xref: /linux/drivers/net/ethernet/wangxun/libwx/wx_lib.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/workqueue.h>
9 #include <linux/iopoll.h>
10 #include <linux/sctp.h>
11 #include <linux/pci.h>
12 #include <net/tcp.h>
13 #include <net/ip.h>
14 
15 #include "wx_type.h"
16 #include "wx_lib.h"
17 #include "wx_ptp.h"
18 #include "wx_hw.h"
19 #include "wx_vf_lib.h"
20 
21 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
22 static struct wx_dec_ptype wx_ptype_lookup[256] = {
23 	/* L2: mac */
24 	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
26 	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27 	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
28 	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
29 	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
30 	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31 
32 	/* L2: ethertype filter */
33 	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
34 
35 	/* L3: ip non-tunnel */
36 	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
37 	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
38 	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
39 	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
40 	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
41 	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
42 	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
43 	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
44 	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
45 	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
46 
47 	/* L2: fcoe */
48 	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
49 	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
50 
51 	/* IPv4 --> IPv4/IPv6 */
52 	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
53 	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
54 	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
55 	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
56 	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
57 	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
58 	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
59 	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
60 	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
61 	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
62 
63 	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
64 	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
65 	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
66 	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
67 	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
68 	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
69 	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
70 	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
71 	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
72 	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
73 	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
74 	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
75 
76 	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
77 	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
78 	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
79 	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
80 	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
81 	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
82 	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
83 	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
84 	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
85 	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
86 	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
87 	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
88 
89 	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
90 	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
91 	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
92 	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
93 	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
94 	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
95 	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
96 	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
97 	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
98 	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
99 	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
100 	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
101 
102 	/* IPv6 --> IPv4/IPv6 */
103 	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
104 	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
105 	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
106 	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
107 	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
108 	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
109 	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
110 	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
111 	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
112 	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
113 
114 	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
115 	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
116 	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
117 	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
118 	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
119 	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
120 	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
121 	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
122 	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
123 	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
124 	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
125 	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
126 
127 	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
128 	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
129 	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
130 	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
131 	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
132 	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
133 	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
134 	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
135 	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
136 	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
137 	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
138 	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
139 
140 	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
141 	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
142 	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
143 	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
144 	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
145 	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
146 	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
147 	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
148 	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
149 	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
150 	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
151 	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
152 };
153 
154 struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
155 {
156 	return wx_ptype_lookup[ptype];
157 }
158 EXPORT_SYMBOL(wx_decode_ptype);
159 
160 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
161 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
162 			      const u32 stat_err_bits)
163 {
164 	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
165 }
166 
167 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
168 			     struct wx_rx_buffer *rx_buffer)
169 {
170 	struct sk_buff *skb = rx_buffer->skb;
171 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
172 
173 	dma_sync_single_range_for_cpu(rx_ring->dev,
174 				      WX_CB(skb)->dma,
175 				      skb_frag_off(frag),
176 				      skb_frag_size(frag),
177 				      DMA_FROM_DEVICE);
178 }
179 
180 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
181 					     union wx_rx_desc *rx_desc,
182 					     struct sk_buff **skb,
183 					     int *rx_buffer_pgcnt)
184 {
185 	struct wx_rx_buffer *rx_buffer;
186 	unsigned int size;
187 
188 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
189 	size = le16_to_cpu(rx_desc->wb.upper.length);
190 
191 #if (PAGE_SIZE < 8192)
192 	*rx_buffer_pgcnt = page_count(rx_buffer->page);
193 #else
194 	*rx_buffer_pgcnt = 0;
195 #endif
196 
197 	prefetchw(rx_buffer->page);
198 	*skb = rx_buffer->skb;
199 
200 	/* Delay unmapping of the first packet. It carries the header
201 	 * information, HW may still access the header after the writeback.
202 	 * Only unmap it when EOP is reached
203 	 */
204 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
205 		if (!*skb)
206 			goto skip_sync;
207 	} else {
208 		if (*skb)
209 			wx_dma_sync_frag(rx_ring, rx_buffer);
210 	}
211 
212 	/* we are reusing so sync this buffer for CPU use */
213 	dma_sync_single_range_for_cpu(rx_ring->dev,
214 				      rx_buffer->dma,
215 				      rx_buffer->page_offset,
216 				      size,
217 				      DMA_FROM_DEVICE);
218 skip_sync:
219 	return rx_buffer;
220 }
221 
222 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
223 			     struct wx_rx_buffer *rx_buffer,
224 			     struct sk_buff *skb,
225 			     int rx_buffer_pgcnt)
226 {
227 	/* clear contents of rx_buffer */
228 	rx_buffer->page = NULL;
229 	rx_buffer->skb = NULL;
230 }
231 
232 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
233 				    struct wx_rx_buffer *rx_buffer,
234 				    union wx_rx_desc *rx_desc)
235 {
236 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
237 #if (PAGE_SIZE < 8192)
238 	unsigned int truesize = WX_RX_BUFSZ;
239 #else
240 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
241 #endif
242 	struct sk_buff *skb = rx_buffer->skb;
243 
244 	if (!skb) {
245 		void *page_addr = page_address(rx_buffer->page) +
246 				  rx_buffer->page_offset;
247 
248 		/* prefetch first cache line of first page */
249 		net_prefetch(page_addr);
250 
251 		/* allocate a skb to store the frags */
252 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
253 		if (unlikely(!skb))
254 			return NULL;
255 
256 		/* we will be copying header into skb->data in
257 		 * pskb_may_pull so it is in our interest to prefetch
258 		 * it now to avoid a possible cache miss
259 		 */
260 		prefetchw(skb->data);
261 
262 		if (size <= WX_RXBUFFER_256) {
263 			memcpy(__skb_put(skb, size), page_addr,
264 			       ALIGN(size, sizeof(long)));
265 			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
266 			return skb;
267 		}
268 
269 		skb_mark_for_recycle(skb);
270 
271 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
272 			WX_CB(skb)->dma = rx_buffer->dma;
273 
274 		skb_add_rx_frag(skb, 0, rx_buffer->page,
275 				rx_buffer->page_offset,
276 				size, truesize);
277 		goto out;
278 
279 	} else {
280 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
281 				rx_buffer->page_offset, size, truesize);
282 	}
283 
284 out:
285 #if (PAGE_SIZE < 8192)
286 	/* flip page offset to other buffer */
287 	rx_buffer->page_offset ^= truesize;
288 #else
289 	/* move offset up to the next cache line */
290 	rx_buffer->page_offset += truesize;
291 #endif
292 
293 	return skb;
294 }
295 
296 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
297 				 struct wx_rx_buffer *bi)
298 {
299 	struct page *page = bi->page;
300 	dma_addr_t dma;
301 
302 	/* since we are recycling buffers we should seldom need to alloc */
303 	if (likely(page))
304 		return true;
305 
306 	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
307 	if (unlikely(!page))
308 		return false;
309 	dma = page_pool_get_dma_addr(page);
310 
311 	bi->dma = dma;
312 	bi->page = page;
313 	bi->page_offset = 0;
314 
315 	return true;
316 }
317 
318 /**
319  * wx_alloc_rx_buffers - Replace used receive buffers
320  * @rx_ring: ring to place buffers on
321  * @cleaned_count: number of buffers to replace
322  **/
323 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
324 {
325 	u16 i = rx_ring->next_to_use;
326 	union wx_rx_desc *rx_desc;
327 	struct wx_rx_buffer *bi;
328 
329 	/* nothing to do */
330 	if (!cleaned_count)
331 		return;
332 
333 	rx_desc = WX_RX_DESC(rx_ring, i);
334 	bi = &rx_ring->rx_buffer_info[i];
335 	i -= rx_ring->count;
336 
337 	do {
338 		if (!wx_alloc_mapped_page(rx_ring, bi))
339 			break;
340 
341 		/* sync the buffer for use by the device */
342 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
343 						 bi->page_offset,
344 						 WX_RX_BUFSZ,
345 						 DMA_FROM_DEVICE);
346 
347 		rx_desc->read.pkt_addr =
348 			cpu_to_le64(bi->dma + bi->page_offset);
349 
350 		rx_desc++;
351 		bi++;
352 		i++;
353 		if (unlikely(!i)) {
354 			rx_desc = WX_RX_DESC(rx_ring, 0);
355 			bi = rx_ring->rx_buffer_info;
356 			i -= rx_ring->count;
357 		}
358 
359 		/* clear the status bits for the next_to_use descriptor */
360 		rx_desc->wb.upper.status_error = 0;
361 		/* clear the length for the next_to_use descriptor */
362 		rx_desc->wb.upper.length = 0;
363 
364 		cleaned_count--;
365 	} while (cleaned_count);
366 
367 	i += rx_ring->count;
368 
369 	if (rx_ring->next_to_use != i) {
370 		rx_ring->next_to_use = i;
371 		/* update next to alloc since we have filled the ring */
372 		rx_ring->next_to_alloc = i;
373 
374 		/* Force memory writes to complete before letting h/w
375 		 * know there are new descriptors to fetch.  (Only
376 		 * applicable for weak-ordered memory model archs,
377 		 * such as IA-64).
378 		 */
379 		wmb();
380 		writel(i, rx_ring->tail);
381 	}
382 }
383 
384 u16 wx_desc_unused(struct wx_ring *ring)
385 {
386 	u16 ntc = ring->next_to_clean;
387 	u16 ntu = ring->next_to_use;
388 
389 	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
390 }
391 
392 /**
393  * wx_is_non_eop - process handling of non-EOP buffers
394  * @rx_ring: Rx ring being processed
395  * @rx_desc: Rx descriptor for current buffer
396  * @skb: Current socket buffer containing buffer in progress
397  *
398  * This function updates next to clean. If the buffer is an EOP buffer
399  * this function exits returning false, otherwise it will place the
400  * sk_buff in the next buffer to be chained and return true indicating
401  * that this is in fact a non-EOP buffer.
402  **/
403 static bool wx_is_non_eop(struct wx_ring *rx_ring,
404 			  union wx_rx_desc *rx_desc,
405 			  struct sk_buff *skb)
406 {
407 	u32 ntc = rx_ring->next_to_clean + 1;
408 
409 	/* fetch, update, and store next to clean */
410 	ntc = (ntc < rx_ring->count) ? ntc : 0;
411 	rx_ring->next_to_clean = ntc;
412 
413 	prefetch(WX_RX_DESC(rx_ring, ntc));
414 
415 	/* if we are the last buffer then there is nothing else to do */
416 	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
417 		return false;
418 
419 	rx_ring->rx_buffer_info[ntc].skb = skb;
420 	rx_ring->rx_stats.non_eop_descs++;
421 
422 	return true;
423 }
424 
425 static void wx_pull_tail(struct sk_buff *skb)
426 {
427 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
428 	unsigned int pull_len;
429 	unsigned char *va;
430 
431 	/* it is valid to use page_address instead of kmap since we are
432 	 * working with pages allocated out of the lomem pool per
433 	 * alloc_page(GFP_ATOMIC)
434 	 */
435 	va = skb_frag_address(frag);
436 
437 	/* we need the header to contain the greater of either ETH_HLEN or
438 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
439 	 */
440 	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
441 
442 	/* align pull length to size of long to optimize memcpy performance */
443 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
444 
445 	/* update all of the pointers */
446 	skb_frag_size_sub(frag, pull_len);
447 	skb_frag_off_add(frag, pull_len);
448 	skb->data_len -= pull_len;
449 	skb->tail += pull_len;
450 }
451 
452 /**
453  * wx_cleanup_headers - Correct corrupted or empty headers
454  * @rx_ring: rx descriptor ring packet is being transacted on
455  * @rx_desc: pointer to the EOP Rx descriptor
456  * @skb: pointer to current skb being fixed
457  *
458  * Check for corrupted packet headers caused by senders on the local L2
459  * embedded NIC switch not setting up their Tx Descriptors right.  These
460  * should be very rare.
461  *
462  * Also address the case where we are pulling data in on pages only
463  * and as such no data is present in the skb header.
464  *
465  * In addition if skb is not at least 60 bytes we need to pad it so that
466  * it is large enough to qualify as a valid Ethernet frame.
467  *
468  * Returns true if an error was encountered and skb was freed.
469  **/
470 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
471 			       union wx_rx_desc *rx_desc,
472 			       struct sk_buff *skb)
473 {
474 	struct net_device *netdev = rx_ring->netdev;
475 
476 	/* verify that the packet does not have any known errors */
477 	if (!netdev ||
478 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
479 		     !(netdev->features & NETIF_F_RXALL))) {
480 		dev_kfree_skb_any(skb);
481 		return true;
482 	}
483 
484 	/* place header in linear portion of buffer */
485 	if (!skb_headlen(skb))
486 		wx_pull_tail(skb);
487 
488 	/* if eth_skb_pad returns an error the skb was freed */
489 	if (eth_skb_pad(skb))
490 		return true;
491 
492 	return false;
493 }
494 
495 static void wx_rx_hash(struct wx_ring *ring,
496 		       union wx_rx_desc *rx_desc,
497 		       struct sk_buff *skb)
498 {
499 	u16 rss_type;
500 
501 	if (!(ring->netdev->features & NETIF_F_RXHASH))
502 		return;
503 
504 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
505 			       WX_RXD_RSSTYPE_MASK;
506 
507 	if (!rss_type)
508 		return;
509 
510 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
511 		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
512 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
513 }
514 
515 /**
516  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
517  * @ring: structure containing ring specific data
518  * @rx_desc: current Rx descriptor being processed
519  * @skb: skb currently being received and modified
520  **/
521 static void wx_rx_checksum(struct wx_ring *ring,
522 			   union wx_rx_desc *rx_desc,
523 			   struct sk_buff *skb)
524 {
525 	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
526 
527 	skb_checksum_none_assert(skb);
528 	/* Rx csum disabled */
529 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
530 		return;
531 
532 	/* if IPv4 header checksum error */
533 	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
534 	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
535 	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
536 	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
537 		ring->rx_stats.csum_err++;
538 		return;
539 	}
540 
541 	/* L4 checksum offload flag must set for the below code to work */
542 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
543 		return;
544 
545 	/* Hardware can't guarantee csum if IPv6 Dest Header found */
546 	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP &&
547 	    wx_test_staterr(rx_desc, WX_RXD_STAT_IPV6EX))
548 		return;
549 
550 	/* if L4 checksum error */
551 	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
552 		ring->rx_stats.csum_err++;
553 		return;
554 	}
555 
556 	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
557 	skb->ip_summed = CHECKSUM_UNNECESSARY;
558 
559 	/* If there is an outer header present that might contain a checksum
560 	 * we need to bump the checksum level by 1 to reflect the fact that
561 	 * we are indicating we validated the inner checksum.
562 	 */
563 	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
564 		__skb_incr_checksum_unnecessary(skb);
565 	ring->rx_stats.csum_good_cnt++;
566 }
567 
568 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
569 		       struct sk_buff *skb)
570 {
571 	u16 ethertype;
572 	u8 idx = 0;
573 
574 	if ((ring->netdev->features &
575 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
576 	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
577 		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
578 		       0x1c0) >> 6;
579 		ethertype = ring->q_vector->wx->tpid[idx];
580 		__vlan_hwaccel_put_tag(skb, htons(ethertype),
581 				       le16_to_cpu(rx_desc->wb.upper.vlan));
582 	}
583 }
584 
585 /**
586  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
587  * @rx_ring: rx descriptor ring packet is being transacted on
588  * @rx_desc: pointer to the EOP Rx descriptor
589  * @skb: pointer to current skb being populated
590  *
591  * This function checks the ring, descriptor, and packet information in
592  * order to populate the hash, checksum, protocol, and
593  * other fields within the skb.
594  **/
595 static void wx_process_skb_fields(struct wx_ring *rx_ring,
596 				  union wx_rx_desc *rx_desc,
597 				  struct sk_buff *skb)
598 {
599 	struct wx *wx = netdev_priv(rx_ring->netdev);
600 
601 	wx_rx_hash(rx_ring, rx_desc, skb);
602 	wx_rx_checksum(rx_ring, rx_desc, skb);
603 
604 	if (unlikely(test_bit(WX_FLAG_RX_HWTSTAMP_ENABLED, wx->flags)) &&
605 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_STAT_TS))) {
606 		wx_ptp_rx_hwtstamp(rx_ring->q_vector->wx, skb);
607 		rx_ring->last_rx_timestamp = jiffies;
608 	}
609 
610 	wx_rx_vlan(rx_ring, rx_desc, skb);
611 	skb_record_rx_queue(skb, rx_ring->queue_index);
612 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
613 }
614 
615 /**
616  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
617  * @q_vector: structure containing interrupt and ring information
618  * @rx_ring: rx descriptor ring to transact packets on
619  * @budget: Total limit on number of packets to process
620  *
621  * This function provides a "bounce buffer" approach to Rx interrupt
622  * processing.  The advantage to this is that on systems that have
623  * expensive overhead for IOMMU access this provides a means of avoiding
624  * it by maintaining the mapping of the page to the system.
625  *
626  * Returns amount of work completed.
627  **/
628 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
629 			   struct wx_ring *rx_ring,
630 			   int budget)
631 {
632 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
633 	u16 cleaned_count = wx_desc_unused(rx_ring);
634 
635 	do {
636 		struct wx_rx_buffer *rx_buffer;
637 		union wx_rx_desc *rx_desc;
638 		struct sk_buff *skb;
639 		int rx_buffer_pgcnt;
640 
641 		/* return some buffers to hardware, one at a time is too slow */
642 		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
643 			wx_alloc_rx_buffers(rx_ring, cleaned_count);
644 			cleaned_count = 0;
645 		}
646 
647 		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
648 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
649 			break;
650 
651 		/* This memory barrier is needed to keep us from reading
652 		 * any other fields out of the rx_desc until we know the
653 		 * descriptor has been written back
654 		 */
655 		dma_rmb();
656 
657 		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
658 
659 		/* retrieve a buffer from the ring */
660 		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
661 
662 		/* exit if we failed to retrieve a buffer */
663 		if (!skb) {
664 			rx_ring->rx_stats.alloc_rx_buff_failed++;
665 			break;
666 		}
667 
668 		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
669 		cleaned_count++;
670 
671 		/* place incomplete frames back on ring for completion */
672 		if (wx_is_non_eop(rx_ring, rx_desc, skb))
673 			continue;
674 
675 		/* verify the packet layout is correct */
676 		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
677 			continue;
678 
679 		/* probably a little skewed due to removing CRC */
680 		total_rx_bytes += skb->len;
681 
682 		/* populate checksum, timestamp, VLAN, and protocol */
683 		wx_process_skb_fields(rx_ring, rx_desc, skb);
684 		napi_gro_receive(&q_vector->napi, skb);
685 
686 		/* update budget accounting */
687 		total_rx_packets++;
688 	} while (likely(total_rx_packets < budget));
689 
690 	u64_stats_update_begin(&rx_ring->syncp);
691 	rx_ring->stats.packets += total_rx_packets;
692 	rx_ring->stats.bytes += total_rx_bytes;
693 	u64_stats_update_end(&rx_ring->syncp);
694 	q_vector->rx.total_packets += total_rx_packets;
695 	q_vector->rx.total_bytes += total_rx_bytes;
696 
697 	return total_rx_packets;
698 }
699 
700 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
701 {
702 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
703 }
704 
705 /**
706  * wx_clean_tx_irq - Reclaim resources after transmit completes
707  * @q_vector: structure containing interrupt and ring information
708  * @tx_ring: tx ring to clean
709  * @napi_budget: Used to determine if we are in netpoll
710  **/
711 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
712 			    struct wx_ring *tx_ring, int napi_budget)
713 {
714 	unsigned int budget = q_vector->wx->tx_work_limit;
715 	unsigned int total_bytes = 0, total_packets = 0;
716 	struct wx *wx = netdev_priv(tx_ring->netdev);
717 	unsigned int i = tx_ring->next_to_clean;
718 	struct wx_tx_buffer *tx_buffer;
719 	union wx_tx_desc *tx_desc;
720 
721 	if (!netif_carrier_ok(tx_ring->netdev))
722 		return true;
723 
724 	tx_buffer = &tx_ring->tx_buffer_info[i];
725 	tx_desc = WX_TX_DESC(tx_ring, i);
726 	i -= tx_ring->count;
727 
728 	do {
729 		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
730 
731 		/* if next_to_watch is not set then there is no work pending */
732 		if (!eop_desc)
733 			break;
734 
735 		/* prevent any other reads prior to eop_desc */
736 		smp_rmb();
737 
738 		/* if DD is not set pending work has not been completed */
739 		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
740 			break;
741 
742 		/* clear next_to_watch to prevent false hangs */
743 		tx_buffer->next_to_watch = NULL;
744 
745 		/* update the statistics for this packet */
746 		total_bytes += tx_buffer->bytecount;
747 		total_packets += tx_buffer->gso_segs;
748 
749 		/* schedule check for Tx timestamp */
750 		if (unlikely(test_bit(WX_STATE_PTP_TX_IN_PROGRESS, wx->state)) &&
751 		    skb_shinfo(tx_buffer->skb)->tx_flags & SKBTX_IN_PROGRESS)
752 			ptp_schedule_worker(wx->ptp_clock, 0);
753 
754 		/* free the skb */
755 		napi_consume_skb(tx_buffer->skb, napi_budget);
756 
757 		/* unmap skb header data */
758 		dma_unmap_single(tx_ring->dev,
759 				 dma_unmap_addr(tx_buffer, dma),
760 				 dma_unmap_len(tx_buffer, len),
761 				 DMA_TO_DEVICE);
762 
763 		/* clear tx_buffer data */
764 		dma_unmap_len_set(tx_buffer, len, 0);
765 
766 		/* unmap remaining buffers */
767 		while (tx_desc != eop_desc) {
768 			tx_buffer++;
769 			tx_desc++;
770 			i++;
771 			if (unlikely(!i)) {
772 				i -= tx_ring->count;
773 				tx_buffer = tx_ring->tx_buffer_info;
774 				tx_desc = WX_TX_DESC(tx_ring, 0);
775 			}
776 
777 			/* unmap any remaining paged data */
778 			if (dma_unmap_len(tx_buffer, len)) {
779 				dma_unmap_page(tx_ring->dev,
780 					       dma_unmap_addr(tx_buffer, dma),
781 					       dma_unmap_len(tx_buffer, len),
782 					       DMA_TO_DEVICE);
783 				dma_unmap_len_set(tx_buffer, len, 0);
784 			}
785 		}
786 
787 		/* move us one more past the eop_desc for start of next pkt */
788 		tx_buffer++;
789 		tx_desc++;
790 		i++;
791 		if (unlikely(!i)) {
792 			i -= tx_ring->count;
793 			tx_buffer = tx_ring->tx_buffer_info;
794 			tx_desc = WX_TX_DESC(tx_ring, 0);
795 		}
796 
797 		/* issue prefetch for next Tx descriptor */
798 		prefetch(tx_desc);
799 
800 		/* update budget accounting */
801 		budget--;
802 	} while (likely(budget));
803 
804 	i += tx_ring->count;
805 	tx_ring->next_to_clean = i;
806 	u64_stats_update_begin(&tx_ring->syncp);
807 	tx_ring->stats.bytes += total_bytes;
808 	tx_ring->stats.packets += total_packets;
809 	u64_stats_update_end(&tx_ring->syncp);
810 	q_vector->tx.total_bytes += total_bytes;
811 	q_vector->tx.total_packets += total_packets;
812 
813 	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
814 				  total_packets, total_bytes);
815 
816 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
817 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
818 		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
819 		/* Make sure that anybody stopping the queue after this
820 		 * sees the new next_to_clean.
821 		 */
822 		smp_mb();
823 
824 		if (__netif_subqueue_stopped(tx_ring->netdev,
825 					     tx_ring->queue_index) &&
826 		    netif_running(tx_ring->netdev)) {
827 			netif_wake_subqueue(tx_ring->netdev,
828 					    tx_ring->queue_index);
829 			++tx_ring->tx_stats.restart_queue;
830 		}
831 	}
832 
833 	return !!budget;
834 }
835 
836 static void wx_update_rx_dim_sample(struct wx_q_vector *q_vector)
837 {
838 	struct dim_sample sample = {};
839 
840 	dim_update_sample(q_vector->total_events,
841 			  q_vector->rx.total_packets,
842 			  q_vector->rx.total_bytes,
843 			  &sample);
844 
845 	net_dim(&q_vector->rx.dim, &sample);
846 }
847 
848 static void wx_update_tx_dim_sample(struct wx_q_vector *q_vector)
849 {
850 	struct dim_sample sample = {};
851 
852 	dim_update_sample(q_vector->total_events,
853 			  q_vector->tx.total_packets,
854 			  q_vector->tx.total_bytes,
855 			  &sample);
856 
857 	net_dim(&q_vector->tx.dim, &sample);
858 }
859 
860 static void wx_update_dim_sample(struct wx_q_vector *q_vector)
861 {
862 	wx_update_rx_dim_sample(q_vector);
863 	wx_update_tx_dim_sample(q_vector);
864 }
865 
866 /**
867  * wx_poll - NAPI polling RX/TX cleanup routine
868  * @napi: napi struct with our devices info in it
869  * @budget: amount of work driver is allowed to do this pass, in packets
870  *
871  * This function will clean all queues associated with a q_vector.
872  **/
873 static int wx_poll(struct napi_struct *napi, int budget)
874 {
875 	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
876 	int per_ring_budget, work_done = 0;
877 	struct wx *wx = q_vector->wx;
878 	bool clean_complete = true;
879 	struct wx_ring *ring;
880 
881 	wx_for_each_ring(ring, q_vector->tx) {
882 		if (!wx_clean_tx_irq(q_vector, ring, budget))
883 			clean_complete = false;
884 	}
885 
886 	/* Exit if we are called by netpoll */
887 	if (budget <= 0)
888 		return budget;
889 
890 	/* attempt to distribute budget to each queue fairly, but don't allow
891 	 * the budget to go below 1 because we'll exit polling
892 	 */
893 	if (q_vector->rx.count > 1)
894 		per_ring_budget = max(budget / q_vector->rx.count, 1);
895 	else
896 		per_ring_budget = budget;
897 
898 	wx_for_each_ring(ring, q_vector->rx) {
899 		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
900 
901 		work_done += cleaned;
902 		if (cleaned >= per_ring_budget)
903 			clean_complete = false;
904 	}
905 
906 	/* If all work not completed, return budget and keep polling */
907 	if (!clean_complete)
908 		return budget;
909 
910 	/* all work done, exit the polling mode */
911 	if (likely(napi_complete_done(napi, work_done))) {
912 		if (wx->adaptive_itr)
913 			wx_update_dim_sample(q_vector);
914 		if (netif_running(wx->netdev))
915 			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
916 	}
917 
918 	return min(work_done, budget - 1);
919 }
920 
921 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
922 {
923 	if (likely(wx_desc_unused(tx_ring) >= size))
924 		return 0;
925 
926 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
927 
928 	/* For the next check */
929 	smp_mb();
930 
931 	/* We need to check again in a case another CPU has just
932 	 * made room available.
933 	 */
934 	if (likely(wx_desc_unused(tx_ring) < size))
935 		return -EBUSY;
936 
937 	/* A reprieve! - use start_queue because it doesn't call schedule */
938 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
939 	++tx_ring->tx_stats.restart_queue;
940 
941 	return 0;
942 }
943 
944 static u32 wx_tx_cmd_type(u32 tx_flags)
945 {
946 	/* set type for advanced descriptor with frame checksum insertion */
947 	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
948 
949 	/* set HW vlan bit if vlan is present */
950 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
951 	/* set segmentation enable bits for TSO/FSO */
952 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
953 	/* set timestamp bit if present */
954 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
955 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
956 
957 	return cmd_type;
958 }
959 
960 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
961 				u32 tx_flags, unsigned int paylen)
962 {
963 	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
964 
965 	/* enable L4 checksum for TSO and TX checksum offload */
966 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
967 	/* enable IPv4 checksum for TSO */
968 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
969 	/* enable outer IPv4 checksum for TSO */
970 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
971 				     WX_TXD_EIPCS);
972 	/* Check Context must be set if Tx switch is enabled, which it
973 	 * always is for case where virtual functions are running
974 	 */
975 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
976 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
977 				     WX_TXD_IPSEC);
978 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
979 }
980 
981 static int wx_tx_map(struct wx_ring *tx_ring,
982 		     struct wx_tx_buffer *first,
983 		     const u8 hdr_len)
984 {
985 	struct sk_buff *skb = first->skb;
986 	struct wx_tx_buffer *tx_buffer;
987 	u32 tx_flags = first->tx_flags;
988 	u16 i = tx_ring->next_to_use;
989 	unsigned int data_len, size;
990 	union wx_tx_desc *tx_desc;
991 	skb_frag_t *frag;
992 	dma_addr_t dma;
993 	u32 cmd_type;
994 
995 	cmd_type = wx_tx_cmd_type(tx_flags);
996 	tx_desc = WX_TX_DESC(tx_ring, i);
997 	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
998 
999 	size = skb_headlen(skb);
1000 	data_len = skb->data_len;
1001 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1002 
1003 	tx_buffer = first;
1004 
1005 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1006 		if (dma_mapping_error(tx_ring->dev, dma))
1007 			goto dma_error;
1008 
1009 		/* record length, and DMA address */
1010 		dma_unmap_len_set(tx_buffer, len, size);
1011 		dma_unmap_addr_set(tx_buffer, dma, dma);
1012 
1013 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1014 
1015 		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
1016 			tx_desc->read.cmd_type_len =
1017 				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
1018 
1019 			i++;
1020 			tx_desc++;
1021 			if (i == tx_ring->count) {
1022 				tx_desc = WX_TX_DESC(tx_ring, 0);
1023 				i = 0;
1024 			}
1025 			tx_desc->read.olinfo_status = 0;
1026 
1027 			dma += WX_MAX_DATA_PER_TXD;
1028 			size -= WX_MAX_DATA_PER_TXD;
1029 
1030 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1031 		}
1032 
1033 		if (likely(!data_len))
1034 			break;
1035 
1036 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1037 
1038 		i++;
1039 		tx_desc++;
1040 		if (i == tx_ring->count) {
1041 			tx_desc = WX_TX_DESC(tx_ring, 0);
1042 			i = 0;
1043 		}
1044 		tx_desc->read.olinfo_status = 0;
1045 
1046 		size = skb_frag_size(frag);
1047 
1048 		data_len -= size;
1049 
1050 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1051 				       DMA_TO_DEVICE);
1052 
1053 		tx_buffer = &tx_ring->tx_buffer_info[i];
1054 	}
1055 
1056 	/* write last descriptor with RS and EOP bits */
1057 	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1058 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1059 
1060 	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1061 
1062 	/* set the timestamp */
1063 	first->time_stamp = jiffies;
1064 	skb_tx_timestamp(skb);
1065 
1066 	/* Force memory writes to complete before letting h/w know there
1067 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1068 	 * memory model archs, such as IA-64).
1069 	 *
1070 	 * We also need this memory barrier to make certain all of the
1071 	 * status bits have been updated before next_to_watch is written.
1072 	 */
1073 	wmb();
1074 
1075 	/* set next_to_watch value indicating a packet is present */
1076 	first->next_to_watch = tx_desc;
1077 
1078 	i++;
1079 	if (i == tx_ring->count)
1080 		i = 0;
1081 
1082 	tx_ring->next_to_use = i;
1083 
1084 	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1085 
1086 	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1087 		writel(i, tx_ring->tail);
1088 
1089 	return 0;
1090 dma_error:
1091 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1092 
1093 	/* clear dma mappings for failed tx_buffer_info map */
1094 	for (;;) {
1095 		tx_buffer = &tx_ring->tx_buffer_info[i];
1096 		if (dma_unmap_len(tx_buffer, len))
1097 			dma_unmap_page(tx_ring->dev,
1098 				       dma_unmap_addr(tx_buffer, dma),
1099 				       dma_unmap_len(tx_buffer, len),
1100 				       DMA_TO_DEVICE);
1101 		dma_unmap_len_set(tx_buffer, len, 0);
1102 		if (tx_buffer == first)
1103 			break;
1104 		if (i == 0)
1105 			i += tx_ring->count;
1106 		i--;
1107 	}
1108 
1109 	dev_kfree_skb_any(first->skb);
1110 	first->skb = NULL;
1111 
1112 	tx_ring->next_to_use = i;
1113 
1114 	return -ENOMEM;
1115 }
1116 
1117 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1118 			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1119 {
1120 	struct wx_tx_context_desc *context_desc;
1121 	u16 i = tx_ring->next_to_use;
1122 
1123 	context_desc = WX_TX_CTXTDESC(tx_ring, i);
1124 	i++;
1125 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1126 
1127 	/* set bits to identify this as an advanced context descriptor */
1128 	type_tucmd |= WX_TXD_DTYP_CTXT;
1129 	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1130 	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1131 	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1132 	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1133 }
1134 
1135 union network_header {
1136 	struct iphdr *ipv4;
1137 	struct ipv6hdr *ipv6;
1138 	void *raw;
1139 };
1140 
1141 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1142 {
1143 	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1144 	struct sk_buff *skb = first->skb;
1145 	unsigned char *exthdr, *l4_hdr;
1146 	__be16 frag_off;
1147 
1148 	if (skb->encapsulation) {
1149 		union network_header hdr;
1150 
1151 		switch (first->protocol) {
1152 		case htons(ETH_P_IP):
1153 			tun_prot = ip_hdr(skb)->protocol;
1154 			ptype = WX_PTYPE_TUN_IPV4;
1155 			break;
1156 		case htons(ETH_P_IPV6):
1157 			l4_hdr = skb_transport_header(skb);
1158 			exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1159 			tun_prot = ipv6_hdr(skb)->nexthdr;
1160 			if (l4_hdr != exthdr)
1161 				ipv6_skip_exthdr(skb, exthdr - skb->data, &tun_prot, &frag_off);
1162 			ptype = WX_PTYPE_TUN_IPV6;
1163 			break;
1164 		default:
1165 			return ptype;
1166 		}
1167 
1168 		if (tun_prot == IPPROTO_IPIP || tun_prot == IPPROTO_IPV6) {
1169 			hdr.raw = (void *)inner_ip_hdr(skb);
1170 			ptype |= WX_PTYPE_PKT_IPIP;
1171 		} else if (tun_prot == IPPROTO_UDP) {
1172 			hdr.raw = (void *)inner_ip_hdr(skb);
1173 			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1174 			    skb->inner_protocol != htons(ETH_P_TEB)) {
1175 				ptype |= WX_PTYPE_PKT_IG;
1176 			} else {
1177 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1178 				     == htons(ETH_P_8021Q))
1179 					ptype |= WX_PTYPE_PKT_IGMV;
1180 				else
1181 					ptype |= WX_PTYPE_PKT_IGM;
1182 			}
1183 
1184 		} else if (tun_prot == IPPROTO_GRE) {
1185 			hdr.raw = (void *)inner_ip_hdr(skb);
1186 			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1187 			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1188 				ptype |= WX_PTYPE_PKT_IG;
1189 			} else {
1190 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1191 				    == htons(ETH_P_8021Q))
1192 					ptype |= WX_PTYPE_PKT_IGMV;
1193 				else
1194 					ptype |= WX_PTYPE_PKT_IGM;
1195 			}
1196 		} else {
1197 			return ptype;
1198 		}
1199 
1200 		switch (hdr.ipv4->version) {
1201 		case IPVERSION:
1202 			l4_prot = hdr.ipv4->protocol;
1203 			break;
1204 		case 6:
1205 			l4_hdr = skb_inner_transport_header(skb);
1206 			exthdr = skb_inner_network_header(skb) + sizeof(struct ipv6hdr);
1207 			l4_prot = inner_ipv6_hdr(skb)->nexthdr;
1208 			if (l4_hdr != exthdr)
1209 				ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off);
1210 			ptype |= WX_PTYPE_PKT_IPV6;
1211 			break;
1212 		default:
1213 			return ptype;
1214 		}
1215 	} else {
1216 		switch (first->protocol) {
1217 		case htons(ETH_P_IP):
1218 			l4_prot = ip_hdr(skb)->protocol;
1219 			ptype = WX_PTYPE_PKT_IP;
1220 			break;
1221 		case htons(ETH_P_IPV6):
1222 			l4_hdr = skb_transport_header(skb);
1223 			exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1224 			l4_prot = ipv6_hdr(skb)->nexthdr;
1225 			if (l4_hdr != exthdr)
1226 				ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off);
1227 			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1228 			break;
1229 		default:
1230 			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1231 		}
1232 	}
1233 	switch (l4_prot) {
1234 	case IPPROTO_TCP:
1235 		ptype |= WX_PTYPE_TYP_TCP;
1236 		break;
1237 	case IPPROTO_UDP:
1238 		ptype |= WX_PTYPE_TYP_UDP;
1239 		break;
1240 	case IPPROTO_SCTP:
1241 		ptype |= WX_PTYPE_TYP_SCTP;
1242 		break;
1243 	default:
1244 		ptype |= WX_PTYPE_TYP_IP;
1245 		break;
1246 	}
1247 
1248 	return ptype;
1249 }
1250 
1251 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1252 		  u8 *hdr_len, u8 ptype)
1253 {
1254 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1255 	struct net_device *netdev = tx_ring->netdev;
1256 	u32 l4len, tunhdr_eiplen_tunlen = 0;
1257 	struct sk_buff *skb = first->skb;
1258 	bool enc = skb->encapsulation;
1259 	struct ipv6hdr *ipv6h;
1260 	struct tcphdr *tcph;
1261 	struct iphdr *iph;
1262 	u8 tun_prot = 0;
1263 	int err;
1264 
1265 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1266 		return 0;
1267 
1268 	if (!skb_is_gso(skb))
1269 		return 0;
1270 
1271 	err = skb_cow_head(skb, 0);
1272 	if (err < 0)
1273 		return err;
1274 
1275 	/* indicates the inner headers in the skbuff are valid. */
1276 	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1277 	if (iph->version == 4) {
1278 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1279 		iph->tot_len = 0;
1280 		iph->check = 0;
1281 		tcph->check = ~csum_tcpudp_magic(iph->saddr,
1282 						 iph->daddr, 0,
1283 						 IPPROTO_TCP, 0);
1284 		first->tx_flags |= WX_TX_FLAGS_TSO |
1285 				   WX_TX_FLAGS_CSUM |
1286 				   WX_TX_FLAGS_IPV4 |
1287 				   WX_TX_FLAGS_CC;
1288 	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1289 		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1290 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1291 		ipv6h->payload_len = 0;
1292 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1293 					       &ipv6h->daddr, 0,
1294 					       IPPROTO_TCP, 0);
1295 		first->tx_flags |= WX_TX_FLAGS_TSO |
1296 				   WX_TX_FLAGS_CSUM |
1297 				   WX_TX_FLAGS_CC;
1298 	}
1299 
1300 	/* compute header lengths */
1301 	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1302 	*hdr_len = enc ? skb_inner_transport_offset(skb) :
1303 			 skb_transport_offset(skb);
1304 	*hdr_len += l4len;
1305 
1306 	/* update gso size and bytecount with header size */
1307 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1308 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1309 
1310 	/* mss_l4len_id: use 0 as index for TSO */
1311 	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1312 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1313 
1314 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1315 	if (enc) {
1316 		unsigned char *exthdr, *l4_hdr;
1317 		__be16 frag_off;
1318 
1319 		switch (first->protocol) {
1320 		case htons(ETH_P_IP):
1321 			tun_prot = ip_hdr(skb)->protocol;
1322 			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1323 			break;
1324 		case htons(ETH_P_IPV6):
1325 			l4_hdr = skb_transport_header(skb);
1326 			exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1327 			tun_prot = ipv6_hdr(skb)->nexthdr;
1328 			if (l4_hdr != exthdr)
1329 				ipv6_skip_exthdr(skb, exthdr - skb->data, &tun_prot, &frag_off);
1330 			break;
1331 		default:
1332 			break;
1333 		}
1334 		switch (tun_prot) {
1335 		case IPPROTO_UDP:
1336 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1337 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1338 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1339 						(((skb_inner_mac_header(skb) -
1340 						skb_transport_header(skb)) >> 1) <<
1341 						WX_TXD_TUNNEL_LEN_SHIFT);
1342 			break;
1343 		case IPPROTO_GRE:
1344 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1345 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1346 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1347 						(((skb_inner_mac_header(skb) -
1348 						skb_transport_header(skb)) >> 1) <<
1349 						WX_TXD_TUNNEL_LEN_SHIFT);
1350 			break;
1351 		case IPPROTO_IPIP:
1352 		case IPPROTO_IPV6:
1353 			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1354 						(char *)ip_hdr(skb)) >> 2) <<
1355 						WX_TXD_OUTER_IPLEN_SHIFT;
1356 			break;
1357 		default:
1358 			break;
1359 		}
1360 		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1361 	} else {
1362 		vlan_macip_lens = skb_network_header_len(skb) >> 1;
1363 	}
1364 
1365 	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1366 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1367 
1368 	type_tucmd = ptype << 24;
1369 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1370 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1371 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1372 					  WX_TX_FLAGS_HW_VLAN,
1373 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1374 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1375 		       type_tucmd, mss_l4len_idx);
1376 
1377 	return 1;
1378 }
1379 
1380 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1381 		       u8 ptype)
1382 {
1383 	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1384 	struct net_device *netdev = tx_ring->netdev;
1385 	u32 mss_l4len_idx = 0, type_tucmd;
1386 	struct sk_buff *skb = first->skb;
1387 	u8 tun_prot = 0;
1388 
1389 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1390 csum_failed:
1391 		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1392 		    !(first->tx_flags & WX_TX_FLAGS_CC))
1393 			return;
1394 		vlan_macip_lens = skb_network_offset(skb) <<
1395 				  WX_TXD_MACLEN_SHIFT;
1396 	} else {
1397 		unsigned char *exthdr, *l4_hdr;
1398 		__be16 frag_off;
1399 		u8 l4_prot = 0;
1400 		union {
1401 			struct iphdr *ipv4;
1402 			struct ipv6hdr *ipv6;
1403 			u8 *raw;
1404 		} network_hdr;
1405 		union {
1406 			struct tcphdr *tcphdr;
1407 			u8 *raw;
1408 		} transport_hdr;
1409 
1410 		if (skb->encapsulation) {
1411 			network_hdr.raw = skb_inner_network_header(skb);
1412 			transport_hdr.raw = skb_inner_transport_header(skb);
1413 			vlan_macip_lens = skb_network_offset(skb) <<
1414 					  WX_TXD_MACLEN_SHIFT;
1415 			switch (first->protocol) {
1416 			case htons(ETH_P_IP):
1417 				tun_prot = ip_hdr(skb)->protocol;
1418 				break;
1419 			case htons(ETH_P_IPV6):
1420 				l4_hdr = skb_transport_header(skb);
1421 				exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1422 				tun_prot = ipv6_hdr(skb)->nexthdr;
1423 				if (l4_hdr != exthdr)
1424 					ipv6_skip_exthdr(skb, exthdr - skb->data,
1425 							 &tun_prot, &frag_off);
1426 				break;
1427 			default:
1428 				return;
1429 			}
1430 			switch (tun_prot) {
1431 			case IPPROTO_UDP:
1432 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1433 				tunhdr_eiplen_tunlen |=
1434 					((skb_network_header_len(skb) >> 2) <<
1435 					WX_TXD_OUTER_IPLEN_SHIFT) |
1436 					(((skb_inner_mac_header(skb) -
1437 					skb_transport_header(skb)) >> 1) <<
1438 					WX_TXD_TUNNEL_LEN_SHIFT);
1439 				break;
1440 			case IPPROTO_GRE:
1441 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1442 				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1443 							 WX_TXD_OUTER_IPLEN_SHIFT) |
1444 							 (((skb_inner_mac_header(skb) -
1445 							    skb_transport_header(skb)) >> 1) <<
1446 							  WX_TXD_TUNNEL_LEN_SHIFT);
1447 				break;
1448 			case IPPROTO_IPIP:
1449 			case IPPROTO_IPV6:
1450 				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1451 							(char *)ip_hdr(skb)) >> 2) <<
1452 							WX_TXD_OUTER_IPLEN_SHIFT;
1453 				break;
1454 			default:
1455 				break;
1456 			}
1457 
1458 		} else {
1459 			network_hdr.raw = skb_network_header(skb);
1460 			transport_hdr.raw = skb_transport_header(skb);
1461 			vlan_macip_lens = skb_network_offset(skb) <<
1462 					  WX_TXD_MACLEN_SHIFT;
1463 		}
1464 
1465 		switch (network_hdr.ipv4->version) {
1466 		case IPVERSION:
1467 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1468 			l4_prot = network_hdr.ipv4->protocol;
1469 			break;
1470 		case 6:
1471 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1472 			exthdr = network_hdr.raw + sizeof(struct ipv6hdr);
1473 			l4_prot = network_hdr.ipv6->nexthdr;
1474 			if (transport_hdr.raw != exthdr)
1475 				ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off);
1476 			break;
1477 		default:
1478 			break;
1479 		}
1480 
1481 		switch (l4_prot) {
1482 		case IPPROTO_TCP:
1483 		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1484 				WX_TXD_L4LEN_SHIFT;
1485 			break;
1486 		case IPPROTO_SCTP:
1487 			mss_l4len_idx = sizeof(struct sctphdr) <<
1488 					WX_TXD_L4LEN_SHIFT;
1489 			break;
1490 		case IPPROTO_UDP:
1491 			mss_l4len_idx = sizeof(struct udphdr) <<
1492 					WX_TXD_L4LEN_SHIFT;
1493 			break;
1494 		default:
1495 			skb_checksum_help(skb);
1496 			goto csum_failed;
1497 		}
1498 
1499 		/* update TX checksum flag */
1500 		first->tx_flags |= WX_TX_FLAGS_CSUM;
1501 	}
1502 	first->tx_flags |= WX_TX_FLAGS_CC;
1503 	/* vlan_macip_lens: MACLEN, VLAN tag */
1504 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1505 
1506 	type_tucmd = ptype << 24;
1507 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1508 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1509 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1510 					  WX_TX_FLAGS_HW_VLAN,
1511 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1512 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1513 		       type_tucmd, mss_l4len_idx);
1514 }
1515 
1516 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1517 				      struct wx_ring *tx_ring)
1518 {
1519 	struct wx *wx = netdev_priv(tx_ring->netdev);
1520 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1521 	struct wx_tx_buffer *first;
1522 	u8 hdr_len = 0, ptype;
1523 	unsigned short f;
1524 	u32 tx_flags = 0;
1525 	int tso;
1526 
1527 	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1528 	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1529 	 *       + 2 desc gap to keep tail from touching head,
1530 	 *       + 1 desc for context descriptor,
1531 	 * otherwise try next time
1532 	 */
1533 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1534 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1535 						     frags[f]));
1536 
1537 	if (wx_maybe_stop_tx(tx_ring, count + 3)) {
1538 		tx_ring->tx_stats.tx_busy++;
1539 		return NETDEV_TX_BUSY;
1540 	}
1541 
1542 	/* record the location of the first descriptor for this packet */
1543 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1544 	first->skb = skb;
1545 	first->bytecount = skb->len;
1546 	first->gso_segs = 1;
1547 
1548 	/* if we have a HW VLAN tag being added default to the HW one */
1549 	if (skb_vlan_tag_present(skb)) {
1550 		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1551 		tx_flags |= WX_TX_FLAGS_HW_VLAN;
1552 	}
1553 
1554 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1555 	    wx->ptp_clock) {
1556 		if (wx->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1557 		    !test_and_set_bit_lock(WX_STATE_PTP_TX_IN_PROGRESS,
1558 					   wx->state)) {
1559 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1560 			tx_flags |= WX_TX_FLAGS_TSTAMP;
1561 			wx->ptp_tx_skb = skb_get(skb);
1562 			wx->ptp_tx_start = jiffies;
1563 		} else {
1564 			wx->tx_hwtstamp_skipped++;
1565 		}
1566 	}
1567 
1568 	/* record initial flags and protocol */
1569 	first->tx_flags = tx_flags;
1570 	first->protocol = vlan_get_protocol(skb);
1571 
1572 	ptype = wx_encode_tx_desc_ptype(first);
1573 
1574 	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1575 	if (tso < 0)
1576 		goto out_drop;
1577 	else if (!tso)
1578 		wx_tx_csum(tx_ring, first, ptype);
1579 
1580 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && tx_ring->atr_sample_rate)
1581 		wx->atr(tx_ring, first, ptype);
1582 
1583 	if (wx_tx_map(tx_ring, first, hdr_len))
1584 		goto cleanup_tx_tstamp;
1585 
1586 	return NETDEV_TX_OK;
1587 out_drop:
1588 	dev_kfree_skb_any(first->skb);
1589 	first->skb = NULL;
1590 cleanup_tx_tstamp:
1591 	if (unlikely(tx_flags & WX_TX_FLAGS_TSTAMP)) {
1592 		dev_kfree_skb_any(wx->ptp_tx_skb);
1593 		wx->ptp_tx_skb = NULL;
1594 		wx->tx_hwtstamp_errors++;
1595 		clear_bit_unlock(WX_STATE_PTP_TX_IN_PROGRESS, wx->state);
1596 	}
1597 
1598 	return NETDEV_TX_OK;
1599 }
1600 
1601 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1602 			  struct net_device *netdev)
1603 {
1604 	unsigned int r_idx = skb->queue_mapping;
1605 	struct wx *wx = netdev_priv(netdev);
1606 	struct wx_ring *tx_ring;
1607 
1608 	if (!netif_carrier_ok(netdev)) {
1609 		dev_kfree_skb_any(skb);
1610 		return NETDEV_TX_OK;
1611 	}
1612 
1613 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
1614 	 * in order to meet this minimum size requirement.
1615 	 */
1616 	if (skb_put_padto(skb, 17))
1617 		return NETDEV_TX_OK;
1618 
1619 	if (r_idx >= wx->num_tx_queues)
1620 		r_idx = r_idx % wx->num_tx_queues;
1621 	tx_ring = wx->tx_ring[r_idx];
1622 
1623 	return wx_xmit_frame_ring(skb, tx_ring);
1624 }
1625 EXPORT_SYMBOL(wx_xmit_frame);
1626 
1627 static void wx_set_itr(struct wx_q_vector *q_vector)
1628 {
1629 	struct wx *wx = q_vector->wx;
1630 	u32 new_itr;
1631 
1632 	if (!wx->adaptive_itr)
1633 		return;
1634 
1635 	/* use the smallest value of new ITR delay calculations */
1636 	new_itr = min(q_vector->rx.itr, q_vector->tx.itr);
1637 	new_itr <<= 2;
1638 
1639 	if (new_itr != q_vector->itr) {
1640 		/* save the algorithm value here */
1641 		q_vector->itr = new_itr;
1642 
1643 		if (wx->pdev->is_virtfn)
1644 			wx_write_eitr_vf(q_vector);
1645 		else
1646 			wx_write_eitr(q_vector);
1647 	}
1648 }
1649 
1650 static void wx_rx_dim_work(struct work_struct *work)
1651 {
1652 	struct dim *dim = container_of(work, struct dim, work);
1653 	struct dim_cq_moder rx_moder;
1654 	struct wx_ring_container *rx;
1655 	struct wx_q_vector *q_vector;
1656 
1657 	rx = container_of(dim, struct wx_ring_container, dim);
1658 
1659 	rx_moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1660 	rx->itr = rx_moder.usec;
1661 
1662 	q_vector = container_of(rx, struct wx_q_vector, rx);
1663 	wx_set_itr(q_vector);
1664 
1665 	dim->state = DIM_START_MEASURE;
1666 }
1667 
1668 static void wx_tx_dim_work(struct work_struct *work)
1669 {
1670 	struct dim *dim = container_of(work, struct dim, work);
1671 	struct dim_cq_moder tx_moder;
1672 	struct wx_ring_container *tx;
1673 	struct wx_q_vector *q_vector;
1674 
1675 	tx = container_of(dim, struct wx_ring_container, dim);
1676 
1677 	tx_moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
1678 	tx->itr = tx_moder.usec;
1679 
1680 	q_vector = container_of(tx, struct wx_q_vector, tx);
1681 	wx_set_itr(q_vector);
1682 
1683 	dim->state = DIM_START_MEASURE;
1684 }
1685 
1686 void wx_napi_enable_all(struct wx *wx)
1687 {
1688 	struct wx_q_vector *q_vector;
1689 	int q_idx;
1690 
1691 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1692 		q_vector = wx->q_vector[q_idx];
1693 
1694 		INIT_WORK(&q_vector->rx.dim.work, wx_rx_dim_work);
1695 		INIT_WORK(&q_vector->tx.dim.work, wx_tx_dim_work);
1696 		q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_CQE;
1697 		q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_CQE;
1698 		napi_enable(&q_vector->napi);
1699 	}
1700 }
1701 EXPORT_SYMBOL(wx_napi_enable_all);
1702 
1703 void wx_napi_disable_all(struct wx *wx)
1704 {
1705 	struct wx_q_vector *q_vector;
1706 	int q_idx;
1707 
1708 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1709 		q_vector = wx->q_vector[q_idx];
1710 		napi_disable(&q_vector->napi);
1711 		disable_work_sync(&q_vector->rx.dim.work);
1712 		disable_work_sync(&q_vector->tx.dim.work);
1713 	}
1714 }
1715 EXPORT_SYMBOL(wx_napi_disable_all);
1716 
1717 static bool wx_set_vmdq_queues(struct wx *wx)
1718 {
1719 	u16 vmdq_i = wx->ring_feature[RING_F_VMDQ].limit;
1720 	u16 rss_i = wx->ring_feature[RING_F_RSS].limit;
1721 	u16 rss_m = WX_RSS_DISABLED_MASK;
1722 	u16 vmdq_m = 0;
1723 
1724 	/* only proceed if VMDq is enabled */
1725 	if (!test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags))
1726 		return false;
1727 	/* Add starting offset to total pool count */
1728 	vmdq_i += wx->ring_feature[RING_F_VMDQ].offset;
1729 
1730 	if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
1731 		/* double check we are limited to maximum pools */
1732 		vmdq_i = min_t(u16, 64, vmdq_i);
1733 
1734 		/* 64 pool mode with 2 queues per pool, or
1735 		 * 16/32/64 pool mode with 1 queue per pool
1736 		 */
1737 		if (vmdq_i > 32 || rss_i < 4) {
1738 			vmdq_m = WX_VMDQ_2Q_MASK;
1739 			rss_m = WX_RSS_2Q_MASK;
1740 			rss_i = min_t(u16, rss_i, 2);
1741 		/* 32 pool mode with 4 queues per pool */
1742 		} else {
1743 			vmdq_m = WX_VMDQ_4Q_MASK;
1744 			rss_m = WX_RSS_4Q_MASK;
1745 			rss_i = 4;
1746 		}
1747 	} else {
1748 		/* double check we are limited to maximum pools */
1749 		vmdq_i = min_t(u16, 8, vmdq_i);
1750 
1751 		/* when VMDQ on, disable RSS */
1752 		rss_i = 1;
1753 	}
1754 
1755 	/* remove the starting offset from the pool count */
1756 	vmdq_i -= wx->ring_feature[RING_F_VMDQ].offset;
1757 
1758 	/* save features for later use */
1759 	wx->ring_feature[RING_F_VMDQ].indices = vmdq_i;
1760 	wx->ring_feature[RING_F_VMDQ].mask = vmdq_m;
1761 
1762 	/* limit RSS based on user input and save for later use */
1763 	wx->ring_feature[RING_F_RSS].indices = rss_i;
1764 	wx->ring_feature[RING_F_RSS].mask = rss_m;
1765 
1766 	wx->queues_per_pool = rss_i;/*maybe same to num_rx_queues_per_pool*/
1767 	wx->num_rx_pools = vmdq_i;
1768 	wx->num_rx_queues_per_pool = rss_i;
1769 
1770 	wx->num_rx_queues = vmdq_i * rss_i;
1771 	wx->num_tx_queues = vmdq_i * rss_i;
1772 
1773 	return true;
1774 }
1775 
1776 /**
1777  * wx_set_rss_queues: Allocate queues for RSS
1778  * @wx: board private structure to initialize
1779  *
1780  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1781  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1782  *
1783  **/
1784 static void wx_set_rss_queues(struct wx *wx)
1785 {
1786 	struct wx_ring_feature *f;
1787 
1788 	/* set mask for 16 queue limit of RSS */
1789 	f = &wx->ring_feature[RING_F_RSS];
1790 	if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags))
1791 		f->mask = WX_RSS_64Q_MASK;
1792 	else
1793 		f->mask = WX_RSS_8Q_MASK;
1794 	f->indices = f->limit;
1795 
1796 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
1797 		goto out;
1798 
1799 	clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
1800 
1801 	wx->ring_feature[RING_F_FDIR].indices = 1;
1802 	/* Use Flow Director in addition to RSS to ensure the best
1803 	 * distribution of flows across cores, even when an FDIR flow
1804 	 * isn't matched.
1805 	 */
1806 	if (f->indices > 1) {
1807 		f = &wx->ring_feature[RING_F_FDIR];
1808 
1809 		f->indices = f->limit;
1810 
1811 		if (!(test_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
1812 			set_bit(WX_FLAG_FDIR_HASH, wx->flags);
1813 	}
1814 
1815 out:
1816 	wx->num_rx_queues = f->indices;
1817 	wx->num_tx_queues = f->indices;
1818 }
1819 
1820 static void wx_set_num_queues(struct wx *wx)
1821 {
1822 	/* Start with base case */
1823 	wx->num_rx_queues = 1;
1824 	wx->num_tx_queues = 1;
1825 	wx->queues_per_pool = 1;
1826 
1827 	if (wx_set_vmdq_queues(wx))
1828 		return;
1829 
1830 	wx_set_rss_queues(wx);
1831 }
1832 
1833 /**
1834  * wx_acquire_msix_vectors - acquire MSI-X vectors
1835  * @wx: board private structure
1836  *
1837  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1838  * return a negative error code if unable to acquire MSI-X vectors for any
1839  * reason.
1840  */
1841 static int wx_acquire_msix_vectors(struct wx *wx)
1842 {
1843 	struct irq_affinity affd = { .post_vectors = 1 };
1844 	int nvecs, i;
1845 
1846 	/* We start by asking for one vector per queue pair */
1847 	nvecs = max(wx->num_rx_queues, wx->num_tx_queues);
1848 	nvecs = min_t(int, nvecs, num_online_cpus());
1849 	nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors);
1850 
1851 	wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry),
1852 				     GFP_KERNEL);
1853 	if (!wx->msix_q_entries)
1854 		return -ENOMEM;
1855 
1856 	/* One for non-queue interrupts */
1857 	nvecs += 1;
1858 
1859 	wx->msix_entry = kcalloc(1, sizeof(struct msix_entry),
1860 				 GFP_KERNEL);
1861 	if (!wx->msix_entry) {
1862 		kfree(wx->msix_q_entries);
1863 		wx->msix_q_entries = NULL;
1864 		return -ENOMEM;
1865 	}
1866 
1867 	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1868 					       nvecs,
1869 					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1870 					       &affd);
1871 	if (nvecs < 0) {
1872 		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1873 		kfree(wx->msix_q_entries);
1874 		wx->msix_q_entries = NULL;
1875 		kfree(wx->msix_entry);
1876 		wx->msix_entry = NULL;
1877 		return nvecs;
1878 	}
1879 
1880 	nvecs -= 1;
1881 	for (i = 0; i < nvecs; i++) {
1882 		wx->msix_q_entries[i].entry = i;
1883 		wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i);
1884 	}
1885 
1886 	wx->num_q_vectors = nvecs;
1887 
1888 	wx->msix_entry->entry = nvecs;
1889 	wx->msix_entry->vector = pci_irq_vector(wx->pdev, nvecs);
1890 
1891 	if (test_bit(WX_FLAG_IRQ_VECTOR_SHARED, wx->flags)) {
1892 		wx->msix_entry->entry = 0;
1893 		wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0);
1894 		wx->msix_q_entries[0].entry = 0;
1895 		wx->msix_q_entries[0].vector = pci_irq_vector(wx->pdev, 1);
1896 	}
1897 
1898 	return 0;
1899 }
1900 
1901 /**
1902  * wx_set_interrupt_capability - set MSI-X or MSI if supported
1903  * @wx: board private structure to initialize
1904  *
1905  * Attempt to configure the interrupts using the best available
1906  * capabilities of the hardware and the kernel.
1907  **/
1908 static int wx_set_interrupt_capability(struct wx *wx)
1909 {
1910 	struct pci_dev *pdev = wx->pdev;
1911 	int nvecs, ret;
1912 
1913 	/* We will try to get MSI-X interrupts first */
1914 	ret = wx_acquire_msix_vectors(wx);
1915 	if (ret == 0 || (ret == -ENOMEM) || pdev->is_virtfn)
1916 		return ret;
1917 
1918 	/* Disable VMDq support */
1919 	dev_warn(&wx->pdev->dev, "Disabling VMQQ support\n");
1920 	clear_bit(WX_FLAG_VMDQ_ENABLED, wx->flags);
1921 
1922 	/* Disable RSS */
1923 	dev_warn(&wx->pdev->dev, "Disabling RSS support\n");
1924 	wx->ring_feature[RING_F_RSS].limit = 1;
1925 
1926 	wx_set_num_queues(wx);
1927 
1928 	/* minmum one for queue, one for misc*/
1929 	nvecs = 1;
1930 	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1931 				      nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX);
1932 	if (nvecs == 1) {
1933 		if (pdev->msi_enabled)
1934 			wx_err(wx, "Fallback to MSI.\n");
1935 		else
1936 			wx_err(wx, "Fallback to INTx.\n");
1937 	} else {
1938 		wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs);
1939 		return nvecs;
1940 	}
1941 
1942 	pdev->irq = pci_irq_vector(pdev, 0);
1943 	wx->num_q_vectors = 1;
1944 
1945 	return 0;
1946 }
1947 
1948 static bool wx_cache_ring_vmdq(struct wx *wx)
1949 {
1950 	struct wx_ring_feature *vmdq = &wx->ring_feature[RING_F_VMDQ];
1951 	struct wx_ring_feature *rss = &wx->ring_feature[RING_F_RSS];
1952 	u16 reg_idx;
1953 	int i;
1954 
1955 	/* only proceed if VMDq is enabled */
1956 	if (!test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags))
1957 		return false;
1958 
1959 	if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
1960 		/* start at VMDq register offset for SR-IOV enabled setups */
1961 		reg_idx = vmdq->offset * __ALIGN_MASK(1, ~vmdq->mask);
1962 		for (i = 0; i < wx->num_rx_queues; i++, reg_idx++) {
1963 			/* If we are greater than indices move to next pool */
1964 			if ((reg_idx & ~vmdq->mask) >= rss->indices)
1965 				reg_idx = __ALIGN_MASK(reg_idx, ~vmdq->mask);
1966 			wx->rx_ring[i]->reg_idx = reg_idx;
1967 		}
1968 		reg_idx = vmdq->offset * __ALIGN_MASK(1, ~vmdq->mask);
1969 		for (i = 0; i < wx->num_tx_queues; i++, reg_idx++) {
1970 			/* If we are greater than indices move to next pool */
1971 			if ((reg_idx & rss->mask) >= rss->indices)
1972 				reg_idx = __ALIGN_MASK(reg_idx, ~vmdq->mask);
1973 			wx->tx_ring[i]->reg_idx = reg_idx;
1974 		}
1975 	} else {
1976 		/* start at VMDq register offset for SR-IOV enabled setups */
1977 		reg_idx = vmdq->offset;
1978 		for (i = 0; i < wx->num_rx_queues; i++)
1979 			/* If we are greater than indices move to next pool */
1980 			wx->rx_ring[i]->reg_idx = reg_idx + i;
1981 
1982 		reg_idx = vmdq->offset;
1983 		for (i = 0; i < wx->num_tx_queues; i++)
1984 			/* If we are greater than indices move to next pool */
1985 			wx->tx_ring[i]->reg_idx = reg_idx + i;
1986 	}
1987 
1988 	return true;
1989 }
1990 
1991 /**
1992  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1993  * @wx: board private structure to initialize
1994  *
1995  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1996  *
1997  **/
1998 static void wx_cache_ring_rss(struct wx *wx)
1999 {
2000 	u16 i;
2001 
2002 	if (wx_cache_ring_vmdq(wx))
2003 		return;
2004 
2005 	for (i = 0; i < wx->num_rx_queues; i++)
2006 		wx->rx_ring[i]->reg_idx = i;
2007 
2008 	for (i = 0; i < wx->num_tx_queues; i++)
2009 		wx->tx_ring[i]->reg_idx = i;
2010 }
2011 
2012 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
2013 {
2014 	ring->next = head->ring;
2015 	head->ring = ring;
2016 	head->count++;
2017 }
2018 
2019 /**
2020  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
2021  * @wx: board private structure to initialize
2022  * @v_count: q_vectors allocated on wx, used for ring interleaving
2023  * @v_idx: index of vector in wx struct
2024  * @txr_count: total number of Tx rings to allocate
2025  * @txr_idx: index of first Tx ring to allocate
2026  * @rxr_count: total number of Rx rings to allocate
2027  * @rxr_idx: index of first Rx ring to allocate
2028  *
2029  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2030  **/
2031 static int wx_alloc_q_vector(struct wx *wx,
2032 			     unsigned int v_count, unsigned int v_idx,
2033 			     unsigned int txr_count, unsigned int txr_idx,
2034 			     unsigned int rxr_count, unsigned int rxr_idx)
2035 {
2036 	struct wx_q_vector *q_vector;
2037 	int ring_count, default_itr;
2038 	struct wx_ring *ring;
2039 
2040 	/* note this will allocate space for the ring structure as well! */
2041 	ring_count = txr_count + rxr_count;
2042 
2043 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
2044 			   GFP_KERNEL);
2045 	if (!q_vector)
2046 		return -ENOMEM;
2047 
2048 	/* initialize NAPI */
2049 	netif_napi_add(wx->netdev, &q_vector->napi,
2050 		       wx_poll);
2051 
2052 	/* tie q_vector and wx together */
2053 	wx->q_vector[v_idx] = q_vector;
2054 	q_vector->wx = wx;
2055 	q_vector->v_idx = v_idx;
2056 	if (cpu_online(v_idx))
2057 		q_vector->numa_node = cpu_to_node(v_idx);
2058 
2059 	/* initialize pointer to rings */
2060 	ring = q_vector->ring;
2061 
2062 	switch (wx->mac.type) {
2063 	case wx_mac_sp:
2064 	case wx_mac_aml:
2065 	case wx_mac_aml40:
2066 		default_itr = WX_12K_ITR;
2067 		break;
2068 	default:
2069 		default_itr = WX_7K_ITR;
2070 		break;
2071 	}
2072 
2073 	/* initialize ITR */
2074 	if (txr_count && !rxr_count)
2075 		/* tx only vector */
2076 		q_vector->itr = wx->tx_itr_setting ?
2077 				default_itr : wx->tx_itr_setting;
2078 	else
2079 		/* rx or rx/tx vector */
2080 		q_vector->itr = wx->rx_itr_setting ?
2081 				default_itr : wx->rx_itr_setting;
2082 
2083 	while (txr_count) {
2084 		/* assign generic ring traits */
2085 		ring->dev = &wx->pdev->dev;
2086 		ring->netdev = wx->netdev;
2087 
2088 		/* configure backlink on ring */
2089 		ring->q_vector = q_vector;
2090 
2091 		/* update q_vector Tx values */
2092 		wx_add_ring(ring, &q_vector->tx);
2093 
2094 		/* apply Tx specific ring traits */
2095 		ring->count = wx->tx_ring_count;
2096 
2097 		ring->queue_index = txr_idx;
2098 
2099 		/* assign ring to wx */
2100 		wx->tx_ring[txr_idx] = ring;
2101 
2102 		/* update count and index */
2103 		txr_count--;
2104 		txr_idx += v_count;
2105 
2106 		/* push pointer to next ring */
2107 		ring++;
2108 	}
2109 
2110 	while (rxr_count) {
2111 		/* assign generic ring traits */
2112 		ring->dev = &wx->pdev->dev;
2113 		ring->netdev = wx->netdev;
2114 
2115 		/* configure backlink on ring */
2116 		ring->q_vector = q_vector;
2117 
2118 		/* update q_vector Rx values */
2119 		wx_add_ring(ring, &q_vector->rx);
2120 
2121 		/* apply Rx specific ring traits */
2122 		ring->count = wx->rx_ring_count;
2123 		ring->queue_index = rxr_idx;
2124 
2125 		/* assign ring to wx */
2126 		wx->rx_ring[rxr_idx] = ring;
2127 
2128 		/* update count and index */
2129 		rxr_count--;
2130 		rxr_idx += v_count;
2131 
2132 		/* push pointer to next ring */
2133 		ring++;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 /**
2140  * wx_free_q_vector - Free memory allocated for specific interrupt vector
2141  * @wx: board private structure to initialize
2142  * @v_idx: Index of vector to be freed
2143  *
2144  * This function frees the memory allocated to the q_vector.  In addition if
2145  * NAPI is enabled it will delete any references to the NAPI struct prior
2146  * to freeing the q_vector.
2147  **/
2148 static void wx_free_q_vector(struct wx *wx, int v_idx)
2149 {
2150 	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2151 	struct wx_ring *ring;
2152 
2153 	wx_for_each_ring(ring, q_vector->tx)
2154 		wx->tx_ring[ring->queue_index] = NULL;
2155 
2156 	wx_for_each_ring(ring, q_vector->rx)
2157 		wx->rx_ring[ring->queue_index] = NULL;
2158 
2159 	wx->q_vector[v_idx] = NULL;
2160 	netif_napi_del(&q_vector->napi);
2161 	kfree_rcu(q_vector, rcu);
2162 }
2163 
2164 /**
2165  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
2166  * @wx: board private structure to initialize
2167  *
2168  * We allocate one q_vector per queue interrupt.  If allocation fails we
2169  * return -ENOMEM.
2170  **/
2171 static int wx_alloc_q_vectors(struct wx *wx)
2172 {
2173 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
2174 	unsigned int rxr_remaining = wx->num_rx_queues;
2175 	unsigned int txr_remaining = wx->num_tx_queues;
2176 	unsigned int q_vectors = wx->num_q_vectors;
2177 	int rqpv, tqpv;
2178 	int err;
2179 
2180 	for (; v_idx < q_vectors; v_idx++) {
2181 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
2182 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
2183 		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
2184 					tqpv, txr_idx,
2185 					rqpv, rxr_idx);
2186 
2187 		if (err)
2188 			goto err_out;
2189 
2190 		/* update counts and index */
2191 		rxr_remaining -= rqpv;
2192 		txr_remaining -= tqpv;
2193 		rxr_idx++;
2194 		txr_idx++;
2195 	}
2196 
2197 	return 0;
2198 
2199 err_out:
2200 	wx->num_tx_queues = 0;
2201 	wx->num_rx_queues = 0;
2202 	wx->num_q_vectors = 0;
2203 
2204 	while (v_idx--)
2205 		wx_free_q_vector(wx, v_idx);
2206 
2207 	return -ENOMEM;
2208 }
2209 
2210 /**
2211  * wx_free_q_vectors - Free memory allocated for interrupt vectors
2212  * @wx: board private structure to initialize
2213  *
2214  * This function frees the memory allocated to the q_vectors.  In addition if
2215  * NAPI is enabled it will delete any references to the NAPI struct prior
2216  * to freeing the q_vector.
2217  **/
2218 static void wx_free_q_vectors(struct wx *wx)
2219 {
2220 	int v_idx = wx->num_q_vectors;
2221 
2222 	wx->num_tx_queues = 0;
2223 	wx->num_rx_queues = 0;
2224 	wx->num_q_vectors = 0;
2225 
2226 	while (v_idx--)
2227 		wx_free_q_vector(wx, v_idx);
2228 }
2229 
2230 void wx_reset_interrupt_capability(struct wx *wx)
2231 {
2232 	struct pci_dev *pdev = wx->pdev;
2233 
2234 	if (!pdev->msi_enabled && !pdev->msix_enabled)
2235 		return;
2236 
2237 	if (pdev->msix_enabled) {
2238 		kfree(wx->msix_q_entries);
2239 		wx->msix_q_entries = NULL;
2240 		kfree(wx->msix_entry);
2241 		wx->msix_entry = NULL;
2242 	}
2243 	pci_free_irq_vectors(wx->pdev);
2244 }
2245 EXPORT_SYMBOL(wx_reset_interrupt_capability);
2246 
2247 /**
2248  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
2249  * @wx: board private structure to clear interrupt scheme on
2250  *
2251  * We go through and clear interrupt specific resources and reset the structure
2252  * to pre-load conditions
2253  **/
2254 void wx_clear_interrupt_scheme(struct wx *wx)
2255 {
2256 	wx_free_q_vectors(wx);
2257 	wx_reset_interrupt_capability(wx);
2258 }
2259 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
2260 
2261 int wx_init_interrupt_scheme(struct wx *wx)
2262 {
2263 	int ret;
2264 
2265 	/* Number of supported queues */
2266 	if (wx->pdev->is_virtfn) {
2267 		if (wx->set_num_queues)
2268 			wx->set_num_queues(wx);
2269 	} else {
2270 		wx_set_num_queues(wx);
2271 	}
2272 
2273 	/* Set interrupt mode */
2274 	ret = wx_set_interrupt_capability(wx);
2275 	if (ret) {
2276 		wx_err(wx, "Allocate irq vectors for failed.\n");
2277 		return ret;
2278 	}
2279 
2280 	/* Allocate memory for queues */
2281 	ret = wx_alloc_q_vectors(wx);
2282 	if (ret) {
2283 		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
2284 		wx_reset_interrupt_capability(wx);
2285 		return ret;
2286 	}
2287 
2288 	wx_cache_ring_rss(wx);
2289 
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL(wx_init_interrupt_scheme);
2293 
2294 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
2295 {
2296 	struct wx_q_vector *q_vector = data;
2297 
2298 	/* EIAM disabled interrupts (on this vector) for us */
2299 	if (q_vector->rx.ring || q_vector->tx.ring) {
2300 		napi_schedule_irqoff(&q_vector->napi);
2301 		q_vector->total_events++;
2302 	}
2303 
2304 	return IRQ_HANDLED;
2305 }
2306 EXPORT_SYMBOL(wx_msix_clean_rings);
2307 
2308 void wx_free_irq(struct wx *wx)
2309 {
2310 	struct pci_dev *pdev = wx->pdev;
2311 	int vector;
2312 
2313 	if (!(pdev->msix_enabled)) {
2314 		if (!wx->misc_irq_domain)
2315 			free_irq(pdev->irq, wx);
2316 		return;
2317 	}
2318 
2319 	for (vector = 0; vector < wx->num_q_vectors; vector++) {
2320 		struct wx_q_vector *q_vector = wx->q_vector[vector];
2321 		struct msix_entry *entry = &wx->msix_q_entries[vector];
2322 
2323 		/* free only the irqs that were actually requested */
2324 		if (!q_vector->rx.ring && !q_vector->tx.ring)
2325 			continue;
2326 
2327 		free_irq(entry->vector, q_vector);
2328 	}
2329 
2330 	if (!wx->misc_irq_domain)
2331 		free_irq(wx->msix_entry->vector, wx);
2332 }
2333 EXPORT_SYMBOL(wx_free_irq);
2334 
2335 /**
2336  * wx_setup_isb_resources - allocate interrupt status resources
2337  * @wx: board private structure
2338  *
2339  * Return 0 on success, negative on failure
2340  **/
2341 int wx_setup_isb_resources(struct wx *wx)
2342 {
2343 	struct pci_dev *pdev = wx->pdev;
2344 
2345 	if (wx->isb_mem)
2346 		return 0;
2347 
2348 	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2349 					 sizeof(u32) * 4,
2350 					 &wx->isb_dma,
2351 					 GFP_KERNEL);
2352 	if (!wx->isb_mem) {
2353 		wx_err(wx, "Alloc isb_mem failed\n");
2354 		return -ENOMEM;
2355 	}
2356 
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(wx_setup_isb_resources);
2360 
2361 /**
2362  * wx_free_isb_resources - allocate all queues Rx resources
2363  * @wx: board private structure
2364  *
2365  * Return 0 on success, negative on failure
2366  **/
2367 void wx_free_isb_resources(struct wx *wx)
2368 {
2369 	struct pci_dev *pdev = wx->pdev;
2370 
2371 	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2372 			  wx->isb_mem, wx->isb_dma);
2373 	wx->isb_mem = NULL;
2374 }
2375 EXPORT_SYMBOL(wx_free_isb_resources);
2376 
2377 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2378 {
2379 	u32 cur_tag = 0;
2380 
2381 	cur_tag = wx->isb_mem[WX_ISB_HEADER];
2382 	wx->isb_tag[idx] = cur_tag;
2383 
2384 	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2385 }
2386 EXPORT_SYMBOL(wx_misc_isb);
2387 
2388 /**
2389  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2390  * @wx: pointer to wx struct
2391  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2392  * @queue: queue to map the corresponding interrupt to
2393  * @msix_vector: the vector to map to the corresponding queue
2394  *
2395  **/
2396 static void wx_set_ivar(struct wx *wx, s8 direction,
2397 			u16 queue, u16 msix_vector)
2398 {
2399 	u32 ivar, index;
2400 
2401 	if (direction == -1) {
2402 		/* other causes */
2403 		if (test_bit(WX_FLAG_IRQ_VECTOR_SHARED, wx->flags))
2404 			msix_vector = 0;
2405 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2406 		index = 0;
2407 		ivar = rd32(wx, WX_PX_MISC_IVAR);
2408 		ivar &= ~(0xFF << index);
2409 		ivar |= (msix_vector << index);
2410 		wr32(wx, WX_PX_MISC_IVAR, ivar);
2411 	} else {
2412 		/* tx or rx causes */
2413 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2414 		index = ((16 * (queue & 1)) + (8 * direction));
2415 		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2416 		ivar &= ~(0xFF << index);
2417 		ivar |= (msix_vector << index);
2418 		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2419 	}
2420 }
2421 
2422 /**
2423  * wx_write_eitr - write EITR register in hardware specific way
2424  * @q_vector: structure containing interrupt and ring information
2425  *
2426  * This function is made to be called by ethtool and by the driver
2427  * when it needs to update EITR registers at runtime.  Hardware
2428  * specific quirks/differences are taken care of here.
2429  */
2430 void wx_write_eitr(struct wx_q_vector *q_vector)
2431 {
2432 	struct wx *wx = q_vector->wx;
2433 	int v_idx = q_vector->v_idx;
2434 	u32 itr_reg;
2435 
2436 	switch (wx->mac.type) {
2437 	case wx_mac_sp:
2438 		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2439 		break;
2440 	case wx_mac_aml:
2441 	case wx_mac_aml40:
2442 		itr_reg = (q_vector->itr >> 3) & WX_AML_MAX_EITR;
2443 		break;
2444 	default:
2445 		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2446 		break;
2447 	}
2448 
2449 	itr_reg |= WX_PX_ITR_CNT_WDIS;
2450 
2451 	wr32(wx, WX_PX_ITR(v_idx), itr_reg);
2452 }
2453 
2454 /**
2455  * wx_configure_vectors - Configure vectors for hardware
2456  * @wx: board private structure
2457  *
2458  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx
2459  * interrupts.
2460  **/
2461 void wx_configure_vectors(struct wx *wx)
2462 {
2463 	struct pci_dev *pdev = wx->pdev;
2464 	u32 eitrsel = 0;
2465 	u16 v_idx, i;
2466 
2467 	if (pdev->msix_enabled) {
2468 		/* Populate MSIX to EITR Select */
2469 		if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
2470 			if (wx->num_vfs >= 32)
2471 				eitrsel = BIT(wx->num_vfs % 32) - 1;
2472 		} else {
2473 			for (i = 0; i < wx->num_vfs; i++)
2474 				eitrsel |= BIT(i);
2475 		}
2476 		wr32(wx, WX_PX_ITRSEL, eitrsel);
2477 		/* use EIAM to auto-mask when MSI-X interrupt is asserted
2478 		 * this saves a register write for every interrupt
2479 		 */
2480 		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2481 	} else {
2482 		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
2483 		 * specifically only auto mask tx and rx interrupts.
2484 		 */
2485 		wr32(wx, WX_PX_GPIE, 0);
2486 	}
2487 
2488 	/* Populate the IVAR table and set the ITR values to the
2489 	 * corresponding register.
2490 	 */
2491 	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2492 		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2493 		struct wx_ring *ring;
2494 
2495 		wx_for_each_ring(ring, q_vector->rx)
2496 			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2497 
2498 		wx_for_each_ring(ring, q_vector->tx)
2499 			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2500 
2501 		wx_write_eitr(q_vector);
2502 	}
2503 
2504 	wx_set_ivar(wx, -1, 0, v_idx);
2505 	if (pdev->msix_enabled)
2506 		wr32(wx, WX_PX_ITR(v_idx), 1950);
2507 }
2508 EXPORT_SYMBOL(wx_configure_vectors);
2509 
2510 /**
2511  * wx_clean_rx_ring - Free Rx Buffers per Queue
2512  * @rx_ring: ring to free buffers from
2513  **/
2514 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2515 {
2516 	struct wx_rx_buffer *rx_buffer;
2517 	u16 i = rx_ring->next_to_clean;
2518 
2519 	rx_buffer = &rx_ring->rx_buffer_info[i];
2520 
2521 	/* Free all the Rx ring sk_buffs */
2522 	while (i != rx_ring->next_to_alloc) {
2523 		if (rx_buffer->skb) {
2524 			struct sk_buff *skb = rx_buffer->skb;
2525 
2526 			dev_kfree_skb(skb);
2527 		}
2528 
2529 		/* Invalidate cache lines that may have been written to by
2530 		 * device so that we avoid corrupting memory.
2531 		 */
2532 		dma_sync_single_range_for_cpu(rx_ring->dev,
2533 					      rx_buffer->dma,
2534 					      rx_buffer->page_offset,
2535 					      WX_RX_BUFSZ,
2536 					      DMA_FROM_DEVICE);
2537 
2538 		/* free resources associated with mapping */
2539 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2540 
2541 		i++;
2542 		rx_buffer++;
2543 		if (i == rx_ring->count) {
2544 			i = 0;
2545 			rx_buffer = rx_ring->rx_buffer_info;
2546 		}
2547 	}
2548 
2549 	/* Zero out the descriptor ring */
2550 	memset(rx_ring->desc, 0, rx_ring->size);
2551 
2552 	rx_ring->next_to_alloc = 0;
2553 	rx_ring->next_to_clean = 0;
2554 	rx_ring->next_to_use = 0;
2555 }
2556 
2557 /**
2558  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2559  * @wx: board private structure
2560  **/
2561 void wx_clean_all_rx_rings(struct wx *wx)
2562 {
2563 	int i;
2564 
2565 	for (i = 0; i < wx->num_rx_queues; i++)
2566 		wx_clean_rx_ring(wx->rx_ring[i]);
2567 }
2568 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2569 
2570 /**
2571  * wx_free_rx_resources - Free Rx Resources
2572  * @rx_ring: ring to clean the resources from
2573  *
2574  * Free all receive software resources
2575  **/
2576 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2577 {
2578 	wx_clean_rx_ring(rx_ring);
2579 	kvfree(rx_ring->rx_buffer_info);
2580 	rx_ring->rx_buffer_info = NULL;
2581 
2582 	/* if not set, then don't free */
2583 	if (!rx_ring->desc)
2584 		return;
2585 
2586 	dma_free_coherent(rx_ring->dev, rx_ring->size,
2587 			  rx_ring->desc, rx_ring->dma);
2588 
2589 	rx_ring->desc = NULL;
2590 
2591 	if (rx_ring->page_pool) {
2592 		page_pool_destroy(rx_ring->page_pool);
2593 		rx_ring->page_pool = NULL;
2594 	}
2595 }
2596 
2597 /**
2598  * wx_free_all_rx_resources - Free Rx Resources for All Queues
2599  * @wx: pointer to hardware structure
2600  *
2601  * Free all receive software resources
2602  **/
2603 static void wx_free_all_rx_resources(struct wx *wx)
2604 {
2605 	int i;
2606 
2607 	for (i = 0; i < wx->num_rx_queues; i++)
2608 		wx_free_rx_resources(wx->rx_ring[i]);
2609 }
2610 
2611 /**
2612  * wx_clean_tx_ring - Free Tx Buffers
2613  * @tx_ring: ring to be cleaned
2614  **/
2615 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2616 {
2617 	struct wx_tx_buffer *tx_buffer;
2618 	u16 i = tx_ring->next_to_clean;
2619 
2620 	tx_buffer = &tx_ring->tx_buffer_info[i];
2621 
2622 	while (i != tx_ring->next_to_use) {
2623 		union wx_tx_desc *eop_desc, *tx_desc;
2624 
2625 		/* Free all the Tx ring sk_buffs */
2626 		dev_kfree_skb_any(tx_buffer->skb);
2627 
2628 		/* unmap skb header data */
2629 		dma_unmap_single(tx_ring->dev,
2630 				 dma_unmap_addr(tx_buffer, dma),
2631 				 dma_unmap_len(tx_buffer, len),
2632 				 DMA_TO_DEVICE);
2633 
2634 		/* check for eop_desc to determine the end of the packet */
2635 		eop_desc = tx_buffer->next_to_watch;
2636 		tx_desc = WX_TX_DESC(tx_ring, i);
2637 
2638 		/* unmap remaining buffers */
2639 		while (tx_desc != eop_desc) {
2640 			tx_buffer++;
2641 			tx_desc++;
2642 			i++;
2643 			if (unlikely(i == tx_ring->count)) {
2644 				i = 0;
2645 				tx_buffer = tx_ring->tx_buffer_info;
2646 				tx_desc = WX_TX_DESC(tx_ring, 0);
2647 			}
2648 
2649 			/* unmap any remaining paged data */
2650 			if (dma_unmap_len(tx_buffer, len))
2651 				dma_unmap_page(tx_ring->dev,
2652 					       dma_unmap_addr(tx_buffer, dma),
2653 					       dma_unmap_len(tx_buffer, len),
2654 					       DMA_TO_DEVICE);
2655 		}
2656 
2657 		/* move us one more past the eop_desc for start of next pkt */
2658 		tx_buffer++;
2659 		i++;
2660 		if (unlikely(i == tx_ring->count)) {
2661 			i = 0;
2662 			tx_buffer = tx_ring->tx_buffer_info;
2663 		}
2664 	}
2665 
2666 	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2667 
2668 	/* reset next_to_use and next_to_clean */
2669 	tx_ring->next_to_use = 0;
2670 	tx_ring->next_to_clean = 0;
2671 }
2672 
2673 /**
2674  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2675  * @wx: board private structure
2676  **/
2677 void wx_clean_all_tx_rings(struct wx *wx)
2678 {
2679 	int i;
2680 
2681 	for (i = 0; i < wx->num_tx_queues; i++)
2682 		wx_clean_tx_ring(wx->tx_ring[i]);
2683 }
2684 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2685 
2686 /**
2687  * wx_free_tx_resources - Free Tx Resources per Queue
2688  * @tx_ring: Tx descriptor ring for a specific queue
2689  *
2690  * Free all transmit software resources
2691  **/
2692 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2693 {
2694 	wx_clean_tx_ring(tx_ring);
2695 	kvfree(tx_ring->tx_buffer_info);
2696 	tx_ring->tx_buffer_info = NULL;
2697 
2698 	/* if not set, then don't free */
2699 	if (!tx_ring->desc)
2700 		return;
2701 
2702 	dma_free_coherent(tx_ring->dev, tx_ring->size,
2703 			  tx_ring->desc, tx_ring->dma);
2704 	tx_ring->desc = NULL;
2705 }
2706 
2707 /**
2708  * wx_free_all_tx_resources - Free Tx Resources for All Queues
2709  * @wx: pointer to hardware structure
2710  *
2711  * Free all transmit software resources
2712  **/
2713 static void wx_free_all_tx_resources(struct wx *wx)
2714 {
2715 	int i;
2716 
2717 	for (i = 0; i < wx->num_tx_queues; i++)
2718 		wx_free_tx_resources(wx->tx_ring[i]);
2719 }
2720 
2721 void wx_free_resources(struct wx *wx)
2722 {
2723 	wx_free_all_rx_resources(wx);
2724 	wx_free_all_tx_resources(wx);
2725 }
2726 EXPORT_SYMBOL(wx_free_resources);
2727 
2728 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2729 {
2730 	int ret = 0;
2731 
2732 	struct page_pool_params pp_params = {
2733 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2734 		.order = 0,
2735 		.pool_size = rx_ring->count,
2736 		.nid = dev_to_node(rx_ring->dev),
2737 		.dev = rx_ring->dev,
2738 		.dma_dir = DMA_FROM_DEVICE,
2739 		.offset = 0,
2740 		.max_len = PAGE_SIZE,
2741 	};
2742 
2743 	rx_ring->page_pool = page_pool_create(&pp_params);
2744 	if (IS_ERR(rx_ring->page_pool)) {
2745 		ret = PTR_ERR(rx_ring->page_pool);
2746 		rx_ring->page_pool = NULL;
2747 	}
2748 
2749 	return ret;
2750 }
2751 
2752 /**
2753  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2754  * @rx_ring: rx descriptor ring (for a specific queue) to setup
2755  *
2756  * Returns 0 on success, negative on failure
2757  **/
2758 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2759 {
2760 	struct device *dev = rx_ring->dev;
2761 	int orig_node = dev_to_node(dev);
2762 	int numa_node = NUMA_NO_NODE;
2763 	int size, ret;
2764 
2765 	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2766 
2767 	if (rx_ring->q_vector)
2768 		numa_node = rx_ring->q_vector->numa_node;
2769 
2770 	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2771 	if (!rx_ring->rx_buffer_info)
2772 		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2773 	if (!rx_ring->rx_buffer_info)
2774 		goto err;
2775 
2776 	/* Round up to nearest 4K */
2777 	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2778 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2779 
2780 	set_dev_node(dev, numa_node);
2781 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2782 					   &rx_ring->dma, GFP_KERNEL);
2783 	if (!rx_ring->desc) {
2784 		set_dev_node(dev, orig_node);
2785 		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2786 						   &rx_ring->dma, GFP_KERNEL);
2787 	}
2788 
2789 	if (!rx_ring->desc)
2790 		goto err;
2791 
2792 	rx_ring->next_to_clean = 0;
2793 	rx_ring->next_to_use = 0;
2794 
2795 	ret = wx_alloc_page_pool(rx_ring);
2796 	if (ret < 0) {
2797 		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2798 		goto err_desc;
2799 	}
2800 
2801 	return 0;
2802 
2803 err_desc:
2804 	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2805 err:
2806 	kvfree(rx_ring->rx_buffer_info);
2807 	rx_ring->rx_buffer_info = NULL;
2808 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2809 	return -ENOMEM;
2810 }
2811 
2812 /**
2813  * wx_setup_all_rx_resources - allocate all queues Rx resources
2814  * @wx: pointer to hardware structure
2815  *
2816  * If this function returns with an error, then it's possible one or
2817  * more of the rings is populated (while the rest are not).  It is the
2818  * callers duty to clean those orphaned rings.
2819  *
2820  * Return 0 on success, negative on failure
2821  **/
2822 static int wx_setup_all_rx_resources(struct wx *wx)
2823 {
2824 	int i, err = 0;
2825 
2826 	for (i = 0; i < wx->num_rx_queues; i++) {
2827 		err = wx_setup_rx_resources(wx->rx_ring[i]);
2828 		if (!err)
2829 			continue;
2830 
2831 		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2832 		goto err_setup_rx;
2833 	}
2834 
2835 	return 0;
2836 err_setup_rx:
2837 	/* rewind the index freeing the rings as we go */
2838 	while (i--)
2839 		wx_free_rx_resources(wx->rx_ring[i]);
2840 	return err;
2841 }
2842 
2843 /**
2844  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2845  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2846  *
2847  * Return 0 on success, negative on failure
2848  **/
2849 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2850 {
2851 	struct device *dev = tx_ring->dev;
2852 	int orig_node = dev_to_node(dev);
2853 	int numa_node = NUMA_NO_NODE;
2854 	int size;
2855 
2856 	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2857 
2858 	if (tx_ring->q_vector)
2859 		numa_node = tx_ring->q_vector->numa_node;
2860 
2861 	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2862 	if (!tx_ring->tx_buffer_info)
2863 		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2864 	if (!tx_ring->tx_buffer_info)
2865 		goto err;
2866 
2867 	/* round up to nearest 4K */
2868 	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2869 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2870 
2871 	set_dev_node(dev, numa_node);
2872 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2873 					   &tx_ring->dma, GFP_KERNEL);
2874 	if (!tx_ring->desc) {
2875 		set_dev_node(dev, orig_node);
2876 		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2877 						   &tx_ring->dma, GFP_KERNEL);
2878 	}
2879 
2880 	if (!tx_ring->desc)
2881 		goto err;
2882 
2883 	tx_ring->next_to_use = 0;
2884 	tx_ring->next_to_clean = 0;
2885 
2886 	return 0;
2887 
2888 err:
2889 	kvfree(tx_ring->tx_buffer_info);
2890 	tx_ring->tx_buffer_info = NULL;
2891 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2892 	return -ENOMEM;
2893 }
2894 
2895 /**
2896  * wx_setup_all_tx_resources - allocate all queues Tx resources
2897  * @wx: pointer to private structure
2898  *
2899  * If this function returns with an error, then it's possible one or
2900  * more of the rings is populated (while the rest are not).  It is the
2901  * callers duty to clean those orphaned rings.
2902  *
2903  * Return 0 on success, negative on failure
2904  **/
2905 static int wx_setup_all_tx_resources(struct wx *wx)
2906 {
2907 	int i, err = 0;
2908 
2909 	for (i = 0; i < wx->num_tx_queues; i++) {
2910 		err = wx_setup_tx_resources(wx->tx_ring[i]);
2911 		if (!err)
2912 			continue;
2913 
2914 		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2915 		goto err_setup_tx;
2916 	}
2917 
2918 	return 0;
2919 err_setup_tx:
2920 	/* rewind the index freeing the rings as we go */
2921 	while (i--)
2922 		wx_free_tx_resources(wx->tx_ring[i]);
2923 	return err;
2924 }
2925 
2926 int wx_setup_resources(struct wx *wx)
2927 {
2928 	int err;
2929 
2930 	/* allocate transmit descriptors */
2931 	err = wx_setup_all_tx_resources(wx);
2932 	if (err)
2933 		return err;
2934 
2935 	/* allocate receive descriptors */
2936 	err = wx_setup_all_rx_resources(wx);
2937 	if (err)
2938 		goto err_free_tx;
2939 
2940 	err = wx_setup_isb_resources(wx);
2941 	if (err)
2942 		goto err_free_rx;
2943 
2944 	return 0;
2945 
2946 err_free_rx:
2947 	wx_free_all_rx_resources(wx);
2948 err_free_tx:
2949 	wx_free_all_tx_resources(wx);
2950 
2951 	return err;
2952 }
2953 EXPORT_SYMBOL(wx_setup_resources);
2954 
2955 /**
2956  * wx_get_stats64 - Get System Network Statistics
2957  * @netdev: network interface device structure
2958  * @stats: storage space for 64bit statistics
2959  */
2960 void wx_get_stats64(struct net_device *netdev,
2961 		    struct rtnl_link_stats64 *stats)
2962 {
2963 	struct wx *wx = netdev_priv(netdev);
2964 	struct wx_hw_stats *hwstats;
2965 	int i;
2966 
2967 	wx_update_stats(wx);
2968 
2969 	rcu_read_lock();
2970 	for (i = 0; i < wx->num_rx_queues; i++) {
2971 		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2972 		u64 bytes, packets;
2973 		unsigned int start;
2974 
2975 		if (ring) {
2976 			do {
2977 				start = u64_stats_fetch_begin(&ring->syncp);
2978 				packets = ring->stats.packets;
2979 				bytes   = ring->stats.bytes;
2980 			} while (u64_stats_fetch_retry(&ring->syncp, start));
2981 			stats->rx_packets += packets;
2982 			stats->rx_bytes   += bytes;
2983 		}
2984 	}
2985 
2986 	for (i = 0; i < wx->num_tx_queues; i++) {
2987 		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2988 		u64 bytes, packets;
2989 		unsigned int start;
2990 
2991 		if (ring) {
2992 			do {
2993 				start = u64_stats_fetch_begin(&ring->syncp);
2994 				packets = ring->stats.packets;
2995 				bytes   = ring->stats.bytes;
2996 			} while (u64_stats_fetch_retry(&ring->syncp,
2997 							   start));
2998 			stats->tx_packets += packets;
2999 			stats->tx_bytes   += bytes;
3000 		}
3001 	}
3002 
3003 	rcu_read_unlock();
3004 
3005 	hwstats = &wx->stats;
3006 	stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
3007 	stats->multicast = hwstats->qmprc;
3008 	stats->rx_length_errors = hwstats->rlec;
3009 	stats->rx_crc_errors = hwstats->crcerrs;
3010 }
3011 EXPORT_SYMBOL(wx_get_stats64);
3012 
3013 int wx_set_features(struct net_device *netdev, netdev_features_t features)
3014 {
3015 	netdev_features_t changed = netdev->features ^ features;
3016 	struct wx *wx = netdev_priv(netdev);
3017 	bool need_reset = false;
3018 
3019 	wx->rss_enabled = !!(features & NETIF_F_RXHASH);
3020 	wx_enable_rss(wx, wx->rss_enabled);
3021 
3022 	netdev->features = features;
3023 
3024 	if (changed & NETIF_F_HW_VLAN_CTAG_RX && wx->do_reset)
3025 		wx->do_reset(netdev);
3026 	else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER))
3027 		wx_set_rx_mode(netdev);
3028 
3029 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
3030 		return 0;
3031 
3032 	/* Check if Flow Director n-tuple support was enabled or disabled.  If
3033 	 * the state changed, we need to reset.
3034 	 */
3035 	switch (features & NETIF_F_NTUPLE) {
3036 	case NETIF_F_NTUPLE:
3037 		/* turn off ATR, enable perfect filters and reset */
3038 		if (!(test_and_set_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
3039 			need_reset = true;
3040 
3041 		clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
3042 		break;
3043 	default:
3044 		/* turn off perfect filters, enable ATR and reset */
3045 		if (test_and_clear_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
3046 			need_reset = true;
3047 
3048 		/* We cannot enable ATR if RSS is disabled */
3049 		if (wx->ring_feature[RING_F_RSS].limit <= 1)
3050 			break;
3051 
3052 		set_bit(WX_FLAG_FDIR_HASH, wx->flags);
3053 		break;
3054 	}
3055 
3056 	if (need_reset && wx->do_reset)
3057 		wx->do_reset(netdev);
3058 
3059 	return 0;
3060 }
3061 EXPORT_SYMBOL(wx_set_features);
3062 
3063 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
3064 					 NETIF_F_HW_VLAN_STAG_RX)
3065 
3066 #define NETIF_VLAN_INSERTION_FEATURES	(NETIF_F_HW_VLAN_CTAG_TX | \
3067 					 NETIF_F_HW_VLAN_STAG_TX)
3068 
3069 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
3070 					 NETIF_F_HW_VLAN_STAG_FILTER)
3071 
3072 netdev_features_t wx_fix_features(struct net_device *netdev,
3073 				  netdev_features_t features)
3074 {
3075 	netdev_features_t changed = netdev->features ^ features;
3076 	struct wx *wx = netdev_priv(netdev);
3077 
3078 	if (changed & NETIF_VLAN_STRIPPING_FEATURES) {
3079 		if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES &&
3080 		    (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) {
3081 			features &= ~NETIF_VLAN_STRIPPING_FEATURES;
3082 			features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES;
3083 			wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off.");
3084 		}
3085 	}
3086 
3087 	if (changed & NETIF_VLAN_INSERTION_FEATURES) {
3088 		if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES &&
3089 		    (features & NETIF_VLAN_INSERTION_FEATURES) != 0) {
3090 			features &= ~NETIF_VLAN_INSERTION_FEATURES;
3091 			features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES;
3092 			wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off.");
3093 		}
3094 	}
3095 
3096 	if (changed & NETIF_VLAN_FILTERING_FEATURES) {
3097 		if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES &&
3098 		    (features & NETIF_VLAN_FILTERING_FEATURES) != 0) {
3099 			features &= ~NETIF_VLAN_FILTERING_FEATURES;
3100 			features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES;
3101 			wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off.");
3102 		}
3103 	}
3104 
3105 	return features;
3106 }
3107 EXPORT_SYMBOL(wx_fix_features);
3108 
3109 #define WX_MAX_TUNNEL_HDR_LEN	80
3110 netdev_features_t wx_features_check(struct sk_buff *skb,
3111 				    struct net_device *netdev,
3112 				    netdev_features_t features)
3113 {
3114 	struct wx *wx = netdev_priv(netdev);
3115 
3116 	if (!skb->encapsulation)
3117 		return features;
3118 
3119 	if (wx->mac.type == wx_mac_em)
3120 		return features & ~NETIF_F_CSUM_MASK;
3121 
3122 	if (unlikely(skb_inner_mac_header(skb) - skb_transport_header(skb) >
3123 		     WX_MAX_TUNNEL_HDR_LEN))
3124 		return features & ~NETIF_F_CSUM_MASK;
3125 
3126 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER &&
3127 	    skb->inner_protocol != htons(ETH_P_IP) &&
3128 	    skb->inner_protocol != htons(ETH_P_IPV6) &&
3129 	    skb->inner_protocol != htons(ETH_P_TEB))
3130 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3131 
3132 	return features;
3133 }
3134 EXPORT_SYMBOL(wx_features_check);
3135 
3136 void wx_set_ring(struct wx *wx, u32 new_tx_count,
3137 		 u32 new_rx_count, struct wx_ring *temp_ring)
3138 {
3139 	int i, err = 0;
3140 
3141 	/* Setup new Tx resources and free the old Tx resources in that order.
3142 	 * We can then assign the new resources to the rings via a memcpy.
3143 	 * The advantage to this approach is that we are guaranteed to still
3144 	 * have resources even in the case of an allocation failure.
3145 	 */
3146 	if (new_tx_count != wx->tx_ring_count) {
3147 		for (i = 0; i < wx->num_tx_queues; i++) {
3148 			memcpy(&temp_ring[i], wx->tx_ring[i],
3149 			       sizeof(struct wx_ring));
3150 
3151 			temp_ring[i].count = new_tx_count;
3152 			err = wx_setup_tx_resources(&temp_ring[i]);
3153 			if (err) {
3154 				wx_err(wx, "setup new tx resources failed, keep using the old config\n");
3155 				while (i) {
3156 					i--;
3157 					wx_free_tx_resources(&temp_ring[i]);
3158 				}
3159 				return;
3160 			}
3161 		}
3162 
3163 		for (i = 0; i < wx->num_tx_queues; i++) {
3164 			wx_free_tx_resources(wx->tx_ring[i]);
3165 
3166 			memcpy(wx->tx_ring[i], &temp_ring[i],
3167 			       sizeof(struct wx_ring));
3168 		}
3169 
3170 		wx->tx_ring_count = new_tx_count;
3171 	}
3172 
3173 	/* Repeat the process for the Rx rings if needed */
3174 	if (new_rx_count != wx->rx_ring_count) {
3175 		for (i = 0; i < wx->num_rx_queues; i++) {
3176 			memcpy(&temp_ring[i], wx->rx_ring[i],
3177 			       sizeof(struct wx_ring));
3178 
3179 			temp_ring[i].count = new_rx_count;
3180 			err = wx_setup_rx_resources(&temp_ring[i]);
3181 			if (err) {
3182 				wx_err(wx, "setup new rx resources failed, keep using the old config\n");
3183 				while (i) {
3184 					i--;
3185 					wx_free_rx_resources(&temp_ring[i]);
3186 				}
3187 				return;
3188 			}
3189 		}
3190 
3191 		for (i = 0; i < wx->num_rx_queues; i++) {
3192 			wx_free_rx_resources(wx->rx_ring[i]);
3193 			memcpy(wx->rx_ring[i], &temp_ring[i],
3194 			       sizeof(struct wx_ring));
3195 		}
3196 
3197 		wx->rx_ring_count = new_rx_count;
3198 	}
3199 }
3200 EXPORT_SYMBOL(wx_set_ring);
3201 
3202 void wx_service_event_schedule(struct wx *wx)
3203 {
3204 	if (!test_and_set_bit(WX_STATE_SERVICE_SCHED, wx->state))
3205 		queue_work(system_power_efficient_wq, &wx->service_task);
3206 }
3207 EXPORT_SYMBOL(wx_service_event_schedule);
3208 
3209 void wx_service_event_complete(struct wx *wx)
3210 {
3211 	if (WARN_ON(!test_bit(WX_STATE_SERVICE_SCHED, wx->state)))
3212 		return;
3213 
3214 	/* flush memory to make sure state is correct before next watchdog */
3215 	smp_mb__before_atomic();
3216 	clear_bit(WX_STATE_SERVICE_SCHED, wx->state);
3217 }
3218 EXPORT_SYMBOL(wx_service_event_complete);
3219 
3220 void wx_service_timer(struct timer_list *t)
3221 {
3222 	struct wx *wx = timer_container_of(wx, t, service_timer);
3223 	unsigned long next_event_offset = HZ * 2;
3224 
3225 	/* Reset the timer */
3226 	mod_timer(&wx->service_timer, next_event_offset + jiffies);
3227 
3228 	wx_service_event_schedule(wx);
3229 }
3230 EXPORT_SYMBOL(wx_service_timer);
3231 
3232 MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers.");
3233 MODULE_LICENSE("GPL");
3234