1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <net/ip6_checksum.h> 6 #include <net/page_pool/helpers.h> 7 #include <net/inet_ecn.h> 8 #include <linux/workqueue.h> 9 #include <linux/iopoll.h> 10 #include <linux/sctp.h> 11 #include <linux/pci.h> 12 #include <net/tcp.h> 13 #include <net/ip.h> 14 15 #include "wx_type.h" 16 #include "wx_lib.h" 17 #include "wx_ptp.h" 18 #include "wx_hw.h" 19 20 /* Lookup table mapping the HW PTYPE to the bit field for decoding */ 21 static struct wx_dec_ptype wx_ptype_lookup[256] = { 22 /* L2: mac */ 23 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 24 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), 25 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 26 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 27 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 28 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 29 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 30 31 /* L2: ethertype filter */ 32 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 33 34 /* L3: ip non-tunnel */ 35 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), 36 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), 37 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), 38 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), 39 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), 40 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), 41 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), 42 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), 43 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), 44 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), 45 46 /* L2: fcoe */ 47 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 48 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 49 50 /* IPv4 --> IPv4/IPv6 */ 51 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), 52 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), 53 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), 54 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), 55 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), 56 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), 57 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), 58 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), 59 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), 60 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), 61 62 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ 63 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), 64 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), 65 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), 66 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), 67 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), 68 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), 69 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), 70 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), 71 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), 72 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), 73 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), 74 75 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ 76 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), 77 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), 78 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), 79 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), 80 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), 81 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), 82 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), 83 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), 84 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), 85 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), 86 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), 87 88 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ 89 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), 90 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), 91 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), 92 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), 93 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), 94 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), 95 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), 96 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), 97 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), 98 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), 99 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), 100 101 /* IPv6 --> IPv4/IPv6 */ 102 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), 103 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), 104 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), 105 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), 106 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), 107 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), 108 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), 109 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), 110 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), 111 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), 112 113 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ 114 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), 115 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), 116 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), 117 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), 118 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), 119 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), 120 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), 121 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), 122 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), 123 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), 124 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), 125 126 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ 127 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), 128 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), 129 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), 130 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), 131 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), 132 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), 133 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), 134 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), 135 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), 136 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), 137 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), 138 139 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ 140 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), 141 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), 142 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), 143 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), 144 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), 145 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), 146 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), 147 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), 148 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), 149 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), 150 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), 151 }; 152 153 struct wx_dec_ptype wx_decode_ptype(const u8 ptype) 154 { 155 return wx_ptype_lookup[ptype]; 156 } 157 EXPORT_SYMBOL(wx_decode_ptype); 158 159 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ 160 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, 161 const u32 stat_err_bits) 162 { 163 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); 164 } 165 166 static void wx_dma_sync_frag(struct wx_ring *rx_ring, 167 struct wx_rx_buffer *rx_buffer) 168 { 169 struct sk_buff *skb = rx_buffer->skb; 170 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 171 172 dma_sync_single_range_for_cpu(rx_ring->dev, 173 WX_CB(skb)->dma, 174 skb_frag_off(frag), 175 skb_frag_size(frag), 176 DMA_FROM_DEVICE); 177 178 /* If the page was released, just unmap it. */ 179 if (unlikely(WX_CB(skb)->page_released)) 180 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 181 } 182 183 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, 184 union wx_rx_desc *rx_desc, 185 struct sk_buff **skb, 186 int *rx_buffer_pgcnt) 187 { 188 struct wx_rx_buffer *rx_buffer; 189 unsigned int size; 190 191 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 192 size = le16_to_cpu(rx_desc->wb.upper.length); 193 194 #if (PAGE_SIZE < 8192) 195 *rx_buffer_pgcnt = page_count(rx_buffer->page); 196 #else 197 *rx_buffer_pgcnt = 0; 198 #endif 199 200 prefetchw(rx_buffer->page); 201 *skb = rx_buffer->skb; 202 203 /* Delay unmapping of the first packet. It carries the header 204 * information, HW may still access the header after the writeback. 205 * Only unmap it when EOP is reached 206 */ 207 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { 208 if (!*skb) 209 goto skip_sync; 210 } else { 211 if (*skb) 212 wx_dma_sync_frag(rx_ring, rx_buffer); 213 } 214 215 /* we are reusing so sync this buffer for CPU use */ 216 dma_sync_single_range_for_cpu(rx_ring->dev, 217 rx_buffer->dma, 218 rx_buffer->page_offset, 219 size, 220 DMA_FROM_DEVICE); 221 skip_sync: 222 return rx_buffer; 223 } 224 225 static void wx_put_rx_buffer(struct wx_ring *rx_ring, 226 struct wx_rx_buffer *rx_buffer, 227 struct sk_buff *skb, 228 int rx_buffer_pgcnt) 229 { 230 if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) 231 /* the page has been released from the ring */ 232 WX_CB(skb)->page_released = true; 233 234 /* clear contents of rx_buffer */ 235 rx_buffer->page = NULL; 236 rx_buffer->skb = NULL; 237 } 238 239 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, 240 struct wx_rx_buffer *rx_buffer, 241 union wx_rx_desc *rx_desc) 242 { 243 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 244 #if (PAGE_SIZE < 8192) 245 unsigned int truesize = WX_RX_BUFSZ; 246 #else 247 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 248 #endif 249 struct sk_buff *skb = rx_buffer->skb; 250 251 if (!skb) { 252 void *page_addr = page_address(rx_buffer->page) + 253 rx_buffer->page_offset; 254 255 /* prefetch first cache line of first page */ 256 net_prefetch(page_addr); 257 258 /* allocate a skb to store the frags */ 259 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); 260 if (unlikely(!skb)) 261 return NULL; 262 263 /* we will be copying header into skb->data in 264 * pskb_may_pull so it is in our interest to prefetch 265 * it now to avoid a possible cache miss 266 */ 267 prefetchw(skb->data); 268 269 if (size <= WX_RXBUFFER_256) { 270 memcpy(__skb_put(skb, size), page_addr, 271 ALIGN(size, sizeof(long))); 272 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true); 273 return skb; 274 } 275 276 skb_mark_for_recycle(skb); 277 278 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) 279 WX_CB(skb)->dma = rx_buffer->dma; 280 281 skb_add_rx_frag(skb, 0, rx_buffer->page, 282 rx_buffer->page_offset, 283 size, truesize); 284 goto out; 285 286 } else { 287 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 288 rx_buffer->page_offset, size, truesize); 289 } 290 291 out: 292 #if (PAGE_SIZE < 8192) 293 /* flip page offset to other buffer */ 294 rx_buffer->page_offset ^= truesize; 295 #else 296 /* move offset up to the next cache line */ 297 rx_buffer->page_offset += truesize; 298 #endif 299 300 return skb; 301 } 302 303 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, 304 struct wx_rx_buffer *bi) 305 { 306 struct page *page = bi->page; 307 dma_addr_t dma; 308 309 /* since we are recycling buffers we should seldom need to alloc */ 310 if (likely(page)) 311 return true; 312 313 page = page_pool_dev_alloc_pages(rx_ring->page_pool); 314 if (unlikely(!page)) 315 return false; 316 dma = page_pool_get_dma_addr(page); 317 318 bi->page_dma = dma; 319 bi->page = page; 320 bi->page_offset = 0; 321 322 return true; 323 } 324 325 /** 326 * wx_alloc_rx_buffers - Replace used receive buffers 327 * @rx_ring: ring to place buffers on 328 * @cleaned_count: number of buffers to replace 329 **/ 330 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) 331 { 332 u16 i = rx_ring->next_to_use; 333 union wx_rx_desc *rx_desc; 334 struct wx_rx_buffer *bi; 335 336 /* nothing to do */ 337 if (!cleaned_count) 338 return; 339 340 rx_desc = WX_RX_DESC(rx_ring, i); 341 bi = &rx_ring->rx_buffer_info[i]; 342 i -= rx_ring->count; 343 344 do { 345 if (!wx_alloc_mapped_page(rx_ring, bi)) 346 break; 347 348 /* sync the buffer for use by the device */ 349 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 350 bi->page_offset, 351 WX_RX_BUFSZ, 352 DMA_FROM_DEVICE); 353 354 rx_desc->read.pkt_addr = 355 cpu_to_le64(bi->page_dma + bi->page_offset); 356 357 rx_desc++; 358 bi++; 359 i++; 360 if (unlikely(!i)) { 361 rx_desc = WX_RX_DESC(rx_ring, 0); 362 bi = rx_ring->rx_buffer_info; 363 i -= rx_ring->count; 364 } 365 366 /* clear the status bits for the next_to_use descriptor */ 367 rx_desc->wb.upper.status_error = 0; 368 369 cleaned_count--; 370 } while (cleaned_count); 371 372 i += rx_ring->count; 373 374 if (rx_ring->next_to_use != i) { 375 rx_ring->next_to_use = i; 376 /* update next to alloc since we have filled the ring */ 377 rx_ring->next_to_alloc = i; 378 379 /* Force memory writes to complete before letting h/w 380 * know there are new descriptors to fetch. (Only 381 * applicable for weak-ordered memory model archs, 382 * such as IA-64). 383 */ 384 wmb(); 385 writel(i, rx_ring->tail); 386 } 387 } 388 389 u16 wx_desc_unused(struct wx_ring *ring) 390 { 391 u16 ntc = ring->next_to_clean; 392 u16 ntu = ring->next_to_use; 393 394 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; 395 } 396 397 /** 398 * wx_is_non_eop - process handling of non-EOP buffers 399 * @rx_ring: Rx ring being processed 400 * @rx_desc: Rx descriptor for current buffer 401 * @skb: Current socket buffer containing buffer in progress 402 * 403 * This function updates next to clean. If the buffer is an EOP buffer 404 * this function exits returning false, otherwise it will place the 405 * sk_buff in the next buffer to be chained and return true indicating 406 * that this is in fact a non-EOP buffer. 407 **/ 408 static bool wx_is_non_eop(struct wx_ring *rx_ring, 409 union wx_rx_desc *rx_desc, 410 struct sk_buff *skb) 411 { 412 u32 ntc = rx_ring->next_to_clean + 1; 413 414 /* fetch, update, and store next to clean */ 415 ntc = (ntc < rx_ring->count) ? ntc : 0; 416 rx_ring->next_to_clean = ntc; 417 418 prefetch(WX_RX_DESC(rx_ring, ntc)); 419 420 /* if we are the last buffer then there is nothing else to do */ 421 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) 422 return false; 423 424 rx_ring->rx_buffer_info[ntc].skb = skb; 425 rx_ring->rx_stats.non_eop_descs++; 426 427 return true; 428 } 429 430 static void wx_pull_tail(struct sk_buff *skb) 431 { 432 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 433 unsigned int pull_len; 434 unsigned char *va; 435 436 /* it is valid to use page_address instead of kmap since we are 437 * working with pages allocated out of the lomem pool per 438 * alloc_page(GFP_ATOMIC) 439 */ 440 va = skb_frag_address(frag); 441 442 /* we need the header to contain the greater of either ETH_HLEN or 443 * 60 bytes if the skb->len is less than 60 for skb_pad. 444 */ 445 pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); 446 447 /* align pull length to size of long to optimize memcpy performance */ 448 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 449 450 /* update all of the pointers */ 451 skb_frag_size_sub(frag, pull_len); 452 skb_frag_off_add(frag, pull_len); 453 skb->data_len -= pull_len; 454 skb->tail += pull_len; 455 } 456 457 /** 458 * wx_cleanup_headers - Correct corrupted or empty headers 459 * @rx_ring: rx descriptor ring packet is being transacted on 460 * @rx_desc: pointer to the EOP Rx descriptor 461 * @skb: pointer to current skb being fixed 462 * 463 * Check for corrupted packet headers caused by senders on the local L2 464 * embedded NIC switch not setting up their Tx Descriptors right. These 465 * should be very rare. 466 * 467 * Also address the case where we are pulling data in on pages only 468 * and as such no data is present in the skb header. 469 * 470 * In addition if skb is not at least 60 bytes we need to pad it so that 471 * it is large enough to qualify as a valid Ethernet frame. 472 * 473 * Returns true if an error was encountered and skb was freed. 474 **/ 475 static bool wx_cleanup_headers(struct wx_ring *rx_ring, 476 union wx_rx_desc *rx_desc, 477 struct sk_buff *skb) 478 { 479 struct net_device *netdev = rx_ring->netdev; 480 481 /* verify that the packet does not have any known errors */ 482 if (!netdev || 483 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && 484 !(netdev->features & NETIF_F_RXALL))) { 485 dev_kfree_skb_any(skb); 486 return true; 487 } 488 489 /* place header in linear portion of buffer */ 490 if (!skb_headlen(skb)) 491 wx_pull_tail(skb); 492 493 /* if eth_skb_pad returns an error the skb was freed */ 494 if (eth_skb_pad(skb)) 495 return true; 496 497 return false; 498 } 499 500 static void wx_rx_hash(struct wx_ring *ring, 501 union wx_rx_desc *rx_desc, 502 struct sk_buff *skb) 503 { 504 u16 rss_type; 505 506 if (!(ring->netdev->features & NETIF_F_RXHASH)) 507 return; 508 509 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 510 WX_RXD_RSSTYPE_MASK; 511 512 if (!rss_type) 513 return; 514 515 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 516 (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 517 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 518 } 519 520 /** 521 * wx_rx_checksum - indicate in skb if hw indicated a good cksum 522 * @ring: structure containing ring specific data 523 * @rx_desc: current Rx descriptor being processed 524 * @skb: skb currently being received and modified 525 **/ 526 static void wx_rx_checksum(struct wx_ring *ring, 527 union wx_rx_desc *rx_desc, 528 struct sk_buff *skb) 529 { 530 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); 531 532 skb_checksum_none_assert(skb); 533 /* Rx csum disabled */ 534 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 535 return; 536 537 /* if IPv4 header checksum error */ 538 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && 539 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || 540 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && 541 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { 542 ring->rx_stats.csum_err++; 543 return; 544 } 545 546 /* L4 checksum offload flag must set for the below code to work */ 547 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) 548 return; 549 550 /* Hardware can't guarantee csum if IPv6 Dest Header found */ 551 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && 552 wx_test_staterr(rx_desc, WX_RXD_STAT_IPV6EX)) 553 return; 554 555 /* if L4 checksum error */ 556 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { 557 ring->rx_stats.csum_err++; 558 return; 559 } 560 561 /* It must be a TCP or UDP or SCTP packet with a valid checksum */ 562 skb->ip_summed = CHECKSUM_UNNECESSARY; 563 564 /* If there is an outer header present that might contain a checksum 565 * we need to bump the checksum level by 1 to reflect the fact that 566 * we are indicating we validated the inner checksum. 567 */ 568 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) 569 __skb_incr_checksum_unnecessary(skb); 570 ring->rx_stats.csum_good_cnt++; 571 } 572 573 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, 574 struct sk_buff *skb) 575 { 576 u16 ethertype; 577 u8 idx = 0; 578 579 if ((ring->netdev->features & 580 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && 581 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { 582 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 583 0x1c0) >> 6; 584 ethertype = ring->q_vector->wx->tpid[idx]; 585 __vlan_hwaccel_put_tag(skb, htons(ethertype), 586 le16_to_cpu(rx_desc->wb.upper.vlan)); 587 } 588 } 589 590 /** 591 * wx_process_skb_fields - Populate skb header fields from Rx descriptor 592 * @rx_ring: rx descriptor ring packet is being transacted on 593 * @rx_desc: pointer to the EOP Rx descriptor 594 * @skb: pointer to current skb being populated 595 * 596 * This function checks the ring, descriptor, and packet information in 597 * order to populate the hash, checksum, protocol, and 598 * other fields within the skb. 599 **/ 600 static void wx_process_skb_fields(struct wx_ring *rx_ring, 601 union wx_rx_desc *rx_desc, 602 struct sk_buff *skb) 603 { 604 struct wx *wx = netdev_priv(rx_ring->netdev); 605 606 wx_rx_hash(rx_ring, rx_desc, skb); 607 wx_rx_checksum(rx_ring, rx_desc, skb); 608 609 if (unlikely(test_bit(WX_FLAG_RX_HWTSTAMP_ENABLED, wx->flags)) && 610 unlikely(wx_test_staterr(rx_desc, WX_RXD_STAT_TS))) { 611 wx_ptp_rx_hwtstamp(rx_ring->q_vector->wx, skb); 612 rx_ring->last_rx_timestamp = jiffies; 613 } 614 615 wx_rx_vlan(rx_ring, rx_desc, skb); 616 skb_record_rx_queue(skb, rx_ring->queue_index); 617 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 618 } 619 620 /** 621 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 622 * @q_vector: structure containing interrupt and ring information 623 * @rx_ring: rx descriptor ring to transact packets on 624 * @budget: Total limit on number of packets to process 625 * 626 * This function provides a "bounce buffer" approach to Rx interrupt 627 * processing. The advantage to this is that on systems that have 628 * expensive overhead for IOMMU access this provides a means of avoiding 629 * it by maintaining the mapping of the page to the system. 630 * 631 * Returns amount of work completed. 632 **/ 633 static int wx_clean_rx_irq(struct wx_q_vector *q_vector, 634 struct wx_ring *rx_ring, 635 int budget) 636 { 637 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 638 u16 cleaned_count = wx_desc_unused(rx_ring); 639 640 do { 641 struct wx_rx_buffer *rx_buffer; 642 union wx_rx_desc *rx_desc; 643 struct sk_buff *skb; 644 int rx_buffer_pgcnt; 645 646 /* return some buffers to hardware, one at a time is too slow */ 647 if (cleaned_count >= WX_RX_BUFFER_WRITE) { 648 wx_alloc_rx_buffers(rx_ring, cleaned_count); 649 cleaned_count = 0; 650 } 651 652 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); 653 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) 654 break; 655 656 /* This memory barrier is needed to keep us from reading 657 * any other fields out of the rx_desc until we know the 658 * descriptor has been written back 659 */ 660 dma_rmb(); 661 662 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); 663 664 /* retrieve a buffer from the ring */ 665 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); 666 667 /* exit if we failed to retrieve a buffer */ 668 if (!skb) { 669 rx_ring->rx_stats.alloc_rx_buff_failed++; 670 break; 671 } 672 673 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); 674 cleaned_count++; 675 676 /* place incomplete frames back on ring for completion */ 677 if (wx_is_non_eop(rx_ring, rx_desc, skb)) 678 continue; 679 680 /* verify the packet layout is correct */ 681 if (wx_cleanup_headers(rx_ring, rx_desc, skb)) 682 continue; 683 684 /* probably a little skewed due to removing CRC */ 685 total_rx_bytes += skb->len; 686 687 /* populate checksum, timestamp, VLAN, and protocol */ 688 wx_process_skb_fields(rx_ring, rx_desc, skb); 689 napi_gro_receive(&q_vector->napi, skb); 690 691 /* update budget accounting */ 692 total_rx_packets++; 693 } while (likely(total_rx_packets < budget)); 694 695 u64_stats_update_begin(&rx_ring->syncp); 696 rx_ring->stats.packets += total_rx_packets; 697 rx_ring->stats.bytes += total_rx_bytes; 698 u64_stats_update_end(&rx_ring->syncp); 699 q_vector->rx.total_packets += total_rx_packets; 700 q_vector->rx.total_bytes += total_rx_bytes; 701 702 return total_rx_packets; 703 } 704 705 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) 706 { 707 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 708 } 709 710 /** 711 * wx_clean_tx_irq - Reclaim resources after transmit completes 712 * @q_vector: structure containing interrupt and ring information 713 * @tx_ring: tx ring to clean 714 * @napi_budget: Used to determine if we are in netpoll 715 **/ 716 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, 717 struct wx_ring *tx_ring, int napi_budget) 718 { 719 unsigned int budget = q_vector->wx->tx_work_limit; 720 unsigned int total_bytes = 0, total_packets = 0; 721 struct wx *wx = netdev_priv(tx_ring->netdev); 722 unsigned int i = tx_ring->next_to_clean; 723 struct wx_tx_buffer *tx_buffer; 724 union wx_tx_desc *tx_desc; 725 726 if (!netif_carrier_ok(tx_ring->netdev)) 727 return true; 728 729 tx_buffer = &tx_ring->tx_buffer_info[i]; 730 tx_desc = WX_TX_DESC(tx_ring, i); 731 i -= tx_ring->count; 732 733 do { 734 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; 735 736 /* if next_to_watch is not set then there is no work pending */ 737 if (!eop_desc) 738 break; 739 740 /* prevent any other reads prior to eop_desc */ 741 smp_rmb(); 742 743 /* if DD is not set pending work has not been completed */ 744 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) 745 break; 746 747 /* clear next_to_watch to prevent false hangs */ 748 tx_buffer->next_to_watch = NULL; 749 750 /* update the statistics for this packet */ 751 total_bytes += tx_buffer->bytecount; 752 total_packets += tx_buffer->gso_segs; 753 754 /* schedule check for Tx timestamp */ 755 if (unlikely(test_bit(WX_STATE_PTP_TX_IN_PROGRESS, wx->state)) && 756 skb_shinfo(tx_buffer->skb)->tx_flags & SKBTX_IN_PROGRESS) 757 ptp_schedule_worker(wx->ptp_clock, 0); 758 759 /* free the skb */ 760 napi_consume_skb(tx_buffer->skb, napi_budget); 761 762 /* unmap skb header data */ 763 dma_unmap_single(tx_ring->dev, 764 dma_unmap_addr(tx_buffer, dma), 765 dma_unmap_len(tx_buffer, len), 766 DMA_TO_DEVICE); 767 768 /* clear tx_buffer data */ 769 dma_unmap_len_set(tx_buffer, len, 0); 770 771 /* unmap remaining buffers */ 772 while (tx_desc != eop_desc) { 773 tx_buffer++; 774 tx_desc++; 775 i++; 776 if (unlikely(!i)) { 777 i -= tx_ring->count; 778 tx_buffer = tx_ring->tx_buffer_info; 779 tx_desc = WX_TX_DESC(tx_ring, 0); 780 } 781 782 /* unmap any remaining paged data */ 783 if (dma_unmap_len(tx_buffer, len)) { 784 dma_unmap_page(tx_ring->dev, 785 dma_unmap_addr(tx_buffer, dma), 786 dma_unmap_len(tx_buffer, len), 787 DMA_TO_DEVICE); 788 dma_unmap_len_set(tx_buffer, len, 0); 789 } 790 } 791 792 /* move us one more past the eop_desc for start of next pkt */ 793 tx_buffer++; 794 tx_desc++; 795 i++; 796 if (unlikely(!i)) { 797 i -= tx_ring->count; 798 tx_buffer = tx_ring->tx_buffer_info; 799 tx_desc = WX_TX_DESC(tx_ring, 0); 800 } 801 802 /* issue prefetch for next Tx descriptor */ 803 prefetch(tx_desc); 804 805 /* update budget accounting */ 806 budget--; 807 } while (likely(budget)); 808 809 i += tx_ring->count; 810 tx_ring->next_to_clean = i; 811 u64_stats_update_begin(&tx_ring->syncp); 812 tx_ring->stats.bytes += total_bytes; 813 tx_ring->stats.packets += total_packets; 814 u64_stats_update_end(&tx_ring->syncp); 815 q_vector->tx.total_bytes += total_bytes; 816 q_vector->tx.total_packets += total_packets; 817 818 netdev_tx_completed_queue(wx_txring_txq(tx_ring), 819 total_packets, total_bytes); 820 821 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 822 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 823 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 824 /* Make sure that anybody stopping the queue after this 825 * sees the new next_to_clean. 826 */ 827 smp_mb(); 828 829 if (__netif_subqueue_stopped(tx_ring->netdev, 830 tx_ring->queue_index) && 831 netif_running(tx_ring->netdev)) { 832 netif_wake_subqueue(tx_ring->netdev, 833 tx_ring->queue_index); 834 ++tx_ring->tx_stats.restart_queue; 835 } 836 } 837 838 return !!budget; 839 } 840 841 /** 842 * wx_poll - NAPI polling RX/TX cleanup routine 843 * @napi: napi struct with our devices info in it 844 * @budget: amount of work driver is allowed to do this pass, in packets 845 * 846 * This function will clean all queues associated with a q_vector. 847 **/ 848 static int wx_poll(struct napi_struct *napi, int budget) 849 { 850 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); 851 int per_ring_budget, work_done = 0; 852 struct wx *wx = q_vector->wx; 853 bool clean_complete = true; 854 struct wx_ring *ring; 855 856 wx_for_each_ring(ring, q_vector->tx) { 857 if (!wx_clean_tx_irq(q_vector, ring, budget)) 858 clean_complete = false; 859 } 860 861 /* Exit if we are called by netpoll */ 862 if (budget <= 0) 863 return budget; 864 865 /* attempt to distribute budget to each queue fairly, but don't allow 866 * the budget to go below 1 because we'll exit polling 867 */ 868 if (q_vector->rx.count > 1) 869 per_ring_budget = max(budget / q_vector->rx.count, 1); 870 else 871 per_ring_budget = budget; 872 873 wx_for_each_ring(ring, q_vector->rx) { 874 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); 875 876 work_done += cleaned; 877 if (cleaned >= per_ring_budget) 878 clean_complete = false; 879 } 880 881 /* If all work not completed, return budget and keep polling */ 882 if (!clean_complete) 883 return budget; 884 885 /* all work done, exit the polling mode */ 886 if (likely(napi_complete_done(napi, work_done))) { 887 if (netif_running(wx->netdev)) 888 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); 889 } 890 891 return min(work_done, budget - 1); 892 } 893 894 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) 895 { 896 if (likely(wx_desc_unused(tx_ring) >= size)) 897 return 0; 898 899 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 900 901 /* For the next check */ 902 smp_mb(); 903 904 /* We need to check again in a case another CPU has just 905 * made room available. 906 */ 907 if (likely(wx_desc_unused(tx_ring) < size)) 908 return -EBUSY; 909 910 /* A reprieve! - use start_queue because it doesn't call schedule */ 911 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 912 ++tx_ring->tx_stats.restart_queue; 913 914 return 0; 915 } 916 917 static u32 wx_tx_cmd_type(u32 tx_flags) 918 { 919 /* set type for advanced descriptor with frame checksum insertion */ 920 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; 921 922 /* set HW vlan bit if vlan is present */ 923 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); 924 /* set segmentation enable bits for TSO/FSO */ 925 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); 926 /* set timestamp bit if present */ 927 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); 928 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); 929 930 return cmd_type; 931 } 932 933 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, 934 u32 tx_flags, unsigned int paylen) 935 { 936 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; 937 938 /* enable L4 checksum for TSO and TX checksum offload */ 939 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); 940 /* enable IPv4 checksum for TSO */ 941 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); 942 /* enable outer IPv4 checksum for TSO */ 943 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, 944 WX_TXD_EIPCS); 945 /* Check Context must be set if Tx switch is enabled, which it 946 * always is for case where virtual functions are running 947 */ 948 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); 949 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, 950 WX_TXD_IPSEC); 951 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 952 } 953 954 static int wx_tx_map(struct wx_ring *tx_ring, 955 struct wx_tx_buffer *first, 956 const u8 hdr_len) 957 { 958 struct sk_buff *skb = first->skb; 959 struct wx_tx_buffer *tx_buffer; 960 u32 tx_flags = first->tx_flags; 961 u16 i = tx_ring->next_to_use; 962 unsigned int data_len, size; 963 union wx_tx_desc *tx_desc; 964 skb_frag_t *frag; 965 dma_addr_t dma; 966 u32 cmd_type; 967 968 cmd_type = wx_tx_cmd_type(tx_flags); 969 tx_desc = WX_TX_DESC(tx_ring, i); 970 wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 971 972 size = skb_headlen(skb); 973 data_len = skb->data_len; 974 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 975 976 tx_buffer = first; 977 978 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 979 if (dma_mapping_error(tx_ring->dev, dma)) 980 goto dma_error; 981 982 /* record length, and DMA address */ 983 dma_unmap_len_set(tx_buffer, len, size); 984 dma_unmap_addr_set(tx_buffer, dma, dma); 985 986 tx_desc->read.buffer_addr = cpu_to_le64(dma); 987 988 while (unlikely(size > WX_MAX_DATA_PER_TXD)) { 989 tx_desc->read.cmd_type_len = 990 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); 991 992 i++; 993 tx_desc++; 994 if (i == tx_ring->count) { 995 tx_desc = WX_TX_DESC(tx_ring, 0); 996 i = 0; 997 } 998 tx_desc->read.olinfo_status = 0; 999 1000 dma += WX_MAX_DATA_PER_TXD; 1001 size -= WX_MAX_DATA_PER_TXD; 1002 1003 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1004 } 1005 1006 if (likely(!data_len)) 1007 break; 1008 1009 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1010 1011 i++; 1012 tx_desc++; 1013 if (i == tx_ring->count) { 1014 tx_desc = WX_TX_DESC(tx_ring, 0); 1015 i = 0; 1016 } 1017 tx_desc->read.olinfo_status = 0; 1018 1019 size = skb_frag_size(frag); 1020 1021 data_len -= size; 1022 1023 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1024 DMA_TO_DEVICE); 1025 1026 tx_buffer = &tx_ring->tx_buffer_info[i]; 1027 } 1028 1029 /* write last descriptor with RS and EOP bits */ 1030 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; 1031 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1032 1033 netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); 1034 1035 /* set the timestamp */ 1036 first->time_stamp = jiffies; 1037 skb_tx_timestamp(skb); 1038 1039 /* Force memory writes to complete before letting h/w know there 1040 * are new descriptors to fetch. (Only applicable for weak-ordered 1041 * memory model archs, such as IA-64). 1042 * 1043 * We also need this memory barrier to make certain all of the 1044 * status bits have been updated before next_to_watch is written. 1045 */ 1046 wmb(); 1047 1048 /* set next_to_watch value indicating a packet is present */ 1049 first->next_to_watch = tx_desc; 1050 1051 i++; 1052 if (i == tx_ring->count) 1053 i = 0; 1054 1055 tx_ring->next_to_use = i; 1056 1057 wx_maybe_stop_tx(tx_ring, DESC_NEEDED); 1058 1059 if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) 1060 writel(i, tx_ring->tail); 1061 1062 return 0; 1063 dma_error: 1064 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1065 1066 /* clear dma mappings for failed tx_buffer_info map */ 1067 for (;;) { 1068 tx_buffer = &tx_ring->tx_buffer_info[i]; 1069 if (dma_unmap_len(tx_buffer, len)) 1070 dma_unmap_page(tx_ring->dev, 1071 dma_unmap_addr(tx_buffer, dma), 1072 dma_unmap_len(tx_buffer, len), 1073 DMA_TO_DEVICE); 1074 dma_unmap_len_set(tx_buffer, len, 0); 1075 if (tx_buffer == first) 1076 break; 1077 if (i == 0) 1078 i += tx_ring->count; 1079 i--; 1080 } 1081 1082 dev_kfree_skb_any(first->skb); 1083 first->skb = NULL; 1084 1085 tx_ring->next_to_use = i; 1086 1087 return -ENOMEM; 1088 } 1089 1090 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, 1091 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) 1092 { 1093 struct wx_tx_context_desc *context_desc; 1094 u16 i = tx_ring->next_to_use; 1095 1096 context_desc = WX_TX_CTXTDESC(tx_ring, i); 1097 i++; 1098 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1099 1100 /* set bits to identify this as an advanced context descriptor */ 1101 type_tucmd |= WX_TXD_DTYP_CTXT; 1102 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1103 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); 1104 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1105 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1106 } 1107 1108 union network_header { 1109 struct iphdr *ipv4; 1110 struct ipv6hdr *ipv6; 1111 void *raw; 1112 }; 1113 1114 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) 1115 { 1116 u8 tun_prot = 0, l4_prot = 0, ptype = 0; 1117 struct sk_buff *skb = first->skb; 1118 unsigned char *exthdr, *l4_hdr; 1119 __be16 frag_off; 1120 1121 if (skb->encapsulation) { 1122 union network_header hdr; 1123 1124 switch (first->protocol) { 1125 case htons(ETH_P_IP): 1126 tun_prot = ip_hdr(skb)->protocol; 1127 ptype = WX_PTYPE_TUN_IPV4; 1128 break; 1129 case htons(ETH_P_IPV6): 1130 l4_hdr = skb_transport_header(skb); 1131 exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr); 1132 tun_prot = ipv6_hdr(skb)->nexthdr; 1133 if (l4_hdr != exthdr) 1134 ipv6_skip_exthdr(skb, exthdr - skb->data, &tun_prot, &frag_off); 1135 ptype = WX_PTYPE_TUN_IPV6; 1136 break; 1137 default: 1138 return ptype; 1139 } 1140 1141 if (tun_prot == IPPROTO_IPIP || tun_prot == IPPROTO_IPV6) { 1142 hdr.raw = (void *)inner_ip_hdr(skb); 1143 ptype |= WX_PTYPE_PKT_IPIP; 1144 } else if (tun_prot == IPPROTO_UDP) { 1145 hdr.raw = (void *)inner_ip_hdr(skb); 1146 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1147 skb->inner_protocol != htons(ETH_P_TEB)) { 1148 ptype |= WX_PTYPE_PKT_IG; 1149 } else { 1150 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1151 == htons(ETH_P_8021Q)) 1152 ptype |= WX_PTYPE_PKT_IGMV; 1153 else 1154 ptype |= WX_PTYPE_PKT_IGM; 1155 } 1156 1157 } else if (tun_prot == IPPROTO_GRE) { 1158 hdr.raw = (void *)inner_ip_hdr(skb); 1159 if (skb->inner_protocol == htons(ETH_P_IP) || 1160 skb->inner_protocol == htons(ETH_P_IPV6)) { 1161 ptype |= WX_PTYPE_PKT_IG; 1162 } else { 1163 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1164 == htons(ETH_P_8021Q)) 1165 ptype |= WX_PTYPE_PKT_IGMV; 1166 else 1167 ptype |= WX_PTYPE_PKT_IGM; 1168 } 1169 } else { 1170 return ptype; 1171 } 1172 1173 switch (hdr.ipv4->version) { 1174 case IPVERSION: 1175 l4_prot = hdr.ipv4->protocol; 1176 break; 1177 case 6: 1178 l4_hdr = skb_inner_transport_header(skb); 1179 exthdr = skb_inner_network_header(skb) + sizeof(struct ipv6hdr); 1180 l4_prot = inner_ipv6_hdr(skb)->nexthdr; 1181 if (l4_hdr != exthdr) 1182 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off); 1183 ptype |= WX_PTYPE_PKT_IPV6; 1184 break; 1185 default: 1186 return ptype; 1187 } 1188 } else { 1189 switch (first->protocol) { 1190 case htons(ETH_P_IP): 1191 l4_prot = ip_hdr(skb)->protocol; 1192 ptype = WX_PTYPE_PKT_IP; 1193 break; 1194 case htons(ETH_P_IPV6): 1195 l4_hdr = skb_transport_header(skb); 1196 exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr); 1197 l4_prot = ipv6_hdr(skb)->nexthdr; 1198 if (l4_hdr != exthdr) 1199 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off); 1200 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; 1201 break; 1202 default: 1203 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; 1204 } 1205 } 1206 switch (l4_prot) { 1207 case IPPROTO_TCP: 1208 ptype |= WX_PTYPE_TYP_TCP; 1209 break; 1210 case IPPROTO_UDP: 1211 ptype |= WX_PTYPE_TYP_UDP; 1212 break; 1213 case IPPROTO_SCTP: 1214 ptype |= WX_PTYPE_TYP_SCTP; 1215 break; 1216 default: 1217 ptype |= WX_PTYPE_TYP_IP; 1218 break; 1219 } 1220 1221 return ptype; 1222 } 1223 1224 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1225 u8 *hdr_len, u8 ptype) 1226 { 1227 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1228 struct net_device *netdev = tx_ring->netdev; 1229 u32 l4len, tunhdr_eiplen_tunlen = 0; 1230 struct sk_buff *skb = first->skb; 1231 bool enc = skb->encapsulation; 1232 struct ipv6hdr *ipv6h; 1233 struct tcphdr *tcph; 1234 struct iphdr *iph; 1235 u8 tun_prot = 0; 1236 int err; 1237 1238 if (skb->ip_summed != CHECKSUM_PARTIAL) 1239 return 0; 1240 1241 if (!skb_is_gso(skb)) 1242 return 0; 1243 1244 err = skb_cow_head(skb, 0); 1245 if (err < 0) 1246 return err; 1247 1248 /* indicates the inner headers in the skbuff are valid. */ 1249 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); 1250 if (iph->version == 4) { 1251 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1252 iph->tot_len = 0; 1253 iph->check = 0; 1254 tcph->check = ~csum_tcpudp_magic(iph->saddr, 1255 iph->daddr, 0, 1256 IPPROTO_TCP, 0); 1257 first->tx_flags |= WX_TX_FLAGS_TSO | 1258 WX_TX_FLAGS_CSUM | 1259 WX_TX_FLAGS_IPV4 | 1260 WX_TX_FLAGS_CC; 1261 } else if (iph->version == 6 && skb_is_gso_v6(skb)) { 1262 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 1263 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1264 ipv6h->payload_len = 0; 1265 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, 1266 &ipv6h->daddr, 0, 1267 IPPROTO_TCP, 0); 1268 first->tx_flags |= WX_TX_FLAGS_TSO | 1269 WX_TX_FLAGS_CSUM | 1270 WX_TX_FLAGS_CC; 1271 } 1272 1273 /* compute header lengths */ 1274 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); 1275 *hdr_len = enc ? skb_inner_transport_offset(skb) : 1276 skb_transport_offset(skb); 1277 *hdr_len += l4len; 1278 1279 /* update gso size and bytecount with header size */ 1280 first->gso_segs = skb_shinfo(skb)->gso_segs; 1281 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1282 1283 /* mss_l4len_id: use 0 as index for TSO */ 1284 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; 1285 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; 1286 1287 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 1288 if (enc) { 1289 unsigned char *exthdr, *l4_hdr; 1290 __be16 frag_off; 1291 1292 switch (first->protocol) { 1293 case htons(ETH_P_IP): 1294 tun_prot = ip_hdr(skb)->protocol; 1295 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; 1296 break; 1297 case htons(ETH_P_IPV6): 1298 l4_hdr = skb_transport_header(skb); 1299 exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr); 1300 tun_prot = ipv6_hdr(skb)->nexthdr; 1301 if (l4_hdr != exthdr) 1302 ipv6_skip_exthdr(skb, exthdr - skb->data, &tun_prot, &frag_off); 1303 break; 1304 default: 1305 break; 1306 } 1307 switch (tun_prot) { 1308 case IPPROTO_UDP: 1309 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1310 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1311 WX_TXD_OUTER_IPLEN_SHIFT) | 1312 (((skb_inner_mac_header(skb) - 1313 skb_transport_header(skb)) >> 1) << 1314 WX_TXD_TUNNEL_LEN_SHIFT); 1315 break; 1316 case IPPROTO_GRE: 1317 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1318 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1319 WX_TXD_OUTER_IPLEN_SHIFT) | 1320 (((skb_inner_mac_header(skb) - 1321 skb_transport_header(skb)) >> 1) << 1322 WX_TXD_TUNNEL_LEN_SHIFT); 1323 break; 1324 case IPPROTO_IPIP: 1325 case IPPROTO_IPV6: 1326 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1327 (char *)ip_hdr(skb)) >> 2) << 1328 WX_TXD_OUTER_IPLEN_SHIFT; 1329 break; 1330 default: 1331 break; 1332 } 1333 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; 1334 } else { 1335 vlan_macip_lens = skb_network_header_len(skb) >> 1; 1336 } 1337 1338 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; 1339 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1340 1341 type_tucmd = ptype << 24; 1342 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1343 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1344 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1345 WX_TX_FLAGS_HW_VLAN, 1346 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1347 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1348 type_tucmd, mss_l4len_idx); 1349 1350 return 1; 1351 } 1352 1353 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1354 u8 ptype) 1355 { 1356 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; 1357 struct net_device *netdev = tx_ring->netdev; 1358 u32 mss_l4len_idx = 0, type_tucmd; 1359 struct sk_buff *skb = first->skb; 1360 u8 tun_prot = 0; 1361 1362 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1363 csum_failed: 1364 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && 1365 !(first->tx_flags & WX_TX_FLAGS_CC)) 1366 return; 1367 vlan_macip_lens = skb_network_offset(skb) << 1368 WX_TXD_MACLEN_SHIFT; 1369 } else { 1370 unsigned char *exthdr, *l4_hdr; 1371 __be16 frag_off; 1372 u8 l4_prot = 0; 1373 union { 1374 struct iphdr *ipv4; 1375 struct ipv6hdr *ipv6; 1376 u8 *raw; 1377 } network_hdr; 1378 union { 1379 struct tcphdr *tcphdr; 1380 u8 *raw; 1381 } transport_hdr; 1382 1383 if (skb->encapsulation) { 1384 network_hdr.raw = skb_inner_network_header(skb); 1385 transport_hdr.raw = skb_inner_transport_header(skb); 1386 vlan_macip_lens = skb_network_offset(skb) << 1387 WX_TXD_MACLEN_SHIFT; 1388 switch (first->protocol) { 1389 case htons(ETH_P_IP): 1390 tun_prot = ip_hdr(skb)->protocol; 1391 break; 1392 case htons(ETH_P_IPV6): 1393 l4_hdr = skb_transport_header(skb); 1394 exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr); 1395 tun_prot = ipv6_hdr(skb)->nexthdr; 1396 if (l4_hdr != exthdr) 1397 ipv6_skip_exthdr(skb, exthdr - skb->data, 1398 &tun_prot, &frag_off); 1399 break; 1400 default: 1401 return; 1402 } 1403 switch (tun_prot) { 1404 case IPPROTO_UDP: 1405 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1406 tunhdr_eiplen_tunlen |= 1407 ((skb_network_header_len(skb) >> 2) << 1408 WX_TXD_OUTER_IPLEN_SHIFT) | 1409 (((skb_inner_mac_header(skb) - 1410 skb_transport_header(skb)) >> 1) << 1411 WX_TXD_TUNNEL_LEN_SHIFT); 1412 break; 1413 case IPPROTO_GRE: 1414 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1415 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1416 WX_TXD_OUTER_IPLEN_SHIFT) | 1417 (((skb_inner_mac_header(skb) - 1418 skb_transport_header(skb)) >> 1) << 1419 WX_TXD_TUNNEL_LEN_SHIFT); 1420 break; 1421 case IPPROTO_IPIP: 1422 case IPPROTO_IPV6: 1423 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1424 (char *)ip_hdr(skb)) >> 2) << 1425 WX_TXD_OUTER_IPLEN_SHIFT; 1426 break; 1427 default: 1428 break; 1429 } 1430 1431 } else { 1432 network_hdr.raw = skb_network_header(skb); 1433 transport_hdr.raw = skb_transport_header(skb); 1434 vlan_macip_lens = skb_network_offset(skb) << 1435 WX_TXD_MACLEN_SHIFT; 1436 } 1437 1438 switch (network_hdr.ipv4->version) { 1439 case IPVERSION: 1440 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1441 l4_prot = network_hdr.ipv4->protocol; 1442 break; 1443 case 6: 1444 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1445 exthdr = network_hdr.raw + sizeof(struct ipv6hdr); 1446 l4_prot = network_hdr.ipv6->nexthdr; 1447 if (transport_hdr.raw != exthdr) 1448 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off); 1449 break; 1450 default: 1451 break; 1452 } 1453 1454 switch (l4_prot) { 1455 case IPPROTO_TCP: 1456 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << 1457 WX_TXD_L4LEN_SHIFT; 1458 break; 1459 case IPPROTO_SCTP: 1460 mss_l4len_idx = sizeof(struct sctphdr) << 1461 WX_TXD_L4LEN_SHIFT; 1462 break; 1463 case IPPROTO_UDP: 1464 mss_l4len_idx = sizeof(struct udphdr) << 1465 WX_TXD_L4LEN_SHIFT; 1466 break; 1467 default: 1468 skb_checksum_help(skb); 1469 goto csum_failed; 1470 } 1471 1472 /* update TX checksum flag */ 1473 first->tx_flags |= WX_TX_FLAGS_CSUM; 1474 } 1475 first->tx_flags |= WX_TX_FLAGS_CC; 1476 /* vlan_macip_lens: MACLEN, VLAN tag */ 1477 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1478 1479 type_tucmd = ptype << 24; 1480 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1481 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1482 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1483 WX_TX_FLAGS_HW_VLAN, 1484 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1485 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1486 type_tucmd, mss_l4len_idx); 1487 } 1488 1489 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, 1490 struct wx_ring *tx_ring) 1491 { 1492 struct wx *wx = netdev_priv(tx_ring->netdev); 1493 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1494 struct wx_tx_buffer *first; 1495 u8 hdr_len = 0, ptype; 1496 unsigned short f; 1497 u32 tx_flags = 0; 1498 int tso; 1499 1500 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, 1501 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, 1502 * + 2 desc gap to keep tail from touching head, 1503 * + 1 desc for context descriptor, 1504 * otherwise try next time 1505 */ 1506 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1507 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> 1508 frags[f])); 1509 1510 if (wx_maybe_stop_tx(tx_ring, count + 3)) { 1511 tx_ring->tx_stats.tx_busy++; 1512 return NETDEV_TX_BUSY; 1513 } 1514 1515 /* record the location of the first descriptor for this packet */ 1516 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1517 first->skb = skb; 1518 first->bytecount = skb->len; 1519 first->gso_segs = 1; 1520 1521 /* if we have a HW VLAN tag being added default to the HW one */ 1522 if (skb_vlan_tag_present(skb)) { 1523 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; 1524 tx_flags |= WX_TX_FLAGS_HW_VLAN; 1525 } 1526 1527 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1528 wx->ptp_clock) { 1529 if (wx->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1530 !test_and_set_bit_lock(WX_STATE_PTP_TX_IN_PROGRESS, 1531 wx->state)) { 1532 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1533 tx_flags |= WX_TX_FLAGS_TSTAMP; 1534 wx->ptp_tx_skb = skb_get(skb); 1535 wx->ptp_tx_start = jiffies; 1536 } else { 1537 wx->tx_hwtstamp_skipped++; 1538 } 1539 } 1540 1541 /* record initial flags and protocol */ 1542 first->tx_flags = tx_flags; 1543 first->protocol = vlan_get_protocol(skb); 1544 1545 ptype = wx_encode_tx_desc_ptype(first); 1546 1547 tso = wx_tso(tx_ring, first, &hdr_len, ptype); 1548 if (tso < 0) 1549 goto out_drop; 1550 else if (!tso) 1551 wx_tx_csum(tx_ring, first, ptype); 1552 1553 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && tx_ring->atr_sample_rate) 1554 wx->atr(tx_ring, first, ptype); 1555 1556 if (wx_tx_map(tx_ring, first, hdr_len)) 1557 goto cleanup_tx_tstamp; 1558 1559 return NETDEV_TX_OK; 1560 out_drop: 1561 dev_kfree_skb_any(first->skb); 1562 first->skb = NULL; 1563 cleanup_tx_tstamp: 1564 if (unlikely(tx_flags & WX_TX_FLAGS_TSTAMP)) { 1565 dev_kfree_skb_any(wx->ptp_tx_skb); 1566 wx->ptp_tx_skb = NULL; 1567 wx->tx_hwtstamp_errors++; 1568 clear_bit_unlock(WX_STATE_PTP_TX_IN_PROGRESS, wx->state); 1569 } 1570 1571 return NETDEV_TX_OK; 1572 } 1573 1574 netdev_tx_t wx_xmit_frame(struct sk_buff *skb, 1575 struct net_device *netdev) 1576 { 1577 unsigned int r_idx = skb->queue_mapping; 1578 struct wx *wx = netdev_priv(netdev); 1579 struct wx_ring *tx_ring; 1580 1581 if (!netif_carrier_ok(netdev)) { 1582 dev_kfree_skb_any(skb); 1583 return NETDEV_TX_OK; 1584 } 1585 1586 /* The minimum packet size for olinfo paylen is 17 so pad the skb 1587 * in order to meet this minimum size requirement. 1588 */ 1589 if (skb_put_padto(skb, 17)) 1590 return NETDEV_TX_OK; 1591 1592 if (r_idx >= wx->num_tx_queues) 1593 r_idx = r_idx % wx->num_tx_queues; 1594 tx_ring = wx->tx_ring[r_idx]; 1595 1596 return wx_xmit_frame_ring(skb, tx_ring); 1597 } 1598 EXPORT_SYMBOL(wx_xmit_frame); 1599 1600 void wx_napi_enable_all(struct wx *wx) 1601 { 1602 struct wx_q_vector *q_vector; 1603 int q_idx; 1604 1605 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1606 q_vector = wx->q_vector[q_idx]; 1607 napi_enable(&q_vector->napi); 1608 } 1609 } 1610 EXPORT_SYMBOL(wx_napi_enable_all); 1611 1612 void wx_napi_disable_all(struct wx *wx) 1613 { 1614 struct wx_q_vector *q_vector; 1615 int q_idx; 1616 1617 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1618 q_vector = wx->q_vector[q_idx]; 1619 napi_disable(&q_vector->napi); 1620 } 1621 } 1622 EXPORT_SYMBOL(wx_napi_disable_all); 1623 1624 static bool wx_set_vmdq_queues(struct wx *wx) 1625 { 1626 u16 vmdq_i = wx->ring_feature[RING_F_VMDQ].limit; 1627 u16 rss_i = wx->ring_feature[RING_F_RSS].limit; 1628 u16 rss_m = WX_RSS_DISABLED_MASK; 1629 u16 vmdq_m = 0; 1630 1631 /* only proceed if VMDq is enabled */ 1632 if (!test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags)) 1633 return false; 1634 /* Add starting offset to total pool count */ 1635 vmdq_i += wx->ring_feature[RING_F_VMDQ].offset; 1636 1637 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) { 1638 /* double check we are limited to maximum pools */ 1639 vmdq_i = min_t(u16, 64, vmdq_i); 1640 1641 /* 64 pool mode with 2 queues per pool, or 1642 * 16/32/64 pool mode with 1 queue per pool 1643 */ 1644 if (vmdq_i > 32 || rss_i < 4) { 1645 vmdq_m = WX_VMDQ_2Q_MASK; 1646 rss_m = WX_RSS_2Q_MASK; 1647 rss_i = min_t(u16, rss_i, 2); 1648 /* 32 pool mode with 4 queues per pool */ 1649 } else { 1650 vmdq_m = WX_VMDQ_4Q_MASK; 1651 rss_m = WX_RSS_4Q_MASK; 1652 rss_i = 4; 1653 } 1654 } else { 1655 /* double check we are limited to maximum pools */ 1656 vmdq_i = min_t(u16, 8, vmdq_i); 1657 1658 /* when VMDQ on, disable RSS */ 1659 rss_i = 1; 1660 } 1661 1662 /* remove the starting offset from the pool count */ 1663 vmdq_i -= wx->ring_feature[RING_F_VMDQ].offset; 1664 1665 /* save features for later use */ 1666 wx->ring_feature[RING_F_VMDQ].indices = vmdq_i; 1667 wx->ring_feature[RING_F_VMDQ].mask = vmdq_m; 1668 1669 /* limit RSS based on user input and save for later use */ 1670 wx->ring_feature[RING_F_RSS].indices = rss_i; 1671 wx->ring_feature[RING_F_RSS].mask = rss_m; 1672 1673 wx->queues_per_pool = rss_i;/*maybe same to num_rx_queues_per_pool*/ 1674 wx->num_rx_pools = vmdq_i; 1675 wx->num_rx_queues_per_pool = rss_i; 1676 1677 wx->num_rx_queues = vmdq_i * rss_i; 1678 wx->num_tx_queues = vmdq_i * rss_i; 1679 1680 return true; 1681 } 1682 1683 /** 1684 * wx_set_rss_queues: Allocate queues for RSS 1685 * @wx: board private structure to initialize 1686 * 1687 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1688 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1689 * 1690 **/ 1691 static void wx_set_rss_queues(struct wx *wx) 1692 { 1693 struct wx_ring_feature *f; 1694 1695 /* set mask for 16 queue limit of RSS */ 1696 f = &wx->ring_feature[RING_F_RSS]; 1697 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) 1698 f->mask = WX_RSS_64Q_MASK; 1699 else 1700 f->mask = WX_RSS_8Q_MASK; 1701 f->indices = f->limit; 1702 1703 if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags))) 1704 goto out; 1705 1706 clear_bit(WX_FLAG_FDIR_HASH, wx->flags); 1707 1708 wx->ring_feature[RING_F_FDIR].indices = 1; 1709 /* Use Flow Director in addition to RSS to ensure the best 1710 * distribution of flows across cores, even when an FDIR flow 1711 * isn't matched. 1712 */ 1713 if (f->indices > 1) { 1714 f = &wx->ring_feature[RING_F_FDIR]; 1715 1716 f->indices = f->limit; 1717 1718 if (!(test_bit(WX_FLAG_FDIR_PERFECT, wx->flags))) 1719 set_bit(WX_FLAG_FDIR_HASH, wx->flags); 1720 } 1721 1722 out: 1723 wx->num_rx_queues = f->indices; 1724 wx->num_tx_queues = f->indices; 1725 } 1726 1727 static void wx_set_num_queues(struct wx *wx) 1728 { 1729 /* Start with base case */ 1730 wx->num_rx_queues = 1; 1731 wx->num_tx_queues = 1; 1732 wx->queues_per_pool = 1; 1733 1734 if (wx_set_vmdq_queues(wx)) 1735 return; 1736 1737 wx_set_rss_queues(wx); 1738 } 1739 1740 /** 1741 * wx_acquire_msix_vectors - acquire MSI-X vectors 1742 * @wx: board private structure 1743 * 1744 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will 1745 * return a negative error code if unable to acquire MSI-X vectors for any 1746 * reason. 1747 */ 1748 static int wx_acquire_msix_vectors(struct wx *wx) 1749 { 1750 struct irq_affinity affd = { .post_vectors = 1 }; 1751 int nvecs, i; 1752 1753 /* We start by asking for one vector per queue pair */ 1754 nvecs = max(wx->num_rx_queues, wx->num_tx_queues); 1755 nvecs = min_t(int, nvecs, num_online_cpus()); 1756 nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors); 1757 1758 wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry), 1759 GFP_KERNEL); 1760 if (!wx->msix_q_entries) 1761 return -ENOMEM; 1762 1763 /* One for non-queue interrupts */ 1764 nvecs += 1; 1765 1766 wx->msix_entry = kcalloc(1, sizeof(struct msix_entry), 1767 GFP_KERNEL); 1768 if (!wx->msix_entry) { 1769 kfree(wx->msix_q_entries); 1770 wx->msix_q_entries = NULL; 1771 return -ENOMEM; 1772 } 1773 1774 nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, 1775 nvecs, 1776 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, 1777 &affd); 1778 if (nvecs < 0) { 1779 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); 1780 kfree(wx->msix_q_entries); 1781 wx->msix_q_entries = NULL; 1782 kfree(wx->msix_entry); 1783 wx->msix_entry = NULL; 1784 return nvecs; 1785 } 1786 1787 nvecs -= 1; 1788 for (i = 0; i < nvecs; i++) { 1789 wx->msix_q_entries[i].entry = i; 1790 wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i); 1791 } 1792 1793 wx->num_q_vectors = nvecs; 1794 1795 wx->msix_entry->entry = nvecs; 1796 wx->msix_entry->vector = pci_irq_vector(wx->pdev, nvecs); 1797 1798 if (test_bit(WX_FLAG_IRQ_VECTOR_SHARED, wx->flags)) { 1799 wx->msix_entry->entry = 0; 1800 wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0); 1801 wx->msix_q_entries[0].entry = 0; 1802 wx->msix_q_entries[0].vector = pci_irq_vector(wx->pdev, 1); 1803 } 1804 1805 return 0; 1806 } 1807 1808 /** 1809 * wx_set_interrupt_capability - set MSI-X or MSI if supported 1810 * @wx: board private structure to initialize 1811 * 1812 * Attempt to configure the interrupts using the best available 1813 * capabilities of the hardware and the kernel. 1814 **/ 1815 static int wx_set_interrupt_capability(struct wx *wx) 1816 { 1817 struct pci_dev *pdev = wx->pdev; 1818 int nvecs, ret; 1819 1820 /* We will try to get MSI-X interrupts first */ 1821 ret = wx_acquire_msix_vectors(wx); 1822 if (ret == 0 || (ret == -ENOMEM)) 1823 return ret; 1824 1825 /* Disable VMDq support */ 1826 dev_warn(&wx->pdev->dev, "Disabling VMQQ support\n"); 1827 clear_bit(WX_FLAG_VMDQ_ENABLED, wx->flags); 1828 1829 /* Disable RSS */ 1830 dev_warn(&wx->pdev->dev, "Disabling RSS support\n"); 1831 wx->ring_feature[RING_F_RSS].limit = 1; 1832 1833 wx_set_num_queues(wx); 1834 1835 /* minmum one for queue, one for misc*/ 1836 nvecs = 1; 1837 nvecs = pci_alloc_irq_vectors(pdev, nvecs, 1838 nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX); 1839 if (nvecs == 1) { 1840 if (pdev->msi_enabled) 1841 wx_err(wx, "Fallback to MSI.\n"); 1842 else 1843 wx_err(wx, "Fallback to INTx.\n"); 1844 } else { 1845 wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs); 1846 return nvecs; 1847 } 1848 1849 pdev->irq = pci_irq_vector(pdev, 0); 1850 wx->num_q_vectors = 1; 1851 1852 return 0; 1853 } 1854 1855 static bool wx_cache_ring_vmdq(struct wx *wx) 1856 { 1857 struct wx_ring_feature *vmdq = &wx->ring_feature[RING_F_VMDQ]; 1858 struct wx_ring_feature *rss = &wx->ring_feature[RING_F_RSS]; 1859 u16 reg_idx; 1860 int i; 1861 1862 /* only proceed if VMDq is enabled */ 1863 if (!test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags)) 1864 return false; 1865 1866 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) { 1867 /* start at VMDq register offset for SR-IOV enabled setups */ 1868 reg_idx = vmdq->offset * __ALIGN_MASK(1, ~vmdq->mask); 1869 for (i = 0; i < wx->num_rx_queues; i++, reg_idx++) { 1870 /* If we are greater than indices move to next pool */ 1871 if ((reg_idx & ~vmdq->mask) >= rss->indices) 1872 reg_idx = __ALIGN_MASK(reg_idx, ~vmdq->mask); 1873 wx->rx_ring[i]->reg_idx = reg_idx; 1874 } 1875 reg_idx = vmdq->offset * __ALIGN_MASK(1, ~vmdq->mask); 1876 for (i = 0; i < wx->num_tx_queues; i++, reg_idx++) { 1877 /* If we are greater than indices move to next pool */ 1878 if ((reg_idx & rss->mask) >= rss->indices) 1879 reg_idx = __ALIGN_MASK(reg_idx, ~vmdq->mask); 1880 wx->tx_ring[i]->reg_idx = reg_idx; 1881 } 1882 } else { 1883 /* start at VMDq register offset for SR-IOV enabled setups */ 1884 reg_idx = vmdq->offset; 1885 for (i = 0; i < wx->num_rx_queues; i++) 1886 /* If we are greater than indices move to next pool */ 1887 wx->rx_ring[i]->reg_idx = reg_idx + i; 1888 1889 reg_idx = vmdq->offset; 1890 for (i = 0; i < wx->num_tx_queues; i++) 1891 /* If we are greater than indices move to next pool */ 1892 wx->tx_ring[i]->reg_idx = reg_idx + i; 1893 } 1894 1895 return true; 1896 } 1897 1898 /** 1899 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS 1900 * @wx: board private structure to initialize 1901 * 1902 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. 1903 * 1904 **/ 1905 static void wx_cache_ring_rss(struct wx *wx) 1906 { 1907 u16 i; 1908 1909 if (wx_cache_ring_vmdq(wx)) 1910 return; 1911 1912 for (i = 0; i < wx->num_rx_queues; i++) 1913 wx->rx_ring[i]->reg_idx = i; 1914 1915 for (i = 0; i < wx->num_tx_queues; i++) 1916 wx->tx_ring[i]->reg_idx = i; 1917 } 1918 1919 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) 1920 { 1921 ring->next = head->ring; 1922 head->ring = ring; 1923 head->count++; 1924 } 1925 1926 /** 1927 * wx_alloc_q_vector - Allocate memory for a single interrupt vector 1928 * @wx: board private structure to initialize 1929 * @v_count: q_vectors allocated on wx, used for ring interleaving 1930 * @v_idx: index of vector in wx struct 1931 * @txr_count: total number of Tx rings to allocate 1932 * @txr_idx: index of first Tx ring to allocate 1933 * @rxr_count: total number of Rx rings to allocate 1934 * @rxr_idx: index of first Rx ring to allocate 1935 * 1936 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1937 **/ 1938 static int wx_alloc_q_vector(struct wx *wx, 1939 unsigned int v_count, unsigned int v_idx, 1940 unsigned int txr_count, unsigned int txr_idx, 1941 unsigned int rxr_count, unsigned int rxr_idx) 1942 { 1943 struct wx_q_vector *q_vector; 1944 int ring_count, default_itr; 1945 struct wx_ring *ring; 1946 1947 /* note this will allocate space for the ring structure as well! */ 1948 ring_count = txr_count + rxr_count; 1949 1950 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 1951 GFP_KERNEL); 1952 if (!q_vector) 1953 return -ENOMEM; 1954 1955 /* initialize NAPI */ 1956 netif_napi_add(wx->netdev, &q_vector->napi, 1957 wx_poll); 1958 1959 /* tie q_vector and wx together */ 1960 wx->q_vector[v_idx] = q_vector; 1961 q_vector->wx = wx; 1962 q_vector->v_idx = v_idx; 1963 if (cpu_online(v_idx)) 1964 q_vector->numa_node = cpu_to_node(v_idx); 1965 1966 /* initialize pointer to rings */ 1967 ring = q_vector->ring; 1968 1969 switch (wx->mac.type) { 1970 case wx_mac_sp: 1971 case wx_mac_aml: 1972 case wx_mac_aml40: 1973 default_itr = WX_12K_ITR; 1974 break; 1975 default: 1976 default_itr = WX_7K_ITR; 1977 break; 1978 } 1979 1980 /* initialize ITR */ 1981 if (txr_count && !rxr_count) 1982 /* tx only vector */ 1983 q_vector->itr = wx->tx_itr_setting ? 1984 default_itr : wx->tx_itr_setting; 1985 else 1986 /* rx or rx/tx vector */ 1987 q_vector->itr = wx->rx_itr_setting ? 1988 default_itr : wx->rx_itr_setting; 1989 1990 while (txr_count) { 1991 /* assign generic ring traits */ 1992 ring->dev = &wx->pdev->dev; 1993 ring->netdev = wx->netdev; 1994 1995 /* configure backlink on ring */ 1996 ring->q_vector = q_vector; 1997 1998 /* update q_vector Tx values */ 1999 wx_add_ring(ring, &q_vector->tx); 2000 2001 /* apply Tx specific ring traits */ 2002 ring->count = wx->tx_ring_count; 2003 2004 ring->queue_index = txr_idx; 2005 2006 /* assign ring to wx */ 2007 wx->tx_ring[txr_idx] = ring; 2008 2009 /* update count and index */ 2010 txr_count--; 2011 txr_idx += v_count; 2012 2013 /* push pointer to next ring */ 2014 ring++; 2015 } 2016 2017 while (rxr_count) { 2018 /* assign generic ring traits */ 2019 ring->dev = &wx->pdev->dev; 2020 ring->netdev = wx->netdev; 2021 2022 /* configure backlink on ring */ 2023 ring->q_vector = q_vector; 2024 2025 /* update q_vector Rx values */ 2026 wx_add_ring(ring, &q_vector->rx); 2027 2028 /* apply Rx specific ring traits */ 2029 ring->count = wx->rx_ring_count; 2030 ring->queue_index = rxr_idx; 2031 2032 /* assign ring to wx */ 2033 wx->rx_ring[rxr_idx] = ring; 2034 2035 /* update count and index */ 2036 rxr_count--; 2037 rxr_idx += v_count; 2038 2039 /* push pointer to next ring */ 2040 ring++; 2041 } 2042 2043 return 0; 2044 } 2045 2046 /** 2047 * wx_free_q_vector - Free memory allocated for specific interrupt vector 2048 * @wx: board private structure to initialize 2049 * @v_idx: Index of vector to be freed 2050 * 2051 * This function frees the memory allocated to the q_vector. In addition if 2052 * NAPI is enabled it will delete any references to the NAPI struct prior 2053 * to freeing the q_vector. 2054 **/ 2055 static void wx_free_q_vector(struct wx *wx, int v_idx) 2056 { 2057 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 2058 struct wx_ring *ring; 2059 2060 wx_for_each_ring(ring, q_vector->tx) 2061 wx->tx_ring[ring->queue_index] = NULL; 2062 2063 wx_for_each_ring(ring, q_vector->rx) 2064 wx->rx_ring[ring->queue_index] = NULL; 2065 2066 wx->q_vector[v_idx] = NULL; 2067 netif_napi_del(&q_vector->napi); 2068 kfree_rcu(q_vector, rcu); 2069 } 2070 2071 /** 2072 * wx_alloc_q_vectors - Allocate memory for interrupt vectors 2073 * @wx: board private structure to initialize 2074 * 2075 * We allocate one q_vector per queue interrupt. If allocation fails we 2076 * return -ENOMEM. 2077 **/ 2078 static int wx_alloc_q_vectors(struct wx *wx) 2079 { 2080 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 2081 unsigned int rxr_remaining = wx->num_rx_queues; 2082 unsigned int txr_remaining = wx->num_tx_queues; 2083 unsigned int q_vectors = wx->num_q_vectors; 2084 int rqpv, tqpv; 2085 int err; 2086 2087 for (; v_idx < q_vectors; v_idx++) { 2088 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 2089 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 2090 err = wx_alloc_q_vector(wx, q_vectors, v_idx, 2091 tqpv, txr_idx, 2092 rqpv, rxr_idx); 2093 2094 if (err) 2095 goto err_out; 2096 2097 /* update counts and index */ 2098 rxr_remaining -= rqpv; 2099 txr_remaining -= tqpv; 2100 rxr_idx++; 2101 txr_idx++; 2102 } 2103 2104 return 0; 2105 2106 err_out: 2107 wx->num_tx_queues = 0; 2108 wx->num_rx_queues = 0; 2109 wx->num_q_vectors = 0; 2110 2111 while (v_idx--) 2112 wx_free_q_vector(wx, v_idx); 2113 2114 return -ENOMEM; 2115 } 2116 2117 /** 2118 * wx_free_q_vectors - Free memory allocated for interrupt vectors 2119 * @wx: board private structure to initialize 2120 * 2121 * This function frees the memory allocated to the q_vectors. In addition if 2122 * NAPI is enabled it will delete any references to the NAPI struct prior 2123 * to freeing the q_vector. 2124 **/ 2125 static void wx_free_q_vectors(struct wx *wx) 2126 { 2127 int v_idx = wx->num_q_vectors; 2128 2129 wx->num_tx_queues = 0; 2130 wx->num_rx_queues = 0; 2131 wx->num_q_vectors = 0; 2132 2133 while (v_idx--) 2134 wx_free_q_vector(wx, v_idx); 2135 } 2136 2137 void wx_reset_interrupt_capability(struct wx *wx) 2138 { 2139 struct pci_dev *pdev = wx->pdev; 2140 2141 if (!pdev->msi_enabled && !pdev->msix_enabled) 2142 return; 2143 2144 if (pdev->msix_enabled) { 2145 kfree(wx->msix_q_entries); 2146 wx->msix_q_entries = NULL; 2147 kfree(wx->msix_entry); 2148 wx->msix_entry = NULL; 2149 } 2150 pci_free_irq_vectors(wx->pdev); 2151 } 2152 EXPORT_SYMBOL(wx_reset_interrupt_capability); 2153 2154 /** 2155 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings 2156 * @wx: board private structure to clear interrupt scheme on 2157 * 2158 * We go through and clear interrupt specific resources and reset the structure 2159 * to pre-load conditions 2160 **/ 2161 void wx_clear_interrupt_scheme(struct wx *wx) 2162 { 2163 wx_free_q_vectors(wx); 2164 wx_reset_interrupt_capability(wx); 2165 } 2166 EXPORT_SYMBOL(wx_clear_interrupt_scheme); 2167 2168 int wx_init_interrupt_scheme(struct wx *wx) 2169 { 2170 int ret; 2171 2172 /* Number of supported queues */ 2173 wx_set_num_queues(wx); 2174 2175 /* Set interrupt mode */ 2176 ret = wx_set_interrupt_capability(wx); 2177 if (ret) { 2178 wx_err(wx, "Allocate irq vectors for failed.\n"); 2179 return ret; 2180 } 2181 2182 /* Allocate memory for queues */ 2183 ret = wx_alloc_q_vectors(wx); 2184 if (ret) { 2185 wx_err(wx, "Unable to allocate memory for queue vectors.\n"); 2186 wx_reset_interrupt_capability(wx); 2187 return ret; 2188 } 2189 2190 wx_cache_ring_rss(wx); 2191 2192 return 0; 2193 } 2194 EXPORT_SYMBOL(wx_init_interrupt_scheme); 2195 2196 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) 2197 { 2198 struct wx_q_vector *q_vector = data; 2199 2200 /* EIAM disabled interrupts (on this vector) for us */ 2201 if (q_vector->rx.ring || q_vector->tx.ring) 2202 napi_schedule_irqoff(&q_vector->napi); 2203 2204 return IRQ_HANDLED; 2205 } 2206 EXPORT_SYMBOL(wx_msix_clean_rings); 2207 2208 void wx_free_irq(struct wx *wx) 2209 { 2210 struct pci_dev *pdev = wx->pdev; 2211 int vector; 2212 2213 if (!(pdev->msix_enabled)) { 2214 if (!wx->misc_irq_domain) 2215 free_irq(pdev->irq, wx); 2216 return; 2217 } 2218 2219 for (vector = 0; vector < wx->num_q_vectors; vector++) { 2220 struct wx_q_vector *q_vector = wx->q_vector[vector]; 2221 struct msix_entry *entry = &wx->msix_q_entries[vector]; 2222 2223 /* free only the irqs that were actually requested */ 2224 if (!q_vector->rx.ring && !q_vector->tx.ring) 2225 continue; 2226 2227 free_irq(entry->vector, q_vector); 2228 } 2229 2230 if (!wx->misc_irq_domain) 2231 free_irq(wx->msix_entry->vector, wx); 2232 } 2233 EXPORT_SYMBOL(wx_free_irq); 2234 2235 /** 2236 * wx_setup_isb_resources - allocate interrupt status resources 2237 * @wx: board private structure 2238 * 2239 * Return 0 on success, negative on failure 2240 **/ 2241 int wx_setup_isb_resources(struct wx *wx) 2242 { 2243 struct pci_dev *pdev = wx->pdev; 2244 2245 if (wx->isb_mem) 2246 return 0; 2247 2248 wx->isb_mem = dma_alloc_coherent(&pdev->dev, 2249 sizeof(u32) * 4, 2250 &wx->isb_dma, 2251 GFP_KERNEL); 2252 if (!wx->isb_mem) { 2253 wx_err(wx, "Alloc isb_mem failed\n"); 2254 return -ENOMEM; 2255 } 2256 2257 return 0; 2258 } 2259 EXPORT_SYMBOL(wx_setup_isb_resources); 2260 2261 /** 2262 * wx_free_isb_resources - allocate all queues Rx resources 2263 * @wx: board private structure 2264 * 2265 * Return 0 on success, negative on failure 2266 **/ 2267 void wx_free_isb_resources(struct wx *wx) 2268 { 2269 struct pci_dev *pdev = wx->pdev; 2270 2271 dma_free_coherent(&pdev->dev, sizeof(u32) * 4, 2272 wx->isb_mem, wx->isb_dma); 2273 wx->isb_mem = NULL; 2274 } 2275 EXPORT_SYMBOL(wx_free_isb_resources); 2276 2277 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) 2278 { 2279 u32 cur_tag = 0; 2280 2281 cur_tag = wx->isb_mem[WX_ISB_HEADER]; 2282 wx->isb_tag[idx] = cur_tag; 2283 2284 return (__force u32)cpu_to_le32(wx->isb_mem[idx]); 2285 } 2286 EXPORT_SYMBOL(wx_misc_isb); 2287 2288 /** 2289 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors 2290 * @wx: pointer to wx struct 2291 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 2292 * @queue: queue to map the corresponding interrupt to 2293 * @msix_vector: the vector to map to the corresponding queue 2294 * 2295 **/ 2296 static void wx_set_ivar(struct wx *wx, s8 direction, 2297 u16 queue, u16 msix_vector) 2298 { 2299 u32 ivar, index; 2300 2301 if (direction == -1) { 2302 /* other causes */ 2303 if (test_bit(WX_FLAG_IRQ_VECTOR_SHARED, wx->flags)) 2304 msix_vector = 0; 2305 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2306 index = 0; 2307 ivar = rd32(wx, WX_PX_MISC_IVAR); 2308 ivar &= ~(0xFF << index); 2309 ivar |= (msix_vector << index); 2310 wr32(wx, WX_PX_MISC_IVAR, ivar); 2311 } else { 2312 /* tx or rx causes */ 2313 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2314 index = ((16 * (queue & 1)) + (8 * direction)); 2315 ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); 2316 ivar &= ~(0xFF << index); 2317 ivar |= (msix_vector << index); 2318 wr32(wx, WX_PX_IVAR(queue >> 1), ivar); 2319 } 2320 } 2321 2322 /** 2323 * wx_write_eitr - write EITR register in hardware specific way 2324 * @q_vector: structure containing interrupt and ring information 2325 * 2326 * This function is made to be called by ethtool and by the driver 2327 * when it needs to update EITR registers at runtime. Hardware 2328 * specific quirks/differences are taken care of here. 2329 */ 2330 void wx_write_eitr(struct wx_q_vector *q_vector) 2331 { 2332 struct wx *wx = q_vector->wx; 2333 int v_idx = q_vector->v_idx; 2334 u32 itr_reg; 2335 2336 switch (wx->mac.type) { 2337 case wx_mac_sp: 2338 itr_reg = q_vector->itr & WX_SP_MAX_EITR; 2339 break; 2340 case wx_mac_aml: 2341 case wx_mac_aml40: 2342 itr_reg = (q_vector->itr >> 3) & WX_AML_MAX_EITR; 2343 break; 2344 default: 2345 itr_reg = q_vector->itr & WX_EM_MAX_EITR; 2346 break; 2347 } 2348 2349 itr_reg |= WX_PX_ITR_CNT_WDIS; 2350 2351 wr32(wx, WX_PX_ITR(v_idx), itr_reg); 2352 } 2353 2354 /** 2355 * wx_configure_vectors - Configure vectors for hardware 2356 * @wx: board private structure 2357 * 2358 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx 2359 * interrupts. 2360 **/ 2361 void wx_configure_vectors(struct wx *wx) 2362 { 2363 struct pci_dev *pdev = wx->pdev; 2364 u32 eitrsel = 0; 2365 u16 v_idx, i; 2366 2367 if (pdev->msix_enabled) { 2368 /* Populate MSIX to EITR Select */ 2369 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) { 2370 if (wx->num_vfs >= 32) 2371 eitrsel = BIT(wx->num_vfs % 32) - 1; 2372 } else { 2373 for (i = 0; i < wx->num_vfs; i++) 2374 eitrsel |= BIT(i); 2375 } 2376 wr32(wx, WX_PX_ITRSEL, eitrsel); 2377 /* use EIAM to auto-mask when MSI-X interrupt is asserted 2378 * this saves a register write for every interrupt 2379 */ 2380 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); 2381 } else { 2382 /* legacy interrupts, use EIAM to auto-mask when reading EICR, 2383 * specifically only auto mask tx and rx interrupts. 2384 */ 2385 wr32(wx, WX_PX_GPIE, 0); 2386 } 2387 2388 /* Populate the IVAR table and set the ITR values to the 2389 * corresponding register. 2390 */ 2391 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { 2392 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 2393 struct wx_ring *ring; 2394 2395 wx_for_each_ring(ring, q_vector->rx) 2396 wx_set_ivar(wx, 0, ring->reg_idx, v_idx); 2397 2398 wx_for_each_ring(ring, q_vector->tx) 2399 wx_set_ivar(wx, 1, ring->reg_idx, v_idx); 2400 2401 wx_write_eitr(q_vector); 2402 } 2403 2404 wx_set_ivar(wx, -1, 0, v_idx); 2405 if (pdev->msix_enabled) 2406 wr32(wx, WX_PX_ITR(v_idx), 1950); 2407 } 2408 EXPORT_SYMBOL(wx_configure_vectors); 2409 2410 /** 2411 * wx_clean_rx_ring - Free Rx Buffers per Queue 2412 * @rx_ring: ring to free buffers from 2413 **/ 2414 static void wx_clean_rx_ring(struct wx_ring *rx_ring) 2415 { 2416 struct wx_rx_buffer *rx_buffer; 2417 u16 i = rx_ring->next_to_clean; 2418 2419 rx_buffer = &rx_ring->rx_buffer_info[i]; 2420 2421 /* Free all the Rx ring sk_buffs */ 2422 while (i != rx_ring->next_to_alloc) { 2423 if (rx_buffer->skb) { 2424 struct sk_buff *skb = rx_buffer->skb; 2425 2426 if (WX_CB(skb)->page_released) 2427 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2428 2429 dev_kfree_skb(skb); 2430 } 2431 2432 /* Invalidate cache lines that may have been written to by 2433 * device so that we avoid corrupting memory. 2434 */ 2435 dma_sync_single_range_for_cpu(rx_ring->dev, 2436 rx_buffer->dma, 2437 rx_buffer->page_offset, 2438 WX_RX_BUFSZ, 2439 DMA_FROM_DEVICE); 2440 2441 /* free resources associated with mapping */ 2442 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2443 2444 i++; 2445 rx_buffer++; 2446 if (i == rx_ring->count) { 2447 i = 0; 2448 rx_buffer = rx_ring->rx_buffer_info; 2449 } 2450 } 2451 2452 rx_ring->next_to_alloc = 0; 2453 rx_ring->next_to_clean = 0; 2454 rx_ring->next_to_use = 0; 2455 } 2456 2457 /** 2458 * wx_clean_all_rx_rings - Free Rx Buffers for all queues 2459 * @wx: board private structure 2460 **/ 2461 void wx_clean_all_rx_rings(struct wx *wx) 2462 { 2463 int i; 2464 2465 for (i = 0; i < wx->num_rx_queues; i++) 2466 wx_clean_rx_ring(wx->rx_ring[i]); 2467 } 2468 EXPORT_SYMBOL(wx_clean_all_rx_rings); 2469 2470 /** 2471 * wx_free_rx_resources - Free Rx Resources 2472 * @rx_ring: ring to clean the resources from 2473 * 2474 * Free all receive software resources 2475 **/ 2476 static void wx_free_rx_resources(struct wx_ring *rx_ring) 2477 { 2478 wx_clean_rx_ring(rx_ring); 2479 kvfree(rx_ring->rx_buffer_info); 2480 rx_ring->rx_buffer_info = NULL; 2481 2482 /* if not set, then don't free */ 2483 if (!rx_ring->desc) 2484 return; 2485 2486 dma_free_coherent(rx_ring->dev, rx_ring->size, 2487 rx_ring->desc, rx_ring->dma); 2488 2489 rx_ring->desc = NULL; 2490 2491 if (rx_ring->page_pool) { 2492 page_pool_destroy(rx_ring->page_pool); 2493 rx_ring->page_pool = NULL; 2494 } 2495 } 2496 2497 /** 2498 * wx_free_all_rx_resources - Free Rx Resources for All Queues 2499 * @wx: pointer to hardware structure 2500 * 2501 * Free all receive software resources 2502 **/ 2503 static void wx_free_all_rx_resources(struct wx *wx) 2504 { 2505 int i; 2506 2507 for (i = 0; i < wx->num_rx_queues; i++) 2508 wx_free_rx_resources(wx->rx_ring[i]); 2509 } 2510 2511 /** 2512 * wx_clean_tx_ring - Free Tx Buffers 2513 * @tx_ring: ring to be cleaned 2514 **/ 2515 static void wx_clean_tx_ring(struct wx_ring *tx_ring) 2516 { 2517 struct wx_tx_buffer *tx_buffer; 2518 u16 i = tx_ring->next_to_clean; 2519 2520 tx_buffer = &tx_ring->tx_buffer_info[i]; 2521 2522 while (i != tx_ring->next_to_use) { 2523 union wx_tx_desc *eop_desc, *tx_desc; 2524 2525 /* Free all the Tx ring sk_buffs */ 2526 dev_kfree_skb_any(tx_buffer->skb); 2527 2528 /* unmap skb header data */ 2529 dma_unmap_single(tx_ring->dev, 2530 dma_unmap_addr(tx_buffer, dma), 2531 dma_unmap_len(tx_buffer, len), 2532 DMA_TO_DEVICE); 2533 2534 /* check for eop_desc to determine the end of the packet */ 2535 eop_desc = tx_buffer->next_to_watch; 2536 tx_desc = WX_TX_DESC(tx_ring, i); 2537 2538 /* unmap remaining buffers */ 2539 while (tx_desc != eop_desc) { 2540 tx_buffer++; 2541 tx_desc++; 2542 i++; 2543 if (unlikely(i == tx_ring->count)) { 2544 i = 0; 2545 tx_buffer = tx_ring->tx_buffer_info; 2546 tx_desc = WX_TX_DESC(tx_ring, 0); 2547 } 2548 2549 /* unmap any remaining paged data */ 2550 if (dma_unmap_len(tx_buffer, len)) 2551 dma_unmap_page(tx_ring->dev, 2552 dma_unmap_addr(tx_buffer, dma), 2553 dma_unmap_len(tx_buffer, len), 2554 DMA_TO_DEVICE); 2555 } 2556 2557 /* move us one more past the eop_desc for start of next pkt */ 2558 tx_buffer++; 2559 i++; 2560 if (unlikely(i == tx_ring->count)) { 2561 i = 0; 2562 tx_buffer = tx_ring->tx_buffer_info; 2563 } 2564 } 2565 2566 netdev_tx_reset_queue(wx_txring_txq(tx_ring)); 2567 2568 /* reset next_to_use and next_to_clean */ 2569 tx_ring->next_to_use = 0; 2570 tx_ring->next_to_clean = 0; 2571 } 2572 2573 /** 2574 * wx_clean_all_tx_rings - Free Tx Buffers for all queues 2575 * @wx: board private structure 2576 **/ 2577 void wx_clean_all_tx_rings(struct wx *wx) 2578 { 2579 int i; 2580 2581 for (i = 0; i < wx->num_tx_queues; i++) 2582 wx_clean_tx_ring(wx->tx_ring[i]); 2583 } 2584 EXPORT_SYMBOL(wx_clean_all_tx_rings); 2585 2586 /** 2587 * wx_free_tx_resources - Free Tx Resources per Queue 2588 * @tx_ring: Tx descriptor ring for a specific queue 2589 * 2590 * Free all transmit software resources 2591 **/ 2592 static void wx_free_tx_resources(struct wx_ring *tx_ring) 2593 { 2594 wx_clean_tx_ring(tx_ring); 2595 kvfree(tx_ring->tx_buffer_info); 2596 tx_ring->tx_buffer_info = NULL; 2597 2598 /* if not set, then don't free */ 2599 if (!tx_ring->desc) 2600 return; 2601 2602 dma_free_coherent(tx_ring->dev, tx_ring->size, 2603 tx_ring->desc, tx_ring->dma); 2604 tx_ring->desc = NULL; 2605 } 2606 2607 /** 2608 * wx_free_all_tx_resources - Free Tx Resources for All Queues 2609 * @wx: pointer to hardware structure 2610 * 2611 * Free all transmit software resources 2612 **/ 2613 static void wx_free_all_tx_resources(struct wx *wx) 2614 { 2615 int i; 2616 2617 for (i = 0; i < wx->num_tx_queues; i++) 2618 wx_free_tx_resources(wx->tx_ring[i]); 2619 } 2620 2621 void wx_free_resources(struct wx *wx) 2622 { 2623 wx_free_all_rx_resources(wx); 2624 wx_free_all_tx_resources(wx); 2625 } 2626 EXPORT_SYMBOL(wx_free_resources); 2627 2628 static int wx_alloc_page_pool(struct wx_ring *rx_ring) 2629 { 2630 int ret = 0; 2631 2632 struct page_pool_params pp_params = { 2633 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 2634 .order = 0, 2635 .pool_size = rx_ring->count, 2636 .nid = dev_to_node(rx_ring->dev), 2637 .dev = rx_ring->dev, 2638 .dma_dir = DMA_FROM_DEVICE, 2639 .offset = 0, 2640 .max_len = PAGE_SIZE, 2641 }; 2642 2643 rx_ring->page_pool = page_pool_create(&pp_params); 2644 if (IS_ERR(rx_ring->page_pool)) { 2645 ret = PTR_ERR(rx_ring->page_pool); 2646 rx_ring->page_pool = NULL; 2647 } 2648 2649 return ret; 2650 } 2651 2652 /** 2653 * wx_setup_rx_resources - allocate Rx resources (Descriptors) 2654 * @rx_ring: rx descriptor ring (for a specific queue) to setup 2655 * 2656 * Returns 0 on success, negative on failure 2657 **/ 2658 static int wx_setup_rx_resources(struct wx_ring *rx_ring) 2659 { 2660 struct device *dev = rx_ring->dev; 2661 int orig_node = dev_to_node(dev); 2662 int numa_node = NUMA_NO_NODE; 2663 int size, ret; 2664 2665 size = sizeof(struct wx_rx_buffer) * rx_ring->count; 2666 2667 if (rx_ring->q_vector) 2668 numa_node = rx_ring->q_vector->numa_node; 2669 2670 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2671 if (!rx_ring->rx_buffer_info) 2672 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); 2673 if (!rx_ring->rx_buffer_info) 2674 goto err; 2675 2676 /* Round up to nearest 4K */ 2677 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); 2678 rx_ring->size = ALIGN(rx_ring->size, 4096); 2679 2680 set_dev_node(dev, numa_node); 2681 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2682 &rx_ring->dma, GFP_KERNEL); 2683 if (!rx_ring->desc) { 2684 set_dev_node(dev, orig_node); 2685 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2686 &rx_ring->dma, GFP_KERNEL); 2687 } 2688 2689 if (!rx_ring->desc) 2690 goto err; 2691 2692 rx_ring->next_to_clean = 0; 2693 rx_ring->next_to_use = 0; 2694 2695 ret = wx_alloc_page_pool(rx_ring); 2696 if (ret < 0) { 2697 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); 2698 goto err_desc; 2699 } 2700 2701 return 0; 2702 2703 err_desc: 2704 dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); 2705 err: 2706 kvfree(rx_ring->rx_buffer_info); 2707 rx_ring->rx_buffer_info = NULL; 2708 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 2709 return -ENOMEM; 2710 } 2711 2712 /** 2713 * wx_setup_all_rx_resources - allocate all queues Rx resources 2714 * @wx: pointer to hardware structure 2715 * 2716 * If this function returns with an error, then it's possible one or 2717 * more of the rings is populated (while the rest are not). It is the 2718 * callers duty to clean those orphaned rings. 2719 * 2720 * Return 0 on success, negative on failure 2721 **/ 2722 static int wx_setup_all_rx_resources(struct wx *wx) 2723 { 2724 int i, err = 0; 2725 2726 for (i = 0; i < wx->num_rx_queues; i++) { 2727 err = wx_setup_rx_resources(wx->rx_ring[i]); 2728 if (!err) 2729 continue; 2730 2731 wx_err(wx, "Allocation for Rx Queue %u failed\n", i); 2732 goto err_setup_rx; 2733 } 2734 2735 return 0; 2736 err_setup_rx: 2737 /* rewind the index freeing the rings as we go */ 2738 while (i--) 2739 wx_free_rx_resources(wx->rx_ring[i]); 2740 return err; 2741 } 2742 2743 /** 2744 * wx_setup_tx_resources - allocate Tx resources (Descriptors) 2745 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2746 * 2747 * Return 0 on success, negative on failure 2748 **/ 2749 static int wx_setup_tx_resources(struct wx_ring *tx_ring) 2750 { 2751 struct device *dev = tx_ring->dev; 2752 int orig_node = dev_to_node(dev); 2753 int numa_node = NUMA_NO_NODE; 2754 int size; 2755 2756 size = sizeof(struct wx_tx_buffer) * tx_ring->count; 2757 2758 if (tx_ring->q_vector) 2759 numa_node = tx_ring->q_vector->numa_node; 2760 2761 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2762 if (!tx_ring->tx_buffer_info) 2763 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); 2764 if (!tx_ring->tx_buffer_info) 2765 goto err; 2766 2767 /* round up to nearest 4K */ 2768 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); 2769 tx_ring->size = ALIGN(tx_ring->size, 4096); 2770 2771 set_dev_node(dev, numa_node); 2772 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2773 &tx_ring->dma, GFP_KERNEL); 2774 if (!tx_ring->desc) { 2775 set_dev_node(dev, orig_node); 2776 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2777 &tx_ring->dma, GFP_KERNEL); 2778 } 2779 2780 if (!tx_ring->desc) 2781 goto err; 2782 2783 tx_ring->next_to_use = 0; 2784 tx_ring->next_to_clean = 0; 2785 2786 return 0; 2787 2788 err: 2789 kvfree(tx_ring->tx_buffer_info); 2790 tx_ring->tx_buffer_info = NULL; 2791 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2792 return -ENOMEM; 2793 } 2794 2795 /** 2796 * wx_setup_all_tx_resources - allocate all queues Tx resources 2797 * @wx: pointer to private structure 2798 * 2799 * If this function returns with an error, then it's possible one or 2800 * more of the rings is populated (while the rest are not). It is the 2801 * callers duty to clean those orphaned rings. 2802 * 2803 * Return 0 on success, negative on failure 2804 **/ 2805 static int wx_setup_all_tx_resources(struct wx *wx) 2806 { 2807 int i, err = 0; 2808 2809 for (i = 0; i < wx->num_tx_queues; i++) { 2810 err = wx_setup_tx_resources(wx->tx_ring[i]); 2811 if (!err) 2812 continue; 2813 2814 wx_err(wx, "Allocation for Tx Queue %u failed\n", i); 2815 goto err_setup_tx; 2816 } 2817 2818 return 0; 2819 err_setup_tx: 2820 /* rewind the index freeing the rings as we go */ 2821 while (i--) 2822 wx_free_tx_resources(wx->tx_ring[i]); 2823 return err; 2824 } 2825 2826 int wx_setup_resources(struct wx *wx) 2827 { 2828 int err; 2829 2830 /* allocate transmit descriptors */ 2831 err = wx_setup_all_tx_resources(wx); 2832 if (err) 2833 return err; 2834 2835 /* allocate receive descriptors */ 2836 err = wx_setup_all_rx_resources(wx); 2837 if (err) 2838 goto err_free_tx; 2839 2840 err = wx_setup_isb_resources(wx); 2841 if (err) 2842 goto err_free_rx; 2843 2844 return 0; 2845 2846 err_free_rx: 2847 wx_free_all_rx_resources(wx); 2848 err_free_tx: 2849 wx_free_all_tx_resources(wx); 2850 2851 return err; 2852 } 2853 EXPORT_SYMBOL(wx_setup_resources); 2854 2855 /** 2856 * wx_get_stats64 - Get System Network Statistics 2857 * @netdev: network interface device structure 2858 * @stats: storage space for 64bit statistics 2859 */ 2860 void wx_get_stats64(struct net_device *netdev, 2861 struct rtnl_link_stats64 *stats) 2862 { 2863 struct wx *wx = netdev_priv(netdev); 2864 struct wx_hw_stats *hwstats; 2865 int i; 2866 2867 wx_update_stats(wx); 2868 2869 rcu_read_lock(); 2870 for (i = 0; i < wx->num_rx_queues; i++) { 2871 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); 2872 u64 bytes, packets; 2873 unsigned int start; 2874 2875 if (ring) { 2876 do { 2877 start = u64_stats_fetch_begin(&ring->syncp); 2878 packets = ring->stats.packets; 2879 bytes = ring->stats.bytes; 2880 } while (u64_stats_fetch_retry(&ring->syncp, start)); 2881 stats->rx_packets += packets; 2882 stats->rx_bytes += bytes; 2883 } 2884 } 2885 2886 for (i = 0; i < wx->num_tx_queues; i++) { 2887 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); 2888 u64 bytes, packets; 2889 unsigned int start; 2890 2891 if (ring) { 2892 do { 2893 start = u64_stats_fetch_begin(&ring->syncp); 2894 packets = ring->stats.packets; 2895 bytes = ring->stats.bytes; 2896 } while (u64_stats_fetch_retry(&ring->syncp, 2897 start)); 2898 stats->tx_packets += packets; 2899 stats->tx_bytes += bytes; 2900 } 2901 } 2902 2903 rcu_read_unlock(); 2904 2905 hwstats = &wx->stats; 2906 stats->rx_errors = hwstats->crcerrs + hwstats->rlec; 2907 stats->multicast = hwstats->qmprc; 2908 stats->rx_length_errors = hwstats->rlec; 2909 stats->rx_crc_errors = hwstats->crcerrs; 2910 } 2911 EXPORT_SYMBOL(wx_get_stats64); 2912 2913 int wx_set_features(struct net_device *netdev, netdev_features_t features) 2914 { 2915 netdev_features_t changed = netdev->features ^ features; 2916 struct wx *wx = netdev_priv(netdev); 2917 bool need_reset = false; 2918 2919 if (features & NETIF_F_RXHASH) { 2920 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 2921 WX_RDB_RA_CTL_RSS_EN); 2922 wx->rss_enabled = true; 2923 } else { 2924 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); 2925 wx->rss_enabled = false; 2926 } 2927 2928 netdev->features = features; 2929 2930 if (changed & NETIF_F_HW_VLAN_CTAG_RX && wx->do_reset) 2931 wx->do_reset(netdev); 2932 else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER)) 2933 wx_set_rx_mode(netdev); 2934 2935 if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags))) 2936 return 0; 2937 2938 /* Check if Flow Director n-tuple support was enabled or disabled. If 2939 * the state changed, we need to reset. 2940 */ 2941 switch (features & NETIF_F_NTUPLE) { 2942 case NETIF_F_NTUPLE: 2943 /* turn off ATR, enable perfect filters and reset */ 2944 if (!(test_and_set_bit(WX_FLAG_FDIR_PERFECT, wx->flags))) 2945 need_reset = true; 2946 2947 clear_bit(WX_FLAG_FDIR_HASH, wx->flags); 2948 break; 2949 default: 2950 /* turn off perfect filters, enable ATR and reset */ 2951 if (test_and_clear_bit(WX_FLAG_FDIR_PERFECT, wx->flags)) 2952 need_reset = true; 2953 2954 /* We cannot enable ATR if RSS is disabled */ 2955 if (wx->ring_feature[RING_F_RSS].limit <= 1) 2956 break; 2957 2958 set_bit(WX_FLAG_FDIR_HASH, wx->flags); 2959 break; 2960 } 2961 2962 if (need_reset && wx->do_reset) 2963 wx->do_reset(netdev); 2964 2965 return 0; 2966 } 2967 EXPORT_SYMBOL(wx_set_features); 2968 2969 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 2970 NETIF_F_HW_VLAN_STAG_RX) 2971 2972 #define NETIF_VLAN_INSERTION_FEATURES (NETIF_F_HW_VLAN_CTAG_TX | \ 2973 NETIF_F_HW_VLAN_STAG_TX) 2974 2975 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 2976 NETIF_F_HW_VLAN_STAG_FILTER) 2977 2978 netdev_features_t wx_fix_features(struct net_device *netdev, 2979 netdev_features_t features) 2980 { 2981 netdev_features_t changed = netdev->features ^ features; 2982 struct wx *wx = netdev_priv(netdev); 2983 2984 if (changed & NETIF_VLAN_STRIPPING_FEATURES) { 2985 if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES && 2986 (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) { 2987 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 2988 features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES; 2989 wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off."); 2990 } 2991 } 2992 2993 if (changed & NETIF_VLAN_INSERTION_FEATURES) { 2994 if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES && 2995 (features & NETIF_VLAN_INSERTION_FEATURES) != 0) { 2996 features &= ~NETIF_VLAN_INSERTION_FEATURES; 2997 features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES; 2998 wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off."); 2999 } 3000 } 3001 3002 if (changed & NETIF_VLAN_FILTERING_FEATURES) { 3003 if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES && 3004 (features & NETIF_VLAN_FILTERING_FEATURES) != 0) { 3005 features &= ~NETIF_VLAN_FILTERING_FEATURES; 3006 features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES; 3007 wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off."); 3008 } 3009 } 3010 3011 return features; 3012 } 3013 EXPORT_SYMBOL(wx_fix_features); 3014 3015 #define WX_MAX_TUNNEL_HDR_LEN 80 3016 netdev_features_t wx_features_check(struct sk_buff *skb, 3017 struct net_device *netdev, 3018 netdev_features_t features) 3019 { 3020 struct wx *wx = netdev_priv(netdev); 3021 3022 if (!skb->encapsulation) 3023 return features; 3024 3025 if (wx->mac.type == wx_mac_em) 3026 return features & ~NETIF_F_CSUM_MASK; 3027 3028 if (unlikely(skb_inner_mac_header(skb) - skb_transport_header(skb) > 3029 WX_MAX_TUNNEL_HDR_LEN)) 3030 return features & ~NETIF_F_CSUM_MASK; 3031 3032 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER && 3033 skb->inner_protocol != htons(ETH_P_IP) && 3034 skb->inner_protocol != htons(ETH_P_IPV6) && 3035 skb->inner_protocol != htons(ETH_P_TEB)) 3036 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3037 3038 return features; 3039 } 3040 EXPORT_SYMBOL(wx_features_check); 3041 3042 void wx_set_ring(struct wx *wx, u32 new_tx_count, 3043 u32 new_rx_count, struct wx_ring *temp_ring) 3044 { 3045 int i, err = 0; 3046 3047 /* Setup new Tx resources and free the old Tx resources in that order. 3048 * We can then assign the new resources to the rings via a memcpy. 3049 * The advantage to this approach is that we are guaranteed to still 3050 * have resources even in the case of an allocation failure. 3051 */ 3052 if (new_tx_count != wx->tx_ring_count) { 3053 for (i = 0; i < wx->num_tx_queues; i++) { 3054 memcpy(&temp_ring[i], wx->tx_ring[i], 3055 sizeof(struct wx_ring)); 3056 3057 temp_ring[i].count = new_tx_count; 3058 err = wx_setup_tx_resources(&temp_ring[i]); 3059 if (err) { 3060 wx_err(wx, "setup new tx resources failed, keep using the old config\n"); 3061 while (i) { 3062 i--; 3063 wx_free_tx_resources(&temp_ring[i]); 3064 } 3065 return; 3066 } 3067 } 3068 3069 for (i = 0; i < wx->num_tx_queues; i++) { 3070 wx_free_tx_resources(wx->tx_ring[i]); 3071 3072 memcpy(wx->tx_ring[i], &temp_ring[i], 3073 sizeof(struct wx_ring)); 3074 } 3075 3076 wx->tx_ring_count = new_tx_count; 3077 } 3078 3079 /* Repeat the process for the Rx rings if needed */ 3080 if (new_rx_count != wx->rx_ring_count) { 3081 for (i = 0; i < wx->num_rx_queues; i++) { 3082 memcpy(&temp_ring[i], wx->rx_ring[i], 3083 sizeof(struct wx_ring)); 3084 3085 temp_ring[i].count = new_rx_count; 3086 err = wx_setup_rx_resources(&temp_ring[i]); 3087 if (err) { 3088 wx_err(wx, "setup new rx resources failed, keep using the old config\n"); 3089 while (i) { 3090 i--; 3091 wx_free_rx_resources(&temp_ring[i]); 3092 } 3093 return; 3094 } 3095 } 3096 3097 for (i = 0; i < wx->num_rx_queues; i++) { 3098 wx_free_rx_resources(wx->rx_ring[i]); 3099 memcpy(wx->rx_ring[i], &temp_ring[i], 3100 sizeof(struct wx_ring)); 3101 } 3102 3103 wx->rx_ring_count = new_rx_count; 3104 } 3105 } 3106 EXPORT_SYMBOL(wx_set_ring); 3107 3108 void wx_service_event_schedule(struct wx *wx) 3109 { 3110 if (!test_and_set_bit(WX_STATE_SERVICE_SCHED, wx->state)) 3111 queue_work(system_power_efficient_wq, &wx->service_task); 3112 } 3113 EXPORT_SYMBOL(wx_service_event_schedule); 3114 3115 void wx_service_event_complete(struct wx *wx) 3116 { 3117 if (WARN_ON(!test_bit(WX_STATE_SERVICE_SCHED, wx->state))) 3118 return; 3119 3120 /* flush memory to make sure state is correct before next watchdog */ 3121 smp_mb__before_atomic(); 3122 clear_bit(WX_STATE_SERVICE_SCHED, wx->state); 3123 } 3124 EXPORT_SYMBOL(wx_service_event_complete); 3125 3126 void wx_service_timer(struct timer_list *t) 3127 { 3128 struct wx *wx = timer_container_of(wx, t, service_timer); 3129 unsigned long next_event_offset = HZ * 2; 3130 3131 /* Reset the timer */ 3132 mod_timer(&wx->service_timer, next_event_offset + jiffies); 3133 3134 wx_service_event_schedule(wx); 3135 } 3136 EXPORT_SYMBOL(wx_service_timer); 3137 3138 MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers."); 3139 MODULE_LICENSE("GPL"); 3140