xref: /linux/drivers/net/ethernet/wangxun/libwx/wx_lib.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13 
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_hw.h"
17 
18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
19 static struct wx_dec_ptype wx_ptype_lookup[256] = {
20 	/* L2: mac */
21 	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22 	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
23 	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24 	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26 	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27 	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28 
29 	/* L2: ethertype filter */
30 	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31 
32 	/* L3: ip non-tunnel */
33 	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34 	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35 	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
36 	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
37 	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38 	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39 	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40 	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
41 	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
42 	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43 
44 	/* L2: fcoe */
45 	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46 	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47 
48 	/* IPv4 --> IPv4/IPv6 */
49 	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50 	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51 	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
52 	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
53 	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54 	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55 	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56 	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
57 	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
58 	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59 
60 	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61 	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62 	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63 	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64 	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
65 	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
66 	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67 	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68 	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69 	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
70 	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
71 	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72 
73 	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74 	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75 	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76 	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77 	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
78 	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
79 	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80 	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81 	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82 	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
83 	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
84 	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85 
86 	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87 	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88 	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89 	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90 	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
91 	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
92 	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93 	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94 	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95 	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
96 	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
97 	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98 
99 	/* IPv6 --> IPv4/IPv6 */
100 	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101 	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102 	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
103 	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
104 	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105 	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106 	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107 	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
108 	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
109 	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110 
111 	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112 	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113 	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114 	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115 	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
116 	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
117 	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118 	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119 	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120 	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
121 	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
122 	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123 
124 	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125 	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126 	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127 	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128 	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
129 	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
130 	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131 	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132 	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133 	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
134 	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
135 	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136 
137 	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138 	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139 	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140 	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141 	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
142 	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
143 	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144 	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145 	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146 	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
147 	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
148 	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149 };
150 
151 struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152 {
153 	return wx_ptype_lookup[ptype];
154 }
155 EXPORT_SYMBOL(wx_decode_ptype);
156 
157 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
158 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
159 			      const u32 stat_err_bits)
160 {
161 	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
162 }
163 
164 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
165 			     struct wx_rx_buffer *rx_buffer)
166 {
167 	struct sk_buff *skb = rx_buffer->skb;
168 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
169 
170 	dma_sync_single_range_for_cpu(rx_ring->dev,
171 				      WX_CB(skb)->dma,
172 				      skb_frag_off(frag),
173 				      skb_frag_size(frag),
174 				      DMA_FROM_DEVICE);
175 
176 	/* If the page was released, just unmap it. */
177 	if (unlikely(WX_CB(skb)->page_released))
178 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
179 }
180 
181 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
182 					     union wx_rx_desc *rx_desc,
183 					     struct sk_buff **skb,
184 					     int *rx_buffer_pgcnt)
185 {
186 	struct wx_rx_buffer *rx_buffer;
187 	unsigned int size;
188 
189 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
190 	size = le16_to_cpu(rx_desc->wb.upper.length);
191 
192 #if (PAGE_SIZE < 8192)
193 	*rx_buffer_pgcnt = page_count(rx_buffer->page);
194 #else
195 	*rx_buffer_pgcnt = 0;
196 #endif
197 
198 	prefetchw(rx_buffer->page);
199 	*skb = rx_buffer->skb;
200 
201 	/* Delay unmapping of the first packet. It carries the header
202 	 * information, HW may still access the header after the writeback.
203 	 * Only unmap it when EOP is reached
204 	 */
205 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
206 		if (!*skb)
207 			goto skip_sync;
208 	} else {
209 		if (*skb)
210 			wx_dma_sync_frag(rx_ring, rx_buffer);
211 	}
212 
213 	/* we are reusing so sync this buffer for CPU use */
214 	dma_sync_single_range_for_cpu(rx_ring->dev,
215 				      rx_buffer->dma,
216 				      rx_buffer->page_offset,
217 				      size,
218 				      DMA_FROM_DEVICE);
219 skip_sync:
220 	return rx_buffer;
221 }
222 
223 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
224 			     struct wx_rx_buffer *rx_buffer,
225 			     struct sk_buff *skb,
226 			     int rx_buffer_pgcnt)
227 {
228 	if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
229 		/* the page has been released from the ring */
230 		WX_CB(skb)->page_released = true;
231 
232 	/* clear contents of rx_buffer */
233 	rx_buffer->page = NULL;
234 	rx_buffer->skb = NULL;
235 }
236 
237 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
238 				    struct wx_rx_buffer *rx_buffer,
239 				    union wx_rx_desc *rx_desc)
240 {
241 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
242 #if (PAGE_SIZE < 8192)
243 	unsigned int truesize = WX_RX_BUFSZ;
244 #else
245 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
246 #endif
247 	struct sk_buff *skb = rx_buffer->skb;
248 
249 	if (!skb) {
250 		void *page_addr = page_address(rx_buffer->page) +
251 				  rx_buffer->page_offset;
252 
253 		/* prefetch first cache line of first page */
254 		net_prefetch(page_addr);
255 
256 		/* allocate a skb to store the frags */
257 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
258 		if (unlikely(!skb))
259 			return NULL;
260 
261 		/* we will be copying header into skb->data in
262 		 * pskb_may_pull so it is in our interest to prefetch
263 		 * it now to avoid a possible cache miss
264 		 */
265 		prefetchw(skb->data);
266 
267 		if (size <= WX_RXBUFFER_256) {
268 			memcpy(__skb_put(skb, size), page_addr,
269 			       ALIGN(size, sizeof(long)));
270 			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
271 			return skb;
272 		}
273 
274 		skb_mark_for_recycle(skb);
275 
276 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
277 			WX_CB(skb)->dma = rx_buffer->dma;
278 
279 		skb_add_rx_frag(skb, 0, rx_buffer->page,
280 				rx_buffer->page_offset,
281 				size, truesize);
282 		goto out;
283 
284 	} else {
285 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
286 				rx_buffer->page_offset, size, truesize);
287 	}
288 
289 out:
290 #if (PAGE_SIZE < 8192)
291 	/* flip page offset to other buffer */
292 	rx_buffer->page_offset ^= truesize;
293 #else
294 	/* move offset up to the next cache line */
295 	rx_buffer->page_offset += truesize;
296 #endif
297 
298 	return skb;
299 }
300 
301 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
302 				 struct wx_rx_buffer *bi)
303 {
304 	struct page *page = bi->page;
305 	dma_addr_t dma;
306 
307 	/* since we are recycling buffers we should seldom need to alloc */
308 	if (likely(page))
309 		return true;
310 
311 	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
312 	WARN_ON(!page);
313 	dma = page_pool_get_dma_addr(page);
314 
315 	bi->page_dma = dma;
316 	bi->page = page;
317 	bi->page_offset = 0;
318 
319 	return true;
320 }
321 
322 /**
323  * wx_alloc_rx_buffers - Replace used receive buffers
324  * @rx_ring: ring to place buffers on
325  * @cleaned_count: number of buffers to replace
326  **/
327 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
328 {
329 	u16 i = rx_ring->next_to_use;
330 	union wx_rx_desc *rx_desc;
331 	struct wx_rx_buffer *bi;
332 
333 	/* nothing to do */
334 	if (!cleaned_count)
335 		return;
336 
337 	rx_desc = WX_RX_DESC(rx_ring, i);
338 	bi = &rx_ring->rx_buffer_info[i];
339 	i -= rx_ring->count;
340 
341 	do {
342 		if (!wx_alloc_mapped_page(rx_ring, bi))
343 			break;
344 
345 		/* sync the buffer for use by the device */
346 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
347 						 bi->page_offset,
348 						 WX_RX_BUFSZ,
349 						 DMA_FROM_DEVICE);
350 
351 		rx_desc->read.pkt_addr =
352 			cpu_to_le64(bi->page_dma + bi->page_offset);
353 
354 		rx_desc++;
355 		bi++;
356 		i++;
357 		if (unlikely(!i)) {
358 			rx_desc = WX_RX_DESC(rx_ring, 0);
359 			bi = rx_ring->rx_buffer_info;
360 			i -= rx_ring->count;
361 		}
362 
363 		/* clear the status bits for the next_to_use descriptor */
364 		rx_desc->wb.upper.status_error = 0;
365 
366 		cleaned_count--;
367 	} while (cleaned_count);
368 
369 	i += rx_ring->count;
370 
371 	if (rx_ring->next_to_use != i) {
372 		rx_ring->next_to_use = i;
373 		/* update next to alloc since we have filled the ring */
374 		rx_ring->next_to_alloc = i;
375 
376 		/* Force memory writes to complete before letting h/w
377 		 * know there are new descriptors to fetch.  (Only
378 		 * applicable for weak-ordered memory model archs,
379 		 * such as IA-64).
380 		 */
381 		wmb();
382 		writel(i, rx_ring->tail);
383 	}
384 }
385 
386 u16 wx_desc_unused(struct wx_ring *ring)
387 {
388 	u16 ntc = ring->next_to_clean;
389 	u16 ntu = ring->next_to_use;
390 
391 	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
392 }
393 
394 /**
395  * wx_is_non_eop - process handling of non-EOP buffers
396  * @rx_ring: Rx ring being processed
397  * @rx_desc: Rx descriptor for current buffer
398  * @skb: Current socket buffer containing buffer in progress
399  *
400  * This function updates next to clean. If the buffer is an EOP buffer
401  * this function exits returning false, otherwise it will place the
402  * sk_buff in the next buffer to be chained and return true indicating
403  * that this is in fact a non-EOP buffer.
404  **/
405 static bool wx_is_non_eop(struct wx_ring *rx_ring,
406 			  union wx_rx_desc *rx_desc,
407 			  struct sk_buff *skb)
408 {
409 	u32 ntc = rx_ring->next_to_clean + 1;
410 
411 	/* fetch, update, and store next to clean */
412 	ntc = (ntc < rx_ring->count) ? ntc : 0;
413 	rx_ring->next_to_clean = ntc;
414 
415 	prefetch(WX_RX_DESC(rx_ring, ntc));
416 
417 	/* if we are the last buffer then there is nothing else to do */
418 	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
419 		return false;
420 
421 	rx_ring->rx_buffer_info[ntc].skb = skb;
422 	rx_ring->rx_stats.non_eop_descs++;
423 
424 	return true;
425 }
426 
427 static void wx_pull_tail(struct sk_buff *skb)
428 {
429 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
430 	unsigned int pull_len;
431 	unsigned char *va;
432 
433 	/* it is valid to use page_address instead of kmap since we are
434 	 * working with pages allocated out of the lomem pool per
435 	 * alloc_page(GFP_ATOMIC)
436 	 */
437 	va = skb_frag_address(frag);
438 
439 	/* we need the header to contain the greater of either ETH_HLEN or
440 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
441 	 */
442 	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
443 
444 	/* align pull length to size of long to optimize memcpy performance */
445 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
446 
447 	/* update all of the pointers */
448 	skb_frag_size_sub(frag, pull_len);
449 	skb_frag_off_add(frag, pull_len);
450 	skb->data_len -= pull_len;
451 	skb->tail += pull_len;
452 }
453 
454 /**
455  * wx_cleanup_headers - Correct corrupted or empty headers
456  * @rx_ring: rx descriptor ring packet is being transacted on
457  * @rx_desc: pointer to the EOP Rx descriptor
458  * @skb: pointer to current skb being fixed
459  *
460  * Check for corrupted packet headers caused by senders on the local L2
461  * embedded NIC switch not setting up their Tx Descriptors right.  These
462  * should be very rare.
463  *
464  * Also address the case where we are pulling data in on pages only
465  * and as such no data is present in the skb header.
466  *
467  * In addition if skb is not at least 60 bytes we need to pad it so that
468  * it is large enough to qualify as a valid Ethernet frame.
469  *
470  * Returns true if an error was encountered and skb was freed.
471  **/
472 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
473 			       union wx_rx_desc *rx_desc,
474 			       struct sk_buff *skb)
475 {
476 	struct net_device *netdev = rx_ring->netdev;
477 
478 	/* verify that the packet does not have any known errors */
479 	if (!netdev ||
480 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
481 		     !(netdev->features & NETIF_F_RXALL))) {
482 		dev_kfree_skb_any(skb);
483 		return true;
484 	}
485 
486 	/* place header in linear portion of buffer */
487 	if (!skb_headlen(skb))
488 		wx_pull_tail(skb);
489 
490 	/* if eth_skb_pad returns an error the skb was freed */
491 	if (eth_skb_pad(skb))
492 		return true;
493 
494 	return false;
495 }
496 
497 static void wx_rx_hash(struct wx_ring *ring,
498 		       union wx_rx_desc *rx_desc,
499 		       struct sk_buff *skb)
500 {
501 	u16 rss_type;
502 
503 	if (!(ring->netdev->features & NETIF_F_RXHASH))
504 		return;
505 
506 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
507 			       WX_RXD_RSSTYPE_MASK;
508 
509 	if (!rss_type)
510 		return;
511 
512 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
513 		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
514 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
515 }
516 
517 /**
518  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
519  * @ring: structure containing ring specific data
520  * @rx_desc: current Rx descriptor being processed
521  * @skb: skb currently being received and modified
522  **/
523 static void wx_rx_checksum(struct wx_ring *ring,
524 			   union wx_rx_desc *rx_desc,
525 			   struct sk_buff *skb)
526 {
527 	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
528 
529 	skb_checksum_none_assert(skb);
530 	/* Rx csum disabled */
531 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
532 		return;
533 
534 	/* if IPv4 header checksum error */
535 	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
536 	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
537 	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
538 	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
539 		ring->rx_stats.csum_err++;
540 		return;
541 	}
542 
543 	/* L4 checksum offload flag must set for the below code to work */
544 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
545 		return;
546 
547 	/* Hardware can't guarantee csum if IPv6 Dest Header found */
548 	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
549 		return;
550 
551 	/* if L4 checksum error */
552 	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
553 		ring->rx_stats.csum_err++;
554 		return;
555 	}
556 
557 	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
558 	skb->ip_summed = CHECKSUM_UNNECESSARY;
559 
560 	/* If there is an outer header present that might contain a checksum
561 	 * we need to bump the checksum level by 1 to reflect the fact that
562 	 * we are indicating we validated the inner checksum.
563 	 */
564 	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
565 		__skb_incr_checksum_unnecessary(skb);
566 	ring->rx_stats.csum_good_cnt++;
567 }
568 
569 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
570 		       struct sk_buff *skb)
571 {
572 	u16 ethertype;
573 	u8 idx = 0;
574 
575 	if ((ring->netdev->features &
576 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
577 	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
578 		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
579 		       0x1c0) >> 6;
580 		ethertype = ring->q_vector->wx->tpid[idx];
581 		__vlan_hwaccel_put_tag(skb, htons(ethertype),
582 				       le16_to_cpu(rx_desc->wb.upper.vlan));
583 	}
584 }
585 
586 /**
587  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
588  * @rx_ring: rx descriptor ring packet is being transacted on
589  * @rx_desc: pointer to the EOP Rx descriptor
590  * @skb: pointer to current skb being populated
591  *
592  * This function checks the ring, descriptor, and packet information in
593  * order to populate the hash, checksum, protocol, and
594  * other fields within the skb.
595  **/
596 static void wx_process_skb_fields(struct wx_ring *rx_ring,
597 				  union wx_rx_desc *rx_desc,
598 				  struct sk_buff *skb)
599 {
600 	wx_rx_hash(rx_ring, rx_desc, skb);
601 	wx_rx_checksum(rx_ring, rx_desc, skb);
602 	wx_rx_vlan(rx_ring, rx_desc, skb);
603 	skb_record_rx_queue(skb, rx_ring->queue_index);
604 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
605 }
606 
607 /**
608  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
609  * @q_vector: structure containing interrupt and ring information
610  * @rx_ring: rx descriptor ring to transact packets on
611  * @budget: Total limit on number of packets to process
612  *
613  * This function provides a "bounce buffer" approach to Rx interrupt
614  * processing.  The advantage to this is that on systems that have
615  * expensive overhead for IOMMU access this provides a means of avoiding
616  * it by maintaining the mapping of the page to the system.
617  *
618  * Returns amount of work completed.
619  **/
620 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
621 			   struct wx_ring *rx_ring,
622 			   int budget)
623 {
624 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
625 	u16 cleaned_count = wx_desc_unused(rx_ring);
626 
627 	do {
628 		struct wx_rx_buffer *rx_buffer;
629 		union wx_rx_desc *rx_desc;
630 		struct sk_buff *skb;
631 		int rx_buffer_pgcnt;
632 
633 		/* return some buffers to hardware, one at a time is too slow */
634 		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
635 			wx_alloc_rx_buffers(rx_ring, cleaned_count);
636 			cleaned_count = 0;
637 		}
638 
639 		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
640 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
641 			break;
642 
643 		/* This memory barrier is needed to keep us from reading
644 		 * any other fields out of the rx_desc until we know the
645 		 * descriptor has been written back
646 		 */
647 		dma_rmb();
648 
649 		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
650 
651 		/* retrieve a buffer from the ring */
652 		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
653 
654 		/* exit if we failed to retrieve a buffer */
655 		if (!skb) {
656 			rx_ring->rx_stats.alloc_rx_buff_failed++;
657 			break;
658 		}
659 
660 		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
661 		cleaned_count++;
662 
663 		/* place incomplete frames back on ring for completion */
664 		if (wx_is_non_eop(rx_ring, rx_desc, skb))
665 			continue;
666 
667 		/* verify the packet layout is correct */
668 		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
669 			continue;
670 
671 		/* probably a little skewed due to removing CRC */
672 		total_rx_bytes += skb->len;
673 
674 		/* populate checksum, timestamp, VLAN, and protocol */
675 		wx_process_skb_fields(rx_ring, rx_desc, skb);
676 		napi_gro_receive(&q_vector->napi, skb);
677 
678 		/* update budget accounting */
679 		total_rx_packets++;
680 	} while (likely(total_rx_packets < budget));
681 
682 	u64_stats_update_begin(&rx_ring->syncp);
683 	rx_ring->stats.packets += total_rx_packets;
684 	rx_ring->stats.bytes += total_rx_bytes;
685 	u64_stats_update_end(&rx_ring->syncp);
686 	q_vector->rx.total_packets += total_rx_packets;
687 	q_vector->rx.total_bytes += total_rx_bytes;
688 
689 	return total_rx_packets;
690 }
691 
692 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
693 {
694 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
695 }
696 
697 /**
698  * wx_clean_tx_irq - Reclaim resources after transmit completes
699  * @q_vector: structure containing interrupt and ring information
700  * @tx_ring: tx ring to clean
701  * @napi_budget: Used to determine if we are in netpoll
702  **/
703 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
704 			    struct wx_ring *tx_ring, int napi_budget)
705 {
706 	unsigned int budget = q_vector->wx->tx_work_limit;
707 	unsigned int total_bytes = 0, total_packets = 0;
708 	unsigned int i = tx_ring->next_to_clean;
709 	struct wx_tx_buffer *tx_buffer;
710 	union wx_tx_desc *tx_desc;
711 
712 	if (!netif_carrier_ok(tx_ring->netdev))
713 		return true;
714 
715 	tx_buffer = &tx_ring->tx_buffer_info[i];
716 	tx_desc = WX_TX_DESC(tx_ring, i);
717 	i -= tx_ring->count;
718 
719 	do {
720 		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
721 
722 		/* if next_to_watch is not set then there is no work pending */
723 		if (!eop_desc)
724 			break;
725 
726 		/* prevent any other reads prior to eop_desc */
727 		smp_rmb();
728 
729 		/* if DD is not set pending work has not been completed */
730 		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
731 			break;
732 
733 		/* clear next_to_watch to prevent false hangs */
734 		tx_buffer->next_to_watch = NULL;
735 
736 		/* update the statistics for this packet */
737 		total_bytes += tx_buffer->bytecount;
738 		total_packets += tx_buffer->gso_segs;
739 
740 		/* free the skb */
741 		napi_consume_skb(tx_buffer->skb, napi_budget);
742 
743 		/* unmap skb header data */
744 		dma_unmap_single(tx_ring->dev,
745 				 dma_unmap_addr(tx_buffer, dma),
746 				 dma_unmap_len(tx_buffer, len),
747 				 DMA_TO_DEVICE);
748 
749 		/* clear tx_buffer data */
750 		dma_unmap_len_set(tx_buffer, len, 0);
751 
752 		/* unmap remaining buffers */
753 		while (tx_desc != eop_desc) {
754 			tx_buffer++;
755 			tx_desc++;
756 			i++;
757 			if (unlikely(!i)) {
758 				i -= tx_ring->count;
759 				tx_buffer = tx_ring->tx_buffer_info;
760 				tx_desc = WX_TX_DESC(tx_ring, 0);
761 			}
762 
763 			/* unmap any remaining paged data */
764 			if (dma_unmap_len(tx_buffer, len)) {
765 				dma_unmap_page(tx_ring->dev,
766 					       dma_unmap_addr(tx_buffer, dma),
767 					       dma_unmap_len(tx_buffer, len),
768 					       DMA_TO_DEVICE);
769 				dma_unmap_len_set(tx_buffer, len, 0);
770 			}
771 		}
772 
773 		/* move us one more past the eop_desc for start of next pkt */
774 		tx_buffer++;
775 		tx_desc++;
776 		i++;
777 		if (unlikely(!i)) {
778 			i -= tx_ring->count;
779 			tx_buffer = tx_ring->tx_buffer_info;
780 			tx_desc = WX_TX_DESC(tx_ring, 0);
781 		}
782 
783 		/* issue prefetch for next Tx descriptor */
784 		prefetch(tx_desc);
785 
786 		/* update budget accounting */
787 		budget--;
788 	} while (likely(budget));
789 
790 	i += tx_ring->count;
791 	tx_ring->next_to_clean = i;
792 	u64_stats_update_begin(&tx_ring->syncp);
793 	tx_ring->stats.bytes += total_bytes;
794 	tx_ring->stats.packets += total_packets;
795 	u64_stats_update_end(&tx_ring->syncp);
796 	q_vector->tx.total_bytes += total_bytes;
797 	q_vector->tx.total_packets += total_packets;
798 
799 	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
800 				  total_packets, total_bytes);
801 
802 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
803 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
804 		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
805 		/* Make sure that anybody stopping the queue after this
806 		 * sees the new next_to_clean.
807 		 */
808 		smp_mb();
809 
810 		if (__netif_subqueue_stopped(tx_ring->netdev,
811 					     tx_ring->queue_index) &&
812 		    netif_running(tx_ring->netdev)) {
813 			netif_wake_subqueue(tx_ring->netdev,
814 					    tx_ring->queue_index);
815 			++tx_ring->tx_stats.restart_queue;
816 		}
817 	}
818 
819 	return !!budget;
820 }
821 
822 /**
823  * wx_poll - NAPI polling RX/TX cleanup routine
824  * @napi: napi struct with our devices info in it
825  * @budget: amount of work driver is allowed to do this pass, in packets
826  *
827  * This function will clean all queues associated with a q_vector.
828  **/
829 static int wx_poll(struct napi_struct *napi, int budget)
830 {
831 	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
832 	int per_ring_budget, work_done = 0;
833 	struct wx *wx = q_vector->wx;
834 	bool clean_complete = true;
835 	struct wx_ring *ring;
836 
837 	wx_for_each_ring(ring, q_vector->tx) {
838 		if (!wx_clean_tx_irq(q_vector, ring, budget))
839 			clean_complete = false;
840 	}
841 
842 	/* Exit if we are called by netpoll */
843 	if (budget <= 0)
844 		return budget;
845 
846 	/* attempt to distribute budget to each queue fairly, but don't allow
847 	 * the budget to go below 1 because we'll exit polling
848 	 */
849 	if (q_vector->rx.count > 1)
850 		per_ring_budget = max(budget / q_vector->rx.count, 1);
851 	else
852 		per_ring_budget = budget;
853 
854 	wx_for_each_ring(ring, q_vector->rx) {
855 		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
856 
857 		work_done += cleaned;
858 		if (cleaned >= per_ring_budget)
859 			clean_complete = false;
860 	}
861 
862 	/* If all work not completed, return budget and keep polling */
863 	if (!clean_complete)
864 		return budget;
865 
866 	/* all work done, exit the polling mode */
867 	if (likely(napi_complete_done(napi, work_done))) {
868 		if (netif_running(wx->netdev))
869 			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
870 	}
871 
872 	return min(work_done, budget - 1);
873 }
874 
875 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
876 {
877 	if (likely(wx_desc_unused(tx_ring) >= size))
878 		return 0;
879 
880 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
881 
882 	/* For the next check */
883 	smp_mb();
884 
885 	/* We need to check again in a case another CPU has just
886 	 * made room available.
887 	 */
888 	if (likely(wx_desc_unused(tx_ring) < size))
889 		return -EBUSY;
890 
891 	/* A reprieve! - use start_queue because it doesn't call schedule */
892 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
893 	++tx_ring->tx_stats.restart_queue;
894 
895 	return 0;
896 }
897 
898 static u32 wx_tx_cmd_type(u32 tx_flags)
899 {
900 	/* set type for advanced descriptor with frame checksum insertion */
901 	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
902 
903 	/* set HW vlan bit if vlan is present */
904 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
905 	/* set segmentation enable bits for TSO/FSO */
906 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
907 	/* set timestamp bit if present */
908 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
909 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
910 
911 	return cmd_type;
912 }
913 
914 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
915 				u32 tx_flags, unsigned int paylen)
916 {
917 	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
918 
919 	/* enable L4 checksum for TSO and TX checksum offload */
920 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
921 	/* enable IPv4 checksum for TSO */
922 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
923 	/* enable outer IPv4 checksum for TSO */
924 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
925 				     WX_TXD_EIPCS);
926 	/* Check Context must be set if Tx switch is enabled, which it
927 	 * always is for case where virtual functions are running
928 	 */
929 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
930 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
931 				     WX_TXD_IPSEC);
932 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
933 }
934 
935 static void wx_tx_map(struct wx_ring *tx_ring,
936 		      struct wx_tx_buffer *first,
937 		      const u8 hdr_len)
938 {
939 	struct sk_buff *skb = first->skb;
940 	struct wx_tx_buffer *tx_buffer;
941 	u32 tx_flags = first->tx_flags;
942 	u16 i = tx_ring->next_to_use;
943 	unsigned int data_len, size;
944 	union wx_tx_desc *tx_desc;
945 	skb_frag_t *frag;
946 	dma_addr_t dma;
947 	u32 cmd_type;
948 
949 	cmd_type = wx_tx_cmd_type(tx_flags);
950 	tx_desc = WX_TX_DESC(tx_ring, i);
951 	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
952 
953 	size = skb_headlen(skb);
954 	data_len = skb->data_len;
955 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
956 
957 	tx_buffer = first;
958 
959 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
960 		if (dma_mapping_error(tx_ring->dev, dma))
961 			goto dma_error;
962 
963 		/* record length, and DMA address */
964 		dma_unmap_len_set(tx_buffer, len, size);
965 		dma_unmap_addr_set(tx_buffer, dma, dma);
966 
967 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
968 
969 		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
970 			tx_desc->read.cmd_type_len =
971 				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
972 
973 			i++;
974 			tx_desc++;
975 			if (i == tx_ring->count) {
976 				tx_desc = WX_TX_DESC(tx_ring, 0);
977 				i = 0;
978 			}
979 			tx_desc->read.olinfo_status = 0;
980 
981 			dma += WX_MAX_DATA_PER_TXD;
982 			size -= WX_MAX_DATA_PER_TXD;
983 
984 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
985 		}
986 
987 		if (likely(!data_len))
988 			break;
989 
990 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
991 
992 		i++;
993 		tx_desc++;
994 		if (i == tx_ring->count) {
995 			tx_desc = WX_TX_DESC(tx_ring, 0);
996 			i = 0;
997 		}
998 		tx_desc->read.olinfo_status = 0;
999 
1000 		size = skb_frag_size(frag);
1001 
1002 		data_len -= size;
1003 
1004 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005 				       DMA_TO_DEVICE);
1006 
1007 		tx_buffer = &tx_ring->tx_buffer_info[i];
1008 	}
1009 
1010 	/* write last descriptor with RS and EOP bits */
1011 	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1012 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1013 
1014 	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1015 
1016 	skb_tx_timestamp(skb);
1017 
1018 	/* Force memory writes to complete before letting h/w know there
1019 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1020 	 * memory model archs, such as IA-64).
1021 	 *
1022 	 * We also need this memory barrier to make certain all of the
1023 	 * status bits have been updated before next_to_watch is written.
1024 	 */
1025 	wmb();
1026 
1027 	/* set next_to_watch value indicating a packet is present */
1028 	first->next_to_watch = tx_desc;
1029 
1030 	i++;
1031 	if (i == tx_ring->count)
1032 		i = 0;
1033 
1034 	tx_ring->next_to_use = i;
1035 
1036 	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1037 
1038 	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1039 		writel(i, tx_ring->tail);
1040 
1041 	return;
1042 dma_error:
1043 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1044 
1045 	/* clear dma mappings for failed tx_buffer_info map */
1046 	for (;;) {
1047 		tx_buffer = &tx_ring->tx_buffer_info[i];
1048 		if (dma_unmap_len(tx_buffer, len))
1049 			dma_unmap_page(tx_ring->dev,
1050 				       dma_unmap_addr(tx_buffer, dma),
1051 				       dma_unmap_len(tx_buffer, len),
1052 				       DMA_TO_DEVICE);
1053 		dma_unmap_len_set(tx_buffer, len, 0);
1054 		if (tx_buffer == first)
1055 			break;
1056 		if (i == 0)
1057 			i += tx_ring->count;
1058 		i--;
1059 	}
1060 
1061 	dev_kfree_skb_any(first->skb);
1062 	first->skb = NULL;
1063 
1064 	tx_ring->next_to_use = i;
1065 }
1066 
1067 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1068 			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1069 {
1070 	struct wx_tx_context_desc *context_desc;
1071 	u16 i = tx_ring->next_to_use;
1072 
1073 	context_desc = WX_TX_CTXTDESC(tx_ring, i);
1074 	i++;
1075 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1076 
1077 	/* set bits to identify this as an advanced context descriptor */
1078 	type_tucmd |= WX_TXD_DTYP_CTXT;
1079 	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1080 	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1081 	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1082 	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1083 }
1084 
1085 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1086 {
1087 	struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1088 
1089 	*nexthdr = hdr->nexthdr;
1090 	offset += sizeof(struct ipv6hdr);
1091 	while (ipv6_ext_hdr(*nexthdr)) {
1092 		struct ipv6_opt_hdr _hdr, *hp;
1093 
1094 		if (*nexthdr == NEXTHDR_NONE)
1095 			return;
1096 		hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1097 		if (!hp)
1098 			return;
1099 		if (*nexthdr == NEXTHDR_FRAGMENT)
1100 			break;
1101 		*nexthdr = hp->nexthdr;
1102 	}
1103 }
1104 
1105 union network_header {
1106 	struct iphdr *ipv4;
1107 	struct ipv6hdr *ipv6;
1108 	void *raw;
1109 };
1110 
1111 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1112 {
1113 	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1114 	struct sk_buff *skb = first->skb;
1115 
1116 	if (skb->encapsulation) {
1117 		union network_header hdr;
1118 
1119 		switch (first->protocol) {
1120 		case htons(ETH_P_IP):
1121 			tun_prot = ip_hdr(skb)->protocol;
1122 			ptype = WX_PTYPE_TUN_IPV4;
1123 			break;
1124 		case htons(ETH_P_IPV6):
1125 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1126 			ptype = WX_PTYPE_TUN_IPV6;
1127 			break;
1128 		default:
1129 			return ptype;
1130 		}
1131 
1132 		if (tun_prot == IPPROTO_IPIP) {
1133 			hdr.raw = (void *)inner_ip_hdr(skb);
1134 			ptype |= WX_PTYPE_PKT_IPIP;
1135 		} else if (tun_prot == IPPROTO_UDP) {
1136 			hdr.raw = (void *)inner_ip_hdr(skb);
1137 			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1138 			    skb->inner_protocol != htons(ETH_P_TEB)) {
1139 				ptype |= WX_PTYPE_PKT_IG;
1140 			} else {
1141 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1142 				     == htons(ETH_P_8021Q))
1143 					ptype |= WX_PTYPE_PKT_IGMV;
1144 				else
1145 					ptype |= WX_PTYPE_PKT_IGM;
1146 			}
1147 
1148 		} else if (tun_prot == IPPROTO_GRE) {
1149 			hdr.raw = (void *)inner_ip_hdr(skb);
1150 			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1151 			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1152 				ptype |= WX_PTYPE_PKT_IG;
1153 			} else {
1154 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1155 				    == htons(ETH_P_8021Q))
1156 					ptype |= WX_PTYPE_PKT_IGMV;
1157 				else
1158 					ptype |= WX_PTYPE_PKT_IGM;
1159 			}
1160 		} else {
1161 			return ptype;
1162 		}
1163 
1164 		switch (hdr.ipv4->version) {
1165 		case IPVERSION:
1166 			l4_prot = hdr.ipv4->protocol;
1167 			break;
1168 		case 6:
1169 			wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1170 			ptype |= WX_PTYPE_PKT_IPV6;
1171 			break;
1172 		default:
1173 			return ptype;
1174 		}
1175 	} else {
1176 		switch (first->protocol) {
1177 		case htons(ETH_P_IP):
1178 			l4_prot = ip_hdr(skb)->protocol;
1179 			ptype = WX_PTYPE_PKT_IP;
1180 			break;
1181 		case htons(ETH_P_IPV6):
1182 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1183 			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1184 			break;
1185 		default:
1186 			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1187 		}
1188 	}
1189 	switch (l4_prot) {
1190 	case IPPROTO_TCP:
1191 		ptype |= WX_PTYPE_TYP_TCP;
1192 		break;
1193 	case IPPROTO_UDP:
1194 		ptype |= WX_PTYPE_TYP_UDP;
1195 		break;
1196 	case IPPROTO_SCTP:
1197 		ptype |= WX_PTYPE_TYP_SCTP;
1198 		break;
1199 	default:
1200 		ptype |= WX_PTYPE_TYP_IP;
1201 		break;
1202 	}
1203 
1204 	return ptype;
1205 }
1206 
1207 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1208 		  u8 *hdr_len, u8 ptype)
1209 {
1210 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1211 	struct net_device *netdev = tx_ring->netdev;
1212 	u32 l4len, tunhdr_eiplen_tunlen = 0;
1213 	struct sk_buff *skb = first->skb;
1214 	bool enc = skb->encapsulation;
1215 	struct ipv6hdr *ipv6h;
1216 	struct tcphdr *tcph;
1217 	struct iphdr *iph;
1218 	u8 tun_prot = 0;
1219 	int err;
1220 
1221 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1222 		return 0;
1223 
1224 	if (!skb_is_gso(skb))
1225 		return 0;
1226 
1227 	err = skb_cow_head(skb, 0);
1228 	if (err < 0)
1229 		return err;
1230 
1231 	/* indicates the inner headers in the skbuff are valid. */
1232 	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1233 	if (iph->version == 4) {
1234 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1235 		iph->tot_len = 0;
1236 		iph->check = 0;
1237 		tcph->check = ~csum_tcpudp_magic(iph->saddr,
1238 						 iph->daddr, 0,
1239 						 IPPROTO_TCP, 0);
1240 		first->tx_flags |= WX_TX_FLAGS_TSO |
1241 				   WX_TX_FLAGS_CSUM |
1242 				   WX_TX_FLAGS_IPV4 |
1243 				   WX_TX_FLAGS_CC;
1244 	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1245 		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1246 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1247 		ipv6h->payload_len = 0;
1248 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1249 					       &ipv6h->daddr, 0,
1250 					       IPPROTO_TCP, 0);
1251 		first->tx_flags |= WX_TX_FLAGS_TSO |
1252 				   WX_TX_FLAGS_CSUM |
1253 				   WX_TX_FLAGS_CC;
1254 	}
1255 
1256 	/* compute header lengths */
1257 	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1258 	*hdr_len = enc ? skb_inner_transport_offset(skb) :
1259 			 skb_transport_offset(skb);
1260 	*hdr_len += l4len;
1261 
1262 	/* update gso size and bytecount with header size */
1263 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1264 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1265 
1266 	/* mss_l4len_id: use 0 as index for TSO */
1267 	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1268 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1269 
1270 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1271 	if (enc) {
1272 		switch (first->protocol) {
1273 		case htons(ETH_P_IP):
1274 			tun_prot = ip_hdr(skb)->protocol;
1275 			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1276 			break;
1277 		case htons(ETH_P_IPV6):
1278 			tun_prot = ipv6_hdr(skb)->nexthdr;
1279 			break;
1280 		default:
1281 			break;
1282 		}
1283 		switch (tun_prot) {
1284 		case IPPROTO_UDP:
1285 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1286 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1287 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1288 						(((skb_inner_mac_header(skb) -
1289 						skb_transport_header(skb)) >> 1) <<
1290 						WX_TXD_TUNNEL_LEN_SHIFT);
1291 			break;
1292 		case IPPROTO_GRE:
1293 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1294 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1295 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1296 						(((skb_inner_mac_header(skb) -
1297 						skb_transport_header(skb)) >> 1) <<
1298 						WX_TXD_TUNNEL_LEN_SHIFT);
1299 			break;
1300 		case IPPROTO_IPIP:
1301 			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1302 						(char *)ip_hdr(skb)) >> 2) <<
1303 						WX_TXD_OUTER_IPLEN_SHIFT;
1304 			break;
1305 		default:
1306 			break;
1307 		}
1308 		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1309 	} else {
1310 		vlan_macip_lens = skb_network_header_len(skb) >> 1;
1311 	}
1312 
1313 	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1314 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1315 
1316 	type_tucmd = ptype << 24;
1317 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1318 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1319 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1320 					  WX_TX_FLAGS_HW_VLAN,
1321 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1322 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1323 		       type_tucmd, mss_l4len_idx);
1324 
1325 	return 1;
1326 }
1327 
1328 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1329 		       u8 ptype)
1330 {
1331 	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1332 	struct net_device *netdev = tx_ring->netdev;
1333 	u32 mss_l4len_idx = 0, type_tucmd;
1334 	struct sk_buff *skb = first->skb;
1335 	u8 tun_prot = 0;
1336 
1337 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1338 		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1339 		    !(first->tx_flags & WX_TX_FLAGS_CC))
1340 			return;
1341 		vlan_macip_lens = skb_network_offset(skb) <<
1342 				  WX_TXD_MACLEN_SHIFT;
1343 	} else {
1344 		u8 l4_prot = 0;
1345 		union {
1346 			struct iphdr *ipv4;
1347 			struct ipv6hdr *ipv6;
1348 			u8 *raw;
1349 		} network_hdr;
1350 		union {
1351 			struct tcphdr *tcphdr;
1352 			u8 *raw;
1353 		} transport_hdr;
1354 
1355 		if (skb->encapsulation) {
1356 			network_hdr.raw = skb_inner_network_header(skb);
1357 			transport_hdr.raw = skb_inner_transport_header(skb);
1358 			vlan_macip_lens = skb_network_offset(skb) <<
1359 					  WX_TXD_MACLEN_SHIFT;
1360 			switch (first->protocol) {
1361 			case htons(ETH_P_IP):
1362 				tun_prot = ip_hdr(skb)->protocol;
1363 				break;
1364 			case htons(ETH_P_IPV6):
1365 				tun_prot = ipv6_hdr(skb)->nexthdr;
1366 				break;
1367 			default:
1368 				return;
1369 			}
1370 			switch (tun_prot) {
1371 			case IPPROTO_UDP:
1372 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1373 				tunhdr_eiplen_tunlen |=
1374 					((skb_network_header_len(skb) >> 2) <<
1375 					WX_TXD_OUTER_IPLEN_SHIFT) |
1376 					(((skb_inner_mac_header(skb) -
1377 					skb_transport_header(skb)) >> 1) <<
1378 					WX_TXD_TUNNEL_LEN_SHIFT);
1379 				break;
1380 			case IPPROTO_GRE:
1381 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1382 				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1383 							 WX_TXD_OUTER_IPLEN_SHIFT) |
1384 							 (((skb_inner_mac_header(skb) -
1385 							    skb_transport_header(skb)) >> 1) <<
1386 							  WX_TXD_TUNNEL_LEN_SHIFT);
1387 				break;
1388 			case IPPROTO_IPIP:
1389 				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1390 							(char *)ip_hdr(skb)) >> 2) <<
1391 							WX_TXD_OUTER_IPLEN_SHIFT;
1392 				break;
1393 			default:
1394 				break;
1395 			}
1396 
1397 		} else {
1398 			network_hdr.raw = skb_network_header(skb);
1399 			transport_hdr.raw = skb_transport_header(skb);
1400 			vlan_macip_lens = skb_network_offset(skb) <<
1401 					  WX_TXD_MACLEN_SHIFT;
1402 		}
1403 
1404 		switch (network_hdr.ipv4->version) {
1405 		case IPVERSION:
1406 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1407 			l4_prot = network_hdr.ipv4->protocol;
1408 			break;
1409 		case 6:
1410 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1411 			l4_prot = network_hdr.ipv6->nexthdr;
1412 			break;
1413 		default:
1414 			break;
1415 		}
1416 
1417 		switch (l4_prot) {
1418 		case IPPROTO_TCP:
1419 		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1420 				WX_TXD_L4LEN_SHIFT;
1421 			break;
1422 		case IPPROTO_SCTP:
1423 			mss_l4len_idx = sizeof(struct sctphdr) <<
1424 					WX_TXD_L4LEN_SHIFT;
1425 			break;
1426 		case IPPROTO_UDP:
1427 			mss_l4len_idx = sizeof(struct udphdr) <<
1428 					WX_TXD_L4LEN_SHIFT;
1429 			break;
1430 		default:
1431 			break;
1432 		}
1433 
1434 		/* update TX checksum flag */
1435 		first->tx_flags |= WX_TX_FLAGS_CSUM;
1436 	}
1437 	first->tx_flags |= WX_TX_FLAGS_CC;
1438 	/* vlan_macip_lens: MACLEN, VLAN tag */
1439 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1440 
1441 	type_tucmd = ptype << 24;
1442 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1443 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1444 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1445 					  WX_TX_FLAGS_HW_VLAN,
1446 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1447 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1448 		       type_tucmd, mss_l4len_idx);
1449 }
1450 
1451 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1452 				      struct wx_ring *tx_ring)
1453 {
1454 	struct wx *wx = netdev_priv(tx_ring->netdev);
1455 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1456 	struct wx_tx_buffer *first;
1457 	u8 hdr_len = 0, ptype;
1458 	unsigned short f;
1459 	u32 tx_flags = 0;
1460 	int tso;
1461 
1462 	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1463 	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1464 	 *       + 2 desc gap to keep tail from touching head,
1465 	 *       + 1 desc for context descriptor,
1466 	 * otherwise try next time
1467 	 */
1468 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1469 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1470 						     frags[f]));
1471 
1472 	if (wx_maybe_stop_tx(tx_ring, count + 3)) {
1473 		tx_ring->tx_stats.tx_busy++;
1474 		return NETDEV_TX_BUSY;
1475 	}
1476 
1477 	/* record the location of the first descriptor for this packet */
1478 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1479 	first->skb = skb;
1480 	first->bytecount = skb->len;
1481 	first->gso_segs = 1;
1482 
1483 	/* if we have a HW VLAN tag being added default to the HW one */
1484 	if (skb_vlan_tag_present(skb)) {
1485 		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1486 		tx_flags |= WX_TX_FLAGS_HW_VLAN;
1487 	}
1488 
1489 	/* record initial flags and protocol */
1490 	first->tx_flags = tx_flags;
1491 	first->protocol = vlan_get_protocol(skb);
1492 
1493 	ptype = wx_encode_tx_desc_ptype(first);
1494 
1495 	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1496 	if (tso < 0)
1497 		goto out_drop;
1498 	else if (!tso)
1499 		wx_tx_csum(tx_ring, first, ptype);
1500 
1501 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && tx_ring->atr_sample_rate)
1502 		wx->atr(tx_ring, first, ptype);
1503 
1504 	wx_tx_map(tx_ring, first, hdr_len);
1505 
1506 	return NETDEV_TX_OK;
1507 out_drop:
1508 	dev_kfree_skb_any(first->skb);
1509 	first->skb = NULL;
1510 
1511 	return NETDEV_TX_OK;
1512 }
1513 
1514 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1515 			  struct net_device *netdev)
1516 {
1517 	unsigned int r_idx = skb->queue_mapping;
1518 	struct wx *wx = netdev_priv(netdev);
1519 	struct wx_ring *tx_ring;
1520 
1521 	if (!netif_carrier_ok(netdev)) {
1522 		dev_kfree_skb_any(skb);
1523 		return NETDEV_TX_OK;
1524 	}
1525 
1526 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
1527 	 * in order to meet this minimum size requirement.
1528 	 */
1529 	if (skb_put_padto(skb, 17))
1530 		return NETDEV_TX_OK;
1531 
1532 	if (r_idx >= wx->num_tx_queues)
1533 		r_idx = r_idx % wx->num_tx_queues;
1534 	tx_ring = wx->tx_ring[r_idx];
1535 
1536 	return wx_xmit_frame_ring(skb, tx_ring);
1537 }
1538 EXPORT_SYMBOL(wx_xmit_frame);
1539 
1540 void wx_napi_enable_all(struct wx *wx)
1541 {
1542 	struct wx_q_vector *q_vector;
1543 	int q_idx;
1544 
1545 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1546 		q_vector = wx->q_vector[q_idx];
1547 		napi_enable(&q_vector->napi);
1548 	}
1549 }
1550 EXPORT_SYMBOL(wx_napi_enable_all);
1551 
1552 void wx_napi_disable_all(struct wx *wx)
1553 {
1554 	struct wx_q_vector *q_vector;
1555 	int q_idx;
1556 
1557 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1558 		q_vector = wx->q_vector[q_idx];
1559 		napi_disable(&q_vector->napi);
1560 	}
1561 }
1562 EXPORT_SYMBOL(wx_napi_disable_all);
1563 
1564 /**
1565  * wx_set_rss_queues: Allocate queues for RSS
1566  * @wx: board private structure to initialize
1567  *
1568  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1569  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1570  *
1571  **/
1572 static void wx_set_rss_queues(struct wx *wx)
1573 {
1574 	struct wx_ring_feature *f;
1575 
1576 	/* set mask for 16 queue limit of RSS */
1577 	f = &wx->ring_feature[RING_F_RSS];
1578 	f->indices = f->limit;
1579 
1580 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
1581 		goto out;
1582 
1583 	clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
1584 
1585 	/* Use Flow Director in addition to RSS to ensure the best
1586 	 * distribution of flows across cores, even when an FDIR flow
1587 	 * isn't matched.
1588 	 */
1589 	if (f->indices > 1) {
1590 		f = &wx->ring_feature[RING_F_FDIR];
1591 
1592 		f->indices = f->limit;
1593 
1594 		if (!(test_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
1595 			set_bit(WX_FLAG_FDIR_HASH, wx->flags);
1596 	}
1597 
1598 out:
1599 	wx->num_rx_queues = f->indices;
1600 	wx->num_tx_queues = f->indices;
1601 }
1602 
1603 static void wx_set_num_queues(struct wx *wx)
1604 {
1605 	/* Start with base case */
1606 	wx->num_rx_queues = 1;
1607 	wx->num_tx_queues = 1;
1608 	wx->queues_per_pool = 1;
1609 
1610 	wx_set_rss_queues(wx);
1611 }
1612 
1613 /**
1614  * wx_acquire_msix_vectors - acquire MSI-X vectors
1615  * @wx: board private structure
1616  *
1617  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1618  * return a negative error code if unable to acquire MSI-X vectors for any
1619  * reason.
1620  */
1621 static int wx_acquire_msix_vectors(struct wx *wx)
1622 {
1623 	struct irq_affinity affd = { .pre_vectors = 1 };
1624 	int nvecs, i;
1625 
1626 	/* We start by asking for one vector per queue pair */
1627 	nvecs = max(wx->num_rx_queues, wx->num_tx_queues);
1628 	nvecs = min_t(int, nvecs, num_online_cpus());
1629 	nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors);
1630 
1631 	wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry),
1632 				     GFP_KERNEL);
1633 	if (!wx->msix_q_entries)
1634 		return -ENOMEM;
1635 
1636 	/* One for non-queue interrupts */
1637 	nvecs += 1;
1638 
1639 	wx->msix_entry = kcalloc(1, sizeof(struct msix_entry),
1640 				 GFP_KERNEL);
1641 	if (!wx->msix_entry) {
1642 		kfree(wx->msix_q_entries);
1643 		wx->msix_q_entries = NULL;
1644 		return -ENOMEM;
1645 	}
1646 
1647 	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1648 					       nvecs,
1649 					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1650 					       &affd);
1651 	if (nvecs < 0) {
1652 		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1653 		kfree(wx->msix_q_entries);
1654 		wx->msix_q_entries = NULL;
1655 		kfree(wx->msix_entry);
1656 		wx->msix_entry = NULL;
1657 		return nvecs;
1658 	}
1659 
1660 	wx->msix_entry->entry = 0;
1661 	wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0);
1662 	nvecs -= 1;
1663 	for (i = 0; i < nvecs; i++) {
1664 		wx->msix_q_entries[i].entry = i;
1665 		wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1);
1666 	}
1667 
1668 	wx->num_q_vectors = nvecs;
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  * wx_set_interrupt_capability - set MSI-X or MSI if supported
1675  * @wx: board private structure to initialize
1676  *
1677  * Attempt to configure the interrupts using the best available
1678  * capabilities of the hardware and the kernel.
1679  **/
1680 static int wx_set_interrupt_capability(struct wx *wx)
1681 {
1682 	struct pci_dev *pdev = wx->pdev;
1683 	int nvecs, ret;
1684 
1685 	/* We will try to get MSI-X interrupts first */
1686 	ret = wx_acquire_msix_vectors(wx);
1687 	if (ret == 0 || (ret == -ENOMEM))
1688 		return ret;
1689 
1690 	/* Disable RSS */
1691 	dev_warn(&wx->pdev->dev, "Disabling RSS support\n");
1692 	wx->ring_feature[RING_F_RSS].limit = 1;
1693 
1694 	wx_set_num_queues(wx);
1695 
1696 	/* minmum one for queue, one for misc*/
1697 	nvecs = 1;
1698 	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1699 				      nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX);
1700 	if (nvecs == 1) {
1701 		if (pdev->msi_enabled)
1702 			wx_err(wx, "Fallback to MSI.\n");
1703 		else
1704 			wx_err(wx, "Fallback to INTx.\n");
1705 	} else {
1706 		wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs);
1707 		return nvecs;
1708 	}
1709 
1710 	pdev->irq = pci_irq_vector(pdev, 0);
1711 	wx->num_q_vectors = 1;
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1718  * @wx: board private structure to initialize
1719  *
1720  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1721  *
1722  **/
1723 static void wx_cache_ring_rss(struct wx *wx)
1724 {
1725 	u16 i;
1726 
1727 	for (i = 0; i < wx->num_rx_queues; i++)
1728 		wx->rx_ring[i]->reg_idx = i;
1729 
1730 	for (i = 0; i < wx->num_tx_queues; i++)
1731 		wx->tx_ring[i]->reg_idx = i;
1732 }
1733 
1734 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1735 {
1736 	ring->next = head->ring;
1737 	head->ring = ring;
1738 	head->count++;
1739 }
1740 
1741 /**
1742  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1743  * @wx: board private structure to initialize
1744  * @v_count: q_vectors allocated on wx, used for ring interleaving
1745  * @v_idx: index of vector in wx struct
1746  * @txr_count: total number of Tx rings to allocate
1747  * @txr_idx: index of first Tx ring to allocate
1748  * @rxr_count: total number of Rx rings to allocate
1749  * @rxr_idx: index of first Rx ring to allocate
1750  *
1751  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1752  **/
1753 static int wx_alloc_q_vector(struct wx *wx,
1754 			     unsigned int v_count, unsigned int v_idx,
1755 			     unsigned int txr_count, unsigned int txr_idx,
1756 			     unsigned int rxr_count, unsigned int rxr_idx)
1757 {
1758 	struct wx_q_vector *q_vector;
1759 	int ring_count, default_itr;
1760 	struct wx_ring *ring;
1761 
1762 	/* note this will allocate space for the ring structure as well! */
1763 	ring_count = txr_count + rxr_count;
1764 
1765 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1766 			   GFP_KERNEL);
1767 	if (!q_vector)
1768 		return -ENOMEM;
1769 
1770 	/* initialize NAPI */
1771 	netif_napi_add(wx->netdev, &q_vector->napi,
1772 		       wx_poll);
1773 
1774 	/* tie q_vector and wx together */
1775 	wx->q_vector[v_idx] = q_vector;
1776 	q_vector->wx = wx;
1777 	q_vector->v_idx = v_idx;
1778 	if (cpu_online(v_idx))
1779 		q_vector->numa_node = cpu_to_node(v_idx);
1780 
1781 	/* initialize pointer to rings */
1782 	ring = q_vector->ring;
1783 
1784 	if (wx->mac.type == wx_mac_sp)
1785 		default_itr = WX_12K_ITR;
1786 	else
1787 		default_itr = WX_7K_ITR;
1788 	/* initialize ITR */
1789 	if (txr_count && !rxr_count)
1790 		/* tx only vector */
1791 		q_vector->itr = wx->tx_itr_setting ?
1792 				default_itr : wx->tx_itr_setting;
1793 	else
1794 		/* rx or rx/tx vector */
1795 		q_vector->itr = wx->rx_itr_setting ?
1796 				default_itr : wx->rx_itr_setting;
1797 
1798 	while (txr_count) {
1799 		/* assign generic ring traits */
1800 		ring->dev = &wx->pdev->dev;
1801 		ring->netdev = wx->netdev;
1802 
1803 		/* configure backlink on ring */
1804 		ring->q_vector = q_vector;
1805 
1806 		/* update q_vector Tx values */
1807 		wx_add_ring(ring, &q_vector->tx);
1808 
1809 		/* apply Tx specific ring traits */
1810 		ring->count = wx->tx_ring_count;
1811 
1812 		ring->queue_index = txr_idx;
1813 
1814 		/* assign ring to wx */
1815 		wx->tx_ring[txr_idx] = ring;
1816 
1817 		/* update count and index */
1818 		txr_count--;
1819 		txr_idx += v_count;
1820 
1821 		/* push pointer to next ring */
1822 		ring++;
1823 	}
1824 
1825 	while (rxr_count) {
1826 		/* assign generic ring traits */
1827 		ring->dev = &wx->pdev->dev;
1828 		ring->netdev = wx->netdev;
1829 
1830 		/* configure backlink on ring */
1831 		ring->q_vector = q_vector;
1832 
1833 		/* update q_vector Rx values */
1834 		wx_add_ring(ring, &q_vector->rx);
1835 
1836 		/* apply Rx specific ring traits */
1837 		ring->count = wx->rx_ring_count;
1838 		ring->queue_index = rxr_idx;
1839 
1840 		/* assign ring to wx */
1841 		wx->rx_ring[rxr_idx] = ring;
1842 
1843 		/* update count and index */
1844 		rxr_count--;
1845 		rxr_idx += v_count;
1846 
1847 		/* push pointer to next ring */
1848 		ring++;
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * wx_free_q_vector - Free memory allocated for specific interrupt vector
1856  * @wx: board private structure to initialize
1857  * @v_idx: Index of vector to be freed
1858  *
1859  * This function frees the memory allocated to the q_vector.  In addition if
1860  * NAPI is enabled it will delete any references to the NAPI struct prior
1861  * to freeing the q_vector.
1862  **/
1863 static void wx_free_q_vector(struct wx *wx, int v_idx)
1864 {
1865 	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1866 	struct wx_ring *ring;
1867 
1868 	wx_for_each_ring(ring, q_vector->tx)
1869 		wx->tx_ring[ring->queue_index] = NULL;
1870 
1871 	wx_for_each_ring(ring, q_vector->rx)
1872 		wx->rx_ring[ring->queue_index] = NULL;
1873 
1874 	wx->q_vector[v_idx] = NULL;
1875 	netif_napi_del(&q_vector->napi);
1876 	kfree_rcu(q_vector, rcu);
1877 }
1878 
1879 /**
1880  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1881  * @wx: board private structure to initialize
1882  *
1883  * We allocate one q_vector per queue interrupt.  If allocation fails we
1884  * return -ENOMEM.
1885  **/
1886 static int wx_alloc_q_vectors(struct wx *wx)
1887 {
1888 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1889 	unsigned int rxr_remaining = wx->num_rx_queues;
1890 	unsigned int txr_remaining = wx->num_tx_queues;
1891 	unsigned int q_vectors = wx->num_q_vectors;
1892 	int rqpv, tqpv;
1893 	int err;
1894 
1895 	for (; v_idx < q_vectors; v_idx++) {
1896 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1897 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1898 		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1899 					tqpv, txr_idx,
1900 					rqpv, rxr_idx);
1901 
1902 		if (err)
1903 			goto err_out;
1904 
1905 		/* update counts and index */
1906 		rxr_remaining -= rqpv;
1907 		txr_remaining -= tqpv;
1908 		rxr_idx++;
1909 		txr_idx++;
1910 	}
1911 
1912 	return 0;
1913 
1914 err_out:
1915 	wx->num_tx_queues = 0;
1916 	wx->num_rx_queues = 0;
1917 	wx->num_q_vectors = 0;
1918 
1919 	while (v_idx--)
1920 		wx_free_q_vector(wx, v_idx);
1921 
1922 	return -ENOMEM;
1923 }
1924 
1925 /**
1926  * wx_free_q_vectors - Free memory allocated for interrupt vectors
1927  * @wx: board private structure to initialize
1928  *
1929  * This function frees the memory allocated to the q_vectors.  In addition if
1930  * NAPI is enabled it will delete any references to the NAPI struct prior
1931  * to freeing the q_vector.
1932  **/
1933 static void wx_free_q_vectors(struct wx *wx)
1934 {
1935 	int v_idx = wx->num_q_vectors;
1936 
1937 	wx->num_tx_queues = 0;
1938 	wx->num_rx_queues = 0;
1939 	wx->num_q_vectors = 0;
1940 
1941 	while (v_idx--)
1942 		wx_free_q_vector(wx, v_idx);
1943 }
1944 
1945 void wx_reset_interrupt_capability(struct wx *wx)
1946 {
1947 	struct pci_dev *pdev = wx->pdev;
1948 
1949 	if (!pdev->msi_enabled && !pdev->msix_enabled)
1950 		return;
1951 
1952 	if (pdev->msix_enabled) {
1953 		kfree(wx->msix_q_entries);
1954 		wx->msix_q_entries = NULL;
1955 		kfree(wx->msix_entry);
1956 		wx->msix_entry = NULL;
1957 	}
1958 	pci_free_irq_vectors(wx->pdev);
1959 }
1960 EXPORT_SYMBOL(wx_reset_interrupt_capability);
1961 
1962 /**
1963  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1964  * @wx: board private structure to clear interrupt scheme on
1965  *
1966  * We go through and clear interrupt specific resources and reset the structure
1967  * to pre-load conditions
1968  **/
1969 void wx_clear_interrupt_scheme(struct wx *wx)
1970 {
1971 	wx_free_q_vectors(wx);
1972 	wx_reset_interrupt_capability(wx);
1973 }
1974 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1975 
1976 int wx_init_interrupt_scheme(struct wx *wx)
1977 {
1978 	int ret;
1979 
1980 	/* Number of supported queues */
1981 	wx_set_num_queues(wx);
1982 
1983 	/* Set interrupt mode */
1984 	ret = wx_set_interrupt_capability(wx);
1985 	if (ret) {
1986 		wx_err(wx, "Allocate irq vectors for failed.\n");
1987 		return ret;
1988 	}
1989 
1990 	/* Allocate memory for queues */
1991 	ret = wx_alloc_q_vectors(wx);
1992 	if (ret) {
1993 		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
1994 		wx_reset_interrupt_capability(wx);
1995 		return ret;
1996 	}
1997 
1998 	wx_cache_ring_rss(wx);
1999 
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL(wx_init_interrupt_scheme);
2003 
2004 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
2005 {
2006 	struct wx_q_vector *q_vector = data;
2007 
2008 	/* EIAM disabled interrupts (on this vector) for us */
2009 	if (q_vector->rx.ring || q_vector->tx.ring)
2010 		napi_schedule_irqoff(&q_vector->napi);
2011 
2012 	return IRQ_HANDLED;
2013 }
2014 EXPORT_SYMBOL(wx_msix_clean_rings);
2015 
2016 void wx_free_irq(struct wx *wx)
2017 {
2018 	struct pci_dev *pdev = wx->pdev;
2019 	int vector;
2020 
2021 	if (!(pdev->msix_enabled)) {
2022 		if (!wx->misc_irq_domain)
2023 			free_irq(pdev->irq, wx);
2024 		return;
2025 	}
2026 
2027 	for (vector = 0; vector < wx->num_q_vectors; vector++) {
2028 		struct wx_q_vector *q_vector = wx->q_vector[vector];
2029 		struct msix_entry *entry = &wx->msix_q_entries[vector];
2030 
2031 		/* free only the irqs that were actually requested */
2032 		if (!q_vector->rx.ring && !q_vector->tx.ring)
2033 			continue;
2034 
2035 		free_irq(entry->vector, q_vector);
2036 	}
2037 
2038 	if (!wx->misc_irq_domain)
2039 		free_irq(wx->msix_entry->vector, wx);
2040 }
2041 EXPORT_SYMBOL(wx_free_irq);
2042 
2043 /**
2044  * wx_setup_isb_resources - allocate interrupt status resources
2045  * @wx: board private structure
2046  *
2047  * Return 0 on success, negative on failure
2048  **/
2049 int wx_setup_isb_resources(struct wx *wx)
2050 {
2051 	struct pci_dev *pdev = wx->pdev;
2052 
2053 	if (wx->isb_mem)
2054 		return 0;
2055 
2056 	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2057 					 sizeof(u32) * 4,
2058 					 &wx->isb_dma,
2059 					 GFP_KERNEL);
2060 	if (!wx->isb_mem) {
2061 		wx_err(wx, "Alloc isb_mem failed\n");
2062 		return -ENOMEM;
2063 	}
2064 
2065 	return 0;
2066 }
2067 EXPORT_SYMBOL(wx_setup_isb_resources);
2068 
2069 /**
2070  * wx_free_isb_resources - allocate all queues Rx resources
2071  * @wx: board private structure
2072  *
2073  * Return 0 on success, negative on failure
2074  **/
2075 void wx_free_isb_resources(struct wx *wx)
2076 {
2077 	struct pci_dev *pdev = wx->pdev;
2078 
2079 	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2080 			  wx->isb_mem, wx->isb_dma);
2081 	wx->isb_mem = NULL;
2082 }
2083 EXPORT_SYMBOL(wx_free_isb_resources);
2084 
2085 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2086 {
2087 	u32 cur_tag = 0;
2088 
2089 	cur_tag = wx->isb_mem[WX_ISB_HEADER];
2090 	wx->isb_tag[idx] = cur_tag;
2091 
2092 	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2093 }
2094 EXPORT_SYMBOL(wx_misc_isb);
2095 
2096 /**
2097  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2098  * @wx: pointer to wx struct
2099  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2100  * @queue: queue to map the corresponding interrupt to
2101  * @msix_vector: the vector to map to the corresponding queue
2102  *
2103  **/
2104 static void wx_set_ivar(struct wx *wx, s8 direction,
2105 			u16 queue, u16 msix_vector)
2106 {
2107 	u32 ivar, index;
2108 
2109 	if (direction == -1) {
2110 		/* other causes */
2111 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2112 		index = 0;
2113 		ivar = rd32(wx, WX_PX_MISC_IVAR);
2114 		ivar &= ~(0xFF << index);
2115 		ivar |= (msix_vector << index);
2116 		wr32(wx, WX_PX_MISC_IVAR, ivar);
2117 	} else {
2118 		/* tx or rx causes */
2119 		msix_vector += 1; /* offset for queue vectors */
2120 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2121 		index = ((16 * (queue & 1)) + (8 * direction));
2122 		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2123 		ivar &= ~(0xFF << index);
2124 		ivar |= (msix_vector << index);
2125 		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2126 	}
2127 }
2128 
2129 /**
2130  * wx_write_eitr - write EITR register in hardware specific way
2131  * @q_vector: structure containing interrupt and ring information
2132  *
2133  * This function is made to be called by ethtool and by the driver
2134  * when it needs to update EITR registers at runtime.  Hardware
2135  * specific quirks/differences are taken care of here.
2136  */
2137 void wx_write_eitr(struct wx_q_vector *q_vector)
2138 {
2139 	struct wx *wx = q_vector->wx;
2140 	int v_idx = q_vector->v_idx;
2141 	u32 itr_reg;
2142 
2143 	if (wx->mac.type == wx_mac_sp)
2144 		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2145 	else
2146 		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2147 
2148 	itr_reg |= WX_PX_ITR_CNT_WDIS;
2149 
2150 	wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg);
2151 }
2152 
2153 /**
2154  * wx_configure_vectors - Configure vectors for hardware
2155  * @wx: board private structure
2156  *
2157  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx
2158  * interrupts.
2159  **/
2160 void wx_configure_vectors(struct wx *wx)
2161 {
2162 	struct pci_dev *pdev = wx->pdev;
2163 	u32 eitrsel = 0;
2164 	u16 v_idx;
2165 
2166 	if (pdev->msix_enabled) {
2167 		/* Populate MSIX to EITR Select */
2168 		wr32(wx, WX_PX_ITRSEL, eitrsel);
2169 		/* use EIAM to auto-mask when MSI-X interrupt is asserted
2170 		 * this saves a register write for every interrupt
2171 		 */
2172 		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2173 	} else {
2174 		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
2175 		 * specifically only auto mask tx and rx interrupts.
2176 		 */
2177 		wr32(wx, WX_PX_GPIE, 0);
2178 	}
2179 
2180 	/* Populate the IVAR table and set the ITR values to the
2181 	 * corresponding register.
2182 	 */
2183 	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2184 		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2185 		struct wx_ring *ring;
2186 
2187 		wx_for_each_ring(ring, q_vector->rx)
2188 			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2189 
2190 		wx_for_each_ring(ring, q_vector->tx)
2191 			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2192 
2193 		wx_write_eitr(q_vector);
2194 	}
2195 
2196 	wx_set_ivar(wx, -1, 0, 0);
2197 	if (pdev->msix_enabled)
2198 		wr32(wx, WX_PX_ITR(0), 1950);
2199 }
2200 EXPORT_SYMBOL(wx_configure_vectors);
2201 
2202 /**
2203  * wx_clean_rx_ring - Free Rx Buffers per Queue
2204  * @rx_ring: ring to free buffers from
2205  **/
2206 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2207 {
2208 	struct wx_rx_buffer *rx_buffer;
2209 	u16 i = rx_ring->next_to_clean;
2210 
2211 	rx_buffer = &rx_ring->rx_buffer_info[i];
2212 
2213 	/* Free all the Rx ring sk_buffs */
2214 	while (i != rx_ring->next_to_alloc) {
2215 		if (rx_buffer->skb) {
2216 			struct sk_buff *skb = rx_buffer->skb;
2217 
2218 			if (WX_CB(skb)->page_released)
2219 				page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2220 
2221 			dev_kfree_skb(skb);
2222 		}
2223 
2224 		/* Invalidate cache lines that may have been written to by
2225 		 * device so that we avoid corrupting memory.
2226 		 */
2227 		dma_sync_single_range_for_cpu(rx_ring->dev,
2228 					      rx_buffer->dma,
2229 					      rx_buffer->page_offset,
2230 					      WX_RX_BUFSZ,
2231 					      DMA_FROM_DEVICE);
2232 
2233 		/* free resources associated with mapping */
2234 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2235 
2236 		i++;
2237 		rx_buffer++;
2238 		if (i == rx_ring->count) {
2239 			i = 0;
2240 			rx_buffer = rx_ring->rx_buffer_info;
2241 		}
2242 	}
2243 
2244 	rx_ring->next_to_alloc = 0;
2245 	rx_ring->next_to_clean = 0;
2246 	rx_ring->next_to_use = 0;
2247 }
2248 
2249 /**
2250  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2251  * @wx: board private structure
2252  **/
2253 void wx_clean_all_rx_rings(struct wx *wx)
2254 {
2255 	int i;
2256 
2257 	for (i = 0; i < wx->num_rx_queues; i++)
2258 		wx_clean_rx_ring(wx->rx_ring[i]);
2259 }
2260 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2261 
2262 /**
2263  * wx_free_rx_resources - Free Rx Resources
2264  * @rx_ring: ring to clean the resources from
2265  *
2266  * Free all receive software resources
2267  **/
2268 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2269 {
2270 	wx_clean_rx_ring(rx_ring);
2271 	kvfree(rx_ring->rx_buffer_info);
2272 	rx_ring->rx_buffer_info = NULL;
2273 
2274 	/* if not set, then don't free */
2275 	if (!rx_ring->desc)
2276 		return;
2277 
2278 	dma_free_coherent(rx_ring->dev, rx_ring->size,
2279 			  rx_ring->desc, rx_ring->dma);
2280 
2281 	rx_ring->desc = NULL;
2282 
2283 	if (rx_ring->page_pool) {
2284 		page_pool_destroy(rx_ring->page_pool);
2285 		rx_ring->page_pool = NULL;
2286 	}
2287 }
2288 
2289 /**
2290  * wx_free_all_rx_resources - Free Rx Resources for All Queues
2291  * @wx: pointer to hardware structure
2292  *
2293  * Free all receive software resources
2294  **/
2295 static void wx_free_all_rx_resources(struct wx *wx)
2296 {
2297 	int i;
2298 
2299 	for (i = 0; i < wx->num_rx_queues; i++)
2300 		wx_free_rx_resources(wx->rx_ring[i]);
2301 }
2302 
2303 /**
2304  * wx_clean_tx_ring - Free Tx Buffers
2305  * @tx_ring: ring to be cleaned
2306  **/
2307 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2308 {
2309 	struct wx_tx_buffer *tx_buffer;
2310 	u16 i = tx_ring->next_to_clean;
2311 
2312 	tx_buffer = &tx_ring->tx_buffer_info[i];
2313 
2314 	while (i != tx_ring->next_to_use) {
2315 		union wx_tx_desc *eop_desc, *tx_desc;
2316 
2317 		/* Free all the Tx ring sk_buffs */
2318 		dev_kfree_skb_any(tx_buffer->skb);
2319 
2320 		/* unmap skb header data */
2321 		dma_unmap_single(tx_ring->dev,
2322 				 dma_unmap_addr(tx_buffer, dma),
2323 				 dma_unmap_len(tx_buffer, len),
2324 				 DMA_TO_DEVICE);
2325 
2326 		/* check for eop_desc to determine the end of the packet */
2327 		eop_desc = tx_buffer->next_to_watch;
2328 		tx_desc = WX_TX_DESC(tx_ring, i);
2329 
2330 		/* unmap remaining buffers */
2331 		while (tx_desc != eop_desc) {
2332 			tx_buffer++;
2333 			tx_desc++;
2334 			i++;
2335 			if (unlikely(i == tx_ring->count)) {
2336 				i = 0;
2337 				tx_buffer = tx_ring->tx_buffer_info;
2338 				tx_desc = WX_TX_DESC(tx_ring, 0);
2339 			}
2340 
2341 			/* unmap any remaining paged data */
2342 			if (dma_unmap_len(tx_buffer, len))
2343 				dma_unmap_page(tx_ring->dev,
2344 					       dma_unmap_addr(tx_buffer, dma),
2345 					       dma_unmap_len(tx_buffer, len),
2346 					       DMA_TO_DEVICE);
2347 		}
2348 
2349 		/* move us one more past the eop_desc for start of next pkt */
2350 		tx_buffer++;
2351 		i++;
2352 		if (unlikely(i == tx_ring->count)) {
2353 			i = 0;
2354 			tx_buffer = tx_ring->tx_buffer_info;
2355 		}
2356 	}
2357 
2358 	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2359 
2360 	/* reset next_to_use and next_to_clean */
2361 	tx_ring->next_to_use = 0;
2362 	tx_ring->next_to_clean = 0;
2363 }
2364 
2365 /**
2366  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2367  * @wx: board private structure
2368  **/
2369 void wx_clean_all_tx_rings(struct wx *wx)
2370 {
2371 	int i;
2372 
2373 	for (i = 0; i < wx->num_tx_queues; i++)
2374 		wx_clean_tx_ring(wx->tx_ring[i]);
2375 }
2376 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2377 
2378 /**
2379  * wx_free_tx_resources - Free Tx Resources per Queue
2380  * @tx_ring: Tx descriptor ring for a specific queue
2381  *
2382  * Free all transmit software resources
2383  **/
2384 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2385 {
2386 	wx_clean_tx_ring(tx_ring);
2387 	kvfree(tx_ring->tx_buffer_info);
2388 	tx_ring->tx_buffer_info = NULL;
2389 
2390 	/* if not set, then don't free */
2391 	if (!tx_ring->desc)
2392 		return;
2393 
2394 	dma_free_coherent(tx_ring->dev, tx_ring->size,
2395 			  tx_ring->desc, tx_ring->dma);
2396 	tx_ring->desc = NULL;
2397 }
2398 
2399 /**
2400  * wx_free_all_tx_resources - Free Tx Resources for All Queues
2401  * @wx: pointer to hardware structure
2402  *
2403  * Free all transmit software resources
2404  **/
2405 static void wx_free_all_tx_resources(struct wx *wx)
2406 {
2407 	int i;
2408 
2409 	for (i = 0; i < wx->num_tx_queues; i++)
2410 		wx_free_tx_resources(wx->tx_ring[i]);
2411 }
2412 
2413 void wx_free_resources(struct wx *wx)
2414 {
2415 	wx_free_all_rx_resources(wx);
2416 	wx_free_all_tx_resources(wx);
2417 }
2418 EXPORT_SYMBOL(wx_free_resources);
2419 
2420 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2421 {
2422 	int ret = 0;
2423 
2424 	struct page_pool_params pp_params = {
2425 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2426 		.order = 0,
2427 		.pool_size = rx_ring->size,
2428 		.nid = dev_to_node(rx_ring->dev),
2429 		.dev = rx_ring->dev,
2430 		.dma_dir = DMA_FROM_DEVICE,
2431 		.offset = 0,
2432 		.max_len = PAGE_SIZE,
2433 	};
2434 
2435 	rx_ring->page_pool = page_pool_create(&pp_params);
2436 	if (IS_ERR(rx_ring->page_pool)) {
2437 		ret = PTR_ERR(rx_ring->page_pool);
2438 		rx_ring->page_pool = NULL;
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 /**
2445  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2446  * @rx_ring: rx descriptor ring (for a specific queue) to setup
2447  *
2448  * Returns 0 on success, negative on failure
2449  **/
2450 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2451 {
2452 	struct device *dev = rx_ring->dev;
2453 	int orig_node = dev_to_node(dev);
2454 	int numa_node = NUMA_NO_NODE;
2455 	int size, ret;
2456 
2457 	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2458 
2459 	if (rx_ring->q_vector)
2460 		numa_node = rx_ring->q_vector->numa_node;
2461 
2462 	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2463 	if (!rx_ring->rx_buffer_info)
2464 		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2465 	if (!rx_ring->rx_buffer_info)
2466 		goto err;
2467 
2468 	/* Round up to nearest 4K */
2469 	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2470 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2471 
2472 	set_dev_node(dev, numa_node);
2473 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2474 					   &rx_ring->dma, GFP_KERNEL);
2475 	if (!rx_ring->desc) {
2476 		set_dev_node(dev, orig_node);
2477 		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2478 						   &rx_ring->dma, GFP_KERNEL);
2479 	}
2480 
2481 	if (!rx_ring->desc)
2482 		goto err;
2483 
2484 	rx_ring->next_to_clean = 0;
2485 	rx_ring->next_to_use = 0;
2486 
2487 	ret = wx_alloc_page_pool(rx_ring);
2488 	if (ret < 0) {
2489 		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2490 		goto err_desc;
2491 	}
2492 
2493 	return 0;
2494 
2495 err_desc:
2496 	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2497 err:
2498 	kvfree(rx_ring->rx_buffer_info);
2499 	rx_ring->rx_buffer_info = NULL;
2500 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2501 	return -ENOMEM;
2502 }
2503 
2504 /**
2505  * wx_setup_all_rx_resources - allocate all queues Rx resources
2506  * @wx: pointer to hardware structure
2507  *
2508  * If this function returns with an error, then it's possible one or
2509  * more of the rings is populated (while the rest are not).  It is the
2510  * callers duty to clean those orphaned rings.
2511  *
2512  * Return 0 on success, negative on failure
2513  **/
2514 static int wx_setup_all_rx_resources(struct wx *wx)
2515 {
2516 	int i, err = 0;
2517 
2518 	for (i = 0; i < wx->num_rx_queues; i++) {
2519 		err = wx_setup_rx_resources(wx->rx_ring[i]);
2520 		if (!err)
2521 			continue;
2522 
2523 		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2524 		goto err_setup_rx;
2525 	}
2526 
2527 	return 0;
2528 err_setup_rx:
2529 	/* rewind the index freeing the rings as we go */
2530 	while (i--)
2531 		wx_free_rx_resources(wx->rx_ring[i]);
2532 	return err;
2533 }
2534 
2535 /**
2536  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2537  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2538  *
2539  * Return 0 on success, negative on failure
2540  **/
2541 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2542 {
2543 	struct device *dev = tx_ring->dev;
2544 	int orig_node = dev_to_node(dev);
2545 	int numa_node = NUMA_NO_NODE;
2546 	int size;
2547 
2548 	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2549 
2550 	if (tx_ring->q_vector)
2551 		numa_node = tx_ring->q_vector->numa_node;
2552 
2553 	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2554 	if (!tx_ring->tx_buffer_info)
2555 		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2556 	if (!tx_ring->tx_buffer_info)
2557 		goto err;
2558 
2559 	/* round up to nearest 4K */
2560 	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2561 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2562 
2563 	set_dev_node(dev, numa_node);
2564 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2565 					   &tx_ring->dma, GFP_KERNEL);
2566 	if (!tx_ring->desc) {
2567 		set_dev_node(dev, orig_node);
2568 		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2569 						   &tx_ring->dma, GFP_KERNEL);
2570 	}
2571 
2572 	if (!tx_ring->desc)
2573 		goto err;
2574 
2575 	tx_ring->next_to_use = 0;
2576 	tx_ring->next_to_clean = 0;
2577 
2578 	return 0;
2579 
2580 err:
2581 	kvfree(tx_ring->tx_buffer_info);
2582 	tx_ring->tx_buffer_info = NULL;
2583 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2584 	return -ENOMEM;
2585 }
2586 
2587 /**
2588  * wx_setup_all_tx_resources - allocate all queues Tx resources
2589  * @wx: pointer to private structure
2590  *
2591  * If this function returns with an error, then it's possible one or
2592  * more of the rings is populated (while the rest are not).  It is the
2593  * callers duty to clean those orphaned rings.
2594  *
2595  * Return 0 on success, negative on failure
2596  **/
2597 static int wx_setup_all_tx_resources(struct wx *wx)
2598 {
2599 	int i, err = 0;
2600 
2601 	for (i = 0; i < wx->num_tx_queues; i++) {
2602 		err = wx_setup_tx_resources(wx->tx_ring[i]);
2603 		if (!err)
2604 			continue;
2605 
2606 		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2607 		goto err_setup_tx;
2608 	}
2609 
2610 	return 0;
2611 err_setup_tx:
2612 	/* rewind the index freeing the rings as we go */
2613 	while (i--)
2614 		wx_free_tx_resources(wx->tx_ring[i]);
2615 	return err;
2616 }
2617 
2618 int wx_setup_resources(struct wx *wx)
2619 {
2620 	int err;
2621 
2622 	/* allocate transmit descriptors */
2623 	err = wx_setup_all_tx_resources(wx);
2624 	if (err)
2625 		return err;
2626 
2627 	/* allocate receive descriptors */
2628 	err = wx_setup_all_rx_resources(wx);
2629 	if (err)
2630 		goto err_free_tx;
2631 
2632 	err = wx_setup_isb_resources(wx);
2633 	if (err)
2634 		goto err_free_rx;
2635 
2636 	return 0;
2637 
2638 err_free_rx:
2639 	wx_free_all_rx_resources(wx);
2640 err_free_tx:
2641 	wx_free_all_tx_resources(wx);
2642 
2643 	return err;
2644 }
2645 EXPORT_SYMBOL(wx_setup_resources);
2646 
2647 /**
2648  * wx_get_stats64 - Get System Network Statistics
2649  * @netdev: network interface device structure
2650  * @stats: storage space for 64bit statistics
2651  */
2652 void wx_get_stats64(struct net_device *netdev,
2653 		    struct rtnl_link_stats64 *stats)
2654 {
2655 	struct wx *wx = netdev_priv(netdev);
2656 	struct wx_hw_stats *hwstats;
2657 	int i;
2658 
2659 	wx_update_stats(wx);
2660 
2661 	rcu_read_lock();
2662 	for (i = 0; i < wx->num_rx_queues; i++) {
2663 		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2664 		u64 bytes, packets;
2665 		unsigned int start;
2666 
2667 		if (ring) {
2668 			do {
2669 				start = u64_stats_fetch_begin(&ring->syncp);
2670 				packets = ring->stats.packets;
2671 				bytes   = ring->stats.bytes;
2672 			} while (u64_stats_fetch_retry(&ring->syncp, start));
2673 			stats->rx_packets += packets;
2674 			stats->rx_bytes   += bytes;
2675 		}
2676 	}
2677 
2678 	for (i = 0; i < wx->num_tx_queues; i++) {
2679 		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2680 		u64 bytes, packets;
2681 		unsigned int start;
2682 
2683 		if (ring) {
2684 			do {
2685 				start = u64_stats_fetch_begin(&ring->syncp);
2686 				packets = ring->stats.packets;
2687 				bytes   = ring->stats.bytes;
2688 			} while (u64_stats_fetch_retry(&ring->syncp,
2689 							   start));
2690 			stats->tx_packets += packets;
2691 			stats->tx_bytes   += bytes;
2692 		}
2693 	}
2694 
2695 	rcu_read_unlock();
2696 
2697 	hwstats = &wx->stats;
2698 	stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
2699 	stats->multicast = hwstats->qmprc;
2700 	stats->rx_length_errors = hwstats->rlec;
2701 	stats->rx_crc_errors = hwstats->crcerrs;
2702 }
2703 EXPORT_SYMBOL(wx_get_stats64);
2704 
2705 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2706 {
2707 	netdev_features_t changed = netdev->features ^ features;
2708 	struct wx *wx = netdev_priv(netdev);
2709 	bool need_reset = false;
2710 
2711 	if (features & NETIF_F_RXHASH) {
2712 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2713 		      WX_RDB_RA_CTL_RSS_EN);
2714 		wx->rss_enabled = true;
2715 	} else {
2716 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2717 		wx->rss_enabled = false;
2718 	}
2719 
2720 	netdev->features = features;
2721 
2722 	if (wx->mac.type == wx_mac_sp && changed & NETIF_F_HW_VLAN_CTAG_RX)
2723 		wx->do_reset(netdev);
2724 	else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER))
2725 		wx_set_rx_mode(netdev);
2726 
2727 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
2728 		return 0;
2729 
2730 	/* Check if Flow Director n-tuple support was enabled or disabled.  If
2731 	 * the state changed, we need to reset.
2732 	 */
2733 	switch (features & NETIF_F_NTUPLE) {
2734 	case NETIF_F_NTUPLE:
2735 		/* turn off ATR, enable perfect filters and reset */
2736 		if (!(test_and_set_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
2737 			need_reset = true;
2738 
2739 		clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
2740 		break;
2741 	default:
2742 		/* turn off perfect filters, enable ATR and reset */
2743 		if (test_and_clear_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
2744 			need_reset = true;
2745 
2746 		/* We cannot enable ATR if RSS is disabled */
2747 		if (wx->ring_feature[RING_F_RSS].limit <= 1)
2748 			break;
2749 
2750 		set_bit(WX_FLAG_FDIR_HASH, wx->flags);
2751 		break;
2752 	}
2753 
2754 	if (need_reset)
2755 		wx->do_reset(netdev);
2756 
2757 	return 0;
2758 }
2759 EXPORT_SYMBOL(wx_set_features);
2760 
2761 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
2762 					 NETIF_F_HW_VLAN_STAG_RX)
2763 
2764 #define NETIF_VLAN_INSERTION_FEATURES	(NETIF_F_HW_VLAN_CTAG_TX | \
2765 					 NETIF_F_HW_VLAN_STAG_TX)
2766 
2767 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
2768 					 NETIF_F_HW_VLAN_STAG_FILTER)
2769 
2770 netdev_features_t wx_fix_features(struct net_device *netdev,
2771 				  netdev_features_t features)
2772 {
2773 	netdev_features_t changed = netdev->features ^ features;
2774 	struct wx *wx = netdev_priv(netdev);
2775 
2776 	if (changed & NETIF_VLAN_STRIPPING_FEATURES) {
2777 		if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES &&
2778 		    (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) {
2779 			features &= ~NETIF_VLAN_STRIPPING_FEATURES;
2780 			features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES;
2781 			wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off.");
2782 		}
2783 	}
2784 
2785 	if (changed & NETIF_VLAN_INSERTION_FEATURES) {
2786 		if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES &&
2787 		    (features & NETIF_VLAN_INSERTION_FEATURES) != 0) {
2788 			features &= ~NETIF_VLAN_INSERTION_FEATURES;
2789 			features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES;
2790 			wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off.");
2791 		}
2792 	}
2793 
2794 	if (changed & NETIF_VLAN_FILTERING_FEATURES) {
2795 		if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES &&
2796 		    (features & NETIF_VLAN_FILTERING_FEATURES) != 0) {
2797 			features &= ~NETIF_VLAN_FILTERING_FEATURES;
2798 			features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES;
2799 			wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off.");
2800 		}
2801 	}
2802 
2803 	return features;
2804 }
2805 EXPORT_SYMBOL(wx_fix_features);
2806 
2807 void wx_set_ring(struct wx *wx, u32 new_tx_count,
2808 		 u32 new_rx_count, struct wx_ring *temp_ring)
2809 {
2810 	int i, err = 0;
2811 
2812 	/* Setup new Tx resources and free the old Tx resources in that order.
2813 	 * We can then assign the new resources to the rings via a memcpy.
2814 	 * The advantage to this approach is that we are guaranteed to still
2815 	 * have resources even in the case of an allocation failure.
2816 	 */
2817 	if (new_tx_count != wx->tx_ring_count) {
2818 		for (i = 0; i < wx->num_tx_queues; i++) {
2819 			memcpy(&temp_ring[i], wx->tx_ring[i],
2820 			       sizeof(struct wx_ring));
2821 
2822 			temp_ring[i].count = new_tx_count;
2823 			err = wx_setup_tx_resources(&temp_ring[i]);
2824 			if (err) {
2825 				wx_err(wx, "setup new tx resources failed, keep using the old config\n");
2826 				while (i) {
2827 					i--;
2828 					wx_free_tx_resources(&temp_ring[i]);
2829 				}
2830 				return;
2831 			}
2832 		}
2833 
2834 		for (i = 0; i < wx->num_tx_queues; i++) {
2835 			wx_free_tx_resources(wx->tx_ring[i]);
2836 
2837 			memcpy(wx->tx_ring[i], &temp_ring[i],
2838 			       sizeof(struct wx_ring));
2839 		}
2840 
2841 		wx->tx_ring_count = new_tx_count;
2842 	}
2843 
2844 	/* Repeat the process for the Rx rings if needed */
2845 	if (new_rx_count != wx->rx_ring_count) {
2846 		for (i = 0; i < wx->num_rx_queues; i++) {
2847 			memcpy(&temp_ring[i], wx->rx_ring[i],
2848 			       sizeof(struct wx_ring));
2849 
2850 			temp_ring[i].count = new_rx_count;
2851 			err = wx_setup_rx_resources(&temp_ring[i]);
2852 			if (err) {
2853 				wx_err(wx, "setup new rx resources failed, keep using the old config\n");
2854 				while (i) {
2855 					i--;
2856 					wx_free_rx_resources(&temp_ring[i]);
2857 				}
2858 				return;
2859 			}
2860 		}
2861 
2862 		for (i = 0; i < wx->num_rx_queues; i++) {
2863 			wx_free_rx_resources(wx->rx_ring[i]);
2864 			memcpy(wx->rx_ring[i], &temp_ring[i],
2865 			       sizeof(struct wx_ring));
2866 		}
2867 
2868 		wx->rx_ring_count = new_rx_count;
2869 	}
2870 }
2871 EXPORT_SYMBOL(wx_set_ring);
2872 
2873 MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers.");
2874 MODULE_LICENSE("GPL");
2875