1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/netdevice.h> 6 #include <linux/if_ether.h> 7 #include <linux/if_vlan.h> 8 #include <linux/iopoll.h> 9 #include <linux/pci.h> 10 11 #include "wx_type.h" 12 #include "wx_lib.h" 13 #include "wx_hw.h" 14 15 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum) 16 { 17 struct wx *wx = bus->priv; 18 u32 command, val; 19 int ret; 20 21 /* setup and write the address cycle command */ 22 command = WX_MSCA_RA(regnum) | 23 WX_MSCA_PA(phy_addr) | 24 WX_MSCA_DA(devnum); 25 wr32(wx, WX_MSCA, command); 26 27 command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY; 28 if (wx->mac.type == wx_mac_em) 29 command |= WX_MDIO_CLK(6); 30 wr32(wx, WX_MSCC, command); 31 32 /* wait to complete */ 33 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000, 34 100000, false, wx, WX_MSCC); 35 if (ret) { 36 wx_err(wx, "Mdio read c22 command did not complete.\n"); 37 return ret; 38 } 39 40 return (u16)rd32(wx, WX_MSCC); 41 } 42 43 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr, 44 int devnum, int regnum, u16 value) 45 { 46 struct wx *wx = bus->priv; 47 u32 command, val; 48 int ret; 49 50 /* setup and write the address cycle command */ 51 command = WX_MSCA_RA(regnum) | 52 WX_MSCA_PA(phy_addr) | 53 WX_MSCA_DA(devnum); 54 wr32(wx, WX_MSCA, command); 55 56 command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY; 57 if (wx->mac.type == wx_mac_em) 58 command |= WX_MDIO_CLK(6); 59 wr32(wx, WX_MSCC, command); 60 61 /* wait to complete */ 62 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000, 63 100000, false, wx, WX_MSCC); 64 if (ret) 65 wx_err(wx, "Mdio write c22 command did not complete.\n"); 66 67 return ret; 68 } 69 70 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum) 71 { 72 struct wx *wx = bus->priv; 73 74 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF); 75 return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum); 76 } 77 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22); 78 79 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value) 80 { 81 struct wx *wx = bus->priv; 82 83 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF); 84 return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value); 85 } 86 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22); 87 88 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum) 89 { 90 struct wx *wx = bus->priv; 91 92 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0); 93 return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum); 94 } 95 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45); 96 97 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr, 98 int devnum, int regnum, u16 value) 99 { 100 struct wx *wx = bus->priv; 101 102 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0); 103 return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value); 104 } 105 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45); 106 107 static void wx_intr_disable(struct wx *wx, u64 qmask) 108 { 109 u32 mask; 110 111 mask = (qmask & U32_MAX); 112 if (mask) 113 wr32(wx, WX_PX_IMS(0), mask); 114 115 if (wx->mac.type == wx_mac_sp) { 116 mask = (qmask >> 32); 117 if (mask) 118 wr32(wx, WX_PX_IMS(1), mask); 119 } 120 } 121 122 void wx_intr_enable(struct wx *wx, u64 qmask) 123 { 124 u32 mask; 125 126 mask = (qmask & U32_MAX); 127 if (mask) 128 wr32(wx, WX_PX_IMC(0), mask); 129 if (wx->mac.type == wx_mac_sp) { 130 mask = (qmask >> 32); 131 if (mask) 132 wr32(wx, WX_PX_IMC(1), mask); 133 } 134 } 135 EXPORT_SYMBOL(wx_intr_enable); 136 137 /** 138 * wx_irq_disable - Mask off interrupt generation on the NIC 139 * @wx: board private structure 140 **/ 141 void wx_irq_disable(struct wx *wx) 142 { 143 struct pci_dev *pdev = wx->pdev; 144 145 wr32(wx, WX_PX_MISC_IEN, 0); 146 wx_intr_disable(wx, WX_INTR_ALL); 147 148 if (pdev->msix_enabled) { 149 int vector; 150 151 for (vector = 0; vector < wx->num_q_vectors; vector++) 152 synchronize_irq(wx->msix_q_entries[vector].vector); 153 154 synchronize_irq(wx->msix_entry->vector); 155 } else { 156 synchronize_irq(pdev->irq); 157 } 158 } 159 EXPORT_SYMBOL(wx_irq_disable); 160 161 /* cmd_addr is used for some special command: 162 * 1. to be sector address, when implemented erase sector command 163 * 2. to be flash address when implemented read, write flash address 164 */ 165 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr) 166 { 167 u32 cmd_val = 0, val = 0; 168 169 cmd_val = WX_SPI_CMD_CMD(cmd) | 170 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | 171 cmd_addr; 172 wr32(wx, WX_SPI_CMD, cmd_val); 173 174 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, 175 false, wx, WX_SPI_STATUS); 176 } 177 178 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data) 179 { 180 int ret = 0; 181 182 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr); 183 if (ret < 0) 184 return ret; 185 186 *data = rd32(wx, WX_SPI_DATA); 187 188 return ret; 189 } 190 191 int wx_check_flash_load(struct wx *hw, u32 check_bit) 192 { 193 u32 reg = 0; 194 int err = 0; 195 196 /* if there's flash existing */ 197 if (!(rd32(hw, WX_SPI_STATUS) & 198 WX_SPI_STATUS_FLASH_BYPASS)) { 199 /* wait hw load flash done */ 200 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, 201 false, hw, WX_SPI_ILDR_STATUS); 202 if (err < 0) 203 wx_err(hw, "Check flash load timeout.\n"); 204 } 205 206 return err; 207 } 208 EXPORT_SYMBOL(wx_check_flash_load); 209 210 void wx_control_hw(struct wx *wx, bool drv) 211 { 212 /* True : Let firmware know the driver has taken over 213 * False : Let firmware take over control of hw 214 */ 215 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, 216 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0); 217 } 218 EXPORT_SYMBOL(wx_control_hw); 219 220 /** 221 * wx_mng_present - returns 0 when management capability is present 222 * @wx: pointer to hardware structure 223 */ 224 int wx_mng_present(struct wx *wx) 225 { 226 u32 fwsm; 227 228 fwsm = rd32(wx, WX_MIS_ST); 229 if (fwsm & WX_MIS_ST_MNG_INIT_DN) 230 return 0; 231 else 232 return -EACCES; 233 } 234 EXPORT_SYMBOL(wx_mng_present); 235 236 /* Software lock to be held while software semaphore is being accessed. */ 237 static DEFINE_MUTEX(wx_sw_sync_lock); 238 239 /** 240 * wx_release_sw_sync - Release SW semaphore 241 * @wx: pointer to hardware structure 242 * @mask: Mask to specify which semaphore to release 243 * 244 * Releases the SW semaphore for the specified 245 * function (CSR, PHY0, PHY1, EEPROM, Flash) 246 **/ 247 static void wx_release_sw_sync(struct wx *wx, u32 mask) 248 { 249 mutex_lock(&wx_sw_sync_lock); 250 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0); 251 mutex_unlock(&wx_sw_sync_lock); 252 } 253 254 /** 255 * wx_acquire_sw_sync - Acquire SW semaphore 256 * @wx: pointer to hardware structure 257 * @mask: Mask to specify which semaphore to acquire 258 * 259 * Acquires the SW semaphore for the specified 260 * function (CSR, PHY0, PHY1, EEPROM, Flash) 261 **/ 262 static int wx_acquire_sw_sync(struct wx *wx, u32 mask) 263 { 264 u32 sem = 0; 265 int ret = 0; 266 267 mutex_lock(&wx_sw_sync_lock); 268 ret = read_poll_timeout(rd32, sem, !(sem & mask), 269 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC); 270 if (!ret) { 271 sem |= mask; 272 wr32(wx, WX_MNG_SWFW_SYNC, sem); 273 } else { 274 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem); 275 } 276 mutex_unlock(&wx_sw_sync_lock); 277 278 return ret; 279 } 280 281 /** 282 * wx_host_interface_command - Issue command to manageability block 283 * @wx: pointer to the HW structure 284 * @buffer: contains the command to write and where the return status will 285 * be placed 286 * @length: length of buffer, must be multiple of 4 bytes 287 * @timeout: time in ms to wait for command completion 288 * @return_data: read and return data from the buffer (true) or not (false) 289 * Needed because FW structures are big endian and decoding of 290 * these fields can be 8 bit or 16 bit based on command. Decoding 291 * is not easily understood without making a table of commands. 292 * So we will leave this up to the caller to read back the data 293 * in these cases. 294 **/ 295 int wx_host_interface_command(struct wx *wx, u32 *buffer, 296 u32 length, u32 timeout, bool return_data) 297 { 298 u32 hdr_size = sizeof(struct wx_hic_hdr); 299 u32 hicr, i, bi, buf[64] = {}; 300 int status = 0; 301 u32 dword_len; 302 u16 buf_len; 303 304 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) { 305 wx_err(wx, "Buffer length failure buffersize=%d.\n", length); 306 return -EINVAL; 307 } 308 309 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 310 if (status != 0) 311 return status; 312 313 /* Calculate length in DWORDs. We must be DWORD aligned */ 314 if ((length % (sizeof(u32))) != 0) { 315 wx_err(wx, "Buffer length failure, not aligned to dword"); 316 status = -EINVAL; 317 goto rel_out; 318 } 319 320 dword_len = length >> 2; 321 322 /* The device driver writes the relevant command block 323 * into the ram area. 324 */ 325 for (i = 0; i < dword_len; i++) { 326 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i])); 327 /* write flush */ 328 buf[i] = rd32a(wx, WX_MNG_MBOX, i); 329 } 330 /* Setting this bit tells the ARC that a new command is pending. */ 331 wr32m(wx, WX_MNG_MBOX_CTL, 332 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY); 333 334 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000, 335 timeout * 1000, false, wx, WX_MNG_MBOX_CTL); 336 337 /* Check command completion */ 338 if (status) { 339 wx_dbg(wx, "Command has failed with no status valid.\n"); 340 341 buf[0] = rd32(wx, WX_MNG_MBOX); 342 if ((buffer[0] & 0xff) != (~buf[0] >> 24)) { 343 status = -EINVAL; 344 goto rel_out; 345 } 346 if ((buf[0] & 0xff0000) >> 16 == 0x80) { 347 wx_dbg(wx, "It's unknown cmd.\n"); 348 status = -EINVAL; 349 goto rel_out; 350 } 351 352 wx_dbg(wx, "write value:\n"); 353 for (i = 0; i < dword_len; i++) 354 wx_dbg(wx, "%x ", buffer[i]); 355 wx_dbg(wx, "read value:\n"); 356 for (i = 0; i < dword_len; i++) 357 wx_dbg(wx, "%x ", buf[i]); 358 } 359 360 if (!return_data) 361 goto rel_out; 362 363 /* Calculate length in DWORDs */ 364 dword_len = hdr_size >> 2; 365 366 /* first pull in the header so we know the buffer length */ 367 for (bi = 0; bi < dword_len; bi++) { 368 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 369 le32_to_cpus(&buffer[bi]); 370 } 371 372 /* If there is any thing in data position pull it in */ 373 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len; 374 if (buf_len == 0) 375 goto rel_out; 376 377 if (length < buf_len + hdr_size) { 378 wx_err(wx, "Buffer not large enough for reply message.\n"); 379 status = -EFAULT; 380 goto rel_out; 381 } 382 383 /* Calculate length in DWORDs, add 3 for odd lengths */ 384 dword_len = (buf_len + 3) >> 2; 385 386 /* Pull in the rest of the buffer (bi is where we left off) */ 387 for (; bi <= dword_len; bi++) { 388 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 389 le32_to_cpus(&buffer[bi]); 390 } 391 392 rel_out: 393 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 394 return status; 395 } 396 EXPORT_SYMBOL(wx_host_interface_command); 397 398 /** 399 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd 400 * assuming that the semaphore is already obtained. 401 * @wx: pointer to hardware structure 402 * @offset: offset of word in the EEPROM to read 403 * @data: word read from the EEPROM 404 * 405 * Reads a 16 bit word from the EEPROM using the hostif. 406 **/ 407 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data) 408 { 409 struct wx_hic_read_shadow_ram buffer; 410 int status; 411 412 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 413 buffer.hdr.req.buf_lenh = 0; 414 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 415 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 416 417 /* convert offset from words to bytes */ 418 buffer.address = (__force u32)cpu_to_be32(offset * 2); 419 /* one word */ 420 buffer.length = (__force u16)cpu_to_be16(sizeof(u16)); 421 422 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer), 423 WX_HI_COMMAND_TIMEOUT, false); 424 425 if (status != 0) 426 return status; 427 428 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET); 429 430 return status; 431 } 432 433 /** 434 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd 435 * @wx: pointer to hardware structure 436 * @offset: offset of word in the EEPROM to read 437 * @data: word read from the EEPROM 438 * 439 * Reads a 16 bit word from the EEPROM using the hostif. 440 **/ 441 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data) 442 { 443 int status = 0; 444 445 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 446 if (status == 0) { 447 status = wx_read_ee_hostif_data(wx, offset, data); 448 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 449 } 450 451 return status; 452 } 453 EXPORT_SYMBOL(wx_read_ee_hostif); 454 455 /** 456 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif 457 * @wx: pointer to hardware structure 458 * @offset: offset of word in the EEPROM to read 459 * @words: number of words 460 * @data: word(s) read from the EEPROM 461 * 462 * Reads a 16 bit word(s) from the EEPROM using the hostif. 463 **/ 464 int wx_read_ee_hostif_buffer(struct wx *wx, 465 u16 offset, u16 words, u16 *data) 466 { 467 struct wx_hic_read_shadow_ram buffer; 468 u32 current_word = 0; 469 u16 words_to_read; 470 u32 value = 0; 471 int status; 472 u32 i; 473 474 /* Take semaphore for the entire operation. */ 475 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 476 if (status != 0) 477 return status; 478 479 while (words) { 480 if (words > FW_MAX_READ_BUFFER_SIZE / 2) 481 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2; 482 else 483 words_to_read = words; 484 485 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 486 buffer.hdr.req.buf_lenh = 0; 487 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 488 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 489 490 /* convert offset from words to bytes */ 491 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2); 492 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2); 493 494 status = wx_host_interface_command(wx, (u32 *)&buffer, 495 sizeof(buffer), 496 WX_HI_COMMAND_TIMEOUT, 497 false); 498 499 if (status != 0) { 500 wx_err(wx, "Host interface command failed\n"); 501 goto out; 502 } 503 504 for (i = 0; i < words_to_read; i++) { 505 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i; 506 507 value = rd32(wx, reg); 508 data[current_word] = (u16)(value & 0xffff); 509 current_word++; 510 i++; 511 if (i < words_to_read) { 512 value >>= 16; 513 data[current_word] = (u16)(value & 0xffff); 514 current_word++; 515 } 516 } 517 words -= words_to_read; 518 } 519 520 out: 521 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 522 return status; 523 } 524 EXPORT_SYMBOL(wx_read_ee_hostif_buffer); 525 526 /** 527 * wx_init_eeprom_params - Initialize EEPROM params 528 * @wx: pointer to hardware structure 529 * 530 * Initializes the EEPROM parameters wx_eeprom_info within the 531 * wx_hw struct in order to set up EEPROM access. 532 **/ 533 void wx_init_eeprom_params(struct wx *wx) 534 { 535 struct wx_eeprom_info *eeprom = &wx->eeprom; 536 u16 eeprom_size; 537 u16 data = 0x80; 538 539 if (eeprom->type == wx_eeprom_uninitialized) { 540 eeprom->semaphore_delay = 10; 541 eeprom->type = wx_eeprom_none; 542 543 if (!(rd32(wx, WX_SPI_STATUS) & 544 WX_SPI_STATUS_FLASH_BYPASS)) { 545 eeprom->type = wx_flash; 546 547 eeprom_size = 4096; 548 eeprom->word_size = eeprom_size >> 1; 549 550 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n", 551 eeprom->type, eeprom->word_size); 552 } 553 } 554 555 if (wx->mac.type == wx_mac_sp) { 556 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) { 557 wx_err(wx, "NVM Read Error\n"); 558 return; 559 } 560 data = data >> 1; 561 } 562 563 eeprom->sw_region_offset = data; 564 } 565 EXPORT_SYMBOL(wx_init_eeprom_params); 566 567 /** 568 * wx_get_mac_addr - Generic get MAC address 569 * @wx: pointer to hardware structure 570 * @mac_addr: Adapter MAC address 571 * 572 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 573 * A reset of the adapter must be performed prior to calling this function 574 * in order for the MAC address to have been loaded from the EEPROM into RAR0 575 **/ 576 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr) 577 { 578 u32 rar_high; 579 u32 rar_low; 580 u16 i; 581 582 wr32(wx, WX_PSR_MAC_SWC_IDX, 0); 583 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H); 584 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L); 585 586 for (i = 0; i < 2; i++) 587 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); 588 589 for (i = 0; i < 4; i++) 590 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); 591 } 592 EXPORT_SYMBOL(wx_get_mac_addr); 593 594 /** 595 * wx_set_rar - Set Rx address register 596 * @wx: pointer to hardware structure 597 * @index: Receive address register to write 598 * @addr: Address to put into receive address register 599 * @pools: VMDq "set" or "pool" index 600 * @enable_addr: set flag that address is active 601 * 602 * Puts an ethernet address into a receive address register. 603 **/ 604 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools, 605 u32 enable_addr) 606 { 607 u32 rar_entries = wx->mac.num_rar_entries; 608 u32 rar_low, rar_high; 609 610 /* Make sure we are using a valid rar index range */ 611 if (index >= rar_entries) { 612 wx_err(wx, "RAR index %d is out of range.\n", index); 613 return -EINVAL; 614 } 615 616 /* select the MAC address */ 617 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 618 619 /* setup VMDq pool mapping */ 620 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); 621 if (wx->mac.type == wx_mac_sp) 622 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32); 623 624 /* HW expects these in little endian so we reverse the byte 625 * order from network order (big endian) to little endian 626 * 627 * Some parts put the VMDq setting in the extra RAH bits, 628 * so save everything except the lower 16 bits that hold part 629 * of the address and the address valid bit. 630 */ 631 rar_low = ((u32)addr[5] | 632 ((u32)addr[4] << 8) | 633 ((u32)addr[3] << 16) | 634 ((u32)addr[2] << 24)); 635 rar_high = ((u32)addr[1] | 636 ((u32)addr[0] << 8)); 637 if (enable_addr != 0) 638 rar_high |= WX_PSR_MAC_SWC_AD_H_AV; 639 640 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low); 641 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 642 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 643 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 644 WX_PSR_MAC_SWC_AD_H_AV), 645 rar_high); 646 647 return 0; 648 } 649 650 /** 651 * wx_clear_rar - Remove Rx address register 652 * @wx: pointer to hardware structure 653 * @index: Receive address register to write 654 * 655 * Clears an ethernet address from a receive address register. 656 **/ 657 static int wx_clear_rar(struct wx *wx, u32 index) 658 { 659 u32 rar_entries = wx->mac.num_rar_entries; 660 661 /* Make sure we are using a valid rar index range */ 662 if (index >= rar_entries) { 663 wx_err(wx, "RAR index %d is out of range.\n", index); 664 return -EINVAL; 665 } 666 667 /* Some parts put the VMDq setting in the extra RAH bits, 668 * so save everything except the lower 16 bits that hold part 669 * of the address and the address valid bit. 670 */ 671 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 672 673 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0); 674 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0); 675 676 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 677 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 678 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 679 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 680 WX_PSR_MAC_SWC_AD_H_AV), 681 0); 682 683 return 0; 684 } 685 686 /** 687 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address 688 * @wx: pointer to hardware struct 689 * @rar: receive address register index to disassociate 690 * @vmdq: VMDq pool index to remove from the rar 691 **/ 692 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq) 693 { 694 u32 rar_entries = wx->mac.num_rar_entries; 695 u32 mpsar_lo, mpsar_hi; 696 697 /* Make sure we are using a valid rar index range */ 698 if (rar >= rar_entries) { 699 wx_err(wx, "RAR index %d is out of range.\n", rar); 700 return -EINVAL; 701 } 702 703 wr32(wx, WX_PSR_MAC_SWC_IDX, rar); 704 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L); 705 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H); 706 707 if (!mpsar_lo && !mpsar_hi) 708 return 0; 709 710 /* was that the last pool using this rar? */ 711 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) 712 wx_clear_rar(wx, rar); 713 714 return 0; 715 } 716 717 /** 718 * wx_init_uta_tables - Initialize the Unicast Table Array 719 * @wx: pointer to hardware structure 720 **/ 721 static void wx_init_uta_tables(struct wx *wx) 722 { 723 int i; 724 725 wx_dbg(wx, " Clearing UTA\n"); 726 727 for (i = 0; i < 128; i++) 728 wr32(wx, WX_PSR_UC_TBL(i), 0); 729 } 730 731 /** 732 * wx_init_rx_addrs - Initializes receive address filters. 733 * @wx: pointer to hardware structure 734 * 735 * Places the MAC address in receive address register 0 and clears the rest 736 * of the receive address registers. Clears the multicast table. Assumes 737 * the receiver is in reset when the routine is called. 738 **/ 739 void wx_init_rx_addrs(struct wx *wx) 740 { 741 u32 rar_entries = wx->mac.num_rar_entries; 742 u32 psrctl; 743 int i; 744 745 /* If the current mac address is valid, assume it is a software override 746 * to the permanent address. 747 * Otherwise, use the permanent address from the eeprom. 748 */ 749 if (!is_valid_ether_addr(wx->mac.addr)) { 750 /* Get the MAC address from the RAR0 for later reference */ 751 wx_get_mac_addr(wx, wx->mac.addr); 752 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr); 753 } else { 754 /* Setup the receive address. */ 755 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n"); 756 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr); 757 758 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); 759 760 if (wx->mac.type == wx_mac_sp) { 761 /* clear VMDq pool/queue selection for RAR 0 */ 762 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL); 763 } 764 } 765 766 /* Zero out the other receive addresses. */ 767 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1); 768 for (i = 1; i < rar_entries; i++) { 769 wr32(wx, WX_PSR_MAC_SWC_IDX, i); 770 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 771 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0); 772 } 773 774 /* Clear the MTA */ 775 wx->addr_ctrl.mta_in_use = 0; 776 psrctl = rd32(wx, WX_PSR_CTL); 777 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 778 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; 779 wr32(wx, WX_PSR_CTL, psrctl); 780 wx_dbg(wx, " Clearing MTA\n"); 781 for (i = 0; i < wx->mac.mcft_size; i++) 782 wr32(wx, WX_PSR_MC_TBL(i), 0); 783 784 wx_init_uta_tables(wx); 785 } 786 EXPORT_SYMBOL(wx_init_rx_addrs); 787 788 static void wx_sync_mac_table(struct wx *wx) 789 { 790 int i; 791 792 for (i = 0; i < wx->mac.num_rar_entries; i++) { 793 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) { 794 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 795 wx_set_rar(wx, i, 796 wx->mac_table[i].addr, 797 wx->mac_table[i].pools, 798 WX_PSR_MAC_SWC_AD_H_AV); 799 } else { 800 wx_clear_rar(wx, i); 801 } 802 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED); 803 } 804 } 805 } 806 807 /* this function destroys the first RAR entry */ 808 void wx_mac_set_default_filter(struct wx *wx, u8 *addr) 809 { 810 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN); 811 wx->mac_table[0].pools = 1ULL; 812 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE); 813 wx_set_rar(wx, 0, wx->mac_table[0].addr, 814 wx->mac_table[0].pools, 815 WX_PSR_MAC_SWC_AD_H_AV); 816 } 817 EXPORT_SYMBOL(wx_mac_set_default_filter); 818 819 void wx_flush_sw_mac_table(struct wx *wx) 820 { 821 u32 i; 822 823 for (i = 0; i < wx->mac.num_rar_entries; i++) { 824 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE)) 825 continue; 826 827 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 828 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 829 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 830 wx->mac_table[i].pools = 0; 831 } 832 wx_sync_mac_table(wx); 833 } 834 EXPORT_SYMBOL(wx_flush_sw_mac_table); 835 836 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool) 837 { 838 u32 i; 839 840 if (is_zero_ether_addr(addr)) 841 return -EINVAL; 842 843 for (i = 0; i < wx->mac.num_rar_entries; i++) { 844 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 845 if (ether_addr_equal(addr, wx->mac_table[i].addr)) { 846 if (wx->mac_table[i].pools != (1ULL << pool)) { 847 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 848 wx->mac_table[i].pools |= (1ULL << pool); 849 wx_sync_mac_table(wx); 850 return i; 851 } 852 } 853 } 854 855 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) 856 continue; 857 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED | 858 WX_MAC_STATE_IN_USE); 859 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 860 wx->mac_table[i].pools |= (1ULL << pool); 861 wx_sync_mac_table(wx); 862 return i; 863 } 864 return -ENOMEM; 865 } 866 867 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool) 868 { 869 u32 i; 870 871 if (is_zero_ether_addr(addr)) 872 return -EINVAL; 873 874 /* search table for addr, if found, set to 0 and sync */ 875 for (i = 0; i < wx->mac.num_rar_entries; i++) { 876 if (!ether_addr_equal(addr, wx->mac_table[i].addr)) 877 continue; 878 879 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 880 wx->mac_table[i].pools &= ~(1ULL << pool); 881 if (!wx->mac_table[i].pools) { 882 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 883 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 884 } 885 wx_sync_mac_table(wx); 886 return 0; 887 } 888 return -ENOMEM; 889 } 890 891 static int wx_available_rars(struct wx *wx) 892 { 893 u32 i, count = 0; 894 895 for (i = 0; i < wx->mac.num_rar_entries; i++) { 896 if (wx->mac_table[i].state == 0) 897 count++; 898 } 899 900 return count; 901 } 902 903 /** 904 * wx_write_uc_addr_list - write unicast addresses to RAR table 905 * @netdev: network interface device structure 906 * @pool: index for mac table 907 * 908 * Writes unicast address list to the RAR table. 909 * Returns: -ENOMEM on failure/insufficient address space 910 * 0 on no addresses written 911 * X on writing X addresses to the RAR table 912 **/ 913 static int wx_write_uc_addr_list(struct net_device *netdev, int pool) 914 { 915 struct wx *wx = netdev_priv(netdev); 916 int count = 0; 917 918 /* return ENOMEM indicating insufficient memory for addresses */ 919 if (netdev_uc_count(netdev) > wx_available_rars(wx)) 920 return -ENOMEM; 921 922 if (!netdev_uc_empty(netdev)) { 923 struct netdev_hw_addr *ha; 924 925 netdev_for_each_uc_addr(ha, netdev) { 926 wx_del_mac_filter(wx, ha->addr, pool); 927 wx_add_mac_filter(wx, ha->addr, pool); 928 count++; 929 } 930 } 931 return count; 932 } 933 934 /** 935 * wx_mta_vector - Determines bit-vector in multicast table to set 936 * @wx: pointer to private structure 937 * @mc_addr: the multicast address 938 * 939 * Extracts the 12 bits, from a multicast address, to determine which 940 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 941 * incoming rx multicast addresses, to determine the bit-vector to check in 942 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 943 * by the MO field of the MCSTCTRL. The MO field is set during initialization 944 * to mc_filter_type. 945 **/ 946 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr) 947 { 948 u32 vector = 0; 949 950 switch (wx->mac.mc_filter_type) { 951 case 0: /* use bits [47:36] of the address */ 952 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 953 break; 954 case 1: /* use bits [46:35] of the address */ 955 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 956 break; 957 case 2: /* use bits [45:34] of the address */ 958 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 959 break; 960 case 3: /* use bits [43:32] of the address */ 961 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 962 break; 963 default: /* Invalid mc_filter_type */ 964 wx_err(wx, "MC filter type param set incorrectly\n"); 965 break; 966 } 967 968 /* vector can only be 12-bits or boundary will be exceeded */ 969 vector &= 0xFFF; 970 return vector; 971 } 972 973 /** 974 * wx_set_mta - Set bit-vector in multicast table 975 * @wx: pointer to private structure 976 * @mc_addr: Multicast address 977 * 978 * Sets the bit-vector in the multicast table. 979 **/ 980 static void wx_set_mta(struct wx *wx, u8 *mc_addr) 981 { 982 u32 vector, vector_bit, vector_reg; 983 984 wx->addr_ctrl.mta_in_use++; 985 986 vector = wx_mta_vector(wx, mc_addr); 987 wx_dbg(wx, " bit-vector = 0x%03X\n", vector); 988 989 /* The MTA is a register array of 128 32-bit registers. It is treated 990 * like an array of 4096 bits. We want to set bit 991 * BitArray[vector_value]. So we figure out what register the bit is 992 * in, read it, OR in the new bit, then write back the new value. The 993 * register is determined by the upper 7 bits of the vector value and 994 * the bit within that register are determined by the lower 5 bits of 995 * the value. 996 */ 997 vector_reg = (vector >> 5) & 0x7F; 998 vector_bit = vector & 0x1F; 999 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 1000 } 1001 1002 /** 1003 * wx_update_mc_addr_list - Updates MAC list of multicast addresses 1004 * @wx: pointer to private structure 1005 * @netdev: pointer to net device structure 1006 * 1007 * The given list replaces any existing list. Clears the MC addrs from receive 1008 * address registers and the multicast table. Uses unused receive address 1009 * registers for the first multicast addresses, and hashes the rest into the 1010 * multicast table. 1011 **/ 1012 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev) 1013 { 1014 struct netdev_hw_addr *ha; 1015 u32 i, psrctl; 1016 1017 /* Set the new number of MC addresses that we are being requested to 1018 * use. 1019 */ 1020 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); 1021 wx->addr_ctrl.mta_in_use = 0; 1022 1023 /* Clear mta_shadow */ 1024 wx_dbg(wx, " Clearing MTA\n"); 1025 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow)); 1026 1027 /* Update mta_shadow */ 1028 netdev_for_each_mc_addr(ha, netdev) { 1029 wx_dbg(wx, " Adding the multicast addresses:\n"); 1030 wx_set_mta(wx, ha->addr); 1031 } 1032 1033 /* Enable mta */ 1034 for (i = 0; i < wx->mac.mcft_size; i++) 1035 wr32a(wx, WX_PSR_MC_TBL(0), i, 1036 wx->mac.mta_shadow[i]); 1037 1038 if (wx->addr_ctrl.mta_in_use > 0) { 1039 psrctl = rd32(wx, WX_PSR_CTL); 1040 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 1041 psrctl |= WX_PSR_CTL_MFE | 1042 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT); 1043 wr32(wx, WX_PSR_CTL, psrctl); 1044 } 1045 1046 wx_dbg(wx, "Update mc addr list Complete\n"); 1047 } 1048 1049 /** 1050 * wx_write_mc_addr_list - write multicast addresses to MTA 1051 * @netdev: network interface device structure 1052 * 1053 * Writes multicast address list to the MTA hash table. 1054 * Returns: 0 on no addresses written 1055 * X on writing X addresses to MTA 1056 **/ 1057 static int wx_write_mc_addr_list(struct net_device *netdev) 1058 { 1059 struct wx *wx = netdev_priv(netdev); 1060 1061 if (!netif_running(netdev)) 1062 return 0; 1063 1064 wx_update_mc_addr_list(wx, netdev); 1065 1066 return netdev_mc_count(netdev); 1067 } 1068 1069 /** 1070 * wx_set_mac - Change the Ethernet Address of the NIC 1071 * @netdev: network interface device structure 1072 * @p: pointer to an address structure 1073 * 1074 * Returns 0 on success, negative on failure 1075 **/ 1076 int wx_set_mac(struct net_device *netdev, void *p) 1077 { 1078 struct wx *wx = netdev_priv(netdev); 1079 struct sockaddr *addr = p; 1080 int retval; 1081 1082 retval = eth_prepare_mac_addr_change(netdev, addr); 1083 if (retval) 1084 return retval; 1085 1086 wx_del_mac_filter(wx, wx->mac.addr, 0); 1087 eth_hw_addr_set(netdev, addr->sa_data); 1088 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len); 1089 1090 wx_mac_set_default_filter(wx, wx->mac.addr); 1091 1092 return 0; 1093 } 1094 EXPORT_SYMBOL(wx_set_mac); 1095 1096 void wx_disable_rx(struct wx *wx) 1097 { 1098 u32 pfdtxgswc; 1099 u32 rxctrl; 1100 1101 rxctrl = rd32(wx, WX_RDB_PB_CTL); 1102 if (rxctrl & WX_RDB_PB_CTL_RXEN) { 1103 pfdtxgswc = rd32(wx, WX_PSR_CTL); 1104 if (pfdtxgswc & WX_PSR_CTL_SW_EN) { 1105 pfdtxgswc &= ~WX_PSR_CTL_SW_EN; 1106 wr32(wx, WX_PSR_CTL, pfdtxgswc); 1107 wx->mac.set_lben = true; 1108 } else { 1109 wx->mac.set_lben = false; 1110 } 1111 rxctrl &= ~WX_RDB_PB_CTL_RXEN; 1112 wr32(wx, WX_RDB_PB_CTL, rxctrl); 1113 1114 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || 1115 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { 1116 /* disable mac receiver */ 1117 wr32m(wx, WX_MAC_RX_CFG, 1118 WX_MAC_RX_CFG_RE, 0); 1119 } 1120 } 1121 } 1122 EXPORT_SYMBOL(wx_disable_rx); 1123 1124 static void wx_enable_rx(struct wx *wx) 1125 { 1126 u32 psrctl; 1127 1128 /* enable mac receiver */ 1129 wr32m(wx, WX_MAC_RX_CFG, 1130 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE); 1131 1132 wr32m(wx, WX_RDB_PB_CTL, 1133 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN); 1134 1135 if (wx->mac.set_lben) { 1136 psrctl = rd32(wx, WX_PSR_CTL); 1137 psrctl |= WX_PSR_CTL_SW_EN; 1138 wr32(wx, WX_PSR_CTL, psrctl); 1139 wx->mac.set_lben = false; 1140 } 1141 } 1142 1143 /** 1144 * wx_set_rxpba - Initialize Rx packet buffer 1145 * @wx: pointer to private structure 1146 **/ 1147 static void wx_set_rxpba(struct wx *wx) 1148 { 1149 u32 rxpktsize, txpktsize, txpbthresh; 1150 u32 pbsize = wx->mac.rx_pb_size; 1151 1152 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) { 1153 if (test_bit(WX_FLAG_FDIR_HASH, wx->flags) || 1154 test_bit(WX_FLAG_FDIR_PERFECT, wx->flags)) 1155 pbsize -= 64; /* Default 64KB */ 1156 } 1157 1158 rxpktsize = pbsize << WX_RDB_PB_SZ_SHIFT; 1159 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize); 1160 1161 /* Only support an equally distributed Tx packet buffer strategy. */ 1162 txpktsize = wx->mac.tx_pb_size; 1163 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX; 1164 wr32(wx, WX_TDB_PB_SZ(0), txpktsize); 1165 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh); 1166 } 1167 1168 #define WX_ETH_FRAMING 20 1169 1170 /** 1171 * wx_hpbthresh - calculate high water mark for flow control 1172 * 1173 * @wx: board private structure to calculate for 1174 **/ 1175 static int wx_hpbthresh(struct wx *wx) 1176 { 1177 struct net_device *dev = wx->netdev; 1178 int link, tc, kb, marker; 1179 u32 dv_id, rx_pba; 1180 1181 /* Calculate max LAN frame size */ 1182 link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING; 1183 tc = link; 1184 1185 /* Calculate delay value for device */ 1186 dv_id = WX_DV(link, tc); 1187 1188 /* Delay value is calculated in bit times convert to KB */ 1189 kb = WX_BT2KB(dv_id); 1190 rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT; 1191 1192 marker = rx_pba - kb; 1193 1194 /* It is possible that the packet buffer is not large enough 1195 * to provide required headroom. In this case throw an error 1196 * to user and a do the best we can. 1197 */ 1198 if (marker < 0) { 1199 dev_warn(&wx->pdev->dev, 1200 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n"); 1201 marker = tc + 1; 1202 } 1203 1204 return marker; 1205 } 1206 1207 /** 1208 * wx_lpbthresh - calculate low water mark for flow control 1209 * 1210 * @wx: board private structure to calculate for 1211 **/ 1212 static int wx_lpbthresh(struct wx *wx) 1213 { 1214 struct net_device *dev = wx->netdev; 1215 u32 dv_id; 1216 int tc; 1217 1218 /* Calculate max LAN frame size */ 1219 tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN; 1220 1221 /* Calculate delay value for device */ 1222 dv_id = WX_LOW_DV(tc); 1223 1224 /* Delay value is calculated in bit times convert to KB */ 1225 return WX_BT2KB(dv_id); 1226 } 1227 1228 /** 1229 * wx_pbthresh_setup - calculate and setup high low water marks 1230 * 1231 * @wx: board private structure to calculate for 1232 **/ 1233 static void wx_pbthresh_setup(struct wx *wx) 1234 { 1235 wx->fc.high_water = wx_hpbthresh(wx); 1236 wx->fc.low_water = wx_lpbthresh(wx); 1237 1238 /* Low water marks must not be larger than high water marks */ 1239 if (wx->fc.low_water > wx->fc.high_water) 1240 wx->fc.low_water = 0; 1241 } 1242 1243 static void wx_configure_port(struct wx *wx) 1244 { 1245 u32 value, i; 1246 1247 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ; 1248 wr32m(wx, WX_CFG_PORT_CTL, 1249 WX_CFG_PORT_CTL_D_VLAN | 1250 WX_CFG_PORT_CTL_QINQ, 1251 value); 1252 1253 wr32(wx, WX_CFG_TAG_TPID(0), 1254 ETH_P_8021Q | ETH_P_8021AD << 16); 1255 wx->tpid[0] = ETH_P_8021Q; 1256 wx->tpid[1] = ETH_P_8021AD; 1257 for (i = 1; i < 4; i++) 1258 wr32(wx, WX_CFG_TAG_TPID(i), 1259 ETH_P_8021Q | ETH_P_8021Q << 16); 1260 for (i = 2; i < 8; i++) 1261 wx->tpid[i] = ETH_P_8021Q; 1262 } 1263 1264 /** 1265 * wx_disable_sec_rx_path - Stops the receive data path 1266 * @wx: pointer to private structure 1267 * 1268 * Stops the receive data path and waits for the HW to internally empty 1269 * the Rx security block 1270 **/ 1271 int wx_disable_sec_rx_path(struct wx *wx) 1272 { 1273 u32 secrx; 1274 1275 wr32m(wx, WX_RSC_CTL, 1276 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS); 1277 1278 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY, 1279 1000, 40000, false, wx, WX_RSC_ST); 1280 } 1281 EXPORT_SYMBOL(wx_disable_sec_rx_path); 1282 1283 /** 1284 * wx_enable_sec_rx_path - Enables the receive data path 1285 * @wx: pointer to private structure 1286 * 1287 * Enables the receive data path. 1288 **/ 1289 void wx_enable_sec_rx_path(struct wx *wx) 1290 { 1291 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0); 1292 WX_WRITE_FLUSH(wx); 1293 } 1294 EXPORT_SYMBOL(wx_enable_sec_rx_path); 1295 1296 static void wx_vlan_strip_control(struct wx *wx, bool enable) 1297 { 1298 int i, j; 1299 1300 for (i = 0; i < wx->num_rx_queues; i++) { 1301 struct wx_ring *ring = wx->rx_ring[i]; 1302 1303 j = ring->reg_idx; 1304 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN, 1305 enable ? WX_PX_RR_CFG_VLAN : 0); 1306 } 1307 } 1308 1309 void wx_set_rx_mode(struct net_device *netdev) 1310 { 1311 struct wx *wx = netdev_priv(netdev); 1312 netdev_features_t features; 1313 u32 fctrl, vmolr, vlnctrl; 1314 int count; 1315 1316 features = netdev->features; 1317 1318 /* Check for Promiscuous and All Multicast modes */ 1319 fctrl = rd32(wx, WX_PSR_CTL); 1320 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE); 1321 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0)); 1322 vmolr &= ~(WX_PSR_VM_L2CTL_UPE | 1323 WX_PSR_VM_L2CTL_MPE | 1324 WX_PSR_VM_L2CTL_ROPE | 1325 WX_PSR_VM_L2CTL_ROMPE); 1326 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL); 1327 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN); 1328 1329 /* set all bits that we expect to always be set */ 1330 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE; 1331 vmolr |= WX_PSR_VM_L2CTL_BAM | 1332 WX_PSR_VM_L2CTL_AUPE | 1333 WX_PSR_VM_L2CTL_VACC; 1334 vlnctrl |= WX_PSR_VLAN_CTL_VFE; 1335 1336 wx->addr_ctrl.user_set_promisc = false; 1337 if (netdev->flags & IFF_PROMISC) { 1338 wx->addr_ctrl.user_set_promisc = true; 1339 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE; 1340 /* pf don't want packets routing to vf, so clear UPE */ 1341 vmolr |= WX_PSR_VM_L2CTL_MPE; 1342 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1343 } 1344 1345 if (netdev->flags & IFF_ALLMULTI) { 1346 fctrl |= WX_PSR_CTL_MPE; 1347 vmolr |= WX_PSR_VM_L2CTL_MPE; 1348 } 1349 1350 if (netdev->features & NETIF_F_RXALL) { 1351 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE); 1352 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1353 /* receive bad packets */ 1354 wr32m(wx, WX_RSC_CTL, 1355 WX_RSC_CTL_SAVE_MAC_ERR, 1356 WX_RSC_CTL_SAVE_MAC_ERR); 1357 } else { 1358 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE; 1359 } 1360 1361 /* Write addresses to available RAR registers, if there is not 1362 * sufficient space to store all the addresses then enable 1363 * unicast promiscuous mode 1364 */ 1365 count = wx_write_uc_addr_list(netdev, 0); 1366 if (count < 0) { 1367 vmolr &= ~WX_PSR_VM_L2CTL_ROPE; 1368 vmolr |= WX_PSR_VM_L2CTL_UPE; 1369 } 1370 1371 /* Write addresses to the MTA, if the attempt fails 1372 * then we should just turn on promiscuous mode so 1373 * that we can at least receive multicast traffic 1374 */ 1375 count = wx_write_mc_addr_list(netdev); 1376 if (count < 0) { 1377 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE; 1378 vmolr |= WX_PSR_VM_L2CTL_MPE; 1379 } 1380 1381 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl); 1382 wr32(wx, WX_PSR_CTL, fctrl); 1383 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr); 1384 1385 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 1386 (features & NETIF_F_HW_VLAN_STAG_RX)) 1387 wx_vlan_strip_control(wx, true); 1388 else 1389 wx_vlan_strip_control(wx, false); 1390 1391 } 1392 EXPORT_SYMBOL(wx_set_rx_mode); 1393 1394 static void wx_set_rx_buffer_len(struct wx *wx) 1395 { 1396 struct net_device *netdev = wx->netdev; 1397 u32 mhadd, max_frame; 1398 1399 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1400 /* adjust max frame to be at least the size of a standard frame */ 1401 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 1402 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN); 1403 1404 mhadd = rd32(wx, WX_PSR_MAX_SZ); 1405 if (max_frame != mhadd) 1406 wr32(wx, WX_PSR_MAX_SZ, max_frame); 1407 } 1408 1409 /** 1410 * wx_change_mtu - Change the Maximum Transfer Unit 1411 * @netdev: network interface device structure 1412 * @new_mtu: new value for maximum frame size 1413 * 1414 * Returns 0 on success, negative on failure 1415 **/ 1416 int wx_change_mtu(struct net_device *netdev, int new_mtu) 1417 { 1418 struct wx *wx = netdev_priv(netdev); 1419 1420 WRITE_ONCE(netdev->mtu, new_mtu); 1421 wx_set_rx_buffer_len(wx); 1422 1423 return 0; 1424 } 1425 EXPORT_SYMBOL(wx_change_mtu); 1426 1427 /* Disable the specified rx queue */ 1428 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring) 1429 { 1430 u8 reg_idx = ring->reg_idx; 1431 u32 rxdctl; 1432 int ret; 1433 1434 /* write value back with RRCFG.EN bit cleared */ 1435 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1436 WX_PX_RR_CFG_RR_EN, 0); 1437 1438 /* the hardware may take up to 100us to really disable the rx queue */ 1439 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN), 1440 10, 100, true, wx, WX_PX_RR_CFG(reg_idx)); 1441 1442 if (ret == -ETIMEDOUT) { 1443 /* Just for information */ 1444 wx_err(wx, 1445 "RRCFG.EN on Rx queue %d not cleared within the polling period\n", 1446 reg_idx); 1447 } 1448 } 1449 EXPORT_SYMBOL(wx_disable_rx_queue); 1450 1451 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring) 1452 { 1453 u8 reg_idx = ring->reg_idx; 1454 u32 rxdctl; 1455 int ret; 1456 1457 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN, 1458 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx)); 1459 1460 if (ret == -ETIMEDOUT) { 1461 /* Just for information */ 1462 wx_err(wx, 1463 "RRCFG.EN on Rx queue %d not set within the polling period\n", 1464 reg_idx); 1465 } 1466 } 1467 1468 static void wx_configure_srrctl(struct wx *wx, 1469 struct wx_ring *rx_ring) 1470 { 1471 u16 reg_idx = rx_ring->reg_idx; 1472 u32 srrctl; 1473 1474 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1475 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ | 1476 WX_PX_RR_CFG_RR_BUF_SZ | 1477 WX_PX_RR_CFG_SPLIT_MODE); 1478 /* configure header buffer length, needed for RSC */ 1479 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT; 1480 1481 /* configure the packet buffer length */ 1482 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT; 1483 1484 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 1485 } 1486 1487 static void wx_configure_tx_ring(struct wx *wx, 1488 struct wx_ring *ring) 1489 { 1490 u32 txdctl = WX_PX_TR_CFG_ENABLE; 1491 u8 reg_idx = ring->reg_idx; 1492 u64 tdba = ring->dma; 1493 int ret; 1494 1495 /* disable queue to avoid issues while updating state */ 1496 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH); 1497 WX_WRITE_FLUSH(wx); 1498 1499 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1500 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba)); 1501 1502 /* reset head and tail pointers */ 1503 wr32(wx, WX_PX_TR_RP(reg_idx), 0); 1504 wr32(wx, WX_PX_TR_WP(reg_idx), 0); 1505 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx); 1506 1507 if (ring->count < WX_MAX_TXD) 1508 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT; 1509 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT; 1510 1511 ring->atr_count = 0; 1512 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && 1513 test_bit(WX_FLAG_FDIR_HASH, wx->flags)) 1514 ring->atr_sample_rate = wx->atr_sample_rate; 1515 else 1516 ring->atr_sample_rate = 0; 1517 1518 /* reinitialize tx_buffer_info */ 1519 memset(ring->tx_buffer_info, 0, 1520 sizeof(struct wx_tx_buffer) * ring->count); 1521 1522 /* enable queue */ 1523 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl); 1524 1525 /* poll to verify queue is enabled */ 1526 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE, 1527 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx)); 1528 if (ret == -ETIMEDOUT) 1529 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx); 1530 } 1531 1532 static void wx_configure_rx_ring(struct wx *wx, 1533 struct wx_ring *ring) 1534 { 1535 u16 reg_idx = ring->reg_idx; 1536 union wx_rx_desc *rx_desc; 1537 u64 rdba = ring->dma; 1538 u32 rxdctl; 1539 1540 /* disable queue to avoid issues while updating state */ 1541 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1542 wx_disable_rx_queue(wx, ring); 1543 1544 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1545 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba)); 1546 1547 if (ring->count == WX_MAX_RXD) 1548 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1549 else 1550 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1551 1552 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT; 1553 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl); 1554 1555 /* reset head and tail pointers */ 1556 wr32(wx, WX_PX_RR_RP(reg_idx), 0); 1557 wr32(wx, WX_PX_RR_WP(reg_idx), 0); 1558 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx); 1559 1560 wx_configure_srrctl(wx, ring); 1561 1562 /* initialize rx_buffer_info */ 1563 memset(ring->rx_buffer_info, 0, 1564 sizeof(struct wx_rx_buffer) * ring->count); 1565 1566 /* initialize Rx descriptor 0 */ 1567 rx_desc = WX_RX_DESC(ring, 0); 1568 rx_desc->wb.upper.length = 0; 1569 1570 /* enable receive descriptor ring */ 1571 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1572 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN); 1573 1574 wx_enable_rx_queue(wx, ring); 1575 wx_alloc_rx_buffers(ring, wx_desc_unused(ring)); 1576 } 1577 1578 /** 1579 * wx_configure_tx - Configure Transmit Unit after Reset 1580 * @wx: pointer to private structure 1581 * 1582 * Configure the Tx unit of the MAC after a reset. 1583 **/ 1584 static void wx_configure_tx(struct wx *wx) 1585 { 1586 u32 i; 1587 1588 /* TDM_CTL.TE must be before Tx queues are enabled */ 1589 wr32m(wx, WX_TDM_CTL, 1590 WX_TDM_CTL_TE, WX_TDM_CTL_TE); 1591 1592 /* Setup the HW Tx Head and Tail descriptor pointers */ 1593 for (i = 0; i < wx->num_tx_queues; i++) 1594 wx_configure_tx_ring(wx, wx->tx_ring[i]); 1595 1596 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10); 1597 1598 if (wx->mac.type == wx_mac_em) 1599 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1); 1600 1601 /* enable mac transmitter */ 1602 wr32m(wx, WX_MAC_TX_CFG, 1603 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE); 1604 } 1605 1606 static void wx_restore_vlan(struct wx *wx) 1607 { 1608 u16 vid = 1; 1609 1610 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0); 1611 1612 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID) 1613 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid); 1614 } 1615 1616 static void wx_store_reta(struct wx *wx) 1617 { 1618 u8 *indir_tbl = wx->rss_indir_tbl; 1619 u32 reta = 0; 1620 u32 i; 1621 1622 /* Fill out the redirection table as follows: 1623 * - 8 bit wide entries containing 4 bit RSS index 1624 */ 1625 for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) { 1626 reta |= indir_tbl[i] << (i & 0x3) * 8; 1627 if ((i & 3) == 3) { 1628 wr32(wx, WX_RDB_RSSTBL(i >> 2), reta); 1629 reta = 0; 1630 } 1631 } 1632 } 1633 1634 static void wx_setup_reta(struct wx *wx) 1635 { 1636 u16 rss_i = wx->ring_feature[RING_F_RSS].indices; 1637 u32 random_key_size = WX_RSS_KEY_SIZE / 4; 1638 u32 i, j; 1639 1640 /* Fill out hash function seeds */ 1641 for (i = 0; i < random_key_size; i++) 1642 wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]); 1643 1644 /* Fill out redirection table */ 1645 memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl)); 1646 1647 for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) { 1648 if (j == rss_i) 1649 j = 0; 1650 1651 wx->rss_indir_tbl[i] = j; 1652 } 1653 1654 wx_store_reta(wx); 1655 } 1656 1657 static void wx_setup_mrqc(struct wx *wx) 1658 { 1659 u32 rss_field = 0; 1660 1661 /* Disable indicating checksum in descriptor, enables RSS hash */ 1662 wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD); 1663 1664 /* Perform hash on these packet types */ 1665 rss_field = WX_RDB_RA_CTL_RSS_IPV4 | 1666 WX_RDB_RA_CTL_RSS_IPV4_TCP | 1667 WX_RDB_RA_CTL_RSS_IPV4_UDP | 1668 WX_RDB_RA_CTL_RSS_IPV6 | 1669 WX_RDB_RA_CTL_RSS_IPV6_TCP | 1670 WX_RDB_RA_CTL_RSS_IPV6_UDP; 1671 1672 netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key)); 1673 1674 wx_setup_reta(wx); 1675 1676 if (wx->rss_enabled) 1677 rss_field |= WX_RDB_RA_CTL_RSS_EN; 1678 1679 wr32(wx, WX_RDB_RA_CTL, rss_field); 1680 } 1681 1682 /** 1683 * wx_configure_rx - Configure Receive Unit after Reset 1684 * @wx: pointer to private structure 1685 * 1686 * Configure the Rx unit of the MAC after a reset. 1687 **/ 1688 void wx_configure_rx(struct wx *wx) 1689 { 1690 u32 psrtype, i; 1691 int ret; 1692 1693 wx_disable_rx(wx); 1694 1695 psrtype = WX_RDB_PL_CFG_L4HDR | 1696 WX_RDB_PL_CFG_L3HDR | 1697 WX_RDB_PL_CFG_L2HDR | 1698 WX_RDB_PL_CFG_TUN_TUNHDR; 1699 wr32(wx, WX_RDB_PL_CFG(0), psrtype); 1700 1701 /* enable hw crc stripping */ 1702 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP); 1703 1704 if (wx->mac.type == wx_mac_sp) { 1705 u32 psrctl; 1706 1707 /* RSC Setup */ 1708 psrctl = rd32(wx, WX_PSR_CTL); 1709 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */ 1710 psrctl |= WX_PSR_CTL_RSC_DIS; 1711 wr32(wx, WX_PSR_CTL, psrctl); 1712 } 1713 1714 wx_setup_mrqc(wx); 1715 1716 /* set_rx_buffer_len must be called before ring initialization */ 1717 wx_set_rx_buffer_len(wx); 1718 1719 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1720 * the Base and Length of the Rx Descriptor Ring 1721 */ 1722 for (i = 0; i < wx->num_rx_queues; i++) 1723 wx_configure_rx_ring(wx, wx->rx_ring[i]); 1724 1725 /* Enable all receives, disable security engine prior to block traffic */ 1726 ret = wx_disable_sec_rx_path(wx); 1727 if (ret < 0) 1728 wx_err(wx, "The register status is abnormal, please check device."); 1729 1730 wx_enable_rx(wx); 1731 wx_enable_sec_rx_path(wx); 1732 } 1733 EXPORT_SYMBOL(wx_configure_rx); 1734 1735 static void wx_configure_isb(struct wx *wx) 1736 { 1737 /* set ISB Address */ 1738 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32)); 1739 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 1740 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma)); 1741 } 1742 1743 void wx_configure(struct wx *wx) 1744 { 1745 wx_set_rxpba(wx); 1746 wx_pbthresh_setup(wx); 1747 wx_configure_port(wx); 1748 1749 wx_set_rx_mode(wx->netdev); 1750 wx_restore_vlan(wx); 1751 1752 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) 1753 wx->configure_fdir(wx); 1754 1755 wx_configure_tx(wx); 1756 wx_configure_rx(wx); 1757 wx_configure_isb(wx); 1758 } 1759 EXPORT_SYMBOL(wx_configure); 1760 1761 /** 1762 * wx_disable_pcie_master - Disable PCI-express master access 1763 * @wx: pointer to hardware structure 1764 * 1765 * Disables PCI-Express master access and verifies there are no pending 1766 * requests. 1767 **/ 1768 int wx_disable_pcie_master(struct wx *wx) 1769 { 1770 int status = 0; 1771 u32 val; 1772 1773 /* Always set this bit to ensure any future transactions are blocked */ 1774 pci_clear_master(wx->pdev); 1775 1776 /* Exit if master requests are blocked */ 1777 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING))) 1778 return 0; 1779 1780 /* Poll for master request bit to clear */ 1781 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, 1782 false, wx, WX_PX_TRANSACTION_PENDING); 1783 if (status < 0) 1784 wx_err(wx, "PCIe transaction pending bit did not clear.\n"); 1785 1786 return status; 1787 } 1788 EXPORT_SYMBOL(wx_disable_pcie_master); 1789 1790 /** 1791 * wx_stop_adapter - Generic stop Tx/Rx units 1792 * @wx: pointer to hardware structure 1793 * 1794 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, 1795 * disables transmit and receive units. The adapter_stopped flag is used by 1796 * the shared code and drivers to determine if the adapter is in a stopped 1797 * state and should not touch the hardware. 1798 **/ 1799 int wx_stop_adapter(struct wx *wx) 1800 { 1801 u16 i; 1802 1803 /* Set the adapter_stopped flag so other driver functions stop touching 1804 * the hardware 1805 */ 1806 wx->adapter_stopped = true; 1807 1808 /* Disable the receive unit */ 1809 wx_disable_rx(wx); 1810 1811 /* Set interrupt mask to stop interrupts from being generated */ 1812 wx_intr_disable(wx, WX_INTR_ALL); 1813 1814 /* Clear any pending interrupts, flush previous writes */ 1815 wr32(wx, WX_PX_MISC_IC, 0xffffffff); 1816 wr32(wx, WX_BME_CTL, 0x3); 1817 1818 /* Disable the transmit unit. Each queue must be disabled. */ 1819 for (i = 0; i < wx->mac.max_tx_queues; i++) { 1820 wr32m(wx, WX_PX_TR_CFG(i), 1821 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, 1822 WX_PX_TR_CFG_SWFLSH); 1823 } 1824 1825 /* Disable the receive unit by stopping each queue */ 1826 for (i = 0; i < wx->mac.max_rx_queues; i++) { 1827 wr32m(wx, WX_PX_RR_CFG(i), 1828 WX_PX_RR_CFG_RR_EN, 0); 1829 } 1830 1831 /* flush all queues disables */ 1832 WX_WRITE_FLUSH(wx); 1833 1834 /* Prevent the PCI-E bus from hanging by disabling PCI-E master 1835 * access and verify no pending requests 1836 */ 1837 return wx_disable_pcie_master(wx); 1838 } 1839 EXPORT_SYMBOL(wx_stop_adapter); 1840 1841 void wx_reset_misc(struct wx *wx) 1842 { 1843 int i; 1844 1845 /* receive packets that size > 2048 */ 1846 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); 1847 1848 /* clear counters on read */ 1849 wr32m(wx, WX_MMC_CONTROL, 1850 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); 1851 1852 wr32m(wx, WX_MAC_RX_FLOW_CTRL, 1853 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); 1854 1855 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); 1856 1857 wr32m(wx, WX_MIS_RST_ST, 1858 WX_MIS_RST_ST_RST_INIT, 0x1E00); 1859 1860 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ 1861 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0); 1862 for (i = 0; i < 16; i++) { 1863 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0); 1864 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0); 1865 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0); 1866 } 1867 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0); 1868 for (i = 0; i < 16; i++) { 1869 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0); 1870 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0); 1871 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0); 1872 } 1873 1874 /* set pause frame dst mac addr */ 1875 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001); 1876 wr32(wx, WX_RDB_PFCMACDAH, 0x0180); 1877 } 1878 EXPORT_SYMBOL(wx_reset_misc); 1879 1880 /** 1881 * wx_get_pcie_msix_counts - Gets MSI-X vector count 1882 * @wx: pointer to hardware structure 1883 * @msix_count: number of MSI interrupts that can be obtained 1884 * @max_msix_count: number of MSI interrupts that mac need 1885 * 1886 * Read PCIe configuration space, and get the MSI-X vector count from 1887 * the capabilities table. 1888 **/ 1889 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count) 1890 { 1891 struct pci_dev *pdev = wx->pdev; 1892 struct device *dev = &pdev->dev; 1893 int pos; 1894 1895 *msix_count = 1; 1896 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 1897 if (!pos) { 1898 dev_err(dev, "Unable to find MSI-X Capabilities\n"); 1899 return -EINVAL; 1900 } 1901 pci_read_config_word(pdev, 1902 pos + PCI_MSIX_FLAGS, 1903 msix_count); 1904 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK; 1905 /* MSI-X count is zero-based in HW */ 1906 *msix_count += 1; 1907 1908 if (*msix_count > max_msix_count) 1909 *msix_count = max_msix_count; 1910 1911 return 0; 1912 } 1913 EXPORT_SYMBOL(wx_get_pcie_msix_counts); 1914 1915 /** 1916 * wx_init_rss_key - Initialize wx RSS key 1917 * @wx: device handle 1918 * 1919 * Allocates and initializes the RSS key if it is not allocated. 1920 **/ 1921 static int wx_init_rss_key(struct wx *wx) 1922 { 1923 u32 *rss_key; 1924 1925 if (!wx->rss_key) { 1926 rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL); 1927 if (unlikely(!rss_key)) 1928 return -ENOMEM; 1929 1930 netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE); 1931 wx->rss_key = rss_key; 1932 } 1933 1934 return 0; 1935 } 1936 1937 int wx_sw_init(struct wx *wx) 1938 { 1939 struct pci_dev *pdev = wx->pdev; 1940 u32 ssid = 0; 1941 int err = 0; 1942 1943 wx->vendor_id = pdev->vendor; 1944 wx->device_id = pdev->device; 1945 wx->revision_id = pdev->revision; 1946 wx->oem_svid = pdev->subsystem_vendor; 1947 wx->oem_ssid = pdev->subsystem_device; 1948 wx->bus.device = PCI_SLOT(pdev->devfn); 1949 wx->bus.func = PCI_FUNC(pdev->devfn); 1950 1951 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) { 1952 wx->subsystem_vendor_id = pdev->subsystem_vendor; 1953 wx->subsystem_device_id = pdev->subsystem_device; 1954 } else { 1955 err = wx_flash_read_dword(wx, 0xfffdc, &ssid); 1956 if (err < 0) { 1957 wx_err(wx, "read of internal subsystem device id failed\n"); 1958 return err; 1959 } 1960 1961 wx->subsystem_device_id = swab16((u16)ssid); 1962 } 1963 1964 err = wx_init_rss_key(wx); 1965 if (err < 0) { 1966 wx_err(wx, "rss key allocation failed\n"); 1967 return err; 1968 } 1969 1970 wx->mac_table = kcalloc(wx->mac.num_rar_entries, 1971 sizeof(struct wx_mac_addr), 1972 GFP_KERNEL); 1973 if (!wx->mac_table) { 1974 wx_err(wx, "mac_table allocation failed\n"); 1975 kfree(wx->rss_key); 1976 return -ENOMEM; 1977 } 1978 1979 bitmap_zero(wx->state, WX_STATE_NBITS); 1980 bitmap_zero(wx->flags, WX_PF_FLAGS_NBITS); 1981 wx->misc_irq_domain = false; 1982 1983 return 0; 1984 } 1985 EXPORT_SYMBOL(wx_sw_init); 1986 1987 /** 1988 * wx_find_vlvf_slot - find the vlanid or the first empty slot 1989 * @wx: pointer to hardware structure 1990 * @vlan: VLAN id to write to VLAN filter 1991 * 1992 * return the VLVF index where this VLAN id should be placed 1993 * 1994 **/ 1995 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan) 1996 { 1997 u32 bits = 0, first_empty_slot = 0; 1998 int regindex; 1999 2000 /* short cut the special case */ 2001 if (vlan == 0) 2002 return 0; 2003 2004 /* Search for the vlan id in the VLVF entries. Save off the first empty 2005 * slot found along the way 2006 */ 2007 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) { 2008 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex); 2009 bits = rd32(wx, WX_PSR_VLAN_SWC); 2010 if (!bits && !(first_empty_slot)) 2011 first_empty_slot = regindex; 2012 else if ((bits & 0x0FFF) == vlan) 2013 break; 2014 } 2015 2016 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) { 2017 if (first_empty_slot) 2018 regindex = first_empty_slot; 2019 else 2020 regindex = -ENOMEM; 2021 } 2022 2023 return regindex; 2024 } 2025 2026 /** 2027 * wx_set_vlvf - Set VLAN Pool Filter 2028 * @wx: pointer to hardware structure 2029 * @vlan: VLAN id to write to VLAN filter 2030 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 2031 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 2032 * @vfta_changed: pointer to boolean flag which indicates whether VFTA 2033 * should be changed 2034 * 2035 * Turn on/off specified bit in VLVF table. 2036 **/ 2037 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on, 2038 bool *vfta_changed) 2039 { 2040 int vlvf_index; 2041 u32 vt, bits; 2042 2043 /* If VT Mode is set 2044 * Either vlan_on 2045 * make sure the vlan is in VLVF 2046 * set the vind bit in the matching VLVFB 2047 * Or !vlan_on 2048 * clear the pool bit and possibly the vind 2049 */ 2050 vt = rd32(wx, WX_CFG_PORT_CTL); 2051 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK)) 2052 return 0; 2053 2054 vlvf_index = wx_find_vlvf_slot(wx, vlan); 2055 if (vlvf_index < 0) 2056 return vlvf_index; 2057 2058 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index); 2059 if (vlan_on) { 2060 /* set the pool bit */ 2061 if (vind < 32) { 2062 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 2063 bits |= (1 << vind); 2064 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 2065 } else { 2066 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 2067 bits |= (1 << (vind - 32)); 2068 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 2069 } 2070 } else { 2071 /* clear the pool bit */ 2072 if (vind < 32) { 2073 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 2074 bits &= ~(1 << vind); 2075 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 2076 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H); 2077 } else { 2078 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 2079 bits &= ~(1 << (vind - 32)); 2080 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 2081 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L); 2082 } 2083 } 2084 2085 if (bits) { 2086 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan)); 2087 if (!vlan_on && vfta_changed) 2088 *vfta_changed = false; 2089 } else { 2090 wr32(wx, WX_PSR_VLAN_SWC, 0); 2091 } 2092 2093 return 0; 2094 } 2095 2096 /** 2097 * wx_set_vfta - Set VLAN filter table 2098 * @wx: pointer to hardware structure 2099 * @vlan: VLAN id to write to VLAN filter 2100 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 2101 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 2102 * 2103 * Turn on/off specified VLAN in the VLAN filter table. 2104 **/ 2105 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on) 2106 { 2107 u32 bitindex, vfta, targetbit; 2108 bool vfta_changed = false; 2109 int regindex, ret; 2110 2111 /* this is a 2 part operation - first the VFTA, then the 2112 * VLVF and VLVFB if VT Mode is set 2113 * We don't write the VFTA until we know the VLVF part succeeded. 2114 */ 2115 2116 /* Part 1 2117 * The VFTA is a bitstring made up of 128 32-bit registers 2118 * that enable the particular VLAN id, much like the MTA: 2119 * bits[11-5]: which register 2120 * bits[4-0]: which bit in the register 2121 */ 2122 regindex = (vlan >> 5) & 0x7F; 2123 bitindex = vlan & 0x1F; 2124 targetbit = (1 << bitindex); 2125 /* errata 5 */ 2126 vfta = wx->mac.vft_shadow[regindex]; 2127 if (vlan_on) { 2128 if (!(vfta & targetbit)) { 2129 vfta |= targetbit; 2130 vfta_changed = true; 2131 } 2132 } else { 2133 if ((vfta & targetbit)) { 2134 vfta &= ~targetbit; 2135 vfta_changed = true; 2136 } 2137 } 2138 /* Part 2 2139 * Call wx_set_vlvf to set VLVFB and VLVF 2140 */ 2141 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed); 2142 if (ret != 0) 2143 return ret; 2144 2145 if (vfta_changed) 2146 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta); 2147 wx->mac.vft_shadow[regindex] = vfta; 2148 2149 return 0; 2150 } 2151 2152 /** 2153 * wx_clear_vfta - Clear VLAN filter table 2154 * @wx: pointer to hardware structure 2155 * 2156 * Clears the VLAN filer table, and the VMDq index associated with the filter 2157 **/ 2158 static void wx_clear_vfta(struct wx *wx) 2159 { 2160 u32 offset; 2161 2162 for (offset = 0; offset < wx->mac.vft_size; offset++) { 2163 wr32(wx, WX_PSR_VLAN_TBL(offset), 0); 2164 wx->mac.vft_shadow[offset] = 0; 2165 } 2166 2167 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) { 2168 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset); 2169 wr32(wx, WX_PSR_VLAN_SWC, 0); 2170 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0); 2171 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0); 2172 } 2173 } 2174 2175 int wx_vlan_rx_add_vid(struct net_device *netdev, 2176 __be16 proto, u16 vid) 2177 { 2178 struct wx *wx = netdev_priv(netdev); 2179 2180 /* add VID to filter table */ 2181 wx_set_vfta(wx, vid, VMDQ_P(0), true); 2182 set_bit(vid, wx->active_vlans); 2183 2184 return 0; 2185 } 2186 EXPORT_SYMBOL(wx_vlan_rx_add_vid); 2187 2188 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 2189 { 2190 struct wx *wx = netdev_priv(netdev); 2191 2192 /* remove VID from filter table */ 2193 if (vid) 2194 wx_set_vfta(wx, vid, VMDQ_P(0), false); 2195 clear_bit(vid, wx->active_vlans); 2196 2197 return 0; 2198 } 2199 EXPORT_SYMBOL(wx_vlan_rx_kill_vid); 2200 2201 static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring) 2202 { 2203 u16 reg_idx = ring->reg_idx; 2204 u32 srrctl; 2205 2206 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 2207 srrctl |= WX_PX_RR_CFG_DROP_EN; 2208 2209 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 2210 } 2211 2212 static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring) 2213 { 2214 u16 reg_idx = ring->reg_idx; 2215 u32 srrctl; 2216 2217 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 2218 srrctl &= ~WX_PX_RR_CFG_DROP_EN; 2219 2220 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 2221 } 2222 2223 int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause) 2224 { 2225 u16 pause_time = WX_DEFAULT_FCPAUSE; 2226 u32 mflcn_reg, fccfg_reg, reg; 2227 u32 fcrtl, fcrth; 2228 int i; 2229 2230 /* Low water mark of zero causes XOFF floods */ 2231 if (tx_pause && wx->fc.high_water) { 2232 if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) { 2233 wx_err(wx, "Invalid water mark configuration\n"); 2234 return -EINVAL; 2235 } 2236 } 2237 2238 /* Disable any previous flow control settings */ 2239 mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL); 2240 mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE; 2241 2242 fccfg_reg = rd32(wx, WX_RDB_RFCC); 2243 fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X; 2244 2245 if (rx_pause) 2246 mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE; 2247 if (tx_pause) 2248 fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X; 2249 2250 /* Set 802.3x based flow control settings. */ 2251 wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg); 2252 wr32(wx, WX_RDB_RFCC, fccfg_reg); 2253 2254 /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2255 if (tx_pause && wx->fc.high_water) { 2256 fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE; 2257 wr32(wx, WX_RDB_RFCL, fcrtl); 2258 fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE; 2259 } else { 2260 wr32(wx, WX_RDB_RFCL, 0); 2261 /* In order to prevent Tx hangs when the internal Tx 2262 * switch is enabled we must set the high water mark 2263 * to the Rx packet buffer size - 24KB. This allows 2264 * the Tx switch to function even under heavy Rx 2265 * workloads. 2266 */ 2267 fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576; 2268 } 2269 2270 wr32(wx, WX_RDB_RFCH, fcrth); 2271 2272 /* Configure pause time */ 2273 reg = pause_time * 0x00010001; 2274 wr32(wx, WX_RDB_RFCV, reg); 2275 2276 /* Configure flow control refresh threshold value */ 2277 wr32(wx, WX_RDB_RFCRT, pause_time / 2); 2278 2279 /* We should set the drop enable bit if: 2280 * Number of Rx queues > 1 and flow control is disabled 2281 * 2282 * This allows us to avoid head of line blocking for security 2283 * and performance reasons. 2284 */ 2285 if (wx->num_rx_queues > 1 && !tx_pause) { 2286 for (i = 0; i < wx->num_rx_queues; i++) 2287 wx_enable_rx_drop(wx, wx->rx_ring[i]); 2288 } else { 2289 for (i = 0; i < wx->num_rx_queues; i++) 2290 wx_disable_rx_drop(wx, wx->rx_ring[i]); 2291 } 2292 2293 return 0; 2294 } 2295 EXPORT_SYMBOL(wx_fc_enable); 2296 2297 /** 2298 * wx_update_stats - Update the board statistics counters. 2299 * @wx: board private structure 2300 **/ 2301 void wx_update_stats(struct wx *wx) 2302 { 2303 struct wx_hw_stats *hwstats = &wx->stats; 2304 2305 u64 non_eop_descs = 0, alloc_rx_buff_failed = 0; 2306 u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0; 2307 u64 restart_queue = 0, tx_busy = 0; 2308 u32 i; 2309 2310 /* gather some stats to the wx struct that are per queue */ 2311 for (i = 0; i < wx->num_rx_queues; i++) { 2312 struct wx_ring *rx_ring = wx->rx_ring[i]; 2313 2314 non_eop_descs += rx_ring->rx_stats.non_eop_descs; 2315 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 2316 hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt; 2317 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 2318 } 2319 wx->non_eop_descs = non_eop_descs; 2320 wx->alloc_rx_buff_failed = alloc_rx_buff_failed; 2321 wx->hw_csum_rx_error = hw_csum_rx_error; 2322 wx->hw_csum_rx_good = hw_csum_rx_good; 2323 2324 for (i = 0; i < wx->num_tx_queues; i++) { 2325 struct wx_ring *tx_ring = wx->tx_ring[i]; 2326 2327 restart_queue += tx_ring->tx_stats.restart_queue; 2328 tx_busy += tx_ring->tx_stats.tx_busy; 2329 } 2330 wx->restart_queue = restart_queue; 2331 wx->tx_busy = tx_busy; 2332 2333 hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT); 2334 hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT); 2335 hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB); 2336 hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB); 2337 hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L); 2338 hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L); 2339 hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L); 2340 hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L); 2341 hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L); 2342 hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L); 2343 hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L); 2344 hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L); 2345 hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD); 2346 hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD); 2347 hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC); 2348 hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC); 2349 hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC); 2350 hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT); 2351 hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT); 2352 hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT); 2353 hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT); 2354 hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT); 2355 2356 if (wx->mac.type == wx_mac_sp) { 2357 hwstats->fdirmatch += rd32(wx, WX_RDB_FDIR_MATCH); 2358 hwstats->fdirmiss += rd32(wx, WX_RDB_FDIR_MISS); 2359 } 2360 2361 for (i = 0; i < wx->mac.max_rx_queues; i++) 2362 hwstats->qmprc += rd32(wx, WX_PX_MPRC(i)); 2363 } 2364 EXPORT_SYMBOL(wx_update_stats); 2365 2366 /** 2367 * wx_clear_hw_cntrs - Generic clear hardware counters 2368 * @wx: board private structure 2369 * 2370 * Clears all hardware statistics counters by reading them from the hardware 2371 * Statistics counters are clear on read. 2372 **/ 2373 void wx_clear_hw_cntrs(struct wx *wx) 2374 { 2375 u16 i = 0; 2376 2377 for (i = 0; i < wx->mac.max_rx_queues; i++) 2378 wr32(wx, WX_PX_MPRC(i), 0); 2379 2380 rd32(wx, WX_RDM_PKT_CNT); 2381 rd32(wx, WX_TDM_PKT_CNT); 2382 rd64(wx, WX_RDM_BYTE_CNT_LSB); 2383 rd32(wx, WX_TDM_BYTE_CNT_LSB); 2384 rd32(wx, WX_RDM_DRP_PKT); 2385 rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD); 2386 rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD); 2387 rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L); 2388 rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L); 2389 rd64(wx, WX_RX_MC_FRAMES_GOOD_L); 2390 rd64(wx, WX_TX_MC_FRAMES_GOOD_L); 2391 rd64(wx, WX_RX_BC_FRAMES_GOOD_L); 2392 rd64(wx, WX_TX_BC_FRAMES_GOOD_L); 2393 rd64(wx, WX_RX_CRC_ERROR_FRAMES_L); 2394 rd64(wx, WX_RX_LEN_ERROR_FRAMES_L); 2395 rd32(wx, WX_RDB_LXONTXC); 2396 rd32(wx, WX_RDB_LXOFFTXC); 2397 rd32(wx, WX_MAC_LXONOFFRXC); 2398 } 2399 EXPORT_SYMBOL(wx_clear_hw_cntrs); 2400 2401 /** 2402 * wx_start_hw - Prepare hardware for Tx/Rx 2403 * @wx: pointer to hardware structure 2404 * 2405 * Starts the hardware using the generic start_hw function 2406 * and the generation start_hw function. 2407 * Then performs revision-specific operations, if any. 2408 **/ 2409 void wx_start_hw(struct wx *wx) 2410 { 2411 int i; 2412 2413 /* Clear the VLAN filter table */ 2414 wx_clear_vfta(wx); 2415 WX_WRITE_FLUSH(wx); 2416 /* Clear the rate limiters */ 2417 for (i = 0; i < wx->mac.max_tx_queues; i++) { 2418 wr32(wx, WX_TDM_RP_IDX, i); 2419 wr32(wx, WX_TDM_RP_RATE, 0); 2420 } 2421 } 2422 EXPORT_SYMBOL(wx_start_hw); 2423 2424 MODULE_LICENSE("GPL"); 2425