1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <net/ip6_checksum.h> 6 #include <net/page_pool/helpers.h> 7 #include <net/inet_ecn.h> 8 #include <linux/iopoll.h> 9 #include <linux/sctp.h> 10 #include <linux/pci.h> 11 #include <net/tcp.h> 12 #include <net/ip.h> 13 14 #include "wx_type.h" 15 #include "wx_lib.h" 16 #include "wx_hw.h" 17 18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */ 19 static struct wx_dec_ptype wx_ptype_lookup[256] = { 20 /* L2: mac */ 21 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 22 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), 23 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 24 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 25 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 26 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 27 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 28 29 /* L2: ethertype filter */ 30 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 31 32 /* L3: ip non-tunnel */ 33 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), 34 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), 35 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), 36 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), 37 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), 38 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), 39 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), 40 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), 41 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), 42 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), 43 44 /* L2: fcoe */ 45 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 46 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 47 48 /* IPv4 --> IPv4/IPv6 */ 49 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), 50 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), 51 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), 52 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), 53 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), 54 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), 55 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), 56 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), 57 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), 58 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), 59 60 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ 61 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), 62 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), 63 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), 64 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), 65 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), 66 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), 67 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), 68 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), 69 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), 70 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), 71 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), 72 73 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ 74 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), 75 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), 76 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), 77 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), 78 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), 79 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), 80 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), 81 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), 82 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), 83 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), 84 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), 85 86 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ 87 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), 88 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), 89 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), 90 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), 91 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), 92 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), 93 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), 94 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), 95 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), 96 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), 97 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), 98 99 /* IPv6 --> IPv4/IPv6 */ 100 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), 101 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), 102 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), 103 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), 104 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), 105 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), 106 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), 107 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), 108 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), 109 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), 110 111 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ 112 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), 113 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), 114 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), 115 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), 116 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), 117 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), 118 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), 119 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), 120 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), 121 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), 122 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), 123 124 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ 125 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), 126 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), 127 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), 128 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), 129 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), 130 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), 131 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), 132 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), 133 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), 134 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), 135 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), 136 137 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ 138 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), 139 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), 140 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), 141 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), 142 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), 143 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), 144 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), 145 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), 146 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), 147 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), 148 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), 149 }; 150 151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype) 152 { 153 return wx_ptype_lookup[ptype]; 154 } 155 156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ 157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, 158 const u32 stat_err_bits) 159 { 160 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); 161 } 162 163 static bool wx_can_reuse_rx_page(struct wx_rx_buffer *rx_buffer, 164 int rx_buffer_pgcnt) 165 { 166 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 167 struct page *page = rx_buffer->page; 168 169 /* avoid re-using remote and pfmemalloc pages */ 170 if (!dev_page_is_reusable(page)) 171 return false; 172 173 #if (PAGE_SIZE < 8192) 174 /* if we are only owner of page we can reuse it */ 175 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 176 return false; 177 #endif 178 179 /* If we have drained the page fragment pool we need to update 180 * the pagecnt_bias and page count so that we fully restock the 181 * number of references the driver holds. 182 */ 183 if (unlikely(pagecnt_bias == 1)) { 184 page_ref_add(page, USHRT_MAX - 1); 185 rx_buffer->pagecnt_bias = USHRT_MAX; 186 } 187 188 return true; 189 } 190 191 /** 192 * wx_reuse_rx_page - page flip buffer and store it back on the ring 193 * @rx_ring: rx descriptor ring to store buffers on 194 * @old_buff: donor buffer to have page reused 195 * 196 * Synchronizes page for reuse by the adapter 197 **/ 198 static void wx_reuse_rx_page(struct wx_ring *rx_ring, 199 struct wx_rx_buffer *old_buff) 200 { 201 u16 nta = rx_ring->next_to_alloc; 202 struct wx_rx_buffer *new_buff; 203 204 new_buff = &rx_ring->rx_buffer_info[nta]; 205 206 /* update, and store next to alloc */ 207 nta++; 208 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 209 210 /* transfer page from old buffer to new buffer */ 211 new_buff->page = old_buff->page; 212 new_buff->page_dma = old_buff->page_dma; 213 new_buff->page_offset = old_buff->page_offset; 214 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 215 } 216 217 static void wx_dma_sync_frag(struct wx_ring *rx_ring, 218 struct wx_rx_buffer *rx_buffer) 219 { 220 struct sk_buff *skb = rx_buffer->skb; 221 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 222 223 dma_sync_single_range_for_cpu(rx_ring->dev, 224 WX_CB(skb)->dma, 225 skb_frag_off(frag), 226 skb_frag_size(frag), 227 DMA_FROM_DEVICE); 228 229 /* If the page was released, just unmap it. */ 230 if (unlikely(WX_CB(skb)->page_released)) 231 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 232 } 233 234 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, 235 union wx_rx_desc *rx_desc, 236 struct sk_buff **skb, 237 int *rx_buffer_pgcnt) 238 { 239 struct wx_rx_buffer *rx_buffer; 240 unsigned int size; 241 242 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 243 size = le16_to_cpu(rx_desc->wb.upper.length); 244 245 #if (PAGE_SIZE < 8192) 246 *rx_buffer_pgcnt = page_count(rx_buffer->page); 247 #else 248 *rx_buffer_pgcnt = 0; 249 #endif 250 251 prefetchw(rx_buffer->page); 252 *skb = rx_buffer->skb; 253 254 /* Delay unmapping of the first packet. It carries the header 255 * information, HW may still access the header after the writeback. 256 * Only unmap it when EOP is reached 257 */ 258 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { 259 if (!*skb) 260 goto skip_sync; 261 } else { 262 if (*skb) 263 wx_dma_sync_frag(rx_ring, rx_buffer); 264 } 265 266 /* we are reusing so sync this buffer for CPU use */ 267 dma_sync_single_range_for_cpu(rx_ring->dev, 268 rx_buffer->dma, 269 rx_buffer->page_offset, 270 size, 271 DMA_FROM_DEVICE); 272 skip_sync: 273 rx_buffer->pagecnt_bias--; 274 275 return rx_buffer; 276 } 277 278 static void wx_put_rx_buffer(struct wx_ring *rx_ring, 279 struct wx_rx_buffer *rx_buffer, 280 struct sk_buff *skb, 281 int rx_buffer_pgcnt) 282 { 283 if (wx_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 284 /* hand second half of page back to the ring */ 285 wx_reuse_rx_page(rx_ring, rx_buffer); 286 } else { 287 if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) 288 /* the page has been released from the ring */ 289 WX_CB(skb)->page_released = true; 290 else 291 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 292 293 __page_frag_cache_drain(rx_buffer->page, 294 rx_buffer->pagecnt_bias); 295 } 296 297 /* clear contents of rx_buffer */ 298 rx_buffer->page = NULL; 299 rx_buffer->skb = NULL; 300 } 301 302 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, 303 struct wx_rx_buffer *rx_buffer, 304 union wx_rx_desc *rx_desc) 305 { 306 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 307 #if (PAGE_SIZE < 8192) 308 unsigned int truesize = WX_RX_BUFSZ; 309 #else 310 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 311 #endif 312 struct sk_buff *skb = rx_buffer->skb; 313 314 if (!skb) { 315 void *page_addr = page_address(rx_buffer->page) + 316 rx_buffer->page_offset; 317 318 /* prefetch first cache line of first page */ 319 prefetch(page_addr); 320 #if L1_CACHE_BYTES < 128 321 prefetch(page_addr + L1_CACHE_BYTES); 322 #endif 323 324 /* allocate a skb to store the frags */ 325 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); 326 if (unlikely(!skb)) 327 return NULL; 328 329 /* we will be copying header into skb->data in 330 * pskb_may_pull so it is in our interest to prefetch 331 * it now to avoid a possible cache miss 332 */ 333 prefetchw(skb->data); 334 335 if (size <= WX_RXBUFFER_256) { 336 memcpy(__skb_put(skb, size), page_addr, 337 ALIGN(size, sizeof(long))); 338 rx_buffer->pagecnt_bias++; 339 340 return skb; 341 } 342 343 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) 344 WX_CB(skb)->dma = rx_buffer->dma; 345 346 skb_add_rx_frag(skb, 0, rx_buffer->page, 347 rx_buffer->page_offset, 348 size, truesize); 349 goto out; 350 351 } else { 352 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 353 rx_buffer->page_offset, size, truesize); 354 } 355 356 out: 357 #if (PAGE_SIZE < 8192) 358 /* flip page offset to other buffer */ 359 rx_buffer->page_offset ^= truesize; 360 #else 361 /* move offset up to the next cache line */ 362 rx_buffer->page_offset += truesize; 363 #endif 364 365 return skb; 366 } 367 368 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, 369 struct wx_rx_buffer *bi) 370 { 371 struct page *page = bi->page; 372 dma_addr_t dma; 373 374 /* since we are recycling buffers we should seldom need to alloc */ 375 if (likely(page)) 376 return true; 377 378 page = page_pool_dev_alloc_pages(rx_ring->page_pool); 379 WARN_ON(!page); 380 dma = page_pool_get_dma_addr(page); 381 382 bi->page_dma = dma; 383 bi->page = page; 384 bi->page_offset = 0; 385 page_ref_add(page, USHRT_MAX - 1); 386 bi->pagecnt_bias = USHRT_MAX; 387 388 return true; 389 } 390 391 /** 392 * wx_alloc_rx_buffers - Replace used receive buffers 393 * @rx_ring: ring to place buffers on 394 * @cleaned_count: number of buffers to replace 395 **/ 396 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) 397 { 398 u16 i = rx_ring->next_to_use; 399 union wx_rx_desc *rx_desc; 400 struct wx_rx_buffer *bi; 401 402 /* nothing to do */ 403 if (!cleaned_count) 404 return; 405 406 rx_desc = WX_RX_DESC(rx_ring, i); 407 bi = &rx_ring->rx_buffer_info[i]; 408 i -= rx_ring->count; 409 410 do { 411 if (!wx_alloc_mapped_page(rx_ring, bi)) 412 break; 413 414 /* sync the buffer for use by the device */ 415 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 416 bi->page_offset, 417 WX_RX_BUFSZ, 418 DMA_FROM_DEVICE); 419 420 rx_desc->read.pkt_addr = 421 cpu_to_le64(bi->page_dma + bi->page_offset); 422 423 rx_desc++; 424 bi++; 425 i++; 426 if (unlikely(!i)) { 427 rx_desc = WX_RX_DESC(rx_ring, 0); 428 bi = rx_ring->rx_buffer_info; 429 i -= rx_ring->count; 430 } 431 432 /* clear the status bits for the next_to_use descriptor */ 433 rx_desc->wb.upper.status_error = 0; 434 435 cleaned_count--; 436 } while (cleaned_count); 437 438 i += rx_ring->count; 439 440 if (rx_ring->next_to_use != i) { 441 rx_ring->next_to_use = i; 442 /* update next to alloc since we have filled the ring */ 443 rx_ring->next_to_alloc = i; 444 445 /* Force memory writes to complete before letting h/w 446 * know there are new descriptors to fetch. (Only 447 * applicable for weak-ordered memory model archs, 448 * such as IA-64). 449 */ 450 wmb(); 451 writel(i, rx_ring->tail); 452 } 453 } 454 455 u16 wx_desc_unused(struct wx_ring *ring) 456 { 457 u16 ntc = ring->next_to_clean; 458 u16 ntu = ring->next_to_use; 459 460 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; 461 } 462 463 /** 464 * wx_is_non_eop - process handling of non-EOP buffers 465 * @rx_ring: Rx ring being processed 466 * @rx_desc: Rx descriptor for current buffer 467 * @skb: Current socket buffer containing buffer in progress 468 * 469 * This function updates next to clean. If the buffer is an EOP buffer 470 * this function exits returning false, otherwise it will place the 471 * sk_buff in the next buffer to be chained and return true indicating 472 * that this is in fact a non-EOP buffer. 473 **/ 474 static bool wx_is_non_eop(struct wx_ring *rx_ring, 475 union wx_rx_desc *rx_desc, 476 struct sk_buff *skb) 477 { 478 u32 ntc = rx_ring->next_to_clean + 1; 479 480 /* fetch, update, and store next to clean */ 481 ntc = (ntc < rx_ring->count) ? ntc : 0; 482 rx_ring->next_to_clean = ntc; 483 484 prefetch(WX_RX_DESC(rx_ring, ntc)); 485 486 /* if we are the last buffer then there is nothing else to do */ 487 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) 488 return false; 489 490 rx_ring->rx_buffer_info[ntc].skb = skb; 491 rx_ring->rx_stats.non_eop_descs++; 492 493 return true; 494 } 495 496 static void wx_pull_tail(struct sk_buff *skb) 497 { 498 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 499 unsigned int pull_len; 500 unsigned char *va; 501 502 /* it is valid to use page_address instead of kmap since we are 503 * working with pages allocated out of the lomem pool per 504 * alloc_page(GFP_ATOMIC) 505 */ 506 va = skb_frag_address(frag); 507 508 /* we need the header to contain the greater of either ETH_HLEN or 509 * 60 bytes if the skb->len is less than 60 for skb_pad. 510 */ 511 pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); 512 513 /* align pull length to size of long to optimize memcpy performance */ 514 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 515 516 /* update all of the pointers */ 517 skb_frag_size_sub(frag, pull_len); 518 skb_frag_off_add(frag, pull_len); 519 skb->data_len -= pull_len; 520 skb->tail += pull_len; 521 } 522 523 /** 524 * wx_cleanup_headers - Correct corrupted or empty headers 525 * @rx_ring: rx descriptor ring packet is being transacted on 526 * @rx_desc: pointer to the EOP Rx descriptor 527 * @skb: pointer to current skb being fixed 528 * 529 * Check for corrupted packet headers caused by senders on the local L2 530 * embedded NIC switch not setting up their Tx Descriptors right. These 531 * should be very rare. 532 * 533 * Also address the case where we are pulling data in on pages only 534 * and as such no data is present in the skb header. 535 * 536 * In addition if skb is not at least 60 bytes we need to pad it so that 537 * it is large enough to qualify as a valid Ethernet frame. 538 * 539 * Returns true if an error was encountered and skb was freed. 540 **/ 541 static bool wx_cleanup_headers(struct wx_ring *rx_ring, 542 union wx_rx_desc *rx_desc, 543 struct sk_buff *skb) 544 { 545 struct net_device *netdev = rx_ring->netdev; 546 547 /* verify that the packet does not have any known errors */ 548 if (!netdev || 549 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && 550 !(netdev->features & NETIF_F_RXALL))) { 551 dev_kfree_skb_any(skb); 552 return true; 553 } 554 555 /* place header in linear portion of buffer */ 556 if (!skb_headlen(skb)) 557 wx_pull_tail(skb); 558 559 /* if eth_skb_pad returns an error the skb was freed */ 560 if (eth_skb_pad(skb)) 561 return true; 562 563 return false; 564 } 565 566 static void wx_rx_hash(struct wx_ring *ring, 567 union wx_rx_desc *rx_desc, 568 struct sk_buff *skb) 569 { 570 u16 rss_type; 571 572 if (!(ring->netdev->features & NETIF_F_RXHASH)) 573 return; 574 575 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 576 WX_RXD_RSSTYPE_MASK; 577 578 if (!rss_type) 579 return; 580 581 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 582 (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 583 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 584 } 585 586 /** 587 * wx_rx_checksum - indicate in skb if hw indicated a good cksum 588 * @ring: structure containing ring specific data 589 * @rx_desc: current Rx descriptor being processed 590 * @skb: skb currently being received and modified 591 **/ 592 static void wx_rx_checksum(struct wx_ring *ring, 593 union wx_rx_desc *rx_desc, 594 struct sk_buff *skb) 595 { 596 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); 597 598 skb_checksum_none_assert(skb); 599 /* Rx csum disabled */ 600 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 601 return; 602 603 /* if IPv4 header checksum error */ 604 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && 605 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || 606 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && 607 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { 608 ring->rx_stats.csum_err++; 609 return; 610 } 611 612 /* L4 checksum offload flag must set for the below code to work */ 613 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) 614 return; 615 616 /* Hardware can't guarantee csum if IPv6 Dest Header found */ 617 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc)) 618 return; 619 620 /* if L4 checksum error */ 621 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { 622 ring->rx_stats.csum_err++; 623 return; 624 } 625 626 /* It must be a TCP or UDP or SCTP packet with a valid checksum */ 627 skb->ip_summed = CHECKSUM_UNNECESSARY; 628 629 /* If there is an outer header present that might contain a checksum 630 * we need to bump the checksum level by 1 to reflect the fact that 631 * we are indicating we validated the inner checksum. 632 */ 633 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) 634 __skb_incr_checksum_unnecessary(skb); 635 ring->rx_stats.csum_good_cnt++; 636 } 637 638 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, 639 struct sk_buff *skb) 640 { 641 u16 ethertype; 642 u8 idx = 0; 643 644 if ((ring->netdev->features & 645 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && 646 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { 647 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 648 0x1c0) >> 6; 649 ethertype = ring->q_vector->wx->tpid[idx]; 650 __vlan_hwaccel_put_tag(skb, htons(ethertype), 651 le16_to_cpu(rx_desc->wb.upper.vlan)); 652 } 653 } 654 655 /** 656 * wx_process_skb_fields - Populate skb header fields from Rx descriptor 657 * @rx_ring: rx descriptor ring packet is being transacted on 658 * @rx_desc: pointer to the EOP Rx descriptor 659 * @skb: pointer to current skb being populated 660 * 661 * This function checks the ring, descriptor, and packet information in 662 * order to populate the hash, checksum, protocol, and 663 * other fields within the skb. 664 **/ 665 static void wx_process_skb_fields(struct wx_ring *rx_ring, 666 union wx_rx_desc *rx_desc, 667 struct sk_buff *skb) 668 { 669 wx_rx_hash(rx_ring, rx_desc, skb); 670 wx_rx_checksum(rx_ring, rx_desc, skb); 671 wx_rx_vlan(rx_ring, rx_desc, skb); 672 skb_record_rx_queue(skb, rx_ring->queue_index); 673 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 674 } 675 676 /** 677 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 678 * @q_vector: structure containing interrupt and ring information 679 * @rx_ring: rx descriptor ring to transact packets on 680 * @budget: Total limit on number of packets to process 681 * 682 * This function provides a "bounce buffer" approach to Rx interrupt 683 * processing. The advantage to this is that on systems that have 684 * expensive overhead for IOMMU access this provides a means of avoiding 685 * it by maintaining the mapping of the page to the system. 686 * 687 * Returns amount of work completed. 688 **/ 689 static int wx_clean_rx_irq(struct wx_q_vector *q_vector, 690 struct wx_ring *rx_ring, 691 int budget) 692 { 693 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 694 u16 cleaned_count = wx_desc_unused(rx_ring); 695 696 do { 697 struct wx_rx_buffer *rx_buffer; 698 union wx_rx_desc *rx_desc; 699 struct sk_buff *skb; 700 int rx_buffer_pgcnt; 701 702 /* return some buffers to hardware, one at a time is too slow */ 703 if (cleaned_count >= WX_RX_BUFFER_WRITE) { 704 wx_alloc_rx_buffers(rx_ring, cleaned_count); 705 cleaned_count = 0; 706 } 707 708 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); 709 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) 710 break; 711 712 /* This memory barrier is needed to keep us from reading 713 * any other fields out of the rx_desc until we know the 714 * descriptor has been written back 715 */ 716 dma_rmb(); 717 718 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); 719 720 /* retrieve a buffer from the ring */ 721 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); 722 723 /* exit if we failed to retrieve a buffer */ 724 if (!skb) { 725 rx_ring->rx_stats.alloc_rx_buff_failed++; 726 rx_buffer->pagecnt_bias++; 727 break; 728 } 729 730 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); 731 cleaned_count++; 732 733 /* place incomplete frames back on ring for completion */ 734 if (wx_is_non_eop(rx_ring, rx_desc, skb)) 735 continue; 736 737 /* verify the packet layout is correct */ 738 if (wx_cleanup_headers(rx_ring, rx_desc, skb)) 739 continue; 740 741 /* probably a little skewed due to removing CRC */ 742 total_rx_bytes += skb->len; 743 744 /* populate checksum, timestamp, VLAN, and protocol */ 745 wx_process_skb_fields(rx_ring, rx_desc, skb); 746 napi_gro_receive(&q_vector->napi, skb); 747 748 /* update budget accounting */ 749 total_rx_packets++; 750 } while (likely(total_rx_packets < budget)); 751 752 u64_stats_update_begin(&rx_ring->syncp); 753 rx_ring->stats.packets += total_rx_packets; 754 rx_ring->stats.bytes += total_rx_bytes; 755 u64_stats_update_end(&rx_ring->syncp); 756 q_vector->rx.total_packets += total_rx_packets; 757 q_vector->rx.total_bytes += total_rx_bytes; 758 759 return total_rx_packets; 760 } 761 762 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) 763 { 764 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 765 } 766 767 /** 768 * wx_clean_tx_irq - Reclaim resources after transmit completes 769 * @q_vector: structure containing interrupt and ring information 770 * @tx_ring: tx ring to clean 771 * @napi_budget: Used to determine if we are in netpoll 772 **/ 773 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, 774 struct wx_ring *tx_ring, int napi_budget) 775 { 776 unsigned int budget = q_vector->wx->tx_work_limit; 777 unsigned int total_bytes = 0, total_packets = 0; 778 unsigned int i = tx_ring->next_to_clean; 779 struct wx_tx_buffer *tx_buffer; 780 union wx_tx_desc *tx_desc; 781 782 if (!netif_carrier_ok(tx_ring->netdev)) 783 return true; 784 785 tx_buffer = &tx_ring->tx_buffer_info[i]; 786 tx_desc = WX_TX_DESC(tx_ring, i); 787 i -= tx_ring->count; 788 789 do { 790 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; 791 792 /* if next_to_watch is not set then there is no work pending */ 793 if (!eop_desc) 794 break; 795 796 /* prevent any other reads prior to eop_desc */ 797 smp_rmb(); 798 799 /* if DD is not set pending work has not been completed */ 800 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) 801 break; 802 803 /* clear next_to_watch to prevent false hangs */ 804 tx_buffer->next_to_watch = NULL; 805 806 /* update the statistics for this packet */ 807 total_bytes += tx_buffer->bytecount; 808 total_packets += tx_buffer->gso_segs; 809 810 /* free the skb */ 811 napi_consume_skb(tx_buffer->skb, napi_budget); 812 813 /* unmap skb header data */ 814 dma_unmap_single(tx_ring->dev, 815 dma_unmap_addr(tx_buffer, dma), 816 dma_unmap_len(tx_buffer, len), 817 DMA_TO_DEVICE); 818 819 /* clear tx_buffer data */ 820 dma_unmap_len_set(tx_buffer, len, 0); 821 822 /* unmap remaining buffers */ 823 while (tx_desc != eop_desc) { 824 tx_buffer++; 825 tx_desc++; 826 i++; 827 if (unlikely(!i)) { 828 i -= tx_ring->count; 829 tx_buffer = tx_ring->tx_buffer_info; 830 tx_desc = WX_TX_DESC(tx_ring, 0); 831 } 832 833 /* unmap any remaining paged data */ 834 if (dma_unmap_len(tx_buffer, len)) { 835 dma_unmap_page(tx_ring->dev, 836 dma_unmap_addr(tx_buffer, dma), 837 dma_unmap_len(tx_buffer, len), 838 DMA_TO_DEVICE); 839 dma_unmap_len_set(tx_buffer, len, 0); 840 } 841 } 842 843 /* move us one more past the eop_desc for start of next pkt */ 844 tx_buffer++; 845 tx_desc++; 846 i++; 847 if (unlikely(!i)) { 848 i -= tx_ring->count; 849 tx_buffer = tx_ring->tx_buffer_info; 850 tx_desc = WX_TX_DESC(tx_ring, 0); 851 } 852 853 /* issue prefetch for next Tx descriptor */ 854 prefetch(tx_desc); 855 856 /* update budget accounting */ 857 budget--; 858 } while (likely(budget)); 859 860 i += tx_ring->count; 861 tx_ring->next_to_clean = i; 862 u64_stats_update_begin(&tx_ring->syncp); 863 tx_ring->stats.bytes += total_bytes; 864 tx_ring->stats.packets += total_packets; 865 u64_stats_update_end(&tx_ring->syncp); 866 q_vector->tx.total_bytes += total_bytes; 867 q_vector->tx.total_packets += total_packets; 868 869 netdev_tx_completed_queue(wx_txring_txq(tx_ring), 870 total_packets, total_bytes); 871 872 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 873 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 874 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 875 /* Make sure that anybody stopping the queue after this 876 * sees the new next_to_clean. 877 */ 878 smp_mb(); 879 880 if (__netif_subqueue_stopped(tx_ring->netdev, 881 tx_ring->queue_index) && 882 netif_running(tx_ring->netdev)) { 883 netif_wake_subqueue(tx_ring->netdev, 884 tx_ring->queue_index); 885 ++tx_ring->tx_stats.restart_queue; 886 } 887 } 888 889 return !!budget; 890 } 891 892 /** 893 * wx_poll - NAPI polling RX/TX cleanup routine 894 * @napi: napi struct with our devices info in it 895 * @budget: amount of work driver is allowed to do this pass, in packets 896 * 897 * This function will clean all queues associated with a q_vector. 898 **/ 899 static int wx_poll(struct napi_struct *napi, int budget) 900 { 901 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); 902 int per_ring_budget, work_done = 0; 903 struct wx *wx = q_vector->wx; 904 bool clean_complete = true; 905 struct wx_ring *ring; 906 907 wx_for_each_ring(ring, q_vector->tx) { 908 if (!wx_clean_tx_irq(q_vector, ring, budget)) 909 clean_complete = false; 910 } 911 912 /* Exit if we are called by netpoll */ 913 if (budget <= 0) 914 return budget; 915 916 /* attempt to distribute budget to each queue fairly, but don't allow 917 * the budget to go below 1 because we'll exit polling 918 */ 919 if (q_vector->rx.count > 1) 920 per_ring_budget = max(budget / q_vector->rx.count, 1); 921 else 922 per_ring_budget = budget; 923 924 wx_for_each_ring(ring, q_vector->rx) { 925 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); 926 927 work_done += cleaned; 928 if (cleaned >= per_ring_budget) 929 clean_complete = false; 930 } 931 932 /* If all work not completed, return budget and keep polling */ 933 if (!clean_complete) 934 return budget; 935 936 /* all work done, exit the polling mode */ 937 if (likely(napi_complete_done(napi, work_done))) { 938 if (netif_running(wx->netdev)) 939 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); 940 } 941 942 return min(work_done, budget - 1); 943 } 944 945 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) 946 { 947 if (likely(wx_desc_unused(tx_ring) >= size)) 948 return 0; 949 950 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 951 952 /* For the next check */ 953 smp_mb(); 954 955 /* We need to check again in a case another CPU has just 956 * made room available. 957 */ 958 if (likely(wx_desc_unused(tx_ring) < size)) 959 return -EBUSY; 960 961 /* A reprieve! - use start_queue because it doesn't call schedule */ 962 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 963 ++tx_ring->tx_stats.restart_queue; 964 965 return 0; 966 } 967 968 static u32 wx_tx_cmd_type(u32 tx_flags) 969 { 970 /* set type for advanced descriptor with frame checksum insertion */ 971 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; 972 973 /* set HW vlan bit if vlan is present */ 974 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); 975 /* set segmentation enable bits for TSO/FSO */ 976 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); 977 /* set timestamp bit if present */ 978 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); 979 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); 980 981 return cmd_type; 982 } 983 984 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, 985 u32 tx_flags, unsigned int paylen) 986 { 987 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; 988 989 /* enable L4 checksum for TSO and TX checksum offload */ 990 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); 991 /* enable IPv4 checksum for TSO */ 992 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); 993 /* enable outer IPv4 checksum for TSO */ 994 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, 995 WX_TXD_EIPCS); 996 /* Check Context must be set if Tx switch is enabled, which it 997 * always is for case where virtual functions are running 998 */ 999 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); 1000 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, 1001 WX_TXD_IPSEC); 1002 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1003 } 1004 1005 static void wx_tx_map(struct wx_ring *tx_ring, 1006 struct wx_tx_buffer *first, 1007 const u8 hdr_len) 1008 { 1009 struct sk_buff *skb = first->skb; 1010 struct wx_tx_buffer *tx_buffer; 1011 u32 tx_flags = first->tx_flags; 1012 u16 i = tx_ring->next_to_use; 1013 unsigned int data_len, size; 1014 union wx_tx_desc *tx_desc; 1015 skb_frag_t *frag; 1016 dma_addr_t dma; 1017 u32 cmd_type; 1018 1019 cmd_type = wx_tx_cmd_type(tx_flags); 1020 tx_desc = WX_TX_DESC(tx_ring, i); 1021 wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 1022 1023 size = skb_headlen(skb); 1024 data_len = skb->data_len; 1025 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1026 1027 tx_buffer = first; 1028 1029 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1030 if (dma_mapping_error(tx_ring->dev, dma)) 1031 goto dma_error; 1032 1033 /* record length, and DMA address */ 1034 dma_unmap_len_set(tx_buffer, len, size); 1035 dma_unmap_addr_set(tx_buffer, dma, dma); 1036 1037 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1038 1039 while (unlikely(size > WX_MAX_DATA_PER_TXD)) { 1040 tx_desc->read.cmd_type_len = 1041 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); 1042 1043 i++; 1044 tx_desc++; 1045 if (i == tx_ring->count) { 1046 tx_desc = WX_TX_DESC(tx_ring, 0); 1047 i = 0; 1048 } 1049 tx_desc->read.olinfo_status = 0; 1050 1051 dma += WX_MAX_DATA_PER_TXD; 1052 size -= WX_MAX_DATA_PER_TXD; 1053 1054 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1055 } 1056 1057 if (likely(!data_len)) 1058 break; 1059 1060 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1061 1062 i++; 1063 tx_desc++; 1064 if (i == tx_ring->count) { 1065 tx_desc = WX_TX_DESC(tx_ring, 0); 1066 i = 0; 1067 } 1068 tx_desc->read.olinfo_status = 0; 1069 1070 size = skb_frag_size(frag); 1071 1072 data_len -= size; 1073 1074 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1075 DMA_TO_DEVICE); 1076 1077 tx_buffer = &tx_ring->tx_buffer_info[i]; 1078 } 1079 1080 /* write last descriptor with RS and EOP bits */ 1081 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; 1082 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1083 1084 netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); 1085 1086 skb_tx_timestamp(skb); 1087 1088 /* Force memory writes to complete before letting h/w know there 1089 * are new descriptors to fetch. (Only applicable for weak-ordered 1090 * memory model archs, such as IA-64). 1091 * 1092 * We also need this memory barrier to make certain all of the 1093 * status bits have been updated before next_to_watch is written. 1094 */ 1095 wmb(); 1096 1097 /* set next_to_watch value indicating a packet is present */ 1098 first->next_to_watch = tx_desc; 1099 1100 i++; 1101 if (i == tx_ring->count) 1102 i = 0; 1103 1104 tx_ring->next_to_use = i; 1105 1106 wx_maybe_stop_tx(tx_ring, DESC_NEEDED); 1107 1108 if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) 1109 writel(i, tx_ring->tail); 1110 1111 return; 1112 dma_error: 1113 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1114 1115 /* clear dma mappings for failed tx_buffer_info map */ 1116 for (;;) { 1117 tx_buffer = &tx_ring->tx_buffer_info[i]; 1118 if (dma_unmap_len(tx_buffer, len)) 1119 dma_unmap_page(tx_ring->dev, 1120 dma_unmap_addr(tx_buffer, dma), 1121 dma_unmap_len(tx_buffer, len), 1122 DMA_TO_DEVICE); 1123 dma_unmap_len_set(tx_buffer, len, 0); 1124 if (tx_buffer == first) 1125 break; 1126 if (i == 0) 1127 i += tx_ring->count; 1128 i--; 1129 } 1130 1131 dev_kfree_skb_any(first->skb); 1132 first->skb = NULL; 1133 1134 tx_ring->next_to_use = i; 1135 } 1136 1137 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, 1138 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) 1139 { 1140 struct wx_tx_context_desc *context_desc; 1141 u16 i = tx_ring->next_to_use; 1142 1143 context_desc = WX_TX_CTXTDESC(tx_ring, i); 1144 i++; 1145 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1146 1147 /* set bits to identify this as an advanced context descriptor */ 1148 type_tucmd |= WX_TXD_DTYP_CTXT; 1149 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1150 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); 1151 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1152 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1153 } 1154 1155 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr) 1156 { 1157 struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset); 1158 1159 *nexthdr = hdr->nexthdr; 1160 offset += sizeof(struct ipv6hdr); 1161 while (ipv6_ext_hdr(*nexthdr)) { 1162 struct ipv6_opt_hdr _hdr, *hp; 1163 1164 if (*nexthdr == NEXTHDR_NONE) 1165 return; 1166 hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr); 1167 if (!hp) 1168 return; 1169 if (*nexthdr == NEXTHDR_FRAGMENT) 1170 break; 1171 *nexthdr = hp->nexthdr; 1172 } 1173 } 1174 1175 union network_header { 1176 struct iphdr *ipv4; 1177 struct ipv6hdr *ipv6; 1178 void *raw; 1179 }; 1180 1181 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) 1182 { 1183 u8 tun_prot = 0, l4_prot = 0, ptype = 0; 1184 struct sk_buff *skb = first->skb; 1185 1186 if (skb->encapsulation) { 1187 union network_header hdr; 1188 1189 switch (first->protocol) { 1190 case htons(ETH_P_IP): 1191 tun_prot = ip_hdr(skb)->protocol; 1192 ptype = WX_PTYPE_TUN_IPV4; 1193 break; 1194 case htons(ETH_P_IPV6): 1195 wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot); 1196 ptype = WX_PTYPE_TUN_IPV6; 1197 break; 1198 default: 1199 return ptype; 1200 } 1201 1202 if (tun_prot == IPPROTO_IPIP) { 1203 hdr.raw = (void *)inner_ip_hdr(skb); 1204 ptype |= WX_PTYPE_PKT_IPIP; 1205 } else if (tun_prot == IPPROTO_UDP) { 1206 hdr.raw = (void *)inner_ip_hdr(skb); 1207 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1208 skb->inner_protocol != htons(ETH_P_TEB)) { 1209 ptype |= WX_PTYPE_PKT_IG; 1210 } else { 1211 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1212 == htons(ETH_P_8021Q)) 1213 ptype |= WX_PTYPE_PKT_IGMV; 1214 else 1215 ptype |= WX_PTYPE_PKT_IGM; 1216 } 1217 1218 } else if (tun_prot == IPPROTO_GRE) { 1219 hdr.raw = (void *)inner_ip_hdr(skb); 1220 if (skb->inner_protocol == htons(ETH_P_IP) || 1221 skb->inner_protocol == htons(ETH_P_IPV6)) { 1222 ptype |= WX_PTYPE_PKT_IG; 1223 } else { 1224 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1225 == htons(ETH_P_8021Q)) 1226 ptype |= WX_PTYPE_PKT_IGMV; 1227 else 1228 ptype |= WX_PTYPE_PKT_IGM; 1229 } 1230 } else { 1231 return ptype; 1232 } 1233 1234 switch (hdr.ipv4->version) { 1235 case IPVERSION: 1236 l4_prot = hdr.ipv4->protocol; 1237 break; 1238 case 6: 1239 wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot); 1240 ptype |= WX_PTYPE_PKT_IPV6; 1241 break; 1242 default: 1243 return ptype; 1244 } 1245 } else { 1246 switch (first->protocol) { 1247 case htons(ETH_P_IP): 1248 l4_prot = ip_hdr(skb)->protocol; 1249 ptype = WX_PTYPE_PKT_IP; 1250 break; 1251 case htons(ETH_P_IPV6): 1252 wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot); 1253 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; 1254 break; 1255 default: 1256 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; 1257 } 1258 } 1259 switch (l4_prot) { 1260 case IPPROTO_TCP: 1261 ptype |= WX_PTYPE_TYP_TCP; 1262 break; 1263 case IPPROTO_UDP: 1264 ptype |= WX_PTYPE_TYP_UDP; 1265 break; 1266 case IPPROTO_SCTP: 1267 ptype |= WX_PTYPE_TYP_SCTP; 1268 break; 1269 default: 1270 ptype |= WX_PTYPE_TYP_IP; 1271 break; 1272 } 1273 1274 return ptype; 1275 } 1276 1277 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1278 u8 *hdr_len, u8 ptype) 1279 { 1280 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1281 struct net_device *netdev = tx_ring->netdev; 1282 u32 l4len, tunhdr_eiplen_tunlen = 0; 1283 struct sk_buff *skb = first->skb; 1284 bool enc = skb->encapsulation; 1285 struct ipv6hdr *ipv6h; 1286 struct tcphdr *tcph; 1287 struct iphdr *iph; 1288 u8 tun_prot = 0; 1289 int err; 1290 1291 if (skb->ip_summed != CHECKSUM_PARTIAL) 1292 return 0; 1293 1294 if (!skb_is_gso(skb)) 1295 return 0; 1296 1297 err = skb_cow_head(skb, 0); 1298 if (err < 0) 1299 return err; 1300 1301 /* indicates the inner headers in the skbuff are valid. */ 1302 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); 1303 if (iph->version == 4) { 1304 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1305 iph->tot_len = 0; 1306 iph->check = 0; 1307 tcph->check = ~csum_tcpudp_magic(iph->saddr, 1308 iph->daddr, 0, 1309 IPPROTO_TCP, 0); 1310 first->tx_flags |= WX_TX_FLAGS_TSO | 1311 WX_TX_FLAGS_CSUM | 1312 WX_TX_FLAGS_IPV4 | 1313 WX_TX_FLAGS_CC; 1314 } else if (iph->version == 6 && skb_is_gso_v6(skb)) { 1315 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 1316 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1317 ipv6h->payload_len = 0; 1318 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, 1319 &ipv6h->daddr, 0, 1320 IPPROTO_TCP, 0); 1321 first->tx_flags |= WX_TX_FLAGS_TSO | 1322 WX_TX_FLAGS_CSUM | 1323 WX_TX_FLAGS_CC; 1324 } 1325 1326 /* compute header lengths */ 1327 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); 1328 *hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) : 1329 skb_transport_offset(skb); 1330 *hdr_len += l4len; 1331 1332 /* update gso size and bytecount with header size */ 1333 first->gso_segs = skb_shinfo(skb)->gso_segs; 1334 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1335 1336 /* mss_l4len_id: use 0 as index for TSO */ 1337 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; 1338 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; 1339 1340 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 1341 if (enc) { 1342 switch (first->protocol) { 1343 case htons(ETH_P_IP): 1344 tun_prot = ip_hdr(skb)->protocol; 1345 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; 1346 break; 1347 case htons(ETH_P_IPV6): 1348 tun_prot = ipv6_hdr(skb)->nexthdr; 1349 break; 1350 default: 1351 break; 1352 } 1353 switch (tun_prot) { 1354 case IPPROTO_UDP: 1355 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1356 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1357 WX_TXD_OUTER_IPLEN_SHIFT) | 1358 (((skb_inner_mac_header(skb) - 1359 skb_transport_header(skb)) >> 1) << 1360 WX_TXD_TUNNEL_LEN_SHIFT); 1361 break; 1362 case IPPROTO_GRE: 1363 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1364 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1365 WX_TXD_OUTER_IPLEN_SHIFT) | 1366 (((skb_inner_mac_header(skb) - 1367 skb_transport_header(skb)) >> 1) << 1368 WX_TXD_TUNNEL_LEN_SHIFT); 1369 break; 1370 case IPPROTO_IPIP: 1371 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1372 (char *)ip_hdr(skb)) >> 2) << 1373 WX_TXD_OUTER_IPLEN_SHIFT; 1374 break; 1375 default: 1376 break; 1377 } 1378 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; 1379 } else { 1380 vlan_macip_lens = skb_network_header_len(skb) >> 1; 1381 } 1382 1383 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; 1384 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1385 1386 type_tucmd = ptype << 24; 1387 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1388 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1389 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1390 WX_TX_FLAGS_HW_VLAN, 1391 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1392 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1393 type_tucmd, mss_l4len_idx); 1394 1395 return 1; 1396 } 1397 1398 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1399 u8 ptype) 1400 { 1401 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; 1402 struct net_device *netdev = tx_ring->netdev; 1403 u32 mss_l4len_idx = 0, type_tucmd; 1404 struct sk_buff *skb = first->skb; 1405 u8 tun_prot = 0; 1406 1407 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1408 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && 1409 !(first->tx_flags & WX_TX_FLAGS_CC)) 1410 return; 1411 vlan_macip_lens = skb_network_offset(skb) << 1412 WX_TXD_MACLEN_SHIFT; 1413 } else { 1414 u8 l4_prot = 0; 1415 union { 1416 struct iphdr *ipv4; 1417 struct ipv6hdr *ipv6; 1418 u8 *raw; 1419 } network_hdr; 1420 union { 1421 struct tcphdr *tcphdr; 1422 u8 *raw; 1423 } transport_hdr; 1424 1425 if (skb->encapsulation) { 1426 network_hdr.raw = skb_inner_network_header(skb); 1427 transport_hdr.raw = skb_inner_transport_header(skb); 1428 vlan_macip_lens = skb_network_offset(skb) << 1429 WX_TXD_MACLEN_SHIFT; 1430 switch (first->protocol) { 1431 case htons(ETH_P_IP): 1432 tun_prot = ip_hdr(skb)->protocol; 1433 break; 1434 case htons(ETH_P_IPV6): 1435 tun_prot = ipv6_hdr(skb)->nexthdr; 1436 break; 1437 default: 1438 return; 1439 } 1440 switch (tun_prot) { 1441 case IPPROTO_UDP: 1442 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1443 tunhdr_eiplen_tunlen |= 1444 ((skb_network_header_len(skb) >> 2) << 1445 WX_TXD_OUTER_IPLEN_SHIFT) | 1446 (((skb_inner_mac_header(skb) - 1447 skb_transport_header(skb)) >> 1) << 1448 WX_TXD_TUNNEL_LEN_SHIFT); 1449 break; 1450 case IPPROTO_GRE: 1451 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1452 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1453 WX_TXD_OUTER_IPLEN_SHIFT) | 1454 (((skb_inner_mac_header(skb) - 1455 skb_transport_header(skb)) >> 1) << 1456 WX_TXD_TUNNEL_LEN_SHIFT); 1457 break; 1458 case IPPROTO_IPIP: 1459 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1460 (char *)ip_hdr(skb)) >> 2) << 1461 WX_TXD_OUTER_IPLEN_SHIFT; 1462 break; 1463 default: 1464 break; 1465 } 1466 1467 } else { 1468 network_hdr.raw = skb_network_header(skb); 1469 transport_hdr.raw = skb_transport_header(skb); 1470 vlan_macip_lens = skb_network_offset(skb) << 1471 WX_TXD_MACLEN_SHIFT; 1472 } 1473 1474 switch (network_hdr.ipv4->version) { 1475 case IPVERSION: 1476 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1477 l4_prot = network_hdr.ipv4->protocol; 1478 break; 1479 case 6: 1480 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1481 l4_prot = network_hdr.ipv6->nexthdr; 1482 break; 1483 default: 1484 break; 1485 } 1486 1487 switch (l4_prot) { 1488 case IPPROTO_TCP: 1489 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << 1490 WX_TXD_L4LEN_SHIFT; 1491 break; 1492 case IPPROTO_SCTP: 1493 mss_l4len_idx = sizeof(struct sctphdr) << 1494 WX_TXD_L4LEN_SHIFT; 1495 break; 1496 case IPPROTO_UDP: 1497 mss_l4len_idx = sizeof(struct udphdr) << 1498 WX_TXD_L4LEN_SHIFT; 1499 break; 1500 default: 1501 break; 1502 } 1503 1504 /* update TX checksum flag */ 1505 first->tx_flags |= WX_TX_FLAGS_CSUM; 1506 } 1507 first->tx_flags |= WX_TX_FLAGS_CC; 1508 /* vlan_macip_lens: MACLEN, VLAN tag */ 1509 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1510 1511 type_tucmd = ptype << 24; 1512 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1513 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1514 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1515 WX_TX_FLAGS_HW_VLAN, 1516 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1517 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1518 type_tucmd, mss_l4len_idx); 1519 } 1520 1521 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, 1522 struct wx_ring *tx_ring) 1523 { 1524 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1525 struct wx_tx_buffer *first; 1526 u8 hdr_len = 0, ptype; 1527 unsigned short f; 1528 u32 tx_flags = 0; 1529 int tso; 1530 1531 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, 1532 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, 1533 * + 2 desc gap to keep tail from touching head, 1534 * + 1 desc for context descriptor, 1535 * otherwise try next time 1536 */ 1537 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1538 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> 1539 frags[f])); 1540 1541 if (wx_maybe_stop_tx(tx_ring, count + 3)) { 1542 tx_ring->tx_stats.tx_busy++; 1543 return NETDEV_TX_BUSY; 1544 } 1545 1546 /* record the location of the first descriptor for this packet */ 1547 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1548 first->skb = skb; 1549 first->bytecount = skb->len; 1550 first->gso_segs = 1; 1551 1552 /* if we have a HW VLAN tag being added default to the HW one */ 1553 if (skb_vlan_tag_present(skb)) { 1554 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; 1555 tx_flags |= WX_TX_FLAGS_HW_VLAN; 1556 } 1557 1558 /* record initial flags and protocol */ 1559 first->tx_flags = tx_flags; 1560 first->protocol = vlan_get_protocol(skb); 1561 1562 ptype = wx_encode_tx_desc_ptype(first); 1563 1564 tso = wx_tso(tx_ring, first, &hdr_len, ptype); 1565 if (tso < 0) 1566 goto out_drop; 1567 else if (!tso) 1568 wx_tx_csum(tx_ring, first, ptype); 1569 wx_tx_map(tx_ring, first, hdr_len); 1570 1571 return NETDEV_TX_OK; 1572 out_drop: 1573 dev_kfree_skb_any(first->skb); 1574 first->skb = NULL; 1575 1576 return NETDEV_TX_OK; 1577 } 1578 1579 netdev_tx_t wx_xmit_frame(struct sk_buff *skb, 1580 struct net_device *netdev) 1581 { 1582 unsigned int r_idx = skb->queue_mapping; 1583 struct wx *wx = netdev_priv(netdev); 1584 struct wx_ring *tx_ring; 1585 1586 if (!netif_carrier_ok(netdev)) { 1587 dev_kfree_skb_any(skb); 1588 return NETDEV_TX_OK; 1589 } 1590 1591 /* The minimum packet size for olinfo paylen is 17 so pad the skb 1592 * in order to meet this minimum size requirement. 1593 */ 1594 if (skb_put_padto(skb, 17)) 1595 return NETDEV_TX_OK; 1596 1597 if (r_idx >= wx->num_tx_queues) 1598 r_idx = r_idx % wx->num_tx_queues; 1599 tx_ring = wx->tx_ring[r_idx]; 1600 1601 return wx_xmit_frame_ring(skb, tx_ring); 1602 } 1603 EXPORT_SYMBOL(wx_xmit_frame); 1604 1605 void wx_napi_enable_all(struct wx *wx) 1606 { 1607 struct wx_q_vector *q_vector; 1608 int q_idx; 1609 1610 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1611 q_vector = wx->q_vector[q_idx]; 1612 napi_enable(&q_vector->napi); 1613 } 1614 } 1615 EXPORT_SYMBOL(wx_napi_enable_all); 1616 1617 void wx_napi_disable_all(struct wx *wx) 1618 { 1619 struct wx_q_vector *q_vector; 1620 int q_idx; 1621 1622 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1623 q_vector = wx->q_vector[q_idx]; 1624 napi_disable(&q_vector->napi); 1625 } 1626 } 1627 EXPORT_SYMBOL(wx_napi_disable_all); 1628 1629 /** 1630 * wx_set_rss_queues: Allocate queues for RSS 1631 * @wx: board private structure to initialize 1632 * 1633 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1634 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1635 * 1636 **/ 1637 static void wx_set_rss_queues(struct wx *wx) 1638 { 1639 wx->num_rx_queues = wx->mac.max_rx_queues; 1640 wx->num_tx_queues = wx->mac.max_tx_queues; 1641 } 1642 1643 static void wx_set_num_queues(struct wx *wx) 1644 { 1645 /* Start with base case */ 1646 wx->num_rx_queues = 1; 1647 wx->num_tx_queues = 1; 1648 wx->queues_per_pool = 1; 1649 1650 wx_set_rss_queues(wx); 1651 } 1652 1653 /** 1654 * wx_acquire_msix_vectors - acquire MSI-X vectors 1655 * @wx: board private structure 1656 * 1657 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will 1658 * return a negative error code if unable to acquire MSI-X vectors for any 1659 * reason. 1660 */ 1661 static int wx_acquire_msix_vectors(struct wx *wx) 1662 { 1663 struct irq_affinity affd = {0, }; 1664 int nvecs, i; 1665 1666 nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors); 1667 1668 wx->msix_entries = kcalloc(nvecs, 1669 sizeof(struct msix_entry), 1670 GFP_KERNEL); 1671 if (!wx->msix_entries) 1672 return -ENOMEM; 1673 1674 nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, 1675 nvecs, 1676 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, 1677 &affd); 1678 if (nvecs < 0) { 1679 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); 1680 kfree(wx->msix_entries); 1681 wx->msix_entries = NULL; 1682 return nvecs; 1683 } 1684 1685 for (i = 0; i < nvecs; i++) { 1686 wx->msix_entries[i].entry = i; 1687 wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i); 1688 } 1689 1690 /* one for msix_other */ 1691 nvecs -= 1; 1692 wx->num_q_vectors = nvecs; 1693 wx->num_rx_queues = nvecs; 1694 wx->num_tx_queues = nvecs; 1695 1696 return 0; 1697 } 1698 1699 /** 1700 * wx_set_interrupt_capability - set MSI-X or MSI if supported 1701 * @wx: board private structure to initialize 1702 * 1703 * Attempt to configure the interrupts using the best available 1704 * capabilities of the hardware and the kernel. 1705 **/ 1706 static int wx_set_interrupt_capability(struct wx *wx) 1707 { 1708 struct pci_dev *pdev = wx->pdev; 1709 int nvecs, ret; 1710 1711 /* We will try to get MSI-X interrupts first */ 1712 ret = wx_acquire_msix_vectors(wx); 1713 if (ret == 0 || (ret == -ENOMEM)) 1714 return ret; 1715 1716 wx->num_rx_queues = 1; 1717 wx->num_tx_queues = 1; 1718 wx->num_q_vectors = 1; 1719 1720 /* minmum one for queue, one for misc*/ 1721 nvecs = 1; 1722 nvecs = pci_alloc_irq_vectors(pdev, nvecs, 1723 nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY); 1724 if (nvecs == 1) { 1725 if (pdev->msi_enabled) 1726 wx_err(wx, "Fallback to MSI.\n"); 1727 else 1728 wx_err(wx, "Fallback to LEGACY.\n"); 1729 } else { 1730 wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs); 1731 return nvecs; 1732 } 1733 1734 pdev->irq = pci_irq_vector(pdev, 0); 1735 1736 return 0; 1737 } 1738 1739 /** 1740 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS 1741 * @wx: board private structure to initialize 1742 * 1743 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. 1744 * 1745 **/ 1746 static void wx_cache_ring_rss(struct wx *wx) 1747 { 1748 u16 i; 1749 1750 for (i = 0; i < wx->num_rx_queues; i++) 1751 wx->rx_ring[i]->reg_idx = i; 1752 1753 for (i = 0; i < wx->num_tx_queues; i++) 1754 wx->tx_ring[i]->reg_idx = i; 1755 } 1756 1757 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) 1758 { 1759 ring->next = head->ring; 1760 head->ring = ring; 1761 head->count++; 1762 } 1763 1764 /** 1765 * wx_alloc_q_vector - Allocate memory for a single interrupt vector 1766 * @wx: board private structure to initialize 1767 * @v_count: q_vectors allocated on wx, used for ring interleaving 1768 * @v_idx: index of vector in wx struct 1769 * @txr_count: total number of Tx rings to allocate 1770 * @txr_idx: index of first Tx ring to allocate 1771 * @rxr_count: total number of Rx rings to allocate 1772 * @rxr_idx: index of first Rx ring to allocate 1773 * 1774 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1775 **/ 1776 static int wx_alloc_q_vector(struct wx *wx, 1777 unsigned int v_count, unsigned int v_idx, 1778 unsigned int txr_count, unsigned int txr_idx, 1779 unsigned int rxr_count, unsigned int rxr_idx) 1780 { 1781 struct wx_q_vector *q_vector; 1782 int ring_count, default_itr; 1783 struct wx_ring *ring; 1784 1785 /* note this will allocate space for the ring structure as well! */ 1786 ring_count = txr_count + rxr_count; 1787 1788 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 1789 GFP_KERNEL); 1790 if (!q_vector) 1791 return -ENOMEM; 1792 1793 /* initialize NAPI */ 1794 netif_napi_add(wx->netdev, &q_vector->napi, 1795 wx_poll); 1796 1797 /* tie q_vector and wx together */ 1798 wx->q_vector[v_idx] = q_vector; 1799 q_vector->wx = wx; 1800 q_vector->v_idx = v_idx; 1801 if (cpu_online(v_idx)) 1802 q_vector->numa_node = cpu_to_node(v_idx); 1803 1804 /* initialize pointer to rings */ 1805 ring = q_vector->ring; 1806 1807 if (wx->mac.type == wx_mac_sp) 1808 default_itr = WX_12K_ITR; 1809 else 1810 default_itr = WX_7K_ITR; 1811 /* initialize ITR */ 1812 if (txr_count && !rxr_count) 1813 /* tx only vector */ 1814 q_vector->itr = wx->tx_itr_setting ? 1815 default_itr : wx->tx_itr_setting; 1816 else 1817 /* rx or rx/tx vector */ 1818 q_vector->itr = wx->rx_itr_setting ? 1819 default_itr : wx->rx_itr_setting; 1820 1821 while (txr_count) { 1822 /* assign generic ring traits */ 1823 ring->dev = &wx->pdev->dev; 1824 ring->netdev = wx->netdev; 1825 1826 /* configure backlink on ring */ 1827 ring->q_vector = q_vector; 1828 1829 /* update q_vector Tx values */ 1830 wx_add_ring(ring, &q_vector->tx); 1831 1832 /* apply Tx specific ring traits */ 1833 ring->count = wx->tx_ring_count; 1834 1835 ring->queue_index = txr_idx; 1836 1837 /* assign ring to wx */ 1838 wx->tx_ring[txr_idx] = ring; 1839 1840 /* update count and index */ 1841 txr_count--; 1842 txr_idx += v_count; 1843 1844 /* push pointer to next ring */ 1845 ring++; 1846 } 1847 1848 while (rxr_count) { 1849 /* assign generic ring traits */ 1850 ring->dev = &wx->pdev->dev; 1851 ring->netdev = wx->netdev; 1852 1853 /* configure backlink on ring */ 1854 ring->q_vector = q_vector; 1855 1856 /* update q_vector Rx values */ 1857 wx_add_ring(ring, &q_vector->rx); 1858 1859 /* apply Rx specific ring traits */ 1860 ring->count = wx->rx_ring_count; 1861 ring->queue_index = rxr_idx; 1862 1863 /* assign ring to wx */ 1864 wx->rx_ring[rxr_idx] = ring; 1865 1866 /* update count and index */ 1867 rxr_count--; 1868 rxr_idx += v_count; 1869 1870 /* push pointer to next ring */ 1871 ring++; 1872 } 1873 1874 return 0; 1875 } 1876 1877 /** 1878 * wx_free_q_vector - Free memory allocated for specific interrupt vector 1879 * @wx: board private structure to initialize 1880 * @v_idx: Index of vector to be freed 1881 * 1882 * This function frees the memory allocated to the q_vector. In addition if 1883 * NAPI is enabled it will delete any references to the NAPI struct prior 1884 * to freeing the q_vector. 1885 **/ 1886 static void wx_free_q_vector(struct wx *wx, int v_idx) 1887 { 1888 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 1889 struct wx_ring *ring; 1890 1891 wx_for_each_ring(ring, q_vector->tx) 1892 wx->tx_ring[ring->queue_index] = NULL; 1893 1894 wx_for_each_ring(ring, q_vector->rx) 1895 wx->rx_ring[ring->queue_index] = NULL; 1896 1897 wx->q_vector[v_idx] = NULL; 1898 netif_napi_del(&q_vector->napi); 1899 kfree_rcu(q_vector, rcu); 1900 } 1901 1902 /** 1903 * wx_alloc_q_vectors - Allocate memory for interrupt vectors 1904 * @wx: board private structure to initialize 1905 * 1906 * We allocate one q_vector per queue interrupt. If allocation fails we 1907 * return -ENOMEM. 1908 **/ 1909 static int wx_alloc_q_vectors(struct wx *wx) 1910 { 1911 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1912 unsigned int rxr_remaining = wx->num_rx_queues; 1913 unsigned int txr_remaining = wx->num_tx_queues; 1914 unsigned int q_vectors = wx->num_q_vectors; 1915 int rqpv, tqpv; 1916 int err; 1917 1918 for (; v_idx < q_vectors; v_idx++) { 1919 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1920 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1921 err = wx_alloc_q_vector(wx, q_vectors, v_idx, 1922 tqpv, txr_idx, 1923 rqpv, rxr_idx); 1924 1925 if (err) 1926 goto err_out; 1927 1928 /* update counts and index */ 1929 rxr_remaining -= rqpv; 1930 txr_remaining -= tqpv; 1931 rxr_idx++; 1932 txr_idx++; 1933 } 1934 1935 return 0; 1936 1937 err_out: 1938 wx->num_tx_queues = 0; 1939 wx->num_rx_queues = 0; 1940 wx->num_q_vectors = 0; 1941 1942 while (v_idx--) 1943 wx_free_q_vector(wx, v_idx); 1944 1945 return -ENOMEM; 1946 } 1947 1948 /** 1949 * wx_free_q_vectors - Free memory allocated for interrupt vectors 1950 * @wx: board private structure to initialize 1951 * 1952 * This function frees the memory allocated to the q_vectors. In addition if 1953 * NAPI is enabled it will delete any references to the NAPI struct prior 1954 * to freeing the q_vector. 1955 **/ 1956 static void wx_free_q_vectors(struct wx *wx) 1957 { 1958 int v_idx = wx->num_q_vectors; 1959 1960 wx->num_tx_queues = 0; 1961 wx->num_rx_queues = 0; 1962 wx->num_q_vectors = 0; 1963 1964 while (v_idx--) 1965 wx_free_q_vector(wx, v_idx); 1966 } 1967 1968 void wx_reset_interrupt_capability(struct wx *wx) 1969 { 1970 struct pci_dev *pdev = wx->pdev; 1971 1972 if (!pdev->msi_enabled && !pdev->msix_enabled) 1973 return; 1974 1975 pci_free_irq_vectors(wx->pdev); 1976 if (pdev->msix_enabled) { 1977 kfree(wx->msix_entries); 1978 wx->msix_entries = NULL; 1979 } 1980 } 1981 EXPORT_SYMBOL(wx_reset_interrupt_capability); 1982 1983 /** 1984 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings 1985 * @wx: board private structure to clear interrupt scheme on 1986 * 1987 * We go through and clear interrupt specific resources and reset the structure 1988 * to pre-load conditions 1989 **/ 1990 void wx_clear_interrupt_scheme(struct wx *wx) 1991 { 1992 wx_free_q_vectors(wx); 1993 wx_reset_interrupt_capability(wx); 1994 } 1995 EXPORT_SYMBOL(wx_clear_interrupt_scheme); 1996 1997 int wx_init_interrupt_scheme(struct wx *wx) 1998 { 1999 int ret; 2000 2001 /* Number of supported queues */ 2002 wx_set_num_queues(wx); 2003 2004 /* Set interrupt mode */ 2005 ret = wx_set_interrupt_capability(wx); 2006 if (ret) { 2007 wx_err(wx, "Allocate irq vectors for failed.\n"); 2008 return ret; 2009 } 2010 2011 /* Allocate memory for queues */ 2012 ret = wx_alloc_q_vectors(wx); 2013 if (ret) { 2014 wx_err(wx, "Unable to allocate memory for queue vectors.\n"); 2015 wx_reset_interrupt_capability(wx); 2016 return ret; 2017 } 2018 2019 wx_cache_ring_rss(wx); 2020 2021 return 0; 2022 } 2023 EXPORT_SYMBOL(wx_init_interrupt_scheme); 2024 2025 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) 2026 { 2027 struct wx_q_vector *q_vector = data; 2028 2029 /* EIAM disabled interrupts (on this vector) for us */ 2030 if (q_vector->rx.ring || q_vector->tx.ring) 2031 napi_schedule_irqoff(&q_vector->napi); 2032 2033 return IRQ_HANDLED; 2034 } 2035 EXPORT_SYMBOL(wx_msix_clean_rings); 2036 2037 void wx_free_irq(struct wx *wx) 2038 { 2039 struct pci_dev *pdev = wx->pdev; 2040 int vector; 2041 2042 if (!(pdev->msix_enabled)) { 2043 free_irq(pdev->irq, wx); 2044 return; 2045 } 2046 2047 for (vector = 0; vector < wx->num_q_vectors; vector++) { 2048 struct wx_q_vector *q_vector = wx->q_vector[vector]; 2049 struct msix_entry *entry = &wx->msix_entries[vector]; 2050 2051 /* free only the irqs that were actually requested */ 2052 if (!q_vector->rx.ring && !q_vector->tx.ring) 2053 continue; 2054 2055 free_irq(entry->vector, q_vector); 2056 } 2057 2058 if (wx->mac.type == wx_mac_em) 2059 free_irq(wx->msix_entries[vector].vector, wx); 2060 } 2061 EXPORT_SYMBOL(wx_free_irq); 2062 2063 /** 2064 * wx_setup_isb_resources - allocate interrupt status resources 2065 * @wx: board private structure 2066 * 2067 * Return 0 on success, negative on failure 2068 **/ 2069 int wx_setup_isb_resources(struct wx *wx) 2070 { 2071 struct pci_dev *pdev = wx->pdev; 2072 2073 wx->isb_mem = dma_alloc_coherent(&pdev->dev, 2074 sizeof(u32) * 4, 2075 &wx->isb_dma, 2076 GFP_KERNEL); 2077 if (!wx->isb_mem) { 2078 wx_err(wx, "Alloc isb_mem failed\n"); 2079 return -ENOMEM; 2080 } 2081 2082 return 0; 2083 } 2084 EXPORT_SYMBOL(wx_setup_isb_resources); 2085 2086 /** 2087 * wx_free_isb_resources - allocate all queues Rx resources 2088 * @wx: board private structure 2089 * 2090 * Return 0 on success, negative on failure 2091 **/ 2092 void wx_free_isb_resources(struct wx *wx) 2093 { 2094 struct pci_dev *pdev = wx->pdev; 2095 2096 dma_free_coherent(&pdev->dev, sizeof(u32) * 4, 2097 wx->isb_mem, wx->isb_dma); 2098 wx->isb_mem = NULL; 2099 } 2100 EXPORT_SYMBOL(wx_free_isb_resources); 2101 2102 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) 2103 { 2104 u32 cur_tag = 0; 2105 2106 cur_tag = wx->isb_mem[WX_ISB_HEADER]; 2107 wx->isb_tag[idx] = cur_tag; 2108 2109 return (__force u32)cpu_to_le32(wx->isb_mem[idx]); 2110 } 2111 EXPORT_SYMBOL(wx_misc_isb); 2112 2113 /** 2114 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors 2115 * @wx: pointer to wx struct 2116 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 2117 * @queue: queue to map the corresponding interrupt to 2118 * @msix_vector: the vector to map to the corresponding queue 2119 * 2120 **/ 2121 static void wx_set_ivar(struct wx *wx, s8 direction, 2122 u16 queue, u16 msix_vector) 2123 { 2124 u32 ivar, index; 2125 2126 if (direction == -1) { 2127 /* other causes */ 2128 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2129 index = 0; 2130 ivar = rd32(wx, WX_PX_MISC_IVAR); 2131 ivar &= ~(0xFF << index); 2132 ivar |= (msix_vector << index); 2133 wr32(wx, WX_PX_MISC_IVAR, ivar); 2134 } else { 2135 /* tx or rx causes */ 2136 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2137 index = ((16 * (queue & 1)) + (8 * direction)); 2138 ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); 2139 ivar &= ~(0xFF << index); 2140 ivar |= (msix_vector << index); 2141 wr32(wx, WX_PX_IVAR(queue >> 1), ivar); 2142 } 2143 } 2144 2145 /** 2146 * wx_write_eitr - write EITR register in hardware specific way 2147 * @q_vector: structure containing interrupt and ring information 2148 * 2149 * This function is made to be called by ethtool and by the driver 2150 * when it needs to update EITR registers at runtime. Hardware 2151 * specific quirks/differences are taken care of here. 2152 */ 2153 static void wx_write_eitr(struct wx_q_vector *q_vector) 2154 { 2155 struct wx *wx = q_vector->wx; 2156 int v_idx = q_vector->v_idx; 2157 u32 itr_reg; 2158 2159 if (wx->mac.type == wx_mac_sp) 2160 itr_reg = q_vector->itr & WX_SP_MAX_EITR; 2161 else 2162 itr_reg = q_vector->itr & WX_EM_MAX_EITR; 2163 2164 itr_reg |= WX_PX_ITR_CNT_WDIS; 2165 2166 wr32(wx, WX_PX_ITR(v_idx), itr_reg); 2167 } 2168 2169 /** 2170 * wx_configure_vectors - Configure vectors for hardware 2171 * @wx: board private structure 2172 * 2173 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY 2174 * interrupts. 2175 **/ 2176 void wx_configure_vectors(struct wx *wx) 2177 { 2178 struct pci_dev *pdev = wx->pdev; 2179 u32 eitrsel = 0; 2180 u16 v_idx; 2181 2182 if (pdev->msix_enabled) { 2183 /* Populate MSIX to EITR Select */ 2184 wr32(wx, WX_PX_ITRSEL, eitrsel); 2185 /* use EIAM to auto-mask when MSI-X interrupt is asserted 2186 * this saves a register write for every interrupt 2187 */ 2188 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); 2189 } else { 2190 /* legacy interrupts, use EIAM to auto-mask when reading EICR, 2191 * specifically only auto mask tx and rx interrupts. 2192 */ 2193 wr32(wx, WX_PX_GPIE, 0); 2194 } 2195 2196 /* Populate the IVAR table and set the ITR values to the 2197 * corresponding register. 2198 */ 2199 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { 2200 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 2201 struct wx_ring *ring; 2202 2203 wx_for_each_ring(ring, q_vector->rx) 2204 wx_set_ivar(wx, 0, ring->reg_idx, v_idx); 2205 2206 wx_for_each_ring(ring, q_vector->tx) 2207 wx_set_ivar(wx, 1, ring->reg_idx, v_idx); 2208 2209 wx_write_eitr(q_vector); 2210 } 2211 2212 wx_set_ivar(wx, -1, 0, v_idx); 2213 if (pdev->msix_enabled) 2214 wr32(wx, WX_PX_ITR(v_idx), 1950); 2215 } 2216 EXPORT_SYMBOL(wx_configure_vectors); 2217 2218 /** 2219 * wx_clean_rx_ring - Free Rx Buffers per Queue 2220 * @rx_ring: ring to free buffers from 2221 **/ 2222 static void wx_clean_rx_ring(struct wx_ring *rx_ring) 2223 { 2224 struct wx_rx_buffer *rx_buffer; 2225 u16 i = rx_ring->next_to_clean; 2226 2227 rx_buffer = &rx_ring->rx_buffer_info[i]; 2228 2229 /* Free all the Rx ring sk_buffs */ 2230 while (i != rx_ring->next_to_alloc) { 2231 if (rx_buffer->skb) { 2232 struct sk_buff *skb = rx_buffer->skb; 2233 2234 if (WX_CB(skb)->page_released) 2235 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2236 2237 dev_kfree_skb(skb); 2238 } 2239 2240 /* Invalidate cache lines that may have been written to by 2241 * device so that we avoid corrupting memory. 2242 */ 2243 dma_sync_single_range_for_cpu(rx_ring->dev, 2244 rx_buffer->dma, 2245 rx_buffer->page_offset, 2246 WX_RX_BUFSZ, 2247 DMA_FROM_DEVICE); 2248 2249 /* free resources associated with mapping */ 2250 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2251 __page_frag_cache_drain(rx_buffer->page, 2252 rx_buffer->pagecnt_bias); 2253 2254 i++; 2255 rx_buffer++; 2256 if (i == rx_ring->count) { 2257 i = 0; 2258 rx_buffer = rx_ring->rx_buffer_info; 2259 } 2260 } 2261 2262 rx_ring->next_to_alloc = 0; 2263 rx_ring->next_to_clean = 0; 2264 rx_ring->next_to_use = 0; 2265 } 2266 2267 /** 2268 * wx_clean_all_rx_rings - Free Rx Buffers for all queues 2269 * @wx: board private structure 2270 **/ 2271 void wx_clean_all_rx_rings(struct wx *wx) 2272 { 2273 int i; 2274 2275 for (i = 0; i < wx->num_rx_queues; i++) 2276 wx_clean_rx_ring(wx->rx_ring[i]); 2277 } 2278 EXPORT_SYMBOL(wx_clean_all_rx_rings); 2279 2280 /** 2281 * wx_free_rx_resources - Free Rx Resources 2282 * @rx_ring: ring to clean the resources from 2283 * 2284 * Free all receive software resources 2285 **/ 2286 static void wx_free_rx_resources(struct wx_ring *rx_ring) 2287 { 2288 wx_clean_rx_ring(rx_ring); 2289 kvfree(rx_ring->rx_buffer_info); 2290 rx_ring->rx_buffer_info = NULL; 2291 2292 /* if not set, then don't free */ 2293 if (!rx_ring->desc) 2294 return; 2295 2296 dma_free_coherent(rx_ring->dev, rx_ring->size, 2297 rx_ring->desc, rx_ring->dma); 2298 2299 rx_ring->desc = NULL; 2300 2301 if (rx_ring->page_pool) { 2302 page_pool_destroy(rx_ring->page_pool); 2303 rx_ring->page_pool = NULL; 2304 } 2305 } 2306 2307 /** 2308 * wx_free_all_rx_resources - Free Rx Resources for All Queues 2309 * @wx: pointer to hardware structure 2310 * 2311 * Free all receive software resources 2312 **/ 2313 static void wx_free_all_rx_resources(struct wx *wx) 2314 { 2315 int i; 2316 2317 for (i = 0; i < wx->num_rx_queues; i++) 2318 wx_free_rx_resources(wx->rx_ring[i]); 2319 } 2320 2321 /** 2322 * wx_clean_tx_ring - Free Tx Buffers 2323 * @tx_ring: ring to be cleaned 2324 **/ 2325 static void wx_clean_tx_ring(struct wx_ring *tx_ring) 2326 { 2327 struct wx_tx_buffer *tx_buffer; 2328 u16 i = tx_ring->next_to_clean; 2329 2330 tx_buffer = &tx_ring->tx_buffer_info[i]; 2331 2332 while (i != tx_ring->next_to_use) { 2333 union wx_tx_desc *eop_desc, *tx_desc; 2334 2335 /* Free all the Tx ring sk_buffs */ 2336 dev_kfree_skb_any(tx_buffer->skb); 2337 2338 /* unmap skb header data */ 2339 dma_unmap_single(tx_ring->dev, 2340 dma_unmap_addr(tx_buffer, dma), 2341 dma_unmap_len(tx_buffer, len), 2342 DMA_TO_DEVICE); 2343 2344 /* check for eop_desc to determine the end of the packet */ 2345 eop_desc = tx_buffer->next_to_watch; 2346 tx_desc = WX_TX_DESC(tx_ring, i); 2347 2348 /* unmap remaining buffers */ 2349 while (tx_desc != eop_desc) { 2350 tx_buffer++; 2351 tx_desc++; 2352 i++; 2353 if (unlikely(i == tx_ring->count)) { 2354 i = 0; 2355 tx_buffer = tx_ring->tx_buffer_info; 2356 tx_desc = WX_TX_DESC(tx_ring, 0); 2357 } 2358 2359 /* unmap any remaining paged data */ 2360 if (dma_unmap_len(tx_buffer, len)) 2361 dma_unmap_page(tx_ring->dev, 2362 dma_unmap_addr(tx_buffer, dma), 2363 dma_unmap_len(tx_buffer, len), 2364 DMA_TO_DEVICE); 2365 } 2366 2367 /* move us one more past the eop_desc for start of next pkt */ 2368 tx_buffer++; 2369 i++; 2370 if (unlikely(i == tx_ring->count)) { 2371 i = 0; 2372 tx_buffer = tx_ring->tx_buffer_info; 2373 } 2374 } 2375 2376 netdev_tx_reset_queue(wx_txring_txq(tx_ring)); 2377 2378 /* reset next_to_use and next_to_clean */ 2379 tx_ring->next_to_use = 0; 2380 tx_ring->next_to_clean = 0; 2381 } 2382 2383 /** 2384 * wx_clean_all_tx_rings - Free Tx Buffers for all queues 2385 * @wx: board private structure 2386 **/ 2387 void wx_clean_all_tx_rings(struct wx *wx) 2388 { 2389 int i; 2390 2391 for (i = 0; i < wx->num_tx_queues; i++) 2392 wx_clean_tx_ring(wx->tx_ring[i]); 2393 } 2394 EXPORT_SYMBOL(wx_clean_all_tx_rings); 2395 2396 /** 2397 * wx_free_tx_resources - Free Tx Resources per Queue 2398 * @tx_ring: Tx descriptor ring for a specific queue 2399 * 2400 * Free all transmit software resources 2401 **/ 2402 static void wx_free_tx_resources(struct wx_ring *tx_ring) 2403 { 2404 wx_clean_tx_ring(tx_ring); 2405 kvfree(tx_ring->tx_buffer_info); 2406 tx_ring->tx_buffer_info = NULL; 2407 2408 /* if not set, then don't free */ 2409 if (!tx_ring->desc) 2410 return; 2411 2412 dma_free_coherent(tx_ring->dev, tx_ring->size, 2413 tx_ring->desc, tx_ring->dma); 2414 tx_ring->desc = NULL; 2415 } 2416 2417 /** 2418 * wx_free_all_tx_resources - Free Tx Resources for All Queues 2419 * @wx: pointer to hardware structure 2420 * 2421 * Free all transmit software resources 2422 **/ 2423 static void wx_free_all_tx_resources(struct wx *wx) 2424 { 2425 int i; 2426 2427 for (i = 0; i < wx->num_tx_queues; i++) 2428 wx_free_tx_resources(wx->tx_ring[i]); 2429 } 2430 2431 void wx_free_resources(struct wx *wx) 2432 { 2433 wx_free_isb_resources(wx); 2434 wx_free_all_rx_resources(wx); 2435 wx_free_all_tx_resources(wx); 2436 } 2437 EXPORT_SYMBOL(wx_free_resources); 2438 2439 static int wx_alloc_page_pool(struct wx_ring *rx_ring) 2440 { 2441 int ret = 0; 2442 2443 struct page_pool_params pp_params = { 2444 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 2445 .order = 0, 2446 .pool_size = rx_ring->size, 2447 .nid = dev_to_node(rx_ring->dev), 2448 .dev = rx_ring->dev, 2449 .dma_dir = DMA_FROM_DEVICE, 2450 .offset = 0, 2451 .max_len = PAGE_SIZE, 2452 }; 2453 2454 rx_ring->page_pool = page_pool_create(&pp_params); 2455 if (IS_ERR(rx_ring->page_pool)) { 2456 ret = PTR_ERR(rx_ring->page_pool); 2457 rx_ring->page_pool = NULL; 2458 } 2459 2460 return ret; 2461 } 2462 2463 /** 2464 * wx_setup_rx_resources - allocate Rx resources (Descriptors) 2465 * @rx_ring: rx descriptor ring (for a specific queue) to setup 2466 * 2467 * Returns 0 on success, negative on failure 2468 **/ 2469 static int wx_setup_rx_resources(struct wx_ring *rx_ring) 2470 { 2471 struct device *dev = rx_ring->dev; 2472 int orig_node = dev_to_node(dev); 2473 int numa_node = NUMA_NO_NODE; 2474 int size, ret; 2475 2476 size = sizeof(struct wx_rx_buffer) * rx_ring->count; 2477 2478 if (rx_ring->q_vector) 2479 numa_node = rx_ring->q_vector->numa_node; 2480 2481 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2482 if (!rx_ring->rx_buffer_info) 2483 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); 2484 if (!rx_ring->rx_buffer_info) 2485 goto err; 2486 2487 /* Round up to nearest 4K */ 2488 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); 2489 rx_ring->size = ALIGN(rx_ring->size, 4096); 2490 2491 set_dev_node(dev, numa_node); 2492 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2493 &rx_ring->dma, GFP_KERNEL); 2494 if (!rx_ring->desc) { 2495 set_dev_node(dev, orig_node); 2496 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2497 &rx_ring->dma, GFP_KERNEL); 2498 } 2499 2500 if (!rx_ring->desc) 2501 goto err; 2502 2503 rx_ring->next_to_clean = 0; 2504 rx_ring->next_to_use = 0; 2505 2506 ret = wx_alloc_page_pool(rx_ring); 2507 if (ret < 0) { 2508 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); 2509 goto err_desc; 2510 } 2511 2512 return 0; 2513 2514 err_desc: 2515 dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); 2516 err: 2517 kvfree(rx_ring->rx_buffer_info); 2518 rx_ring->rx_buffer_info = NULL; 2519 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 2520 return -ENOMEM; 2521 } 2522 2523 /** 2524 * wx_setup_all_rx_resources - allocate all queues Rx resources 2525 * @wx: pointer to hardware structure 2526 * 2527 * If this function returns with an error, then it's possible one or 2528 * more of the rings is populated (while the rest are not). It is the 2529 * callers duty to clean those orphaned rings. 2530 * 2531 * Return 0 on success, negative on failure 2532 **/ 2533 static int wx_setup_all_rx_resources(struct wx *wx) 2534 { 2535 int i, err = 0; 2536 2537 for (i = 0; i < wx->num_rx_queues; i++) { 2538 err = wx_setup_rx_resources(wx->rx_ring[i]); 2539 if (!err) 2540 continue; 2541 2542 wx_err(wx, "Allocation for Rx Queue %u failed\n", i); 2543 goto err_setup_rx; 2544 } 2545 2546 return 0; 2547 err_setup_rx: 2548 /* rewind the index freeing the rings as we go */ 2549 while (i--) 2550 wx_free_rx_resources(wx->rx_ring[i]); 2551 return err; 2552 } 2553 2554 /** 2555 * wx_setup_tx_resources - allocate Tx resources (Descriptors) 2556 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2557 * 2558 * Return 0 on success, negative on failure 2559 **/ 2560 static int wx_setup_tx_resources(struct wx_ring *tx_ring) 2561 { 2562 struct device *dev = tx_ring->dev; 2563 int orig_node = dev_to_node(dev); 2564 int numa_node = NUMA_NO_NODE; 2565 int size; 2566 2567 size = sizeof(struct wx_tx_buffer) * tx_ring->count; 2568 2569 if (tx_ring->q_vector) 2570 numa_node = tx_ring->q_vector->numa_node; 2571 2572 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2573 if (!tx_ring->tx_buffer_info) 2574 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); 2575 if (!tx_ring->tx_buffer_info) 2576 goto err; 2577 2578 /* round up to nearest 4K */ 2579 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); 2580 tx_ring->size = ALIGN(tx_ring->size, 4096); 2581 2582 set_dev_node(dev, numa_node); 2583 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2584 &tx_ring->dma, GFP_KERNEL); 2585 if (!tx_ring->desc) { 2586 set_dev_node(dev, orig_node); 2587 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2588 &tx_ring->dma, GFP_KERNEL); 2589 } 2590 2591 if (!tx_ring->desc) 2592 goto err; 2593 2594 tx_ring->next_to_use = 0; 2595 tx_ring->next_to_clean = 0; 2596 2597 return 0; 2598 2599 err: 2600 kvfree(tx_ring->tx_buffer_info); 2601 tx_ring->tx_buffer_info = NULL; 2602 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2603 return -ENOMEM; 2604 } 2605 2606 /** 2607 * wx_setup_all_tx_resources - allocate all queues Tx resources 2608 * @wx: pointer to private structure 2609 * 2610 * If this function returns with an error, then it's possible one or 2611 * more of the rings is populated (while the rest are not). It is the 2612 * callers duty to clean those orphaned rings. 2613 * 2614 * Return 0 on success, negative on failure 2615 **/ 2616 static int wx_setup_all_tx_resources(struct wx *wx) 2617 { 2618 int i, err = 0; 2619 2620 for (i = 0; i < wx->num_tx_queues; i++) { 2621 err = wx_setup_tx_resources(wx->tx_ring[i]); 2622 if (!err) 2623 continue; 2624 2625 wx_err(wx, "Allocation for Tx Queue %u failed\n", i); 2626 goto err_setup_tx; 2627 } 2628 2629 return 0; 2630 err_setup_tx: 2631 /* rewind the index freeing the rings as we go */ 2632 while (i--) 2633 wx_free_tx_resources(wx->tx_ring[i]); 2634 return err; 2635 } 2636 2637 int wx_setup_resources(struct wx *wx) 2638 { 2639 int err; 2640 2641 /* allocate transmit descriptors */ 2642 err = wx_setup_all_tx_resources(wx); 2643 if (err) 2644 return err; 2645 2646 /* allocate receive descriptors */ 2647 err = wx_setup_all_rx_resources(wx); 2648 if (err) 2649 goto err_free_tx; 2650 2651 err = wx_setup_isb_resources(wx); 2652 if (err) 2653 goto err_free_rx; 2654 2655 return 0; 2656 2657 err_free_rx: 2658 wx_free_all_rx_resources(wx); 2659 err_free_tx: 2660 wx_free_all_tx_resources(wx); 2661 2662 return err; 2663 } 2664 EXPORT_SYMBOL(wx_setup_resources); 2665 2666 /** 2667 * wx_get_stats64 - Get System Network Statistics 2668 * @netdev: network interface device structure 2669 * @stats: storage space for 64bit statistics 2670 */ 2671 void wx_get_stats64(struct net_device *netdev, 2672 struct rtnl_link_stats64 *stats) 2673 { 2674 struct wx *wx = netdev_priv(netdev); 2675 struct wx_hw_stats *hwstats; 2676 int i; 2677 2678 wx_update_stats(wx); 2679 2680 rcu_read_lock(); 2681 for (i = 0; i < wx->num_rx_queues; i++) { 2682 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); 2683 u64 bytes, packets; 2684 unsigned int start; 2685 2686 if (ring) { 2687 do { 2688 start = u64_stats_fetch_begin(&ring->syncp); 2689 packets = ring->stats.packets; 2690 bytes = ring->stats.bytes; 2691 } while (u64_stats_fetch_retry(&ring->syncp, start)); 2692 stats->rx_packets += packets; 2693 stats->rx_bytes += bytes; 2694 } 2695 } 2696 2697 for (i = 0; i < wx->num_tx_queues; i++) { 2698 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); 2699 u64 bytes, packets; 2700 unsigned int start; 2701 2702 if (ring) { 2703 do { 2704 start = u64_stats_fetch_begin(&ring->syncp); 2705 packets = ring->stats.packets; 2706 bytes = ring->stats.bytes; 2707 } while (u64_stats_fetch_retry(&ring->syncp, 2708 start)); 2709 stats->tx_packets += packets; 2710 stats->tx_bytes += bytes; 2711 } 2712 } 2713 2714 rcu_read_unlock(); 2715 2716 hwstats = &wx->stats; 2717 stats->rx_errors = hwstats->crcerrs + hwstats->rlec; 2718 stats->multicast = hwstats->qmprc; 2719 stats->rx_length_errors = hwstats->rlec; 2720 stats->rx_crc_errors = hwstats->crcerrs; 2721 } 2722 EXPORT_SYMBOL(wx_get_stats64); 2723 2724 int wx_set_features(struct net_device *netdev, netdev_features_t features) 2725 { 2726 netdev_features_t changed = netdev->features ^ features; 2727 struct wx *wx = netdev_priv(netdev); 2728 2729 if (changed & NETIF_F_RXHASH) 2730 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 2731 WX_RDB_RA_CTL_RSS_EN); 2732 else 2733 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); 2734 2735 if (changed & 2736 (NETIF_F_HW_VLAN_CTAG_RX | 2737 NETIF_F_HW_VLAN_STAG_RX)) 2738 wx_set_rx_mode(netdev); 2739 2740 return 1; 2741 } 2742 EXPORT_SYMBOL(wx_set_features); 2743 2744 MODULE_LICENSE("GPL"); 2745