UDP: 1374 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1375 tunhdr_eiplen_tunlen |= 1376 ((skb_network_header_len(skb) >> 2) << 1377 WX_TXD_OUTER_IPLEN_SHIFT) | 1378 (((skb_inner_mac_header(skb) - 1379 skb_transport_header(skb)) >> 1) << 1380 WX_TXD_TUNNEL_LEN_SHIFT); 1381 break; 1382 case IPPROTO_GRE: 1383 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1384 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1385 WX_TXD_OUTER_IPLEN_SHIFT) | 1386 (((skb_inner_mac_header(skb) - 1387 skb_transport_header(skb)) >> 1) << 1388 WX_TXD_TUNNEL_LEN_SHIFT); 1389 break; 1390 case IPPROTO_IPIP: 1391 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1392 (char *)ip_hdr(skb)) >> 2) << 1393 WX_TXD_OUTER_IPLEN_SHIFT; 1394 break; 1395 default: 1396 break; 1397 } 1398 1399 } else { 1400 network_hdr.raw = skb_network_header(skb); 1401 transport_hdr.raw = skb_transport_header(skb); 1402 vlan_macip_lens = skb_network_offset(skb) << 1403 WX_TXD_MACLEN_SHIFT; 1404 } 1405 1406 switch (network_hdr.ipv4->version) { 1407 case IPVERSION: 1408 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1409 l4_prot = network_hdr.ipv4->protocol; 1410 break; 1411 case 6: 1412 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1413 l4_prot = network_hdr.ipv6->nexthdr; 1414 break; 1415 default: 1416 break; 1417 } 1418 1419 switch (l4_prot) { 1420 case IPPROTO_TCP: 1421 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << 1422 WX_TXD_L4LEN_SHIFT; 1423 break; 1424 case IPPROTO_SCTP: 1425 mss_l4len_idx = sizeof(struct sctphdr) << 1426 WX_TXD_L4LEN_SHIFT; 1427 break; 1428 case IPPROTO_UDP: 1429 mss_l4len_idx = sizeof(struct udphdr) << 1430 WX_TXD_L4LEN_SHIFT; 1431 break; 1432 default: 1433 break; 1434 } 1435 1436 /* update TX checksum flag */ 1437 first->tx_flags |= WX_TX_FLAGS_CSUM; 1438 } 1439 first->tx_flags |= WX_TX_FLAGS_CC; 1440 /* vlan_macip_lens: MACLEN, VLAN tag */ 1441 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1442 1443 type_tucmd = ptype << 24; 1444 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1445 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1446 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1447 WX_TX_FLAGS_HW_VLAN, 1448 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1449 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1450 type_tucmd, mss_l4len_idx); 1451 } 1452 1453 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, 1454 struct wx_ring *tx_ring) 1455 { 1456 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1457 struct wx_tx_buffer *first; 1458 u8 hdr_len = 0, ptype; 1459 unsigned short f; 1460 u32 tx_flags = 0; 1461 int tso; 1462 1463 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, 1464 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, 1465 * + 2 desc gap to keep tail from touching head, 1466 * + 1 desc for context descriptor, 1467 * otherwise try next time 1468 */ 1469 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1470 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> 1471 frags[f])); 1472 1473 if (wx_maybe_stop_tx(tx_ring, count + 3)) { 1474 tx_ring->tx_stats.tx_busy++; 1475 return NETDEV_TX_BUSY; 1476 } 1477 1478 /* record the location of the first descriptor for this packet */ 1479 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1480 first->skb = skb; 1481 first->bytecount = skb->len; 1482 first->gso_segs = 1; 1483 1484 /* if we have a HW VLAN tag being added default to the HW one */ 1485 if (skb_vlan_tag_present(skb)) { 1486 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; 1487 tx_flags |= WX_TX_FLAGS_HW_VLAN; 1488 } 1489 1490 /* record initial flags and protocol */ 1491 first->tx_flags = tx_flags; 1492 first->protocol = vlan_get_protocol(skb); 1493 1494 ptype = wx_encode_tx_desc_ptype(first); 1495 1496 tso = wx_tso(tx_ring, first, &hdr_len, ptype); 1497 if (tso < 0) 1498 goto out_drop; 1499 else if (!tso) 1500 wx_tx_csum(tx_ring, first, ptype); 1501 wx_tx_map(tx_ring, first, hdr_len); 1502 1503 return NETDEV_TX_OK; 1504 out_drop: 1505 dev_kfree_skb_any(first->skb); 1506 first->skb = NULL; 1507 1508 return NETDEV_TX_OK; 1509 } 1510 1511 netdev_tx_t wx_xmit_frame(struct sk_buff *skb, 1512 struct net_device *netdev) 1513 { 1514 unsigned int r_idx = skb->queue_mapping; 1515 struct wx *wx = netdev_priv(netdev); 1516 struct wx_ring *tx_ring; 1517 1518 if (!netif_carrier_ok(netdev)) { 1519 dev_kfree_skb_any(skb); 1520 return NETDEV_TX_OK; 1521 } 1522 1523 /* The minimum packet size for olinfo paylen is 17 so pad the skb 1524 * in order to meet this minimum size requirement. 1525 */ 1526 if (skb_put_padto(skb, 17)) 1527 return NETDEV_TX_OK; 1528 1529 if (r_idx >= wx->num_tx_queues) 1530 r_idx = r_idx % wx->num_tx_queues; 1531 tx_ring = wx->tx_ring[r_idx]; 1532 1533 return wx_xmit_frame_ring(skb, tx_ring); 1534 } 1535 EXPORT_SYMBOL(wx_xmit_frame); 1536 1537 void wx_napi_enable_all(struct wx *wx) 1538 { 1539 struct wx_q_vector *q_vector; 1540 int q_idx; 1541 1542 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1543 q_vector = wx->q_vector[q_idx]; 1544 napi_enable(&q_vector->napi); 1545 } 1546 } 1547 EXPORT_SYMBOL(wx_napi_enable_all); 1548 1549 void wx_napi_disable_all(struct wx *wx) 1550 { 1551 struct wx_q_vector *q_vector; 1552 int q_idx; 1553 1554 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1555 q_vector = wx->q_vector[q_idx]; 1556 napi_disable(&q_vector->napi); 1557 } 1558 } 1559 EXPORT_SYMBOL(wx_napi_disable_all); 1560 1561 /** 1562 * wx_set_rss_queues: Allocate queues for RSS 1563 * @wx: board private structure to initialize 1564 * 1565 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1566 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1567 * 1568 **/ 1569 static void wx_set_rss_queues(struct wx *wx) 1570 { 1571 struct wx_ring_feature *f; 1572 1573 /* set mask for 16 queue limit of RSS */ 1574 f = &wx->ring_feature[RING_F_RSS]; 1575 f->indices = f->limit; 1576 1577 wx->num_rx_queues = f->limit; 1578 wx->num_tx_queues = f->limit; 1579 } 1580 1581 static void wx_set_num_queues(struct wx *wx) 1582 { 1583 /* Start with base case */ 1584 wx->num_rx_queues = 1; 1585 wx->num_tx_queues = 1; 1586 wx->queues_per_pool = 1; 1587 1588 wx_set_rss_queues(wx); 1589 } 1590 1591 /** 1592 * wx_acquire_msix_vectors - acquire MSI-X vectors 1593 * @wx: board private structure 1594 * 1595 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will 1596 * return a negative error code if unable to acquire MSI-X vectors for any 1597 * reason. 1598 */ 1599 static int wx_acquire_msix_vectors(struct wx *wx) 1600 { 1601 struct irq_affinity affd = { .pre_vectors = 1 }; 1602 int nvecs, i; 1603 1604 /* We start by asking for one vector per queue pair */ 1605 nvecs = max(wx->num_rx_queues, wx->num_tx_queues); 1606 nvecs = min_t(int, nvecs, num_online_cpus()); 1607 nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors); 1608 1609 wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry), 1610 GFP_KERNEL); 1611 if (!wx->msix_q_entries) 1612 return -ENOMEM; 1613 1614 /* One for non-queue interrupts */ 1615 nvecs += 1; 1616 1617 wx->msix_entry = kcalloc(1, sizeof(struct msix_entry), 1618 GFP_KERNEL); 1619 if (!wx->msix_entry) { 1620 kfree(wx->msix_q_entries); 1621 wx->msix_q_entries = NULL; 1622 return -ENOMEM; 1623 } 1624 1625 nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, 1626 nvecs, 1627 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, 1628 &affd); 1629 if (nvecs < 0) { 1630 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); 1631 kfree(wx->msix_q_entries); 1632 wx->msix_q_entries = NULL; 1633 kfree(wx->msix_entry); 1634 wx->msix_entry = NULL; 1635 return nvecs; 1636 } 1637 1638 wx->msix_entry->entry = 0; 1639 wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0); 1640 nvecs -= 1; 1641 for (i = 0; i < nvecs; i++) { 1642 wx->msix_q_entries[i].entry = i; 1643 wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1); 1644 } 1645 1646 wx->num_q_vectors = nvecs; 1647 1648 return 0; 1649 } 1650 1651 /** 1652 * wx_set_interrupt_capability - set MSI-X or MSI if supported 1653 * @wx: board private structure to initialize 1654 * 1655 * Attempt to configure the interrupts using the best available 1656 * capabilities of the hardware and the kernel. 1657 **/ 1658 static int wx_set_interrupt_capability(struct wx *wx) 1659 { 1660 struct pci_dev *pdev = wx->pdev; 1661 int nvecs, ret; 1662 1663 /* We will try to get MSI-X interrupts first */ 1664 ret = wx_acquire_msix_vectors(wx); 1665 if (ret == 0 || (ret == -ENOMEM)) 1666 return ret; 1667 1668 /* Disable RSS */ 1669 dev_warn(&wx->pdev->dev, "Disabling RSS support\n"); 1670 wx->ring_feature[RING_F_RSS].limit = 1; 1671 1672 wx_set_num_queues(wx); 1673 1674 /* minmum one for queue, one for misc*/ 1675 nvecs = 1; 1676 nvecs = pci_alloc_irq_vectors(pdev, nvecs, 1677 nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX); 1678 if (nvecs == 1) { 1679 if (pdev->msi_enabled) 1680 wx_err(wx, "Fallback to MSI.\n"); 1681 else 1682 wx_err(wx, "Fallback to INTx.\n"); 1683 } else { 1684 wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs); 1685 return nvecs; 1686 } 1687 1688 pdev->irq = pci_irq_vector(pdev, 0); 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS 1695 * @wx: board private structure to initialize 1696 * 1697 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. 1698 * 1699 **/ 1700 static void wx_cache_ring_rss(struct wx *wx) 1701 { 1702 u16 i; 1703 1704 for (i = 0; i < wx->num_rx_queues; i++) 1705 wx->rx_ring[i]->reg_idx = i; 1706 1707 for (i = 0; i < wx->num_tx_queues; i++) 1708 wx->tx_ring[i]->reg_idx = i; 1709 } 1710 1711 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) 1712 { 1713 ring->next = head->ring; 1714 head->ring = ring; 1715 head->count++; 1716 } 1717 1718 /** 1719 * wx_alloc_q_vector - Allocate memory for a single interrupt vector 1720 * @wx: board private structure to initialize 1721 * @v_count: q_vectors allocated on wx, used for ring interleaving 1722 * @v_idx: index of vector in wx struct 1723 * @txr_count: total number of Tx rings to allocate 1724 * @txr_idx: index of first Tx ring to allocate 1725 * @rxr_count: total number of Rx rings to allocate 1726 * @rxr_idx: index of first Rx ring to allocate 1727 * 1728 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1729 **/ 1730 static int wx_alloc_q_vector(struct wx *wx, 1731 unsigned int v_count, unsigned int v_idx, 1732 unsigned int txr_count, unsigned int txr_idx, 1733 unsigned int rxr_count, unsigned int rxr_idx) 1734 { 1735 struct wx_q_vector *q_vector; 1736 int ring_count, default_itr; 1737 struct wx_ring *ring; 1738 1739 /* note this will allocate space for the ring structure as well! */ 1740 ring_count = txr_count + rxr_count; 1741 1742 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 1743 GFP_KERNEL); 1744 if (!q_vector) 1745 return -ENOMEM; 1746 1747 /* initialize NAPI */ 1748 netif_napi_add(wx->netdev, &q_vector->napi, 1749 wx_poll); 1750 1751 /* tie q_vector and wx together */ 1752 wx->q_vector[v_idx] = q_vector; 1753 q_vector->wx = wx; 1754 q_vector->v_idx = v_idx; 1755 if (cpu_online(v_idx)) 1756 q_vector->numa_node = cpu_to_node(v_idx); 1757 1758 /* initialize pointer to rings */ 1759 ring = q_vector->ring; 1760 1761 if (wx->mac.type == wx_mac_sp) 1762 default_itr = WX_12K_ITR; 1763 else 1764 default_itr = WX_7K_ITR; 1765 /* initialize ITR */ 1766 if (txr_count && !rxr_count) 1767 /* tx only vector */ 1768 q_vector->itr = wx->tx_itr_setting ? 1769 default_itr : wx->tx_itr_setting; 1770 else 1771 /* rx or rx/tx vector */ 1772 q_vector->itr = wx->rx_itr_setting ? 1773 default_itr : wx->rx_itr_setting; 1774 1775 while (txr_count) { 1776 /* assign generic ring traits */ 1777 ring->dev = &wx->pdev->dev; 1778 ring->netdev = wx->netdev; 1779 1780 /* configure backlink on ring */ 1781 ring->q_vector = q_vector; 1782 1783 /* update q_vector Tx values */ 1784 wx_add_ring(ring, &q_vector->tx); 1785 1786 /* apply Tx specific ring traits */ 1787 ring->count = wx->tx_ring_count; 1788 1789 ring->queue_index = txr_idx; 1790 1791 /* assign ring to wx */ 1792 wx->tx_ring[txr_idx] = ring; 1793 1794 /* update count and index */ 1795 txr_count--; 1796 txr_idx += v_count; 1797 1798 /* push pointer to next ring */ 1799 ring++; 1800 } 1801 1802 while (rxr_count) { 1803 /* assign generic ring traits */ 1804 ring->dev = &wx->pdev->dev; 1805 ring->netdev = wx->netdev; 1806 1807 /* configure backlink on ring */ 1808 ring->q_vector = q_vector; 1809 1810 /* update q_vector Rx values */ 1811 wx_add_ring(ring, &q_vector->rx); 1812 1813 /* apply Rx specific ring traits */ 1814 ring->count = wx->rx_ring_count; 1815 ring->queue_index = rxr_idx; 1816 1817 /* assign ring to wx */ 1818 wx->rx_ring[rxr_idx] = ring; 1819 1820 /* update count and index */ 1821 rxr_count--; 1822 rxr_idx += v_count; 1823 1824 /* push pointer to next ring */ 1825 ring++; 1826 } 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * wx_free_q_vector - Free memory allocated for specific interrupt vector 1833 * @wx: board private structure to initialize 1834 * @v_idx: Index of vector to be freed 1835 * 1836 * This function frees the memory allocated to the q_vector. In addition if 1837 * NAPI is enabled it will delete any references to the NAPI struct prior 1838 * to freeing the q_vector. 1839 **/ 1840 static void wx_free_q_vector(struct wx *wx, int v_idx) 1841 { 1842 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 1843 struct wx_ring *ring; 1844 1845 wx_for_each_ring(ring, q_vector->tx) 1846 wx->tx_ring[ring->queue_index] = NULL; 1847 1848 wx_for_each_ring(ring, q_vector->rx) 1849 wx->rx_ring[ring->queue_index] = NULL; 1850 1851 wx->q_vector[v_idx] = NULL; 1852 netif_napi_del(&q_vector->napi); 1853 kfree_rcu(q_vector, rcu); 1854 } 1855 1856 /** 1857 * wx_alloc_q_vectors - Allocate memory for interrupt vectors 1858 * @wx: board private structure to initialize 1859 * 1860 * We allocate one q_vector per queue interrupt. If allocation fails we 1861 * return -ENOMEM. 1862 **/ 1863 static int wx_alloc_q_vectors(struct wx *wx) 1864 { 1865 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1866 unsigned int rxr_remaining = wx->num_rx_queues; 1867 unsigned int txr_remaining = wx->num_tx_queues; 1868 unsigned int q_vectors = wx->num_q_vectors; 1869 int rqpv, tqpv; 1870 int err; 1871 1872 for (; v_idx < q_vectors; v_idx++) { 1873 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1874 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1875 err = wx_alloc_q_vector(wx, q_vectors, v_idx, 1876 tqpv, txr_idx, 1877 rqpv, rxr_idx); 1878 1879 if (err) 1880 goto err_out; 1881 1882 /* update counts and index */ 1883 rxr_remaining -= rqpv; 1884 txr_remaining -= tqpv; 1885 rxr_idx++; 1886 txr_idx++; 1887 } 1888 1889 return 0; 1890 1891 err_out: 1892 wx->num_tx_queues = 0; 1893 wx->num_rx_queues = 0; 1894 wx->num_q_vectors = 0; 1895 1896 while (v_idx--) 1897 wx_free_q_vector(wx, v_idx); 1898 1899 return -ENOMEM; 1900 } 1901 1902 /** 1903 * wx_free_q_vectors - Free memory allocated for interrupt vectors 1904 * @wx: board private structure to initialize 1905 * 1906 * This function frees the memory allocated to the q_vectors. In addition if 1907 * NAPI is enabled it will delete any references to the NAPI struct prior 1908 * to freeing the q_vector. 1909 **/ 1910 static void wx_free_q_vectors(struct wx *wx) 1911 { 1912 int v_idx = wx->num_q_vectors; 1913 1914 wx->num_tx_queues = 0; 1915 wx->num_rx_queues = 0; 1916 wx->num_q_vectors = 0; 1917 1918 while (v_idx--) 1919 wx_free_q_vector(wx, v_idx); 1920 } 1921 1922 void wx_reset_interrupt_capability(struct wx *wx) 1923 { 1924 struct pci_dev *pdev = wx->pdev; 1925 1926 if (!pdev->msi_enabled && !pdev->msix_enabled) 1927 return; 1928 1929 if (pdev->msix_enabled) { 1930 kfree(wx->msix_q_entries); 1931 wx->msix_q_entries = NULL; 1932 kfree(wx->msix_entry); 1933 wx->msix_entry = NULL; 1934 } 1935 pci_free_irq_vectors(wx->pdev); 1936 } 1937 EXPORT_SYMBOL(wx_reset_interrupt_capability); 1938 1939 /** 1940 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings 1941 * @wx: board private structure to clear interrupt scheme on 1942 * 1943 * We go through and clear interrupt specific resources and reset the structure 1944 * to pre-load conditions 1945 **/ 1946 void wx_clear_interrupt_scheme(struct wx *wx) 1947 { 1948 wx_free_q_vectors(wx); 1949 wx_reset_interrupt_capability(wx); 1950 } 1951 EXPORT_SYMBOL(wx_clear_interrupt_scheme); 1952 1953 int wx_init_interrupt_scheme(struct wx *wx) 1954 { 1955 int ret; 1956 1957 /* Number of supported queues */ 1958 wx_set_num_queues(wx); 1959 1960 /* Set interrupt mode */ 1961 ret = wx_set_interrupt_capability(wx); 1962 if (ret) { 1963 wx_err(wx, "Allocate irq vectors for failed.\n"); 1964 return ret; 1965 } 1966 1967 /* Allocate memory for queues */ 1968 ret = wx_alloc_q_vectors(wx); 1969 if (ret) { 1970 wx_err(wx, "Unable to allocate memory for queue vectors.\n"); 1971 wx_reset_interrupt_capability(wx); 1972 return ret; 1973 } 1974 1975 wx_cache_ring_rss(wx); 1976 1977 return 0; 1978 } 1979 EXPORT_SYMBOL(wx_init_interrupt_scheme); 1980 1981 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) 1982 { 1983 struct wx_q_vector *q_vector = data; 1984 1985 /* EIAM disabled interrupts (on this vector) for us */ 1986 if (q_vector->rx.ring || q_vector->tx.ring) 1987 napi_schedule_irqoff(&q_vector->napi); 1988 1989 return IRQ_HANDLED; 1990 } 1991 EXPORT_SYMBOL(wx_msix_clean_rings); 1992 1993 void wx_free_irq(struct wx *wx) 1994 { 1995 struct pci_dev *pdev = wx->pdev; 1996 int vector; 1997 1998 if (!(pdev->msix_enabled)) { 1999 free_irq(pdev->irq, wx); 2000 return; 2001 } 2002 2003 for (vector = 0; vector < wx->num_q_vectors; vector++) { 2004 struct wx_q_vector *q_vector = wx->q_vector[vector]; 2005 struct msix_entry *entry = &wx->msix_q_entries[vector]; 2006 2007 /* free only the irqs that were actually requested */ 2008 if (!q_vector->rx.ring && !q_vector->tx.ring) 2009 continue; 2010 2011 free_irq(entry->vector, q_vector); 2012 } 2013 2014 if (wx->mac.type == wx_mac_em) 2015 free_irq(wx->msix_entry->vector, wx); 2016 } 2017 EXPORT_SYMBOL(wx_free_irq); 2018 2019 /** 2020 * wx_setup_isb_resources - allocate interrupt status resources 2021 * @wx: board private structure 2022 * 2023 * Return 0 on success, negative on failure 2024 **/ 2025 int wx_setup_isb_resources(struct wx *wx) 2026 { 2027 struct pci_dev *pdev = wx->pdev; 2028 2029 wx->isb_mem = dma_alloc_coherent(&pdev->dev, 2030 sizeof(u32) * 4, 2031 &wx->isb_dma, 2032 GFP_KERNEL); 2033 if (!wx->isb_mem) { 2034 wx_err(wx, "Alloc isb_mem failed\n"); 2035 return -ENOMEM; 2036 } 2037 2038 return 0; 2039 } 2040 EXPORT_SYMBOL(wx_setup_isb_resources); 2041 2042 /** 2043 * wx_free_isb_resources - allocate all queues Rx resources 2044 * @wx: board private structure 2045 * 2046 * Return 0 on success, negative on failure 2047 **/ 2048 void wx_free_isb_resources(struct wx *wx) 2049 { 2050 struct pci_dev *pdev = wx->pdev; 2051 2052 dma_free_coherent(&pdev->dev, sizeof(u32) * 4, 2053 wx->isb_mem, wx->isb_dma); 2054 wx->isb_mem = NULL; 2055 } 2056 EXPORT_SYMBOL(wx_free_isb_resources); 2057 2058 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) 2059 { 2060 u32 cur_tag = 0; 2061 2062 cur_tag = wx->isb_mem[WX_ISB_HEADER]; 2063 wx->isb_tag[idx] = cur_tag; 2064 2065 return (__force u32)cpu_to_le32(wx->isb_mem[idx]); 2066 } 2067 EXPORT_SYMBOL(wx_misc_isb); 2068 2069 /** 2070 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors 2071 * @wx: pointer to wx struct 2072 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 2073 * @queue: queue to map the corresponding interrupt to 2074 * @msix_vector: the vector to map to the corresponding queue 2075 * 2076 **/ 2077 static void wx_set_ivar(struct wx *wx, s8 direction, 2078 u16 queue, u16 msix_vector) 2079 { 2080 u32 ivar, index; 2081 2082 if (direction == -1) { 2083 /* other causes */ 2084 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2085 index = 0; 2086 ivar = rd32(wx, WX_PX_MISC_IVAR); 2087 ivar &= ~(0xFF << index); 2088 ivar |= (msix_vector << index); 2089 wr32(wx, WX_PX_MISC_IVAR, ivar); 2090 } else { 2091 /* tx or rx causes */ 2092 msix_vector += 1; /* offset for queue vectors */ 2093 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2094 index = ((16 * (queue & 1)) + (8 * direction)); 2095 ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); 2096 ivar &= ~(0xFF << index); 2097 ivar |= (msix_vector << index); 2098 wr32(wx, WX_PX_IVAR(queue >> 1), ivar); 2099 } 2100 } 2101 2102 /** 2103 * wx_write_eitr - write EITR register in hardware specific way 2104 * @q_vector: structure containing interrupt and ring information 2105 * 2106 * This function is made to be called by ethtool and by the driver 2107 * when it needs to update EITR registers at runtime. Hardware 2108 * specific quirks/differences are taken care of here. 2109 */ 2110 void wx_write_eitr(struct wx_q_vector *q_vector) 2111 { 2112 struct wx *wx = q_vector->wx; 2113 int v_idx = q_vector->v_idx; 2114 u32 itr_reg; 2115 2116 if (wx->mac.type == wx_mac_sp) 2117 itr_reg = q_vector->itr & WX_SP_MAX_EITR; 2118 else 2119 itr_reg = q_vector->itr & WX_EM_MAX_EITR; 2120 2121 itr_reg |= WX_PX_ITR_CNT_WDIS; 2122 2123 wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg); 2124 } 2125 2126 /** 2127 * wx_configure_vectors - Configure vectors for hardware 2128 * @wx: board private structure 2129 * 2130 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx 2131 * interrupts. 2132 **/ 2133 void wx_configure_vectors(struct wx *wx) 2134 { 2135 struct pci_dev *pdev = wx->pdev; 2136 u32 eitrsel = 0; 2137 u16 v_idx; 2138 2139 if (pdev->msix_enabled) { 2140 /* Populate MSIX to EITR Select */ 2141 wr32(wx, WX_PX_ITRSEL, eitrsel); 2142 /* use EIAM to auto-mask when MSI-X interrupt is asserted 2143 * this saves a register write for every interrupt 2144 */ 2145 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); 2146 } else { 2147 /* legacy interrupts, use EIAM to auto-mask when reading EICR, 2148 * specifically only auto mask tx and rx interrupts. 2149 */ 2150 wr32(wx, WX_PX_GPIE, 0); 2151 } 2152 2153 /* Populate the IVAR table and set the ITR values to the 2154 * corresponding register. 2155 */ 2156 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { 2157 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 2158 struct wx_ring *ring; 2159 2160 wx_for_each_ring(ring, q_vector->rx) 2161 wx_set_ivar(wx, 0, ring->reg_idx, v_idx); 2162 2163 wx_for_each_ring(ring, q_vector->tx) 2164 wx_set_ivar(wx, 1, ring->reg_idx, v_idx); 2165 2166 wx_write_eitr(q_vector); 2167 } 2168 2169 wx_set_ivar(wx, -1, 0, 0); 2170 if (pdev->msix_enabled) 2171 wr32(wx, WX_PX_ITR(0), 1950); 2172 } 2173 EXPORT_SYMBOL(wx_configure_vectors); 2174 2175 /** 2176 * wx_clean_rx_ring - Free Rx Buffers per Queue 2177 * @rx_ring: ring to free buffers from 2178 **/ 2179 static void wx_clean_rx_ring(struct wx_ring *rx_ring) 2180 { 2181 struct wx_rx_buffer *rx_buffer; 2182 u16 i = rx_ring->next_to_clean; 2183 2184 rx_buffer = &rx_ring->rx_buffer_info[i]; 2185 2186 /* Free all the Rx ring sk_buffs */ 2187 while (i != rx_ring->next_to_alloc) { 2188 if (rx_buffer->skb) { 2189 struct sk_buff *skb = rx_buffer->skb; 2190 2191 if (WX_CB(skb)->page_released) 2192 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2193 2194 dev_kfree_skb(skb); 2195 } 2196 2197 /* Invalidate cache lines that may have been written to by 2198 * device so that we avoid corrupting memory. 2199 */ 2200 dma_sync_single_range_for_cpu(rx_ring->dev, 2201 rx_buffer->dma, 2202 rx_buffer->page_offset, 2203 WX_RX_BUFSZ, 2204 DMA_FROM_DEVICE); 2205 2206 /* free resources associated with mapping */ 2207 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2208 2209 i++; 2210 rx_buffer++; 2211 if (i == rx_ring->count) { 2212 i = 0; 2213 rx_buffer = rx_ring->rx_buffer_info; 2214 } 2215 } 2216 2217 rx_ring->next_to_alloc = 0; 2218 rx_ring->next_to_clean = 0; 2219 rx_ring->next_to_use = 0; 2220 } 2221 2222 /** 2223 * wx_clean_all_rx_rings - Free Rx Buffers for all queues 2224 * @wx: board private structure 2225 **/ 2226 void wx_clean_all_rx_rings(struct wx *wx) 2227 { 2228 int i; 2229 2230 for (i = 0; i < wx->num_rx_queues; i++) 2231 wx_clean_rx_ring(wx->rx_ring[i]); 2232 } 2233 EXPORT_SYMBOL(wx_clean_all_rx_rings); 2234 2235 /** 2236 * wx_free_rx_resources - Free Rx Resources 2237 * @rx_ring: ring to clean the resources from 2238 * 2239 * Free all receive software resources 2240 **/ 2241 static void wx_free_rx_resources(struct wx_ring *rx_ring) 2242 { 2243 wx_clean_rx_ring(rx_ring); 2244 kvfree(rx_ring->rx_buffer_info); 2245 rx_ring->rx_buffer_info = NULL; 2246 2247 /* if not set, then don't free */ 2248 if (!rx_ring->desc) 2249 return; 2250 2251 dma_free_coherent(rx_ring->dev, rx_ring->size, 2252 rx_ring->desc, rx_ring->dma); 2253 2254 rx_ring->desc = NULL; 2255 2256 if (rx_ring->page_pool) { 2257 page_pool_destroy(rx_ring->page_pool); 2258 rx_ring->page_pool = NULL; 2259 } 2260 } 2261 2262 /** 2263 * wx_free_all_rx_resources - Free Rx Resources for All Queues 2264 * @wx: pointer to hardware structure 2265 * 2266 * Free all receive software resources 2267 **/ 2268 static void wx_free_all_rx_resources(struct wx *wx) 2269 { 2270 int i; 2271 2272 for (i = 0; i < wx->num_rx_queues; i++) 2273 wx_free_rx_resources(wx->rx_ring[i]); 2274 } 2275 2276 /** 2277 * wx_clean_tx_ring - Free Tx Buffers 2278 * @tx_ring: ring to be cleaned 2279 **/ 2280 static void wx_clean_tx_ring(struct wx_ring *tx_ring) 2281 { 2282 struct wx_tx_buffer *tx_buffer; 2283 u16 i = tx_ring->next_to_clean; 2284 2285 tx_buffer = &tx_ring->tx_buffer_info[i]; 2286 2287 while (i != tx_ring->next_to_use) { 2288 union wx_tx_desc *eop_desc, *tx_desc; 2289 2290 /* Free all the Tx ring sk_buffs */ 2291 dev_kfree_skb_any(tx_buffer->skb); 2292 2293 /* unmap skb header data */ 2294 dma_unmap_single(tx_ring->dev, 2295 dma_unmap_addr(tx_buffer, dma), 2296 dma_unmap_len(tx_buffer, len), 2297 DMA_TO_DEVICE); 2298 2299 /* check for eop_desc to determine the end of the packet */ 2300 eop_desc = tx_buffer->next_to_watch; 2301 tx_desc = WX_TX_DESC(tx_ring, i); 2302 2303 /* unmap remaining buffers */ 2304 while (tx_desc != eop_desc) { 2305 tx_buffer++; 2306 tx_desc++; 2307 i++; 2308 if (unlikely(i == tx_ring->count)) { 2309 i = 0; 2310 tx_buffer = tx_ring->tx_buffer_info; 2311 tx_desc = WX_TX_DESC(tx_ring, 0); 2312 } 2313 2314 /* unmap any remaining paged data */ 2315 if (dma_unmap_len(tx_buffer, len)) 2316 dma_unmap_page(tx_ring->dev, 2317 dma_unmap_addr(tx_buffer, dma), 2318 dma_unmap_len(tx_buffer, len), 2319 DMA_TO_DEVICE); 2320 } 2321 2322 /* move us one more past the eop_desc for start of next pkt */ 2323 tx_buffer++; 2324 i++; 2325 if (unlikely(i == tx_ring->count)) { 2326 i = 0; 2327 tx_buffer = tx_ring->tx_buffer_info; 2328 } 2329 } 2330 2331 netdev_tx_reset_queue(wx_txring_txq(tx_ring)); 2332 2333 /* reset next_to_use and next_to_clean */ 2334 tx_ring->next_to_use = 0; 2335 tx_ring->next_to_clean = 0; 2336 } 2337 2338 /** 2339 * wx_clean_all_tx_rings - Free Tx Buffers for all queues 2340 * @wx: board private structure 2341 **/ 2342 void wx_clean_all_tx_rings(struct wx *wx) 2343 { 2344 int i; 2345 2346 for (i = 0; i < wx->num_tx_queues; i++) 2347 wx_clean_tx_ring(wx->tx_ring[i]); 2348 } 2349 EXPORT_SYMBOL(wx_clean_all_tx_rings); 2350 2351 /** 2352 * wx_free_tx_resources - Free Tx Resources per Queue 2353 * @tx_ring: Tx descriptor ring for a specific queue 2354 * 2355 * Free all transmit software resources 2356 **/ 2357 static void wx_free_tx_resources(struct wx_ring *tx_ring) 2358 { 2359 wx_clean_tx_ring(tx_ring); 2360 kvfree(tx_ring->tx_buffer_info); 2361 tx_ring->tx_buffer_info = NULL; 2362 2363 /* if not set, then don't free */ 2364 if (!tx_ring->desc) 2365 return; 2366 2367 dma_free_coherent(tx_ring->dev, tx_ring->size, 2368 tx_ring->desc, tx_ring->dma); 2369 tx_ring->desc = NULL; 2370 } 2371 2372 /** 2373 * wx_free_all_tx_resources - Free Tx Resources for All Queues 2374 * @wx: pointer to hardware structure 2375 * 2376 * Free all transmit software resources 2377 **/ 2378 static void wx_free_all_tx_resources(struct wx *wx) 2379 { 2380 int i; 2381 2382 for (i = 0; i < wx->num_tx_queues; i++) 2383 wx_free_tx_resources(wx->tx_ring[i]); 2384 } 2385 2386 void wx_free_resources(struct wx *wx) 2387 { 2388 wx_free_isb_resources(wx); 2389 wx_free_all_rx_resources(wx); 2390 wx_free_all_tx_resources(wx); 2391 } 2392 EXPORT_SYMBOL(wx_free_resources); 2393 2394 static int wx_alloc_page_pool(struct wx_ring *rx_ring) 2395 { 2396 int ret = 0; 2397 2398 struct page_pool_params pp_params = { 2399 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 2400 .order = 0, 2401 .pool_size = rx_ring->size, 2402 .nid = dev_to_node(rx_ring->dev), 2403 .dev = rx_ring->dev, 2404 .dma_dir = DMA_FROM_DEVICE, 2405 .offset = 0, 2406 .max_len = PAGE_SIZE, 2407 }; 2408 2409 rx_ring->page_pool = page_pool_create(&pp_params); 2410 if (IS_ERR(rx_ring->page_pool)) { 2411 ret = PTR_ERR(rx_ring->page_pool); 2412 rx_ring->page_pool = NULL; 2413 } 2414 2415 return ret; 2416 } 2417 2418 /** 2419 * wx_setup_rx_resources - allocate Rx resources (Descriptors) 2420 * @rx_ring: rx descriptor ring (for a specific queue) to setup 2421 * 2422 * Returns 0 on success, negative on failure 2423 **/ 2424 static int wx_setup_rx_resources(struct wx_ring *rx_ring) 2425 { 2426 struct device *dev = rx_ring->dev; 2427 int orig_node = dev_to_node(dev); 2428 int numa_node = NUMA_NO_NODE; 2429 int size, ret; 2430 2431 size = sizeof(struct wx_rx_buffer) * rx_ring->count; 2432 2433 if (rx_ring->q_vector) 2434 numa_node = rx_ring->q_vector->numa_node; 2435 2436 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2437 if (!rx_ring->rx_buffer_info) 2438 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); 2439 if (!rx_ring->rx_buffer_info) 2440 goto err; 2441 2442 /* Round up to nearest 4K */ 2443 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); 2444 rx_ring->size = ALIGN(rx_ring->size, 4096); 2445 2446 set_dev_node(dev, numa_node); 2447 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2448 &rx_ring->dma, GFP_KERNEL); 2449 if (!rx_ring->desc) { 2450 set_dev_node(dev, orig_node); 2451 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2452 &rx_ring->dma, GFP_KERNEL); 2453 } 2454 2455 if (!rx_ring->desc) 2456 goto err; 2457 2458 rx_ring->next_to_clean = 0; 2459 rx_ring->next_to_use = 0; 2460 2461 ret = wx_alloc_page_pool(rx_ring); 2462 if (ret < 0) { 2463 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); 2464 goto err_desc; 2465 } 2466 2467 return 0; 2468 2469 err_desc: 2470 dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); 2471 err: 2472 kvfree(rx_ring->rx_buffer_info); 2473 rx_ring->rx_buffer_info = NULL; 2474 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 2475 return -ENOMEM; 2476 } 2477 2478 /** 2479 * wx_setup_all_rx_resources - allocate all queues Rx resources 2480 * @wx: pointer to hardware structure 2481 * 2482 * If this function returns with an error, then it's possible one or 2483 * more of the rings is populated (while the rest are not). It is the 2484 * callers duty to clean those orphaned rings. 2485 * 2486 * Return 0 on success, negative on failure 2487 **/ 2488 static int wx_setup_all_rx_resources(struct wx *wx) 2489 { 2490 int i, err = 0; 2491 2492 for (i = 0; i < wx->num_rx_queues; i++) { 2493 err = wx_setup_rx_resources(wx->rx_ring[i]); 2494 if (!err) 2495 continue; 2496 2497 wx_err(wx, "Allocation for Rx Queue %u failed\n", i); 2498 goto err_setup_rx; 2499 } 2500 2501 return 0; 2502 err_setup_rx: 2503 /* rewind the index freeing the rings as we go */ 2504 while (i--) 2505 wx_free_rx_resources(wx->rx_ring[i]); 2506 return err; 2507 } 2508 2509 /** 2510 * wx_setup_tx_resources - allocate Tx resources (Descriptors) 2511 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2512 * 2513 * Return 0 on success, negative on failure 2514 **/ 2515 static int wx_setup_tx_resources(struct wx_ring *tx_ring) 2516 { 2517 struct device *dev = tx_ring->dev; 2518 int orig_node = dev_to_node(dev); 2519 int numa_node = NUMA_NO_NODE; 2520 int size; 2521 2522 size = sizeof(struct wx_tx_buffer) * tx_ring->count; 2523 2524 if (tx_ring->q_vector) 2525 numa_node = tx_ring->q_vector->numa_node; 2526 2527 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2528 if (!tx_ring->tx_buffer_info) 2529 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); 2530 if (!tx_ring->tx_buffer_info) 2531 goto err; 2532 2533 /* round up to nearest 4K */ 2534 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); 2535 tx_ring->size = ALIGN(tx_ring->size, 4096); 2536 2537 set_dev_node(dev, numa_node); 2538 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2539 &tx_ring->dma, GFP_KERNEL); 2540 if (!tx_ring->desc) { 2541 set_dev_node(dev, orig_node); 2542 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2543 &tx_ring->dma, GFP_KERNEL); 2544 } 2545 2546 if (!tx_ring->desc) 2547 goto err; 2548 2549 tx_ring->next_to_use = 0; 2550 tx_ring->next_to_clean = 0; 2551 2552 return 0; 2553 2554 err: 2555 kvfree(tx_ring->tx_buffer_info); 2556 tx_ring->tx_buffer_info = NULL; 2557 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2558 return -ENOMEM; 2559 } 2560 2561 /** 2562 * wx_setup_all_tx_resources - allocate all queues Tx resources 2563 * @wx: pointer to private structure 2564 * 2565 * If this function returns with an error, then it's possible one or 2566 * more of the rings is populated (while the rest are not). It is the 2567 * callers duty to clean those orphaned rings. 2568 * 2569 * Return 0 on success, negative on failure 2570 **/ 2571 static int wx_setup_all_tx_resources(struct wx *wx) 2572 { 2573 int i, err = 0; 2574 2575 for (i = 0; i < wx->num_tx_queues; i++) { 2576 err = wx_setup_tx_resources(wx->tx_ring[i]); 2577 if (!err) 2578 continue; 2579 2580 wx_err(wx, "Allocation for Tx Queue %u failed\n", i); 2581 goto err_setup_tx; 2582 } 2583 2584 return 0; 2585 err_setup_tx: 2586 /* rewind the index freeing the rings as we go */ 2587 while (i--) 2588 wx_free_tx_resources(wx->tx_ring[i]); 2589 return err; 2590 } 2591 2592 int wx_setup_resources(struct wx *wx) 2593 { 2594 int err; 2595 2596 /* allocate transmit descriptors */ 2597 err = wx_setup_all_tx_resources(wx); 2598 if (err) 2599 return err; 2600 2601 /* allocate receive descriptors */ 2602 err = wx_setup_all_rx_resources(wx); 2603 if (err) 2604 goto err_free_tx; 2605 2606 err = wx_setup_isb_resources(wx); 2607 if (err) 2608 goto err_free_rx; 2609 2610 return 0; 2611 2612 err_free_rx: 2613 wx_free_all_rx_resources(wx); 2614 err_free_tx: 2615 wx_free_all_tx_resources(wx); 2616 2617 return err; 2618 } 2619 EXPORT_SYMBOL(wx_setup_resources); 2620 2621 /** 2622 * wx_get_stats64 - Get System Network Statistics 2623 * @netdev: network interface device structure 2624 * @stats: storage space for 64bit statistics 2625 */ 2626 void wx_get_stats64(struct net_device *netdev, 2627 struct rtnl_link_stats64 *stats) 2628 { 2629 struct wx *wx = netdev_priv(netdev); 2630 struct wx_hw_stats *hwstats; 2631 int i; 2632 2633 wx_update_stats(wx); 2634 2635 rcu_read_lock(); 2636 for (i = 0; i < wx->num_rx_queues; i++) { 2637 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); 2638 u64 bytes, packets; 2639 unsigned int start; 2640 2641 if (ring) { 2642 do { 2643 start = u64_stats_fetch_begin(&ring->syncp); 2644 packets = ring->stats.packets; 2645 bytes = ring->stats.bytes; 2646 } while (u64_stats_fetch_retry(&ring->syncp, start)); 2647 stats->rx_packets += packets; 2648 stats->rx_bytes += bytes; 2649 } 2650 } 2651 2652 for (i = 0; i < wx->num_tx_queues; i++) { 2653 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); 2654 u64 bytes, packets; 2655 unsigned int start; 2656 2657 if (ring) { 2658 do { 2659 start = u64_stats_fetch_begin(&ring->syncp); 2660 packets = ring->stats.packets; 2661 bytes = ring->stats.bytes; 2662 } while (u64_stats_fetch_retry(&ring->syncp, 2663 start)); 2664 stats->tx_packets += packets; 2665 stats->tx_bytes += bytes; 2666 } 2667 } 2668 2669 rcu_read_unlock(); 2670 2671 hwstats = &wx->stats; 2672 stats->rx_errors = hwstats->crcerrs + hwstats->rlec; 2673 stats->multicast = hwstats->qmprc; 2674 stats->rx_length_errors = hwstats->rlec; 2675 stats->rx_crc_errors = hwstats->crcerrs; 2676 } 2677 EXPORT_SYMBOL(wx_get_stats64); 2678 2679 int wx_set_features(struct net_device *netdev, netdev_features_t features) 2680 { 2681 netdev_features_t changed = netdev->features ^ features; 2682 struct wx *wx = netdev_priv(netdev); 2683 2684 if (features & NETIF_F_RXHASH) { 2685 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 2686 WX_RDB_RA_CTL_RSS_EN); 2687 wx->rss_enabled = true; 2688 } else { 2689 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); 2690 wx->rss_enabled = false; 2691 } 2692 2693 netdev->features = features; 2694 2695 if (wx->mac.type == wx_mac_sp && changed & NETIF_F_HW_VLAN_CTAG_RX) 2696 wx->do_reset(netdev); 2697 else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER)) 2698 wx_set_rx_mode(netdev); 2699 2700 return 0; 2701 } 2702 EXPORT_SYMBOL(wx_set_features); 2703 2704 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 2705 NETIF_F_HW_VLAN_STAG_RX) 2706 2707 #define NETIF_VLAN_INSERTION_FEATURES (NETIF_F_HW_VLAN_CTAG_TX | \ 2708 NETIF_F_HW_VLAN_STAG_TX) 2709 2710 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 2711 NETIF_F_HW_VLAN_STAG_FILTER) 2712 2713 netdev_features_t wx_fix_features(struct net_device *netdev, 2714 netdev_features_t features) 2715 { 2716 netdev_features_t changed = netdev->features ^ features; 2717 struct wx *wx = netdev_priv(netdev); 2718 2719 if (changed & NETIF_VLAN_STRIPPING_FEATURES) { 2720 if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES && 2721 (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) { 2722 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 2723 features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES; 2724 wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off."); 2725 } 2726 } 2727 2728 if (changed & NETIF_VLAN_INSERTION_FEATURES) { 2729 if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES && 2730 (features & NETIF_VLAN_INSERTION_FEATURES) != 0) { 2731 features &= ~NETIF_VLAN_INSERTION_FEATURES; 2732 features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES; 2733 wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off."); 2734 } 2735 } 2736 2737 if (changed & NETIF_VLAN_FILTERING_FEATURES) { 2738 if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES && 2739 (features & NETIF_VLAN_FILTERING_FEATURES) != 0) { 2740 features &= ~NETIF_VLAN_FILTERING_FEATURES; 2741 features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES; 2742 wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off."); 2743 } 2744 } 2745 2746 return features; 2747 } 2748 EXPORT_SYMBOL(wx_fix_features); 2749 2750 void wx_set_ring(struct wx *wx, u32 new_tx_count, 2751 u32 new_rx_count, struct wx_ring *temp_ring) 2752 { 2753 int i, err = 0; 2754 2755 /* Setup new Tx resources and free the old Tx resources in that order. 2756 * We can then assign the new resources to the rings via a memcpy. 2757 * The advantage to this approach is that we are guaranteed to still 2758 * have resources even in the case of an allocation failure. 2759 */ 2760 if (new_tx_count != wx->tx_ring_count) { 2761 for (i = 0; i < wx->num_tx_queues; i++) { 2762 memcpy(&temp_ring[i], wx->tx_ring[i], 2763 sizeof(struct wx_ring)); 2764 2765 temp_ring[i].count = new_tx_count; 2766 err = wx_setup_tx_resources(&temp_ring[i]); 2767 if (err) { 2768 wx_err(wx, "setup new tx resources failed, keep using the old config\n"); 2769 while (i) { 2770 i--; 2771 wx_free_tx_resources(&temp_ring[i]); 2772 } 2773 return; 2774 } 2775 } 2776 2777 for (i = 0; i < wx->num_tx_queues; i++) { 2778 wx_free_tx_resources(wx->tx_ring[i]); 2779 2780 memcpy(wx->tx_ring[i], &temp_ring[i], 2781 sizeof(struct wx_ring)); 2782 } 2783 2784 wx->tx_ring_count = new_tx_count; 2785 } 2786 2787 /* Repeat the process for the Rx rings if needed */ 2788 if (new_rx_count != wx->rx_ring_count) { 2789 for (i = 0; i < wx->num_rx_queues; i++) { 2790 memcpy(&temp_ring[i], wx->rx_ring[i], 2791 sizeof(struct wx_ring)); 2792 2793 temp_ring[i].count = new_rx_count; 2794 err = wx_setup_rx_resources(&temp_ring[i]); 2795 if (err) { 2796 wx_err(wx, "setup new rx resources failed, keep using the old config\n"); 2797 while (i) { 2798 i--; 2799 wx_free_rx_resources(&temp_ring[i]); 2800 } 2801 return; 2802 } 2803 } 2804 2805 for (i = 0; i < wx->num_rx_queues; i++) { 2806 wx_free_rx_resources(wx->rx_ring[i]); 2807 memcpy(wx->rx_ring[i], &temp_ring[i], 2808 sizeof(struct wx_ring)); 2809 } 2810 2811 wx->rx_ring_count = new_rx_count; 2812 } 2813 } 2814 EXPORT_SYMBOL(wx_set_ring); 2815 2816 MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers."); 2817 MODULE_LICENSE("GPL"); 2818