xref: /linux/drivers/net/ethernet/wangxun/libwx/wx_hw.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
9 #include <linux/pci.h>
10 
11 #include "wx_type.h"
12 #include "wx_lib.h"
13 #include "wx_hw.h"
14 
15 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
16 {
17 	struct wx *wx = bus->priv;
18 	u32 command, val;
19 	int ret;
20 
21 	/* setup and write the address cycle command */
22 	command = WX_MSCA_RA(regnum) |
23 		  WX_MSCA_PA(phy_addr) |
24 		  WX_MSCA_DA(devnum);
25 	wr32(wx, WX_MSCA, command);
26 
27 	command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
28 	if (wx->mac.type == wx_mac_em)
29 		command |= WX_MDIO_CLK(6);
30 	wr32(wx, WX_MSCC, command);
31 
32 	/* wait to complete */
33 	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
34 				100000, false, wx, WX_MSCC);
35 	if (ret) {
36 		wx_err(wx, "Mdio read c22 command did not complete.\n");
37 		return ret;
38 	}
39 
40 	return (u16)rd32(wx, WX_MSCC);
41 }
42 
43 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
44 				int devnum, int regnum, u16 value)
45 {
46 	struct wx *wx = bus->priv;
47 	u32 command, val;
48 	int ret;
49 
50 	/* setup and write the address cycle command */
51 	command = WX_MSCA_RA(regnum) |
52 		  WX_MSCA_PA(phy_addr) |
53 		  WX_MSCA_DA(devnum);
54 	wr32(wx, WX_MSCA, command);
55 
56 	command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
57 	if (wx->mac.type == wx_mac_em)
58 		command |= WX_MDIO_CLK(6);
59 	wr32(wx, WX_MSCC, command);
60 
61 	/* wait to complete */
62 	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
63 				100000, false, wx, WX_MSCC);
64 	if (ret)
65 		wx_err(wx, "Mdio write c22 command did not complete.\n");
66 
67 	return ret;
68 }
69 
70 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
71 {
72 	struct wx *wx = bus->priv;
73 
74 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
75 	return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
76 }
77 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
78 
79 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
80 {
81 	struct wx *wx = bus->priv;
82 
83 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
84 	return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
85 }
86 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
87 
88 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
89 {
90 	struct wx *wx = bus->priv;
91 
92 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
93 	return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
94 }
95 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
96 
97 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
98 			     int devnum, int regnum, u16 value)
99 {
100 	struct wx *wx = bus->priv;
101 
102 	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
103 	return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
104 }
105 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
106 
107 static void wx_intr_disable(struct wx *wx, u64 qmask)
108 {
109 	u32 mask;
110 
111 	mask = (qmask & U32_MAX);
112 	if (mask)
113 		wr32(wx, WX_PX_IMS(0), mask);
114 
115 	if (wx->mac.type == wx_mac_sp) {
116 		mask = (qmask >> 32);
117 		if (mask)
118 			wr32(wx, WX_PX_IMS(1), mask);
119 	}
120 }
121 
122 void wx_intr_enable(struct wx *wx, u64 qmask)
123 {
124 	u32 mask;
125 
126 	mask = (qmask & U32_MAX);
127 	if (mask)
128 		wr32(wx, WX_PX_IMC(0), mask);
129 	if (wx->mac.type == wx_mac_sp) {
130 		mask = (qmask >> 32);
131 		if (mask)
132 			wr32(wx, WX_PX_IMC(1), mask);
133 	}
134 }
135 EXPORT_SYMBOL(wx_intr_enable);
136 
137 /**
138  * wx_irq_disable - Mask off interrupt generation on the NIC
139  * @wx: board private structure
140  **/
141 void wx_irq_disable(struct wx *wx)
142 {
143 	struct pci_dev *pdev = wx->pdev;
144 
145 	wr32(wx, WX_PX_MISC_IEN, 0);
146 	wx_intr_disable(wx, WX_INTR_ALL);
147 
148 	if (pdev->msix_enabled) {
149 		int vector;
150 
151 		for (vector = 0; vector < wx->num_q_vectors; vector++)
152 			synchronize_irq(wx->msix_q_entries[vector].vector);
153 
154 		synchronize_irq(wx->msix_entry->vector);
155 	} else {
156 		synchronize_irq(pdev->irq);
157 	}
158 }
159 EXPORT_SYMBOL(wx_irq_disable);
160 
161 /* cmd_addr is used for some special command:
162  * 1. to be sector address, when implemented erase sector command
163  * 2. to be flash address when implemented read, write flash address
164  */
165 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
166 {
167 	u32 cmd_val = 0, val = 0;
168 
169 	cmd_val = WX_SPI_CMD_CMD(cmd) |
170 		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
171 		  cmd_addr;
172 	wr32(wx, WX_SPI_CMD, cmd_val);
173 
174 	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
175 				 false, wx, WX_SPI_STATUS);
176 }
177 
178 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
179 {
180 	int ret = 0;
181 
182 	ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
183 	if (ret < 0)
184 		return ret;
185 
186 	*data = rd32(wx, WX_SPI_DATA);
187 
188 	return ret;
189 }
190 
191 int wx_check_flash_load(struct wx *hw, u32 check_bit)
192 {
193 	u32 reg = 0;
194 	int err = 0;
195 
196 	/* if there's flash existing */
197 	if (!(rd32(hw, WX_SPI_STATUS) &
198 	      WX_SPI_STATUS_FLASH_BYPASS)) {
199 		/* wait hw load flash done */
200 		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
201 					false, hw, WX_SPI_ILDR_STATUS);
202 		if (err < 0)
203 			wx_err(hw, "Check flash load timeout.\n");
204 	}
205 
206 	return err;
207 }
208 EXPORT_SYMBOL(wx_check_flash_load);
209 
210 void wx_control_hw(struct wx *wx, bool drv)
211 {
212 	/* True : Let firmware know the driver has taken over
213 	 * False : Let firmware take over control of hw
214 	 */
215 	wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
216 	      drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
217 }
218 EXPORT_SYMBOL(wx_control_hw);
219 
220 /**
221  * wx_mng_present - returns 0 when management capability is present
222  * @wx: pointer to hardware structure
223  */
224 int wx_mng_present(struct wx *wx)
225 {
226 	u32 fwsm;
227 
228 	fwsm = rd32(wx, WX_MIS_ST);
229 	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
230 		return 0;
231 	else
232 		return -EACCES;
233 }
234 EXPORT_SYMBOL(wx_mng_present);
235 
236 /* Software lock to be held while software semaphore is being accessed. */
237 static DEFINE_MUTEX(wx_sw_sync_lock);
238 
239 /**
240  *  wx_release_sw_sync - Release SW semaphore
241  *  @wx: pointer to hardware structure
242  *  @mask: Mask to specify which semaphore to release
243  *
244  *  Releases the SW semaphore for the specified
245  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
246  **/
247 static void wx_release_sw_sync(struct wx *wx, u32 mask)
248 {
249 	mutex_lock(&wx_sw_sync_lock);
250 	wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
251 	mutex_unlock(&wx_sw_sync_lock);
252 }
253 
254 /**
255  *  wx_acquire_sw_sync - Acquire SW semaphore
256  *  @wx: pointer to hardware structure
257  *  @mask: Mask to specify which semaphore to acquire
258  *
259  *  Acquires the SW semaphore for the specified
260  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
261  **/
262 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
263 {
264 	u32 sem = 0;
265 	int ret = 0;
266 
267 	mutex_lock(&wx_sw_sync_lock);
268 	ret = read_poll_timeout(rd32, sem, !(sem & mask),
269 				5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
270 	if (!ret) {
271 		sem |= mask;
272 		wr32(wx, WX_MNG_SWFW_SYNC, sem);
273 	} else {
274 		wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
275 	}
276 	mutex_unlock(&wx_sw_sync_lock);
277 
278 	return ret;
279 }
280 
281 /**
282  *  wx_host_interface_command - Issue command to manageability block
283  *  @wx: pointer to the HW structure
284  *  @buffer: contains the command to write and where the return status will
285  *   be placed
286  *  @length: length of buffer, must be multiple of 4 bytes
287  *  @timeout: time in ms to wait for command completion
288  *  @return_data: read and return data from the buffer (true) or not (false)
289  *   Needed because FW structures are big endian and decoding of
290  *   these fields can be 8 bit or 16 bit based on command. Decoding
291  *   is not easily understood without making a table of commands.
292  *   So we will leave this up to the caller to read back the data
293  *   in these cases.
294  **/
295 int wx_host_interface_command(struct wx *wx, u32 *buffer,
296 			      u32 length, u32 timeout, bool return_data)
297 {
298 	u32 hdr_size = sizeof(struct wx_hic_hdr);
299 	u32 hicr, i, bi, buf[64] = {};
300 	int status = 0;
301 	u32 dword_len;
302 	u16 buf_len;
303 
304 	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
305 		wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
306 		return -EINVAL;
307 	}
308 
309 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
310 	if (status != 0)
311 		return status;
312 
313 	/* Calculate length in DWORDs. We must be DWORD aligned */
314 	if ((length % (sizeof(u32))) != 0) {
315 		wx_err(wx, "Buffer length failure, not aligned to dword");
316 		status = -EINVAL;
317 		goto rel_out;
318 	}
319 
320 	dword_len = length >> 2;
321 
322 	/* The device driver writes the relevant command block
323 	 * into the ram area.
324 	 */
325 	for (i = 0; i < dword_len; i++) {
326 		wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
327 		/* write flush */
328 		buf[i] = rd32a(wx, WX_MNG_MBOX, i);
329 	}
330 	/* Setting this bit tells the ARC that a new command is pending. */
331 	wr32m(wx, WX_MNG_MBOX_CTL,
332 	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
333 
334 	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
335 				   timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
336 
337 	/* Check command completion */
338 	if (status) {
339 		wx_dbg(wx, "Command has failed with no status valid.\n");
340 
341 		buf[0] = rd32(wx, WX_MNG_MBOX);
342 		if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
343 			status = -EINVAL;
344 			goto rel_out;
345 		}
346 		if ((buf[0] & 0xff0000) >> 16 == 0x80) {
347 			wx_dbg(wx, "It's unknown cmd.\n");
348 			status = -EINVAL;
349 			goto rel_out;
350 		}
351 
352 		wx_dbg(wx, "write value:\n");
353 		for (i = 0; i < dword_len; i++)
354 			wx_dbg(wx, "%x ", buffer[i]);
355 		wx_dbg(wx, "read value:\n");
356 		for (i = 0; i < dword_len; i++)
357 			wx_dbg(wx, "%x ", buf[i]);
358 	}
359 
360 	if (!return_data)
361 		goto rel_out;
362 
363 	/* Calculate length in DWORDs */
364 	dword_len = hdr_size >> 2;
365 
366 	/* first pull in the header so we know the buffer length */
367 	for (bi = 0; bi < dword_len; bi++) {
368 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
369 		le32_to_cpus(&buffer[bi]);
370 	}
371 
372 	/* If there is any thing in data position pull it in */
373 	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
374 	if (buf_len == 0)
375 		goto rel_out;
376 
377 	if (length < buf_len + hdr_size) {
378 		wx_err(wx, "Buffer not large enough for reply message.\n");
379 		status = -EFAULT;
380 		goto rel_out;
381 	}
382 
383 	/* Calculate length in DWORDs, add 3 for odd lengths */
384 	dword_len = (buf_len + 3) >> 2;
385 
386 	/* Pull in the rest of the buffer (bi is where we left off) */
387 	for (; bi <= dword_len; bi++) {
388 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
389 		le32_to_cpus(&buffer[bi]);
390 	}
391 
392 rel_out:
393 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
394 	return status;
395 }
396 EXPORT_SYMBOL(wx_host_interface_command);
397 
398 /**
399  *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
400  *  assuming that the semaphore is already obtained.
401  *  @wx: pointer to hardware structure
402  *  @offset: offset of  word in the EEPROM to read
403  *  @data: word read from the EEPROM
404  *
405  *  Reads a 16 bit word from the EEPROM using the hostif.
406  **/
407 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
408 {
409 	struct wx_hic_read_shadow_ram buffer;
410 	int status;
411 
412 	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
413 	buffer.hdr.req.buf_lenh = 0;
414 	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
415 	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
416 
417 	/* convert offset from words to bytes */
418 	buffer.address = (__force u32)cpu_to_be32(offset * 2);
419 	/* one word */
420 	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
421 
422 	status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
423 					   WX_HI_COMMAND_TIMEOUT, false);
424 
425 	if (status != 0)
426 		return status;
427 
428 	*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
429 
430 	return status;
431 }
432 
433 /**
434  *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
435  *  @wx: pointer to hardware structure
436  *  @offset: offset of  word in the EEPROM to read
437  *  @data: word read from the EEPROM
438  *
439  *  Reads a 16 bit word from the EEPROM using the hostif.
440  **/
441 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
442 {
443 	int status = 0;
444 
445 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
446 	if (status == 0) {
447 		status = wx_read_ee_hostif_data(wx, offset, data);
448 		wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
449 	}
450 
451 	return status;
452 }
453 EXPORT_SYMBOL(wx_read_ee_hostif);
454 
455 /**
456  *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
457  *  @wx: pointer to hardware structure
458  *  @offset: offset of  word in the EEPROM to read
459  *  @words: number of words
460  *  @data: word(s) read from the EEPROM
461  *
462  *  Reads a 16 bit word(s) from the EEPROM using the hostif.
463  **/
464 int wx_read_ee_hostif_buffer(struct wx *wx,
465 			     u16 offset, u16 words, u16 *data)
466 {
467 	struct wx_hic_read_shadow_ram buffer;
468 	u32 current_word = 0;
469 	u16 words_to_read;
470 	u32 value = 0;
471 	int status;
472 	u32 i;
473 
474 	/* Take semaphore for the entire operation. */
475 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
476 	if (status != 0)
477 		return status;
478 
479 	while (words) {
480 		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
481 			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
482 		else
483 			words_to_read = words;
484 
485 		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
486 		buffer.hdr.req.buf_lenh = 0;
487 		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
488 		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
489 
490 		/* convert offset from words to bytes */
491 		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
492 		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
493 
494 		status = wx_host_interface_command(wx, (u32 *)&buffer,
495 						   sizeof(buffer),
496 						   WX_HI_COMMAND_TIMEOUT,
497 						   false);
498 
499 		if (status != 0) {
500 			wx_err(wx, "Host interface command failed\n");
501 			goto out;
502 		}
503 
504 		for (i = 0; i < words_to_read; i++) {
505 			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
506 
507 			value = rd32(wx, reg);
508 			data[current_word] = (u16)(value & 0xffff);
509 			current_word++;
510 			i++;
511 			if (i < words_to_read) {
512 				value >>= 16;
513 				data[current_word] = (u16)(value & 0xffff);
514 				current_word++;
515 			}
516 		}
517 		words -= words_to_read;
518 	}
519 
520 out:
521 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
522 	return status;
523 }
524 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
525 
526 /**
527  *  wx_init_eeprom_params - Initialize EEPROM params
528  *  @wx: pointer to hardware structure
529  *
530  *  Initializes the EEPROM parameters wx_eeprom_info within the
531  *  wx_hw struct in order to set up EEPROM access.
532  **/
533 void wx_init_eeprom_params(struct wx *wx)
534 {
535 	struct wx_eeprom_info *eeprom = &wx->eeprom;
536 	u16 eeprom_size;
537 	u16 data = 0x80;
538 
539 	if (eeprom->type == wx_eeprom_uninitialized) {
540 		eeprom->semaphore_delay = 10;
541 		eeprom->type = wx_eeprom_none;
542 
543 		if (!(rd32(wx, WX_SPI_STATUS) &
544 		      WX_SPI_STATUS_FLASH_BYPASS)) {
545 			eeprom->type = wx_flash;
546 
547 			eeprom_size = 4096;
548 			eeprom->word_size = eeprom_size >> 1;
549 
550 			wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
551 			       eeprom->type, eeprom->word_size);
552 		}
553 	}
554 
555 	if (wx->mac.type == wx_mac_sp) {
556 		if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
557 			wx_err(wx, "NVM Read Error\n");
558 			return;
559 		}
560 		data = data >> 1;
561 	}
562 
563 	eeprom->sw_region_offset = data;
564 }
565 EXPORT_SYMBOL(wx_init_eeprom_params);
566 
567 /**
568  *  wx_get_mac_addr - Generic get MAC address
569  *  @wx: pointer to hardware structure
570  *  @mac_addr: Adapter MAC address
571  *
572  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
573  *  A reset of the adapter must be performed prior to calling this function
574  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
575  **/
576 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
577 {
578 	u32 rar_high;
579 	u32 rar_low;
580 	u16 i;
581 
582 	wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
583 	rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
584 	rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
585 
586 	for (i = 0; i < 2; i++)
587 		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
588 
589 	for (i = 0; i < 4; i++)
590 		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
591 }
592 EXPORT_SYMBOL(wx_get_mac_addr);
593 
594 /**
595  *  wx_set_rar - Set Rx address register
596  *  @wx: pointer to hardware structure
597  *  @index: Receive address register to write
598  *  @addr: Address to put into receive address register
599  *  @pools: VMDq "set" or "pool" index
600  *  @enable_addr: set flag that address is active
601  *
602  *  Puts an ethernet address into a receive address register.
603  **/
604 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
605 		      u32 enable_addr)
606 {
607 	u32 rar_entries = wx->mac.num_rar_entries;
608 	u32 rar_low, rar_high;
609 
610 	/* Make sure we are using a valid rar index range */
611 	if (index >= rar_entries) {
612 		wx_err(wx, "RAR index %d is out of range.\n", index);
613 		return -EINVAL;
614 	}
615 
616 	/* select the MAC address */
617 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
618 
619 	/* setup VMDq pool mapping */
620 	wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
621 	if (wx->mac.type == wx_mac_sp)
622 		wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
623 
624 	/* HW expects these in little endian so we reverse the byte
625 	 * order from network order (big endian) to little endian
626 	 *
627 	 * Some parts put the VMDq setting in the extra RAH bits,
628 	 * so save everything except the lower 16 bits that hold part
629 	 * of the address and the address valid bit.
630 	 */
631 	rar_low = ((u32)addr[5] |
632 		  ((u32)addr[4] << 8) |
633 		  ((u32)addr[3] << 16) |
634 		  ((u32)addr[2] << 24));
635 	rar_high = ((u32)addr[1] |
636 		   ((u32)addr[0] << 8));
637 	if (enable_addr != 0)
638 		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
639 
640 	wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
641 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
642 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
643 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
644 	       WX_PSR_MAC_SWC_AD_H_AV),
645 	      rar_high);
646 
647 	return 0;
648 }
649 
650 /**
651  *  wx_clear_rar - Remove Rx address register
652  *  @wx: pointer to hardware structure
653  *  @index: Receive address register to write
654  *
655  *  Clears an ethernet address from a receive address register.
656  **/
657 static int wx_clear_rar(struct wx *wx, u32 index)
658 {
659 	u32 rar_entries = wx->mac.num_rar_entries;
660 
661 	/* Make sure we are using a valid rar index range */
662 	if (index >= rar_entries) {
663 		wx_err(wx, "RAR index %d is out of range.\n", index);
664 		return -EINVAL;
665 	}
666 
667 	/* Some parts put the VMDq setting in the extra RAH bits,
668 	 * so save everything except the lower 16 bits that hold part
669 	 * of the address and the address valid bit.
670 	 */
671 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
672 
673 	wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
674 	wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
675 
676 	wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
677 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
678 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
679 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
680 	       WX_PSR_MAC_SWC_AD_H_AV),
681 	      0);
682 
683 	return 0;
684 }
685 
686 /**
687  *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
688  *  @wx: pointer to hardware struct
689  *  @rar: receive address register index to disassociate
690  *  @vmdq: VMDq pool index to remove from the rar
691  **/
692 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
693 {
694 	u32 rar_entries = wx->mac.num_rar_entries;
695 	u32 mpsar_lo, mpsar_hi;
696 
697 	/* Make sure we are using a valid rar index range */
698 	if (rar >= rar_entries) {
699 		wx_err(wx, "RAR index %d is out of range.\n", rar);
700 		return -EINVAL;
701 	}
702 
703 	wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
704 	mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
705 	mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
706 
707 	if (!mpsar_lo && !mpsar_hi)
708 		return 0;
709 
710 	/* was that the last pool using this rar? */
711 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
712 		wx_clear_rar(wx, rar);
713 
714 	return 0;
715 }
716 
717 /**
718  *  wx_init_uta_tables - Initialize the Unicast Table Array
719  *  @wx: pointer to hardware structure
720  **/
721 static void wx_init_uta_tables(struct wx *wx)
722 {
723 	int i;
724 
725 	wx_dbg(wx, " Clearing UTA\n");
726 
727 	for (i = 0; i < 128; i++)
728 		wr32(wx, WX_PSR_UC_TBL(i), 0);
729 }
730 
731 /**
732  *  wx_init_rx_addrs - Initializes receive address filters.
733  *  @wx: pointer to hardware structure
734  *
735  *  Places the MAC address in receive address register 0 and clears the rest
736  *  of the receive address registers. Clears the multicast table. Assumes
737  *  the receiver is in reset when the routine is called.
738  **/
739 void wx_init_rx_addrs(struct wx *wx)
740 {
741 	u32 rar_entries = wx->mac.num_rar_entries;
742 	u32 psrctl;
743 	int i;
744 
745 	/* If the current mac address is valid, assume it is a software override
746 	 * to the permanent address.
747 	 * Otherwise, use the permanent address from the eeprom.
748 	 */
749 	if (!is_valid_ether_addr(wx->mac.addr)) {
750 		/* Get the MAC address from the RAR0 for later reference */
751 		wx_get_mac_addr(wx, wx->mac.addr);
752 		wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
753 	} else {
754 		/* Setup the receive address. */
755 		wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
756 		wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
757 
758 		wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
759 
760 		if (wx->mac.type == wx_mac_sp) {
761 			/* clear VMDq pool/queue selection for RAR 0 */
762 			wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
763 		}
764 	}
765 
766 	/* Zero out the other receive addresses. */
767 	wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
768 	for (i = 1; i < rar_entries; i++) {
769 		wr32(wx, WX_PSR_MAC_SWC_IDX, i);
770 		wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
771 		wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
772 	}
773 
774 	/* Clear the MTA */
775 	wx->addr_ctrl.mta_in_use = 0;
776 	psrctl = rd32(wx, WX_PSR_CTL);
777 	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
778 	psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
779 	wr32(wx, WX_PSR_CTL, psrctl);
780 	wx_dbg(wx, " Clearing MTA\n");
781 	for (i = 0; i < wx->mac.mcft_size; i++)
782 		wr32(wx, WX_PSR_MC_TBL(i), 0);
783 
784 	wx_init_uta_tables(wx);
785 }
786 EXPORT_SYMBOL(wx_init_rx_addrs);
787 
788 static void wx_sync_mac_table(struct wx *wx)
789 {
790 	int i;
791 
792 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
793 		if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
794 			if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
795 				wx_set_rar(wx, i,
796 					   wx->mac_table[i].addr,
797 					   wx->mac_table[i].pools,
798 					   WX_PSR_MAC_SWC_AD_H_AV);
799 			} else {
800 				wx_clear_rar(wx, i);
801 			}
802 			wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
803 		}
804 	}
805 }
806 
807 /* this function destroys the first RAR entry */
808 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
809 {
810 	memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
811 	wx->mac_table[0].pools = 1ULL;
812 	wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
813 	wx_set_rar(wx, 0, wx->mac_table[0].addr,
814 		   wx->mac_table[0].pools,
815 		   WX_PSR_MAC_SWC_AD_H_AV);
816 }
817 EXPORT_SYMBOL(wx_mac_set_default_filter);
818 
819 void wx_flush_sw_mac_table(struct wx *wx)
820 {
821 	u32 i;
822 
823 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
824 		if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
825 			continue;
826 
827 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
828 		wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
829 		memset(wx->mac_table[i].addr, 0, ETH_ALEN);
830 		wx->mac_table[i].pools = 0;
831 	}
832 	wx_sync_mac_table(wx);
833 }
834 EXPORT_SYMBOL(wx_flush_sw_mac_table);
835 
836 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
837 {
838 	u32 i;
839 
840 	if (is_zero_ether_addr(addr))
841 		return -EINVAL;
842 
843 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
844 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
845 			if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
846 				if (wx->mac_table[i].pools != (1ULL << pool)) {
847 					memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
848 					wx->mac_table[i].pools |= (1ULL << pool);
849 					wx_sync_mac_table(wx);
850 					return i;
851 				}
852 			}
853 		}
854 
855 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
856 			continue;
857 		wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
858 					   WX_MAC_STATE_IN_USE);
859 		memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
860 		wx->mac_table[i].pools |= (1ULL << pool);
861 		wx_sync_mac_table(wx);
862 		return i;
863 	}
864 	return -ENOMEM;
865 }
866 
867 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
868 {
869 	u32 i;
870 
871 	if (is_zero_ether_addr(addr))
872 		return -EINVAL;
873 
874 	/* search table for addr, if found, set to 0 and sync */
875 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
876 		if (!ether_addr_equal(addr, wx->mac_table[i].addr))
877 			continue;
878 
879 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
880 		wx->mac_table[i].pools &= ~(1ULL << pool);
881 		if (!wx->mac_table[i].pools) {
882 			wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
883 			memset(wx->mac_table[i].addr, 0, ETH_ALEN);
884 		}
885 		wx_sync_mac_table(wx);
886 		return 0;
887 	}
888 	return -ENOMEM;
889 }
890 
891 static int wx_available_rars(struct wx *wx)
892 {
893 	u32 i, count = 0;
894 
895 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
896 		if (wx->mac_table[i].state == 0)
897 			count++;
898 	}
899 
900 	return count;
901 }
902 
903 /**
904  * wx_write_uc_addr_list - write unicast addresses to RAR table
905  * @netdev: network interface device structure
906  * @pool: index for mac table
907  *
908  * Writes unicast address list to the RAR table.
909  * Returns: -ENOMEM on failure/insufficient address space
910  *                0 on no addresses written
911  *                X on writing X addresses to the RAR table
912  **/
913 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
914 {
915 	struct wx *wx = netdev_priv(netdev);
916 	int count = 0;
917 
918 	/* return ENOMEM indicating insufficient memory for addresses */
919 	if (netdev_uc_count(netdev) > wx_available_rars(wx))
920 		return -ENOMEM;
921 
922 	if (!netdev_uc_empty(netdev)) {
923 		struct netdev_hw_addr *ha;
924 
925 		netdev_for_each_uc_addr(ha, netdev) {
926 			wx_del_mac_filter(wx, ha->addr, pool);
927 			wx_add_mac_filter(wx, ha->addr, pool);
928 			count++;
929 		}
930 	}
931 	return count;
932 }
933 
934 /**
935  *  wx_mta_vector - Determines bit-vector in multicast table to set
936  *  @wx: pointer to private structure
937  *  @mc_addr: the multicast address
938  *
939  *  Extracts the 12 bits, from a multicast address, to determine which
940  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
941  *  incoming rx multicast addresses, to determine the bit-vector to check in
942  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
943  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
944  *  to mc_filter_type.
945  **/
946 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
947 {
948 	u32 vector = 0;
949 
950 	switch (wx->mac.mc_filter_type) {
951 	case 0:   /* use bits [47:36] of the address */
952 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
953 		break;
954 	case 1:   /* use bits [46:35] of the address */
955 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
956 		break;
957 	case 2:   /* use bits [45:34] of the address */
958 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
959 		break;
960 	case 3:   /* use bits [43:32] of the address */
961 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
962 		break;
963 	default:  /* Invalid mc_filter_type */
964 		wx_err(wx, "MC filter type param set incorrectly\n");
965 		break;
966 	}
967 
968 	/* vector can only be 12-bits or boundary will be exceeded */
969 	vector &= 0xFFF;
970 	return vector;
971 }
972 
973 /**
974  *  wx_set_mta - Set bit-vector in multicast table
975  *  @wx: pointer to private structure
976  *  @mc_addr: Multicast address
977  *
978  *  Sets the bit-vector in the multicast table.
979  **/
980 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
981 {
982 	u32 vector, vector_bit, vector_reg;
983 
984 	wx->addr_ctrl.mta_in_use++;
985 
986 	vector = wx_mta_vector(wx, mc_addr);
987 	wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
988 
989 	/* The MTA is a register array of 128 32-bit registers. It is treated
990 	 * like an array of 4096 bits.  We want to set bit
991 	 * BitArray[vector_value]. So we figure out what register the bit is
992 	 * in, read it, OR in the new bit, then write back the new value.  The
993 	 * register is determined by the upper 7 bits of the vector value and
994 	 * the bit within that register are determined by the lower 5 bits of
995 	 * the value.
996 	 */
997 	vector_reg = (vector >> 5) & 0x7F;
998 	vector_bit = vector & 0x1F;
999 	wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1000 }
1001 
1002 /**
1003  *  wx_update_mc_addr_list - Updates MAC list of multicast addresses
1004  *  @wx: pointer to private structure
1005  *  @netdev: pointer to net device structure
1006  *
1007  *  The given list replaces any existing list. Clears the MC addrs from receive
1008  *  address registers and the multicast table. Uses unused receive address
1009  *  registers for the first multicast addresses, and hashes the rest into the
1010  *  multicast table.
1011  **/
1012 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1013 {
1014 	struct netdev_hw_addr *ha;
1015 	u32 i, psrctl;
1016 
1017 	/* Set the new number of MC addresses that we are being requested to
1018 	 * use.
1019 	 */
1020 	wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1021 	wx->addr_ctrl.mta_in_use = 0;
1022 
1023 	/* Clear mta_shadow */
1024 	wx_dbg(wx, " Clearing MTA\n");
1025 	memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1026 
1027 	/* Update mta_shadow */
1028 	netdev_for_each_mc_addr(ha, netdev) {
1029 		wx_dbg(wx, " Adding the multicast addresses:\n");
1030 		wx_set_mta(wx, ha->addr);
1031 	}
1032 
1033 	/* Enable mta */
1034 	for (i = 0; i < wx->mac.mcft_size; i++)
1035 		wr32a(wx, WX_PSR_MC_TBL(0), i,
1036 		      wx->mac.mta_shadow[i]);
1037 
1038 	if (wx->addr_ctrl.mta_in_use > 0) {
1039 		psrctl = rd32(wx, WX_PSR_CTL);
1040 		psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1041 		psrctl |= WX_PSR_CTL_MFE |
1042 			  (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1043 		wr32(wx, WX_PSR_CTL, psrctl);
1044 	}
1045 
1046 	wx_dbg(wx, "Update mc addr list Complete\n");
1047 }
1048 
1049 /**
1050  * wx_write_mc_addr_list - write multicast addresses to MTA
1051  * @netdev: network interface device structure
1052  *
1053  * Writes multicast address list to the MTA hash table.
1054  * Returns: 0 on no addresses written
1055  *          X on writing X addresses to MTA
1056  **/
1057 static int wx_write_mc_addr_list(struct net_device *netdev)
1058 {
1059 	struct wx *wx = netdev_priv(netdev);
1060 
1061 	if (!netif_running(netdev))
1062 		return 0;
1063 
1064 	wx_update_mc_addr_list(wx, netdev);
1065 
1066 	return netdev_mc_count(netdev);
1067 }
1068 
1069 /**
1070  * wx_set_mac - Change the Ethernet Address of the NIC
1071  * @netdev: network interface device structure
1072  * @p: pointer to an address structure
1073  *
1074  * Returns 0 on success, negative on failure
1075  **/
1076 int wx_set_mac(struct net_device *netdev, void *p)
1077 {
1078 	struct wx *wx = netdev_priv(netdev);
1079 	struct sockaddr *addr = p;
1080 	int retval;
1081 
1082 	retval = eth_prepare_mac_addr_change(netdev, addr);
1083 	if (retval)
1084 		return retval;
1085 
1086 	wx_del_mac_filter(wx, wx->mac.addr, 0);
1087 	eth_hw_addr_set(netdev, addr->sa_data);
1088 	memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1089 
1090 	wx_mac_set_default_filter(wx, wx->mac.addr);
1091 
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL(wx_set_mac);
1095 
1096 void wx_disable_rx(struct wx *wx)
1097 {
1098 	u32 pfdtxgswc;
1099 	u32 rxctrl;
1100 
1101 	rxctrl = rd32(wx, WX_RDB_PB_CTL);
1102 	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1103 		pfdtxgswc = rd32(wx, WX_PSR_CTL);
1104 		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1105 			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1106 			wr32(wx, WX_PSR_CTL, pfdtxgswc);
1107 			wx->mac.set_lben = true;
1108 		} else {
1109 			wx->mac.set_lben = false;
1110 		}
1111 		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1112 		wr32(wx, WX_RDB_PB_CTL, rxctrl);
1113 
1114 		if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1115 		      ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1116 			/* disable mac receiver */
1117 			wr32m(wx, WX_MAC_RX_CFG,
1118 			      WX_MAC_RX_CFG_RE, 0);
1119 		}
1120 	}
1121 }
1122 EXPORT_SYMBOL(wx_disable_rx);
1123 
1124 static void wx_enable_rx(struct wx *wx)
1125 {
1126 	u32 psrctl;
1127 
1128 	/* enable mac receiver */
1129 	wr32m(wx, WX_MAC_RX_CFG,
1130 	      WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1131 
1132 	wr32m(wx, WX_RDB_PB_CTL,
1133 	      WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1134 
1135 	if (wx->mac.set_lben) {
1136 		psrctl = rd32(wx, WX_PSR_CTL);
1137 		psrctl |= WX_PSR_CTL_SW_EN;
1138 		wr32(wx, WX_PSR_CTL, psrctl);
1139 		wx->mac.set_lben = false;
1140 	}
1141 }
1142 
1143 /**
1144  * wx_set_rxpba - Initialize Rx packet buffer
1145  * @wx: pointer to private structure
1146  **/
1147 static void wx_set_rxpba(struct wx *wx)
1148 {
1149 	u32 rxpktsize, txpktsize, txpbthresh;
1150 
1151 	rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1152 	wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1153 
1154 	/* Only support an equally distributed Tx packet buffer strategy. */
1155 	txpktsize = wx->mac.tx_pb_size;
1156 	txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1157 	wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1158 	wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1159 }
1160 
1161 #define WX_ETH_FRAMING 20
1162 
1163 /**
1164  * wx_hpbthresh - calculate high water mark for flow control
1165  *
1166  * @wx: board private structure to calculate for
1167  **/
1168 static int wx_hpbthresh(struct wx *wx)
1169 {
1170 	struct net_device *dev = wx->netdev;
1171 	int link, tc, kb, marker;
1172 	u32 dv_id, rx_pba;
1173 
1174 	/* Calculate max LAN frame size */
1175 	link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1176 	tc = link;
1177 
1178 	/* Calculate delay value for device */
1179 	dv_id = WX_DV(link, tc);
1180 
1181 	/* Delay value is calculated in bit times convert to KB */
1182 	kb = WX_BT2KB(dv_id);
1183 	rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1184 
1185 	marker = rx_pba - kb;
1186 
1187 	/* It is possible that the packet buffer is not large enough
1188 	 * to provide required headroom. In this case throw an error
1189 	 * to user and a do the best we can.
1190 	 */
1191 	if (marker < 0) {
1192 		dev_warn(&wx->pdev->dev,
1193 			 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1194 		marker = tc + 1;
1195 	}
1196 
1197 	return marker;
1198 }
1199 
1200 /**
1201  * wx_lpbthresh - calculate low water mark for flow control
1202  *
1203  * @wx: board private structure to calculate for
1204  **/
1205 static int wx_lpbthresh(struct wx *wx)
1206 {
1207 	struct net_device *dev = wx->netdev;
1208 	u32 dv_id;
1209 	int tc;
1210 
1211 	/* Calculate max LAN frame size */
1212 	tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1213 
1214 	/* Calculate delay value for device */
1215 	dv_id = WX_LOW_DV(tc);
1216 
1217 	/* Delay value is calculated in bit times convert to KB */
1218 	return WX_BT2KB(dv_id);
1219 }
1220 
1221 /**
1222  * wx_pbthresh_setup - calculate and setup high low water marks
1223  *
1224  * @wx: board private structure to calculate for
1225  **/
1226 static void wx_pbthresh_setup(struct wx *wx)
1227 {
1228 	wx->fc.high_water = wx_hpbthresh(wx);
1229 	wx->fc.low_water = wx_lpbthresh(wx);
1230 
1231 	/* Low water marks must not be larger than high water marks */
1232 	if (wx->fc.low_water > wx->fc.high_water)
1233 		wx->fc.low_water = 0;
1234 }
1235 
1236 static void wx_configure_port(struct wx *wx)
1237 {
1238 	u32 value, i;
1239 
1240 	value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1241 	wr32m(wx, WX_CFG_PORT_CTL,
1242 	      WX_CFG_PORT_CTL_D_VLAN |
1243 	      WX_CFG_PORT_CTL_QINQ,
1244 	      value);
1245 
1246 	wr32(wx, WX_CFG_TAG_TPID(0),
1247 	     ETH_P_8021Q | ETH_P_8021AD << 16);
1248 	wx->tpid[0] = ETH_P_8021Q;
1249 	wx->tpid[1] = ETH_P_8021AD;
1250 	for (i = 1; i < 4; i++)
1251 		wr32(wx, WX_CFG_TAG_TPID(i),
1252 		     ETH_P_8021Q | ETH_P_8021Q << 16);
1253 	for (i = 2; i < 8; i++)
1254 		wx->tpid[i] = ETH_P_8021Q;
1255 }
1256 
1257 /**
1258  *  wx_disable_sec_rx_path - Stops the receive data path
1259  *  @wx: pointer to private structure
1260  *
1261  *  Stops the receive data path and waits for the HW to internally empty
1262  *  the Rx security block
1263  **/
1264 static int wx_disable_sec_rx_path(struct wx *wx)
1265 {
1266 	u32 secrx;
1267 
1268 	wr32m(wx, WX_RSC_CTL,
1269 	      WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1270 
1271 	return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1272 				 1000, 40000, false, wx, WX_RSC_ST);
1273 }
1274 
1275 /**
1276  *  wx_enable_sec_rx_path - Enables the receive data path
1277  *  @wx: pointer to private structure
1278  *
1279  *  Enables the receive data path.
1280  **/
1281 static void wx_enable_sec_rx_path(struct wx *wx)
1282 {
1283 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1284 	WX_WRITE_FLUSH(wx);
1285 }
1286 
1287 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1288 {
1289 	int i, j;
1290 
1291 	for (i = 0; i < wx->num_rx_queues; i++) {
1292 		struct wx_ring *ring = wx->rx_ring[i];
1293 
1294 		j = ring->reg_idx;
1295 		wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1296 		      enable ? WX_PX_RR_CFG_VLAN : 0);
1297 	}
1298 }
1299 
1300 void wx_set_rx_mode(struct net_device *netdev)
1301 {
1302 	struct wx *wx = netdev_priv(netdev);
1303 	netdev_features_t features;
1304 	u32 fctrl, vmolr, vlnctrl;
1305 	int count;
1306 
1307 	features = netdev->features;
1308 
1309 	/* Check for Promiscuous and All Multicast modes */
1310 	fctrl = rd32(wx, WX_PSR_CTL);
1311 	fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1312 	vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1313 	vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1314 		   WX_PSR_VM_L2CTL_MPE |
1315 		   WX_PSR_VM_L2CTL_ROPE |
1316 		   WX_PSR_VM_L2CTL_ROMPE);
1317 	vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1318 	vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1319 
1320 	/* set all bits that we expect to always be set */
1321 	fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1322 	vmolr |= WX_PSR_VM_L2CTL_BAM |
1323 		 WX_PSR_VM_L2CTL_AUPE |
1324 		 WX_PSR_VM_L2CTL_VACC;
1325 	vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1326 
1327 	wx->addr_ctrl.user_set_promisc = false;
1328 	if (netdev->flags & IFF_PROMISC) {
1329 		wx->addr_ctrl.user_set_promisc = true;
1330 		fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1331 		/* pf don't want packets routing to vf, so clear UPE */
1332 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1333 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1334 	}
1335 
1336 	if (netdev->flags & IFF_ALLMULTI) {
1337 		fctrl |= WX_PSR_CTL_MPE;
1338 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1339 	}
1340 
1341 	if (netdev->features & NETIF_F_RXALL) {
1342 		vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1343 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1344 		/* receive bad packets */
1345 		wr32m(wx, WX_RSC_CTL,
1346 		      WX_RSC_CTL_SAVE_MAC_ERR,
1347 		      WX_RSC_CTL_SAVE_MAC_ERR);
1348 	} else {
1349 		vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1350 	}
1351 
1352 	/* Write addresses to available RAR registers, if there is not
1353 	 * sufficient space to store all the addresses then enable
1354 	 * unicast promiscuous mode
1355 	 */
1356 	count = wx_write_uc_addr_list(netdev, 0);
1357 	if (count < 0) {
1358 		vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1359 		vmolr |= WX_PSR_VM_L2CTL_UPE;
1360 	}
1361 
1362 	/* Write addresses to the MTA, if the attempt fails
1363 	 * then we should just turn on promiscuous mode so
1364 	 * that we can at least receive multicast traffic
1365 	 */
1366 	count = wx_write_mc_addr_list(netdev);
1367 	if (count < 0) {
1368 		vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1369 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1370 	}
1371 
1372 	wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1373 	wr32(wx, WX_PSR_CTL, fctrl);
1374 	wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1375 
1376 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1377 	    (features & NETIF_F_HW_VLAN_STAG_RX))
1378 		wx_vlan_strip_control(wx, true);
1379 	else
1380 		wx_vlan_strip_control(wx, false);
1381 
1382 }
1383 EXPORT_SYMBOL(wx_set_rx_mode);
1384 
1385 static void wx_set_rx_buffer_len(struct wx *wx)
1386 {
1387 	struct net_device *netdev = wx->netdev;
1388 	u32 mhadd, max_frame;
1389 
1390 	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1391 	/* adjust max frame to be at least the size of a standard frame */
1392 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1393 		max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1394 
1395 	mhadd = rd32(wx, WX_PSR_MAX_SZ);
1396 	if (max_frame != mhadd)
1397 		wr32(wx, WX_PSR_MAX_SZ, max_frame);
1398 }
1399 
1400 /**
1401  * wx_change_mtu - Change the Maximum Transfer Unit
1402  * @netdev: network interface device structure
1403  * @new_mtu: new value for maximum frame size
1404  *
1405  * Returns 0 on success, negative on failure
1406  **/
1407 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1408 {
1409 	struct wx *wx = netdev_priv(netdev);
1410 
1411 	netdev->mtu = new_mtu;
1412 	wx_set_rx_buffer_len(wx);
1413 
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL(wx_change_mtu);
1417 
1418 /* Disable the specified rx queue */
1419 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1420 {
1421 	u8 reg_idx = ring->reg_idx;
1422 	u32 rxdctl;
1423 	int ret;
1424 
1425 	/* write value back with RRCFG.EN bit cleared */
1426 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1427 	      WX_PX_RR_CFG_RR_EN, 0);
1428 
1429 	/* the hardware may take up to 100us to really disable the rx queue */
1430 	ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1431 				10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1432 
1433 	if (ret == -ETIMEDOUT) {
1434 		/* Just for information */
1435 		wx_err(wx,
1436 		       "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1437 		       reg_idx);
1438 	}
1439 }
1440 EXPORT_SYMBOL(wx_disable_rx_queue);
1441 
1442 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1443 {
1444 	u8 reg_idx = ring->reg_idx;
1445 	u32 rxdctl;
1446 	int ret;
1447 
1448 	ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1449 				1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1450 
1451 	if (ret == -ETIMEDOUT) {
1452 		/* Just for information */
1453 		wx_err(wx,
1454 		       "RRCFG.EN on Rx queue %d not set within the polling period\n",
1455 		       reg_idx);
1456 	}
1457 }
1458 
1459 static void wx_configure_srrctl(struct wx *wx,
1460 				struct wx_ring *rx_ring)
1461 {
1462 	u16 reg_idx = rx_ring->reg_idx;
1463 	u32 srrctl;
1464 
1465 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1466 	srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1467 		    WX_PX_RR_CFG_RR_BUF_SZ |
1468 		    WX_PX_RR_CFG_SPLIT_MODE);
1469 	/* configure header buffer length, needed for RSC */
1470 	srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1471 
1472 	/* configure the packet buffer length */
1473 	srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1474 
1475 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1476 }
1477 
1478 static void wx_configure_tx_ring(struct wx *wx,
1479 				 struct wx_ring *ring)
1480 {
1481 	u32 txdctl = WX_PX_TR_CFG_ENABLE;
1482 	u8 reg_idx = ring->reg_idx;
1483 	u64 tdba = ring->dma;
1484 	int ret;
1485 
1486 	/* disable queue to avoid issues while updating state */
1487 	wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1488 	WX_WRITE_FLUSH(wx);
1489 
1490 	wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1491 	wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1492 
1493 	/* reset head and tail pointers */
1494 	wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1495 	wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1496 	ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1497 
1498 	if (ring->count < WX_MAX_TXD)
1499 		txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1500 	txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1501 
1502 	/* reinitialize tx_buffer_info */
1503 	memset(ring->tx_buffer_info, 0,
1504 	       sizeof(struct wx_tx_buffer) * ring->count);
1505 
1506 	/* enable queue */
1507 	wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1508 
1509 	/* poll to verify queue is enabled */
1510 	ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1511 				1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1512 	if (ret == -ETIMEDOUT)
1513 		wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1514 }
1515 
1516 static void wx_configure_rx_ring(struct wx *wx,
1517 				 struct wx_ring *ring)
1518 {
1519 	u16 reg_idx = ring->reg_idx;
1520 	union wx_rx_desc *rx_desc;
1521 	u64 rdba = ring->dma;
1522 	u32 rxdctl;
1523 
1524 	/* disable queue to avoid issues while updating state */
1525 	rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1526 	wx_disable_rx_queue(wx, ring);
1527 
1528 	wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1529 	wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1530 
1531 	if (ring->count == WX_MAX_RXD)
1532 		rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1533 	else
1534 		rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1535 
1536 	rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1537 	wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1538 
1539 	/* reset head and tail pointers */
1540 	wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1541 	wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1542 	ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1543 
1544 	wx_configure_srrctl(wx, ring);
1545 
1546 	/* initialize rx_buffer_info */
1547 	memset(ring->rx_buffer_info, 0,
1548 	       sizeof(struct wx_rx_buffer) * ring->count);
1549 
1550 	/* initialize Rx descriptor 0 */
1551 	rx_desc = WX_RX_DESC(ring, 0);
1552 	rx_desc->wb.upper.length = 0;
1553 
1554 	/* enable receive descriptor ring */
1555 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1556 	      WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1557 
1558 	wx_enable_rx_queue(wx, ring);
1559 	wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1560 }
1561 
1562 /**
1563  * wx_configure_tx - Configure Transmit Unit after Reset
1564  * @wx: pointer to private structure
1565  *
1566  * Configure the Tx unit of the MAC after a reset.
1567  **/
1568 static void wx_configure_tx(struct wx *wx)
1569 {
1570 	u32 i;
1571 
1572 	/* TDM_CTL.TE must be before Tx queues are enabled */
1573 	wr32m(wx, WX_TDM_CTL,
1574 	      WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1575 
1576 	/* Setup the HW Tx Head and Tail descriptor pointers */
1577 	for (i = 0; i < wx->num_tx_queues; i++)
1578 		wx_configure_tx_ring(wx, wx->tx_ring[i]);
1579 
1580 	wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1581 
1582 	if (wx->mac.type == wx_mac_em)
1583 		wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1584 
1585 	/* enable mac transmitter */
1586 	wr32m(wx, WX_MAC_TX_CFG,
1587 	      WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1588 }
1589 
1590 static void wx_restore_vlan(struct wx *wx)
1591 {
1592 	u16 vid = 1;
1593 
1594 	wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1595 
1596 	for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1597 		wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1598 }
1599 
1600 static void wx_store_reta(struct wx *wx)
1601 {
1602 	u8 *indir_tbl = wx->rss_indir_tbl;
1603 	u32 reta = 0;
1604 	u32 i;
1605 
1606 	/* Fill out the redirection table as follows:
1607 	 *  - 8 bit wide entries containing 4 bit RSS index
1608 	 */
1609 	for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
1610 		reta |= indir_tbl[i] << (i & 0x3) * 8;
1611 		if ((i & 3) == 3) {
1612 			wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
1613 			reta = 0;
1614 		}
1615 	}
1616 }
1617 
1618 static void wx_setup_reta(struct wx *wx)
1619 {
1620 	u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
1621 	u32 random_key_size = WX_RSS_KEY_SIZE / 4;
1622 	u32 i, j;
1623 
1624 	/* Fill out hash function seeds */
1625 	for (i = 0; i < random_key_size; i++)
1626 		wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
1627 
1628 	/* Fill out redirection table */
1629 	memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
1630 
1631 	for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
1632 		if (j == rss_i)
1633 			j = 0;
1634 
1635 		wx->rss_indir_tbl[i] = j;
1636 	}
1637 
1638 	wx_store_reta(wx);
1639 }
1640 
1641 static void wx_setup_mrqc(struct wx *wx)
1642 {
1643 	u32 rss_field = 0;
1644 
1645 	/* Disable indicating checksum in descriptor, enables RSS hash */
1646 	wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
1647 
1648 	/* Perform hash on these packet types */
1649 	rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
1650 		    WX_RDB_RA_CTL_RSS_IPV4_TCP |
1651 		    WX_RDB_RA_CTL_RSS_IPV4_UDP |
1652 		    WX_RDB_RA_CTL_RSS_IPV6 |
1653 		    WX_RDB_RA_CTL_RSS_IPV6_TCP |
1654 		    WX_RDB_RA_CTL_RSS_IPV6_UDP;
1655 
1656 	netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
1657 
1658 	wx_setup_reta(wx);
1659 
1660 	if (wx->rss_enabled)
1661 		rss_field |= WX_RDB_RA_CTL_RSS_EN;
1662 
1663 	wr32(wx, WX_RDB_RA_CTL, rss_field);
1664 }
1665 
1666 /**
1667  * wx_configure_rx - Configure Receive Unit after Reset
1668  * @wx: pointer to private structure
1669  *
1670  * Configure the Rx unit of the MAC after a reset.
1671  **/
1672 void wx_configure_rx(struct wx *wx)
1673 {
1674 	u32 psrtype, i;
1675 	int ret;
1676 
1677 	wx_disable_rx(wx);
1678 
1679 	psrtype = WX_RDB_PL_CFG_L4HDR |
1680 		  WX_RDB_PL_CFG_L3HDR |
1681 		  WX_RDB_PL_CFG_L2HDR |
1682 		  WX_RDB_PL_CFG_TUN_TUNHDR;
1683 	wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1684 
1685 	/* enable hw crc stripping */
1686 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1687 
1688 	if (wx->mac.type == wx_mac_sp) {
1689 		u32 psrctl;
1690 
1691 		/* RSC Setup */
1692 		psrctl = rd32(wx, WX_PSR_CTL);
1693 		psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1694 		psrctl |= WX_PSR_CTL_RSC_DIS;
1695 		wr32(wx, WX_PSR_CTL, psrctl);
1696 	}
1697 
1698 	wx_setup_mrqc(wx);
1699 
1700 	/* set_rx_buffer_len must be called before ring initialization */
1701 	wx_set_rx_buffer_len(wx);
1702 
1703 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1704 	 * the Base and Length of the Rx Descriptor Ring
1705 	 */
1706 	for (i = 0; i < wx->num_rx_queues; i++)
1707 		wx_configure_rx_ring(wx, wx->rx_ring[i]);
1708 
1709 	/* Enable all receives, disable security engine prior to block traffic */
1710 	ret = wx_disable_sec_rx_path(wx);
1711 	if (ret < 0)
1712 		wx_err(wx, "The register status is abnormal, please check device.");
1713 
1714 	wx_enable_rx(wx);
1715 	wx_enable_sec_rx_path(wx);
1716 }
1717 EXPORT_SYMBOL(wx_configure_rx);
1718 
1719 static void wx_configure_isb(struct wx *wx)
1720 {
1721 	/* set ISB Address */
1722 	wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1723 	if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1724 		wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1725 }
1726 
1727 void wx_configure(struct wx *wx)
1728 {
1729 	wx_set_rxpba(wx);
1730 	wx_pbthresh_setup(wx);
1731 	wx_configure_port(wx);
1732 
1733 	wx_set_rx_mode(wx->netdev);
1734 	wx_restore_vlan(wx);
1735 	wx_enable_sec_rx_path(wx);
1736 
1737 	wx_configure_tx(wx);
1738 	wx_configure_rx(wx);
1739 	wx_configure_isb(wx);
1740 }
1741 EXPORT_SYMBOL(wx_configure);
1742 
1743 /**
1744  *  wx_disable_pcie_master - Disable PCI-express master access
1745  *  @wx: pointer to hardware structure
1746  *
1747  *  Disables PCI-Express master access and verifies there are no pending
1748  *  requests.
1749  **/
1750 int wx_disable_pcie_master(struct wx *wx)
1751 {
1752 	int status = 0;
1753 	u32 val;
1754 
1755 	/* Always set this bit to ensure any future transactions are blocked */
1756 	pci_clear_master(wx->pdev);
1757 
1758 	/* Exit if master requests are blocked */
1759 	if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1760 		return 0;
1761 
1762 	/* Poll for master request bit to clear */
1763 	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1764 				   false, wx, WX_PX_TRANSACTION_PENDING);
1765 	if (status < 0)
1766 		wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1767 
1768 	return status;
1769 }
1770 EXPORT_SYMBOL(wx_disable_pcie_master);
1771 
1772 /**
1773  *  wx_stop_adapter - Generic stop Tx/Rx units
1774  *  @wx: pointer to hardware structure
1775  *
1776  *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1777  *  disables transmit and receive units. The adapter_stopped flag is used by
1778  *  the shared code and drivers to determine if the adapter is in a stopped
1779  *  state and should not touch the hardware.
1780  **/
1781 int wx_stop_adapter(struct wx *wx)
1782 {
1783 	u16 i;
1784 
1785 	/* Set the adapter_stopped flag so other driver functions stop touching
1786 	 * the hardware
1787 	 */
1788 	wx->adapter_stopped = true;
1789 
1790 	/* Disable the receive unit */
1791 	wx_disable_rx(wx);
1792 
1793 	/* Set interrupt mask to stop interrupts from being generated */
1794 	wx_intr_disable(wx, WX_INTR_ALL);
1795 
1796 	/* Clear any pending interrupts, flush previous writes */
1797 	wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1798 	wr32(wx, WX_BME_CTL, 0x3);
1799 
1800 	/* Disable the transmit unit.  Each queue must be disabled. */
1801 	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1802 		wr32m(wx, WX_PX_TR_CFG(i),
1803 		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1804 		      WX_PX_TR_CFG_SWFLSH);
1805 	}
1806 
1807 	/* Disable the receive unit by stopping each queue */
1808 	for (i = 0; i < wx->mac.max_rx_queues; i++) {
1809 		wr32m(wx, WX_PX_RR_CFG(i),
1810 		      WX_PX_RR_CFG_RR_EN, 0);
1811 	}
1812 
1813 	/* flush all queues disables */
1814 	WX_WRITE_FLUSH(wx);
1815 
1816 	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
1817 	 * access and verify no pending requests
1818 	 */
1819 	return wx_disable_pcie_master(wx);
1820 }
1821 EXPORT_SYMBOL(wx_stop_adapter);
1822 
1823 void wx_reset_misc(struct wx *wx)
1824 {
1825 	int i;
1826 
1827 	/* receive packets that size > 2048 */
1828 	wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1829 
1830 	/* clear counters on read */
1831 	wr32m(wx, WX_MMC_CONTROL,
1832 	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1833 
1834 	wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1835 	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1836 
1837 	wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1838 
1839 	wr32m(wx, WX_MIS_RST_ST,
1840 	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
1841 
1842 	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1843 	wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1844 	for (i = 0; i < 16; i++) {
1845 		wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1846 		wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1847 		wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1848 	}
1849 	wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1850 	for (i = 0; i < 16; i++) {
1851 		wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1852 		wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1853 		wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1854 	}
1855 
1856 	/* set pause frame dst mac addr */
1857 	wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1858 	wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1859 }
1860 EXPORT_SYMBOL(wx_reset_misc);
1861 
1862 /**
1863  *  wx_get_pcie_msix_counts - Gets MSI-X vector count
1864  *  @wx: pointer to hardware structure
1865  *  @msix_count: number of MSI interrupts that can be obtained
1866  *  @max_msix_count: number of MSI interrupts that mac need
1867  *
1868  *  Read PCIe configuration space, and get the MSI-X vector count from
1869  *  the capabilities table.
1870  **/
1871 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1872 {
1873 	struct pci_dev *pdev = wx->pdev;
1874 	struct device *dev = &pdev->dev;
1875 	int pos;
1876 
1877 	*msix_count = 1;
1878 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1879 	if (!pos) {
1880 		dev_err(dev, "Unable to find MSI-X Capabilities\n");
1881 		return -EINVAL;
1882 	}
1883 	pci_read_config_word(pdev,
1884 			     pos + PCI_MSIX_FLAGS,
1885 			     msix_count);
1886 	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1887 	/* MSI-X count is zero-based in HW */
1888 	*msix_count += 1;
1889 
1890 	if (*msix_count > max_msix_count)
1891 		*msix_count = max_msix_count;
1892 
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1896 
1897 /**
1898  * wx_init_rss_key - Initialize wx RSS key
1899  * @wx: device handle
1900  *
1901  * Allocates and initializes the RSS key if it is not allocated.
1902  **/
1903 static int wx_init_rss_key(struct wx *wx)
1904 {
1905 	u32 *rss_key;
1906 
1907 	if (!wx->rss_key) {
1908 		rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
1909 		if (unlikely(!rss_key))
1910 			return -ENOMEM;
1911 
1912 		netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
1913 		wx->rss_key = rss_key;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 int wx_sw_init(struct wx *wx)
1920 {
1921 	struct pci_dev *pdev = wx->pdev;
1922 	u32 ssid = 0;
1923 	int err = 0;
1924 
1925 	wx->vendor_id = pdev->vendor;
1926 	wx->device_id = pdev->device;
1927 	wx->revision_id = pdev->revision;
1928 	wx->oem_svid = pdev->subsystem_vendor;
1929 	wx->oem_ssid = pdev->subsystem_device;
1930 	wx->bus.device = PCI_SLOT(pdev->devfn);
1931 	wx->bus.func = PCI_FUNC(pdev->devfn);
1932 
1933 	if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1934 		wx->subsystem_vendor_id = pdev->subsystem_vendor;
1935 		wx->subsystem_device_id = pdev->subsystem_device;
1936 	} else {
1937 		err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1938 		if (err < 0) {
1939 			wx_err(wx, "read of internal subsystem device id failed\n");
1940 			return err;
1941 		}
1942 
1943 		wx->subsystem_device_id = swab16((u16)ssid);
1944 	}
1945 
1946 	err = wx_init_rss_key(wx);
1947 	if (err < 0) {
1948 		wx_err(wx, "rss key allocation failed\n");
1949 		return err;
1950 	}
1951 
1952 	wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1953 				sizeof(struct wx_mac_addr),
1954 				GFP_KERNEL);
1955 	if (!wx->mac_table) {
1956 		wx_err(wx, "mac_table allocation failed\n");
1957 		kfree(wx->rss_key);
1958 		return -ENOMEM;
1959 	}
1960 
1961 	return 0;
1962 }
1963 EXPORT_SYMBOL(wx_sw_init);
1964 
1965 /**
1966  *  wx_find_vlvf_slot - find the vlanid or the first empty slot
1967  *  @wx: pointer to hardware structure
1968  *  @vlan: VLAN id to write to VLAN filter
1969  *
1970  *  return the VLVF index where this VLAN id should be placed
1971  *
1972  **/
1973 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1974 {
1975 	u32 bits = 0, first_empty_slot = 0;
1976 	int regindex;
1977 
1978 	/* short cut the special case */
1979 	if (vlan == 0)
1980 		return 0;
1981 
1982 	/* Search for the vlan id in the VLVF entries. Save off the first empty
1983 	 * slot found along the way
1984 	 */
1985 	for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1986 		wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1987 		bits = rd32(wx, WX_PSR_VLAN_SWC);
1988 		if (!bits && !(first_empty_slot))
1989 			first_empty_slot = regindex;
1990 		else if ((bits & 0x0FFF) == vlan)
1991 			break;
1992 	}
1993 
1994 	if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1995 		if (first_empty_slot)
1996 			regindex = first_empty_slot;
1997 		else
1998 			regindex = -ENOMEM;
1999 	}
2000 
2001 	return regindex;
2002 }
2003 
2004 /**
2005  *  wx_set_vlvf - Set VLAN Pool Filter
2006  *  @wx: pointer to hardware structure
2007  *  @vlan: VLAN id to write to VLAN filter
2008  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2009  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2010  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
2011  *                 should be changed
2012  *
2013  *  Turn on/off specified bit in VLVF table.
2014  **/
2015 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2016 		       bool *vfta_changed)
2017 {
2018 	int vlvf_index;
2019 	u32 vt, bits;
2020 
2021 	/* If VT Mode is set
2022 	 *   Either vlan_on
2023 	 *     make sure the vlan is in VLVF
2024 	 *     set the vind bit in the matching VLVFB
2025 	 *   Or !vlan_on
2026 	 *     clear the pool bit and possibly the vind
2027 	 */
2028 	vt = rd32(wx, WX_CFG_PORT_CTL);
2029 	if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2030 		return 0;
2031 
2032 	vlvf_index = wx_find_vlvf_slot(wx, vlan);
2033 	if (vlvf_index < 0)
2034 		return vlvf_index;
2035 
2036 	wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2037 	if (vlan_on) {
2038 		/* set the pool bit */
2039 		if (vind < 32) {
2040 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2041 			bits |= (1 << vind);
2042 			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2043 		} else {
2044 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2045 			bits |= (1 << (vind - 32));
2046 			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2047 		}
2048 	} else {
2049 		/* clear the pool bit */
2050 		if (vind < 32) {
2051 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2052 			bits &= ~(1 << vind);
2053 			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2054 			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2055 		} else {
2056 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2057 			bits &= ~(1 << (vind - 32));
2058 			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2059 			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2060 		}
2061 	}
2062 
2063 	if (bits) {
2064 		wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2065 		if (!vlan_on && vfta_changed)
2066 			*vfta_changed = false;
2067 	} else {
2068 		wr32(wx, WX_PSR_VLAN_SWC, 0);
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 /**
2075  *  wx_set_vfta - Set VLAN filter table
2076  *  @wx: pointer to hardware structure
2077  *  @vlan: VLAN id to write to VLAN filter
2078  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2079  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2080  *
2081  *  Turn on/off specified VLAN in the VLAN filter table.
2082  **/
2083 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2084 {
2085 	u32 bitindex, vfta, targetbit;
2086 	bool vfta_changed = false;
2087 	int regindex, ret;
2088 
2089 	/* this is a 2 part operation - first the VFTA, then the
2090 	 * VLVF and VLVFB if VT Mode is set
2091 	 * We don't write the VFTA until we know the VLVF part succeeded.
2092 	 */
2093 
2094 	/* Part 1
2095 	 * The VFTA is a bitstring made up of 128 32-bit registers
2096 	 * that enable the particular VLAN id, much like the MTA:
2097 	 *    bits[11-5]: which register
2098 	 *    bits[4-0]:  which bit in the register
2099 	 */
2100 	regindex = (vlan >> 5) & 0x7F;
2101 	bitindex = vlan & 0x1F;
2102 	targetbit = (1 << bitindex);
2103 	/* errata 5 */
2104 	vfta = wx->mac.vft_shadow[regindex];
2105 	if (vlan_on) {
2106 		if (!(vfta & targetbit)) {
2107 			vfta |= targetbit;
2108 			vfta_changed = true;
2109 		}
2110 	} else {
2111 		if ((vfta & targetbit)) {
2112 			vfta &= ~targetbit;
2113 			vfta_changed = true;
2114 		}
2115 	}
2116 	/* Part 2
2117 	 * Call wx_set_vlvf to set VLVFB and VLVF
2118 	 */
2119 	ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2120 	if (ret != 0)
2121 		return ret;
2122 
2123 	if (vfta_changed)
2124 		wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2125 	wx->mac.vft_shadow[regindex] = vfta;
2126 
2127 	return 0;
2128 }
2129 
2130 /**
2131  *  wx_clear_vfta - Clear VLAN filter table
2132  *  @wx: pointer to hardware structure
2133  *
2134  *  Clears the VLAN filer table, and the VMDq index associated with the filter
2135  **/
2136 static void wx_clear_vfta(struct wx *wx)
2137 {
2138 	u32 offset;
2139 
2140 	for (offset = 0; offset < wx->mac.vft_size; offset++) {
2141 		wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2142 		wx->mac.vft_shadow[offset] = 0;
2143 	}
2144 
2145 	for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2146 		wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2147 		wr32(wx, WX_PSR_VLAN_SWC, 0);
2148 		wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2149 		wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2150 	}
2151 }
2152 
2153 int wx_vlan_rx_add_vid(struct net_device *netdev,
2154 		       __be16 proto, u16 vid)
2155 {
2156 	struct wx *wx = netdev_priv(netdev);
2157 
2158 	/* add VID to filter table */
2159 	wx_set_vfta(wx, vid, VMDQ_P(0), true);
2160 	set_bit(vid, wx->active_vlans);
2161 
2162 	return 0;
2163 }
2164 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2165 
2166 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2167 {
2168 	struct wx *wx = netdev_priv(netdev);
2169 
2170 	/* remove VID from filter table */
2171 	if (vid)
2172 		wx_set_vfta(wx, vid, VMDQ_P(0), false);
2173 	clear_bit(vid, wx->active_vlans);
2174 
2175 	return 0;
2176 }
2177 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2178 
2179 static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2180 {
2181 	u16 reg_idx = ring->reg_idx;
2182 	u32 srrctl;
2183 
2184 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2185 	srrctl |= WX_PX_RR_CFG_DROP_EN;
2186 
2187 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2188 }
2189 
2190 static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2191 {
2192 	u16 reg_idx = ring->reg_idx;
2193 	u32 srrctl;
2194 
2195 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2196 	srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2197 
2198 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2199 }
2200 
2201 int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2202 {
2203 	u16 pause_time = WX_DEFAULT_FCPAUSE;
2204 	u32 mflcn_reg, fccfg_reg, reg;
2205 	u32 fcrtl, fcrth;
2206 	int i;
2207 
2208 	/* Low water mark of zero causes XOFF floods */
2209 	if (tx_pause && wx->fc.high_water) {
2210 		if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2211 			wx_err(wx, "Invalid water mark configuration\n");
2212 			return -EINVAL;
2213 		}
2214 	}
2215 
2216 	/* Disable any previous flow control settings */
2217 	mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2218 	mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2219 
2220 	fccfg_reg = rd32(wx, WX_RDB_RFCC);
2221 	fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2222 
2223 	if (rx_pause)
2224 		mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2225 	if (tx_pause)
2226 		fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2227 
2228 	/* Set 802.3x based flow control settings. */
2229 	wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2230 	wr32(wx, WX_RDB_RFCC, fccfg_reg);
2231 
2232 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2233 	if (tx_pause && wx->fc.high_water) {
2234 		fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2235 		wr32(wx, WX_RDB_RFCL, fcrtl);
2236 		fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2237 	} else {
2238 		wr32(wx, WX_RDB_RFCL, 0);
2239 		/* In order to prevent Tx hangs when the internal Tx
2240 		 * switch is enabled we must set the high water mark
2241 		 * to the Rx packet buffer size - 24KB.  This allows
2242 		 * the Tx switch to function even under heavy Rx
2243 		 * workloads.
2244 		 */
2245 		fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2246 	}
2247 
2248 	wr32(wx, WX_RDB_RFCH, fcrth);
2249 
2250 	/* Configure pause time */
2251 	reg = pause_time * 0x00010001;
2252 	wr32(wx, WX_RDB_RFCV, reg);
2253 
2254 	/* Configure flow control refresh threshold value */
2255 	wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2256 
2257 	/*  We should set the drop enable bit if:
2258 	 *  Number of Rx queues > 1 and flow control is disabled
2259 	 *
2260 	 *  This allows us to avoid head of line blocking for security
2261 	 *  and performance reasons.
2262 	 */
2263 	if (wx->num_rx_queues > 1 && !tx_pause) {
2264 		for (i = 0; i < wx->num_rx_queues; i++)
2265 			wx_enable_rx_drop(wx, wx->rx_ring[i]);
2266 	} else {
2267 		for (i = 0; i < wx->num_rx_queues; i++)
2268 			wx_disable_rx_drop(wx, wx->rx_ring[i]);
2269 	}
2270 
2271 	return 0;
2272 }
2273 EXPORT_SYMBOL(wx_fc_enable);
2274 
2275 /**
2276  * wx_update_stats - Update the board statistics counters.
2277  * @wx: board private structure
2278  **/
2279 void wx_update_stats(struct wx *wx)
2280 {
2281 	struct wx_hw_stats *hwstats = &wx->stats;
2282 
2283 	u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2284 	u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2285 	u64 restart_queue = 0, tx_busy = 0;
2286 	u32 i;
2287 
2288 	/* gather some stats to the wx struct that are per queue */
2289 	for (i = 0; i < wx->num_rx_queues; i++) {
2290 		struct wx_ring *rx_ring = wx->rx_ring[i];
2291 
2292 		non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2293 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2294 		hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2295 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2296 	}
2297 	wx->non_eop_descs = non_eop_descs;
2298 	wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2299 	wx->hw_csum_rx_error = hw_csum_rx_error;
2300 	wx->hw_csum_rx_good = hw_csum_rx_good;
2301 
2302 	for (i = 0; i < wx->num_tx_queues; i++) {
2303 		struct wx_ring *tx_ring = wx->tx_ring[i];
2304 
2305 		restart_queue += tx_ring->tx_stats.restart_queue;
2306 		tx_busy += tx_ring->tx_stats.tx_busy;
2307 	}
2308 	wx->restart_queue = restart_queue;
2309 	wx->tx_busy = tx_busy;
2310 
2311 	hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2312 	hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2313 	hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2314 	hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2315 	hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2316 	hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2317 	hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2318 	hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2319 	hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2320 	hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2321 	hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2322 	hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2323 	hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2324 	hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2325 	hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2326 	hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2327 	hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2328 	hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2329 	hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2330 	hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2331 	hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2332 	hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2333 
2334 	for (i = 0; i < wx->mac.max_rx_queues; i++)
2335 		hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2336 }
2337 EXPORT_SYMBOL(wx_update_stats);
2338 
2339 /**
2340  *  wx_clear_hw_cntrs - Generic clear hardware counters
2341  *  @wx: board private structure
2342  *
2343  *  Clears all hardware statistics counters by reading them from the hardware
2344  *  Statistics counters are clear on read.
2345  **/
2346 void wx_clear_hw_cntrs(struct wx *wx)
2347 {
2348 	u16 i = 0;
2349 
2350 	for (i = 0; i < wx->mac.max_rx_queues; i++)
2351 		wr32(wx, WX_PX_MPRC(i), 0);
2352 
2353 	rd32(wx, WX_RDM_PKT_CNT);
2354 	rd32(wx, WX_TDM_PKT_CNT);
2355 	rd64(wx, WX_RDM_BYTE_CNT_LSB);
2356 	rd32(wx, WX_TDM_BYTE_CNT_LSB);
2357 	rd32(wx, WX_RDM_DRP_PKT);
2358 	rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2359 	rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2360 	rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2361 	rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2362 	rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2363 	rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2364 	rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2365 	rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2366 	rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2367 	rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2368 	rd32(wx, WX_RDB_LXONTXC);
2369 	rd32(wx, WX_RDB_LXOFFTXC);
2370 	rd32(wx, WX_MAC_LXONOFFRXC);
2371 }
2372 EXPORT_SYMBOL(wx_clear_hw_cntrs);
2373 
2374 /**
2375  *  wx_start_hw - Prepare hardware for Tx/Rx
2376  *  @wx: pointer to hardware structure
2377  *
2378  *  Starts the hardware using the generic start_hw function
2379  *  and the generation start_hw function.
2380  *  Then performs revision-specific operations, if any.
2381  **/
2382 void wx_start_hw(struct wx *wx)
2383 {
2384 	int i;
2385 
2386 	/* Clear the VLAN filter table */
2387 	wx_clear_vfta(wx);
2388 	WX_WRITE_FLUSH(wx);
2389 	/* Clear the rate limiters */
2390 	for (i = 0; i < wx->mac.max_tx_queues; i++) {
2391 		wr32(wx, WX_TDM_RP_IDX, i);
2392 		wr32(wx, WX_TDM_RP_RATE, 0);
2393 	}
2394 }
2395 EXPORT_SYMBOL(wx_start_hw);
2396 
2397 MODULE_LICENSE("GPL");
2398